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Abstract We investigate the global existence of strong solutions to a non-isothermal ide-

al gas model derived from an energy variational approach. We first show the global well-

posedness in the Sobolev space H
2(R3) for solutions near equilibrium through iterated

energy-type bounds and a continuity argument. We then prove the global well-posedness

in the critical Besov space Ḃ
3/2
2,1 by showing that the linearized operator is a contraction

mapping under the right circumstances.
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1 Introduction

Starting from a given free energy, Lai-Liu-Tarfulea [20] established a general framework for

deriving non-isothermal fluid models by combining classical thermodynamic laws and the ener-

getic variational approach (see [15, 18]). As an application, three full non-isothermal systems

(the non-isothermal ideal gas, non-isothermal porous media, and non-isothermal generalized

porous media equations) are established based on three specific free energies. What is more,

under some appropriate assumptions on the conductivity coefficient κ3, a maximum/minimum

principle is developed for the first two models by adapting an idea originally from the work
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[25]. These maximum/minimum principles establish the positivity of the absolute temperature,

which implies the thermodynamic consistency of the corresponding models.

However, [20] does not address the long time behavior (the existence and uniqueness) of the

solution to the non-isothermal models mentioned, which is the core theory for the partial differ-

ential system. At present, there are many results on the existence and behavior of weak solutions

to various non-isothermal fluid models; see [9, 10, 12, 13, 24] for the Navier-Stokes-Fourier sys-

tem, which is a powerful generalization of the classical Navier-Stokes equations and is used

to model thermodynamic fluid flow, [7] for the non-isothermal general Ericksen-Leslie system,

[8] for the non-isothermal Cahn-Hilliard equation, [17] for the non-isothermal Poisson-Nernst-

Planck-Fourier system, and [21] for the Brinkman-Fourier system with ideal gas equilibrium.

This paper aims to study the global well-posedness of the following non-isothermal ideal

gas system in R3:
{
∂tρ = κ1∆(ρθ),

κ2(ρθ)t − κ1(κ1 + κ2)∇ · (θ∇(ρθ)) = ∇ · (κ3∇θ) .
(1.1)

For the reader’s convenience, we briefly sketch the construction of (1.1). As can be seen in the

model, the main unknown variables are:

1. a non-negative measurable function ρ = ρ(t, x) which denotes the mass density;

2. a positive measurable function θ = θ(t, x) representing the absolute temperature.

In addition, a vector field u = u(t, x), denoting the velocity field of the fluid, will be used as an

intermediate variable.

For an ideal gas, we have the following definition of free energy:

Ψ(ρ, θ) = κ1θρ ln ρ− κ2ρθ ln θ. (1.2)

Then the (specific) entropy of the system, denoted by η, and the (specific) internal energy,

denoted by e, are connected to the free energy Ψ by the standard Helmholtz relation (see

formula (2.5.26) in the classical book [5])




η(ρ, θ) := −∂θΨ,

e(ρ, θ) := Ψ− ∂θΨθ = Ψ+ ηθ,

ηθ =
κ2ρ

θ
.

(1.3)

The total energy and total dissipation are then chosen to be

Etotal =

∫

Ωx
t

Ψ(ρ, θ)dx and Dtotal =
1

2

∫

Ωx
t

ρu2dx.

Employing the energetic variational approach then establishes the following Darcy type diffusion

law: 



p = Ψρρ− ρ = κ1ρθ,

∇p = −ρu,

∂θp = κ1ρ.

(1.4)

We remark that, according to [2, 23], the internal energy and pressure are both linearly pro-

portional to the product of temperature and density. It is easy to verify this fact by combining

(1.2), (1.3) and (1.4).
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Now, we rewrite the internal energy function in terms of the new state variables ρ and η,

giving that

e1(ρ, η) = e (ρ, θ(ρ, η)) , (1.5)

which then implies that {
e1η = θ, e1ρ = Ψρ,

∇p = ρ∇e1ρ + η∇e1η.
(1.6)

We recall the continuity equation for a closed system

ρt +∇ · (ρu) = 0, (1.7)

and combine this with the two classical thermodynamic laws, the first of which relates to the

rate of change of the internal energy with dissipation and heat:

de

dt
= ∇ ·W +∇ · q. (1.8)

Here W denotes the amount of thermodynamic work done by the system on its surroundings

and q denotes the quantity of energy supplied to the system as heat. The second thermodynamic

law describes the evolution of the entropy

∂tη +∇ · (ηu) = ∇ ·
(q
θ

)
+∆, (1.9)

where ∆ ≥ 0 denotes the rate of entropy production. Fourier’s law then yields that

q = κ3∇θ, (1.10)

where κ3 denotes the material conductivity (which may depend on ρ and θ). Combining (1.6),

(1.7), (1.8), (1.9) and (1.10), we obtain that

de1(ρ, η)

dt
= e1ρρt + e1ηηt

= e1ρ (−∇ · (ρu)) + e1η

(
−∇ · (ηu) +∇ ·

(q
θ

)
+∆

)

= −∇ · (e1ρρu+ e1ηηu) + (ρ∇e1ρ + η∇e1η) · u+ θ∇ ·
(q
θ

)
+ θ∆

= ∇ ·W +∇p · u+∇ · q −
q

θ
· ∇θ + θ∆

= ∇ ·W − ρu2 +∇ · q −
κ3|∇θ|2

θ
+ θ∆. (1.11)

Therefore, 



W = − (e1ρρ+ e1ηη)u,

∆ =
1

θ

(
ρ|u|2 +

κ3|∇θ|2

θ

)
,

(1.12)

which in turn gives that

ηt +∇ · (ηu) = ηθ(θt + u · ∇θ) + ηρ(ρt + u · ∇ρ) + η∇ · u

= ηθ(θt + u · ∇θ) + ηρ (−ρ∇ · u) + η∇ · u

= ηθ(θt + u · ∇θ) + (η − ηρρ)∇ · u

= ηθ(θt + u · ∇θ) + ∂θp∇ · u

= ∇ ·
(q
θ

)
+∆ = ∇ ·

(q
θ

)
+

1

θ

(
ρ|u|2 +

q · ∇θ

θ

)
, (1.13)
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which finally yields that

ηθ(θt + u · ∇θ) + ∂θp∇ · u = ∇ ·
(q
θ

)
+

1

θ

(
ρ|u|2 +

q · ∇θ

θ

)
. (1.14)

Combining (1.14), (1.3) and (1.4) alows us to conclude that

κ2ρ

θ
(θt + u · ∇θ) + κ1ρ∇ · u = ∇ ·

(
κ3∇θ

θ

)
+

1

θ

(
−κ1∇(ρθ) · u+

κ3|∇θ|2

θ

)
, (1.15)

so that

κ2(ρθ)t − κ1(κ1 + κ2)∇ · (θ∇(ρθ)) = ∇ · (κ3∇θ) , (1.16)

which completes the derivation of the non-isothermal ideal gas model (1.1).

Our main goal in the present work is to establish the well-posedness for system (1.1).

Motivated by similar works on the classical Navier-Stokes equations ([6, 14]), we first discuss

our choice of working spaces. We observe that (1.1) is invariant under the transformation

(ρ(t, x), θ(t, x)) −→ (ρ(λ2t, λx), θ(λ2t, λx)),

(ρ0(x), θ0(x)) −→ (ρ0(λx), θ0(λx)).
(1.17)

Definition 1.1 A function space E ⊂ S ′(R3) × S ′(R3) is called a critical space if the

associated norm is invariant under the transformation (1.17).

Obviously Ḣ3/2 × Ḣ3/2 is a critical space for the initial data, but Ḣ3/2 is not included

in L∞. We cannot expect to get L∞ control on the density and the temperature by taking

that (ρ0 − 1, θ0 − 1) ∈ Ḣ3/2 × Ḣ3/2. Moreover, the product between functions does not extend

continuously from Ḣ3/2 × Ḣ3/2 to Ḣ3/2, so we will run into difficulties when estimating the

nonlinear terms. Similarly to the Navier-Stokes system studied in [6], we could use homogeneous

Besov spaces Ḃs
2,1(R

3) (defined in [1, Chapter 2]). Ḃ
3/2
2,1 is an algebra embedded in L∞ which

allows us to control the density and temperature from above without requiring more regularity

on the derivatives of ρ0 and θ0.

Our first result proves the global well-posedness for (1.1) when the initial data is close to a

stable equilibrium (ρ, θ) in the subcritical space H2 ×H2. The working space X(T ) is defined

by the norm

‖u‖2X(T ) := sup
0≤t≤T

‖u(t)‖2H2 +

∫ T

0

(
‖∇u‖2H2 + ‖∂tu‖

2
H1

)
dt

for any distribution u and for T > 0.

Theorem 1.2 Let ρ, θ > 0 be fixed constants. There exist two positive constants, α and

M , such that, for all ρ0 and θ0 where (ρ0 − ρ, θ0 − θ) ∈ H2 ×H2 and

‖ρ0 − ρ‖H2 + ‖θ0 − θ‖H2 ≤ α, (1.18)

system (1.1) has a unique global solution (ρ, θ) with (ρ − ρ, θ − θ) ∈ X(T ) for all T > 0.

Moreover, if we define that c := ρ− ρ and τ := θ − θ, then

‖(c, τ)‖X(T ) ≤ Mα. (1.19)

Our second main result then establishes the existence and uniqueness of a solution to system

(1.1) for initial data close to a stable equilibrium (ρ, θ) in the critical space Ḃ
3/2
2,1 × Ḃ

3/2
2,1 . For

convenience, we assume that ρ = θ = 1. The working space E(T ) is then defined by

E(T ) :=
{
u ∈ C

(
[0, T ], Ḃ

3/2
2,1

)
, ∇2u ∈ L1

(
0, T ; Ḃ

3/2
2,1

)}
, T > 0.



No.3 B. Han et al: GLOBAL EXISTENCE FOR NON-ISOTHERMAL IDEAL GAS SYSTEM 869

Theorem 1.3 There exist two positive constants, α and M , such that, for all (a0, τ0) ∈

Ḃ
3/2
2,1 × Ḃ

3/2
2,1 with

‖a0‖Ḃ3/2
2,1

+ ‖τ0‖Ḃ3/2
2,1

≤ α, (1.20)

system (1.1) has a unique global solution (ρ, θ) with initial data θ0 = τ0+1 and ρ0 = 1/(1+a0).

Moreover, if we define that ρ = 1/(1 + a) and τ = θ − 1, then, for all T > 0,

‖(a, τ)‖E(T ) ≤ Mα. (1.21)

The rest of the paper unfolds as follows: Section 2 will present some basic tools in Fourier

analysis: the Littlewood-Paley decomposition and the paraproduct calculus in Besov spaces.

Section 3 will prove the global existence and uniqueness result in Soblolev spaces (Theorem

1.2). Section 4 will prove the global well-posedness result in the critical Besov space by using

Banach’s fixed point Theorem.

2 Notation and Preliminaries

For any 1 ≤ p ≤ ∞ and measurable f : Rn → R, we will use ‖f‖Lp(Rn), or simply ‖f‖p, to

denote the usual Lp norm. For a vector valued function f = (f1, · · · , fm), we still denote that

‖f‖p :=
m∑
j=1

‖f j‖p.

For any 0 < T < ∞ and any Banach space B with a norm ‖ · ‖B, we will use the notation

C([0, T ], B) or C0
t B to denote the space of continuous B-valued functions endowed with the

norm

‖f‖C([0,T ],B) := max
0≤t≤T

‖f(t)‖B.

Also, for 1 ≤ p ≤ ∞, we define that ‖f‖Lp
tB([0,T ]) := ‖‖f(t)‖B‖Lp

t ([0,T ]).

We shall adopt the following convention for the Fourier transform:

f̂(ξ) =

∫

Rn

f(x)e−ix·ξdx; f(x) =
1

(2π)n

∫

Rn

f̂(ξ)eix·ξdξ.

For s ∈ R, the fractional Laplacian |∇|s corresponds to the Fourier multiplier |ξ|s defined as

|̂∇|sf(ξ) = |ξ|sf̂(ξ)

whenever it is well-defined. For s ≥ 0 and 1 ≤ p < ∞, we define the semi-norm and norms as

‖f‖Ẇ s,p = ‖|∇|sf‖p, ‖f‖W s,p = ‖|∇|sf‖p + ‖f‖p.

When p = 2, we denote that Ḣs = Ẇ s,2 and that Hs = W s,2, in accordance with the usual

notation.

For any two quantitiesX and Y , we denote thatX . Y ifX ≤ CY for some constant C > 0.

Similarly, X & Y if X ≥ CY for some C > 0. We denote that X ∼ Y if X . Y and Y . X.

The dependence of the constant C on other parameters or constants are usually clear from the

context, so we will often suppress this dependence. We shall denote that X .Z1,Z2,··· ,Zk
Y if

X ≤ CY and that the constant C depends on the quantities Z1, · · · , Zk.

For any two quantities X and Y , we shall denote that X � Y if X ≤ cY for some

sufficiently small constant c. The smallness of the constant c is usually clear from the context.
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The notation X � Y is similarly defined. Note that our use of � and � here is different from

the usual Vinogradov notation in number theory or asymptotic analysis.

We will need to use the Littlewood-Paley (LP) frequency projection operators. To fix the

notation, let φ0 be a radial function in C∞
c (Rn) satisfying

0 ≤ φ0 ≤ 1, φ0(ξ) = 1 for |ξ| ≤ 1, φ0(ξ) = 0 for |ξ| ≥ 7/6.

Let φ(ξ) := φ0(ξ)−φ0(2ξ), which is supported in 1
2 ≤ |ξ|≤ 7

6 . For any f ∈ S(Rn), j ∈ Z, define

that

Ŝjf(ξ) = φ0(2
−jξ)f̂(ξ), ∆̂jf(ξ) = φ(2−jξ)f̂(ξ), ξ ∈ R

n.

We will denote that P>j = I − Sj (I is the identity operator) and, for any −∞ < a < b < ∞,

that P[a,b] =
∑

a≤j≤b

∆j . Sometimes, for simplicity of notation (and when there is no obvious

confusion), we will write fj = ∆jf and fa≤·≤b =
b∑

j=a

fj . By using the support property of φ,

we have that ∆j∆j′ = 0 whenever |j − j′| > 1.

Thanks to the above Littlewood-Paley decomposition, a number of functional spaces can

be characterized. Let us give the definition of homogeneous Besov spaces first.

Definition 2.1 For s ∈ R, (p, r) ∈ [1,∞]2 and u ∈ S ′(R3), we set that

‖u‖Ḃs
p,r(R

3) =

(∑

j∈Z

2jsr‖∆ju‖
r
Lp

) 1
r

,

with the usual modification if r = ∞.

We then define the Besov space by Ḃs
p,r = {u ∈ S ′(R3), ‖u‖Ḃs

p,r(R
3) < ∞}. In the what

follows, for the convenience of notation, we always use Ḃs
p,r instead of Ḃs

p,r(R
3), and similar

notations for other norms. Let us now state some classical properties for the Besov spaces

without giving the proofs.

Proposition 2.2 The following properties hold:

1) Derivatives: we have that ‖∇u‖Ḃs−1
p,r

≤ C‖u‖Ḃs
p,r

.

2) Sobolev embedding: if p1 ≤ p2 and r1 ≤ r2, then Ḃs
p1,r1 ↪→ Ḃ

s− 3
p1

+ 3
p2

p2,r2 .

If s1 > s2 and 1 ≤ p, r1, r2 ≤ +∞, then Ḃs1
p,r1 ↪→ Ḃs2

p,r2 .

3) Algebraic property: for s > 0, Ḃs
p,r ∩ L∞ is an algebra.

4) Real interpolation:
(
Ḃs1

p,r, Ḃ
s2
p,r

)
θ,r′

= Ḃ
θs1+(1−θ)s2
p,r′ .

We recall some product laws in Besov spaces coming directly from the paradifferential

calculus of Bony (see [4]).

Proposition 2.3 We have the following product laws:

‖uv‖Ḃs
p,r

. ‖u‖L∞‖v‖Ḃs
p,r

+ ‖v‖L∞‖v‖Ḃs
p,r

if s > 0,

‖uv‖Ḃs1
p,r

. ‖u‖Ḃs1
p,r

‖v‖Ḃs2
p,r

if s1 ≤
3

2
, s2 >

3

2
and s1 + s2 > 0,

‖uv‖
Ḃ

s1+s2−
3
2

p,r

. ‖u‖Ḃs1
p,r

‖v‖Ḃs2
p,r

if s1, s2 <
3

2
and s1 + s2 > 0,

‖uv‖Ḃs
p,r

. ‖u‖Ḃs
p,r

‖v‖
Ḃ

3/2
p,r ∩L∞

if |s| <
3

2
.
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Moreover, if r = 1, the third inequality also holds for s1, s2 ≤ 3
2 and s1 + s2 > 0.

3 Global Well-Posedness in Sobolev Spaces

The present section is dedicated to proving Theorem 1.2. Before starting, we assume that

c := ρ− ρ, τ := θ − θ. We first rewrite (1.1) as




∂tc− κ1θ∆c− κ1ρ∆τ = κ1∆(cτ),

ρκ2∂tτ − κ1κ2∇τ · ∇(ρθ)− κ2
1∇ · (θ∇(ρθ)) = ∇ · (κ3(θ)∇τ) ,

(c, τ) |t=0= (c0, τ0),

(3.1)

with

c0 = ρ0 − ρ, τ0 = θ0 − θ.

For simplicity, here we assume that ρ = θ = 1. Furthermore, we decompose the coefficients

κ3(θ) = κ̄3 + κ̃3(τ), which satisfies that κ̃3(0) = 0. We also assume that κ̃′
3 and κ̃′′

3 exist and

are bounded. Then (3.1) can be written as




∂tc− κ1∆c− κ1∆τ = κ1∆(cτ),

κ2∂tτ − (κ2
1 + κ̄3)∆τ − κ2

1∆c = κ1(κ1 + κ2)
(
∇τ · ∇c+∇τ · ∇τ +∇τ · ∇(τc)

)

+ κ2
1∆(cτ) +∇ · (κ̃3(τ)∇τ)− κ2c∂tτ,

(c, τ) |t=0= (c0, τ0).

(3.2)

The principle of the proof of Theorem 1.2 is a very classical one. We use an iterative

method to establish the approximate solutions to the perturbed system (3.2). Define the first

term in the sequence as (c0(t, x), τ0(t, x)) = (0, 0) everywhere on R+ × R3. We then define

(cn+1(t, x), τn+1(t, x)) by induction, as the solution to the linear approximate system




∂tc
n+1 − κ1∆cn+1 − κ1∆τn+1 = Hn,

κ2∂tτ
n+1 − (κ2

1 + κ̄3)∆τn+1 − κ2
1∆cn+1 = In,

(cn+1, τn+1) |t=0= (cn, τn)

(3.3)

with

(cn, τn) = (Snc0, Snτ0), (3.4)

Hn = κ1∆(cnτn), (3.5)

In = κ1(κ1 + κ2)
(
∇τn · ∇cn +∇τn · ∇τn +∇τn · ∇(τncn)

)

+ κ2
1∆(cnτn) +∇ · (κ̃3(τ

n)∇τn)− κ2c
n∂tτ

n, (3.6)

where the low frequency cut-off operator Sn is as defined in Section 2.

In the next two subsections, we will show that the sequence of approximate solutions

{(cn(t, x), τn(t, x))}n∈N is uniformly bounded (and moreover Cauchy) in X(T ) for all T > 0.

As mentioned in Section 1, the working space X(T ) is defined by the norm

‖u‖2X(T ) := sup
0≤t≤T

‖u(t)‖2H2 +

∫ T

0

(
‖∇u‖2H2 + ‖∂tu‖

2
H1

)
dt

for any distribution u and T > 0.
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3.1 Uniform Bound in the Critical Regularity Case

In this part, we prove a uniform estimate in X(T ) for (cn, τn). Denote that

α = ‖c0‖H2 + ‖τ0‖H2 .

We are going to prove the existence of a positive M such that, if α is small enough, then the

solution belongs to the space L∞
T (H2)× L∞

T (H2) and also satisfies that

‖(cn, τn)‖2X(T ) ≤ Mα2. (3.7)

Clearly, (3.7) holds for (c0, τ0). Assuming that (3.7) holds for (cn, τn), we will show that it also

holds for (cn+1, τn+1).

Step 1 L2 energy estimate

Taking the L2 inner product with cn+1 and τn+1 with respect to the first and second

equations, one has that

1

2

d

dt
‖cn+1‖2L2 + κ1‖∇cn+1‖2L2 = −κ1

∫

R3

∇τn+1 · ∇cn+1 dx− κ1

∫

R3

∇(cnτn) · ∇cn+1dx

: = I1 + I2, (3.8)

and

1

2
κ2

d

dt
‖τn+1‖2L2 + (κ2

1 + κ̄3)‖∇τn+1‖2L2 = −κ2
1

∫

R3

∇τn+1 · ∇cn+1 dx+

∫

R3

In · τn+1dx

: = I3 + I4 + I5 + I6 + I7, (3.9)

where

I1 = −κ1

∫

R3

∇τn+1 · ∇cn+1 dx, I2 = −κ1

∫

R3

∇(cnτn) · ∇cn+1 dx,

I3 = −κ2
1

∫

R3

∇τn+1 · ∇cn+1 dx, I4 = −κ2
1

∫

R3

∇(cnτn) · ∇τn+1 dx,

I5 = κ1(κ1 + κ2)

∫

R3

(
∇cn · ∇τn +∇τn · ∇τn +∇τn · ∇(τncn)

)
τn+1 dx,

I6 = −

∫

R3

κ̃3(τ
n)∇τn · ∇τn+1 dx, I7 = −κ2

∫

R3

cn∂tτ
n τn+1 dx.

First, by the Hölder and Cauchy inequalities, we have that

I1 ≤
1

2
κ1‖∇τn+1‖2L2 +

1

2
κ1‖∇cn+1‖2L2 , I3 ≤

1

2
κ2
1‖∇τn+1‖2L2 +

1

2
κ2
1‖∇cn+1‖2L2 .

Then, by the linear combination of (3.8) and (3.9), one can get that

κ1(1 + δ)
d

dt
‖cn+1‖2L2 + κ2

d

dt
‖τn+1‖2L2 + δκ2

1‖∇cn+1‖2L2 + (2κ̄3 − δκ2
1)‖∇τn+1‖2L2

≤ 2 (κ1(1 + δ)I2 + I4 + I5 + I6 + I7) , (3.10)

where δ is chosen to satisfy that δκ2
1 = κ̄3. To bound I2, we use Hölder’s inequality to obtain

that

I2 = −κ1

∫

R3

τn∇cn · ∇cn+1 dx− κ1

∫

R3

cn∇τn · ∇cn+1 dx

≤ κ1‖τ
n‖L∞‖∇cn‖L2‖∇cn+1‖L2 + κ1‖c

n‖L∞‖∇cn+1‖L2‖∇τn‖L2

≤
C

δ

(
‖τn‖2L∞‖∇cn‖2L2 + ‖∇τn‖2L2‖cn‖2L∞

)
+

1

32
δκ2

1‖∇cn+1‖2L2 . (3.11)
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Similarly, I4 and I5 can be bounded by

I4 ≤
Cκ2

1

δ

(
‖τn‖2L∞‖∇cn‖2L2 + ‖∇τn‖2L2‖cn‖2L∞

)
+

1

32
δκ2

1‖∇τn+1‖2L2 ,

I5 ≤ κ1(κ1 + κ2)‖∇τn‖L2‖τn+1‖L∞

×
(
‖∇cn‖L2 + ‖∇τn‖L2 + ‖∇τn‖L2‖cn‖L∞ + ‖∇cn‖L2‖τn‖L∞

)
.

(3.12)

For I6, notice that κ̃3(0) = 0. Then we use Taylor’s formula and Hölder’s inequality to get that

I6 ≤ C‖τn‖L∞‖∇τn‖L2‖∇τn+1‖L2

≤
C

δκ2
1

‖τn‖2L∞‖∇τn‖2L2 +
1

32
δκ2

1‖∇τn+1‖2L2 . (3.13)

For the last term I7, we use the Hölder’s inequality and Sobolev embedding to obtain that

I7 = −κ2

∫

R3

cn ∂tτ
n τn+1 dx ≤ κ2‖c

n‖L3‖∂tτ
n‖L2‖τn+1‖L6

≤
Cκ2

2

δκ2
1

‖cn‖2H1‖∂tτ
n‖2L2 +

1

32
δκ2

1‖∇τn+1‖2L2 . (3.14)

Using the bounds (3.11)–(3.14) in (3.10) and integrating over [0, T ], we get that

‖cn+1‖2L2 + ‖τn+1‖2L2 +

∫ T

0

(
‖∇cn+1‖2L2 + ‖∇τn+1‖2L2

)
dt

≤ C
(
‖c0‖

2
L2 + ‖τ0‖

2
L2

)
+ C

∫ T

0

(
‖τn‖2L∞‖∇cn‖2L2 + ‖∇τn‖2L2‖cn‖2L∞

)
dt

+ C

∫ T

0

‖∇τn‖L2‖τn+1‖L∞

(
‖∇cn‖L2+‖∇τn‖L2+‖∇τn‖L2‖c‖L∞+‖∇cn‖L2‖τn‖L∞

)
dt

+ C

∫ T

0

(
‖τn‖2L∞‖∇τn‖2L2 + ‖cn‖2H1‖∂tτ

n‖2L2

)
dt, (3.15)

where the constant C only depends on κ1, κ2 and κ̄3. By the Sobolev embedding H2 ↪→ L∞ in

R3, and using assumption (3.7), we obtain that

‖cn+1‖2L2 + ‖τn+1‖2L2 +

∫ T

0

(
‖∇cn+1‖2L2 + ‖∇τn+1‖2L2

)
dt

≤ Cα2 + CM2α4 + CMα2‖τn+1‖
1
2

X(T ) + CM
3
2α3‖τn+1‖

1
2

X(T ). (3.16)

Step 2 Ḣ2 energy estimate

Due to the equivalence of ‖(cn+1, τn+1)‖H2 with ‖(cn+1, τn+1)‖L2 + ‖(cn+1, τn+1)‖Ḣ2 , it is

sufficient to bound the homogeneous Ḣ2 energy of (cn+1, τn+1). Applying ∂2
i for i = 1, 2, 3 to

(3.2) and then taking the L2 inner product with (∂2
i c

n+1, ∂2
i τ

n+1), respectively, we find that

1

2

d

dt
‖∂2

i c
n+1‖2L2 + κ1‖∇∂2

i c
n+1‖2L2

= −κ1

∫

R3

∇∂2
i τ

n+1 · ∇∂2
i c

n+1 dx− κ1

∫

R3

∇∂2
i (c

nτn) · ∇∂2
i c

n+1 dx

≤
1

2
κ1‖∇∂2

i τ
n+1‖2L2 +

1

2
κ1‖∇∂2

i c
n+1‖2L2 + J1, (3.17)

and

1

2
κ2

d

dt
‖∂2

i τ
n+1‖2L2 + (κ2

1 + κ̄3)‖∇∂2
i τ

n+1‖2L2 ≤
1

2
κ2
1‖∇∂2

i τ
n+1‖2L2 +

5∑

2

Ji. (3.18)
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Here, we denote J1 to J5 by

J1 = −κ1

∫

R3

∇∂2
i (c

nτn) · ∇∂2
i c

n+1 dx, J2 = −κ2
1

∫

R3

∇∂2
i (c

nτn) · ∇∂2
i τ

n+1 dx,

J3 = κ1(κ1 + κ2)

∫

R3

∂2
i

(
∇cn · ∇τn +∇τn · ∇τn +∇τn · ∇(τncn)

)
∂2
i τ

n+1 dx,

J4 = −

∫

R3

∂2
i (κ̃3(τ

n)∇τn) · ∇∂2
i τ

n+1 dx, J5 = κ2

∫

R3

∂2
i (c

n∂tτ
n) ∂2

i τ
n+1 dx.

By choosing a suitable δ as in (3.10), a linear combination of (3.17) and (3.18) implies that

κ1(1 + δ)
d

dt
‖∂2

i c
n+1‖2L2 + κ2

d

dt
‖∂2

i τ
n+1‖2L2

+ δκ2
1‖∇∂2

i c
n+1‖2L2 + (2κ̄3 − δκ2

1)‖∇∂2
i τ

n+1‖2L2

≤ 2 (κ1(1 + δ)J1 + J2 + J3 + J4 + J5) . (3.19)

By Hölder’s inequality and Sobolev embedding, one has that

J1 ≤ Cκ1

(
‖τ‖L∞‖∇∂2

i c
n‖L2 + ‖∇∂ic

n‖L6‖∂iτ
n‖L3

+ ‖∇cn‖L3‖∂2
i τ

n‖L6 + ‖cn‖L∞‖∇∂2
i τ

n‖L2

+ ‖∇∂iτ
n‖L6‖∂ic

n‖L3 + ‖∇τn‖L3‖∂2
i c

n‖L6

)
‖∇∂2

i c
n+1‖L2

≤ Cκ1

(
‖τn‖H2‖∇cn‖H2 + ‖cn‖H2‖∇τn‖H2

)
‖∇∂2

i c
n+1‖L2

≤
C

δ

(
‖τn‖2H2‖∇cn‖2H2 + ‖cn‖2H2‖∇τn‖2H2

)
+

1

32
δκ2

1‖∇∂2
i c

n+1‖2L2 . (3.20)

Similarly, we have that

J2 ≤
Cκ2

1

δ

(
‖τn‖2H2‖∇cn‖2H2 + ‖cn‖2H2‖∇τn‖2H2

)
+

1

32
δκ2

1‖∇∂2
i c

n+1‖2L2 . (3.21)

and

J3 ≤ C(κ2
1 + κ2

2)‖∇∂2
i τ

n+1‖L2

(
‖∇τn‖L3‖∇∂ic

n‖L6 + ‖∇cn‖L3‖∇∂iτ
n‖L6

+ ‖∇τn‖L3‖∇∂iτ
n‖L6 + ‖cn‖L∞‖∇τn‖L3‖∇∂iτ

n‖L6

+ ‖τn‖L∞‖∇cn‖L3‖∇∂iτ
n‖L6 + ‖τn‖L∞‖∇τn‖L3‖∇∂ic

n‖L6

+ ‖∇cn‖L∞‖∇τn‖L3‖∇τn‖L6

)

≤ C(κ2
1 + κ2

2)‖∇∂2
i τ

n+1‖L2

(
‖τn‖H2 + ‖cn‖H2 + ‖τn‖2H2 + ‖cn‖2H2

)

×
(
‖∇∂2

i c
n‖L2 + ‖∇∂2

i τ
n‖L2 + ‖∇2τn‖L2

)

≤
C(κ2

1 + κ2
2)

2

δκ2
1

(
‖τn‖2H2 + ‖cn‖2H2 + ‖τn‖4H2 + ‖cn‖4H2

)

×
(
‖∇∂2

i c
n‖2L2 + ‖∇∂2

i τ
n‖2L2 + ‖∇2τn‖2L2

)
+

1

2
δκ2

1‖∇∂2
i τ

n+1‖2L2 . (3.22)

Similarly, for J4, we have that

J4 ≤ C‖τn‖L∞‖∇∂2
i τ

n‖L2‖∇∂2
i τ

n+1‖L2 + ‖∂iτ
n‖L3‖∇∂iτ

n‖2L6‖∇∂2
i τ

n+1‖L2

+ ‖∂iτ
n‖L∞‖∂iτ

n‖2L3‖∇∂2
i τ

n+1‖L2

≤
C

δκ2
1

‖τn‖2H2‖∇∂iτ
n‖2L2 +

1

2
δκ2

1‖∇∂2
i τ

n+1‖2L2 . (3.23)
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As for the last term J5, we split it into two pieces and roughly estimate these as

J5 = κ2

∫

R3

∂2
i (c

n∂tτ
n) ∂2

i τ
n+1 dx

= −κ2

∫

R3

∂ic
n ∂tτ

n ∂3
i τ

n+1 dx− κ2

∫

R3

cn ∂t∂iτ
n ∂3

i τ
n+1 dx

≤ C(κ1, κ2)
(
‖cn‖2H2‖∂tτ

n‖2H1

)
+

1

2
δκ2

1‖∇∂2
i τ

n+1‖2L2 . (3.24)

To close the above Ḣ2 energy estimate we will need additional bounds on ∂tτ
n+1 and ∂t∂iτ

n+1.

For that, applying ∂k
i with k = 0, 1 and i = 1, 2, 3 to the equation for τn+1, then taking the L2

inner product with ∂t∂
k
i τ

n+1, we obtain that

κ2‖∂t∂
k
i τ

n+1‖2L2 +
1

2
(κ2

1 + κ̄3)
d

dt
‖∇∂k

i τ
n+1‖2L2

≤ C
κ4
1

κ2
‖∆∂k

i c
n+1‖2L2 + C

κ4
1

κ2
‖∆∂k

i (c
nτn)‖L2 + C‖∂k

i

(
∇cn · ∇τn

)
‖2L2

+ C‖∂k
i

(
∇τn · ∇τn

)
‖2L2 + C‖∂k

i

(
∇τn · ∇(τncn)

)
‖2L2

+ C
1

κ2
‖∂k

i ∇
(
κ̃3(τ

n)∇τn
)
‖2L2 + κ2‖∂

k
i

(
cn∂tτ

n
)
‖2L2 +

1

2
κ2‖∂t∂

k
i τ

n+1‖2L2 , (3.25)

which implies that

1

2
κ2‖∂t∂

k
i τ

n+1‖2L2 +
1

2
(κ2

1 + κ̄3)
d

dt
‖∇∂k

i τ
n+1‖2L2

≤ C
κ4
1

κ2
‖∆∂k

i c
n+1‖2L2 + C

κ4
1

κ2
‖∆∂k

i (c
nτn)‖2L2 + C‖∂k

i

(
∇cn · ∇τn

)
‖2L2

+ C‖∂k
i

(
∇τn · ∇τn

)
‖2L2 + C‖∂k

i

(
∇τn · ∇(τncn)

)
‖2L2

+ C
1

κ2
‖∂k

i ∇
(
κ̃3(τ

n)∇τn
)
‖2L2 + κ2‖∂

k
i

(
cn∂tτ

n
)
‖2L2 . (3.26)

As in the Ḣ2 estimate, for the right hand side of (3.26), we have that

‖∆∂k
i (c

nτn)‖2L2 + ‖∂k
i (∇cn∇τn)‖2L2 + ‖∂k

i (∇τn∇τn)‖2L2

≤ C
(
‖cn‖2H2 + ‖τn‖2H2

)(
‖∇cn‖2H2 + ‖∇τn‖2H2

)
, (3.27)

‖∂k
i ∇

(
κ̃3(τ

n)∇τn
)
‖2L2 ≤ C‖τn‖2H2‖∇τn‖2H2 , (3.28)

‖∂k
i

(
cn∂tτ

n
)
‖2L2 ≤ C‖cn‖2H2‖∂tτ

n‖2H1 , (3.29)

and

‖∂k
i

(
∇τn · ∇(τncn)

)
‖2L2 ≤ C

(
||cn‖2H2‖τn‖2H2 + ‖τn‖4H2

)
‖∇cn‖2H2 . (3.30)

Multiplying by κ2

4Cκ2
1

δ on both sides of (3.26) and combining the resulting inequality with

(3.27)–(3.30) and (3.19)–(3.24), we get that

‖∂2
i c

n+1‖2L2 + ‖∂2
i τ

n+1‖2L2 +
d

dt
‖∇∂k

i τ
n+1‖2L2

+ ‖∇∂2
i c

n+1‖2L2 + ‖∇∂2
i τ

n+1‖2L2 + ‖∂t∂
k
i τ

n+1‖2L2

≤ C(κ1, κ2, κ̄3)
(
‖τn‖2H2 + ‖cn‖2H2 + ‖τn‖4H2 + ‖cn‖4H2

)

×
(
‖∇c‖2H2 + ‖∇τ‖2H2 + ‖∂tτ

n‖2H1

)
. (3.31)
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Integrating (3.31) over [0, T ] in time, using assumption (3.7), and combining these with the L2

estimate and Young’s inequality, we finally have that

‖(cn+1, τn+1)‖2X(T ) ≤ Cα2 + CM2α4 + CM3α6.

For M sufficiently large and α sufficiently small (compared to C), we see that (3.7) holds for

(cn+1, τn+1), and therefore for all n ∈ N.

3.2 Cauchy Sequence in X(T )

In this part, we shall show that the sequence {cn, τn}n∈N is Cauchy in X(T ). For this, we

consider the difference between two solutions (δcn+1, δτn+1) with

δcn+1 = cn+2 − cn+1, δτn+1 = τn+2 − τn+1.

Then (δcn+1, δτn+1) satisfies that




∂tδc
n+1 − κ1∆δcn+1 − κ1∆δτn+1 = δHn,

κ2∂tδτ
n+1 − (κ2

1 + κ̄3)∆δτn+1 − κ2
1∆δcn+1 = δIn,

(δcn+1, δτn+1) |t=0= (δcn+1, δτn+1)

(3.32)

with

(δcn, δτn) = ((Sn+1 − Sn)c0, (Sn+1 − Sn)τ0), (3.33)

δHn = κ1∆(cn+1τn+1)− κ1∆(cnτn), (3.34)

δIn = κ1(κ1 + κ2)
(
∇τn+1 · ∇cn+1 +∇τn+1 · ∇τn+1 +∇τn+1∇(τn+1cn+1)

)

− κ1(κ1 + κ2)
(
∇τn · ∇cn +∇τn · ∇τn +∇τn · ∇(τncn)

)

+ κ2
1∆(cn+1τn+1)− κ2

1∆(cnτn) +∇ · (κ̃3(τ
n+1)∇τn+1)

−∇ · (κ̃3(τ
n)∇τn)−

(
κ2c

n+1∂tτ
n+1 − κ2c

n∂tτ
n
)
. (3.35)

Observe that each term in Hn and In from (3.3) is either quadratic or cubic in (cn, τn). After

taking the differences and computing the X(T )-norm, we will essentially find that

‖(δcn+1, δτn+1)‖2X(T ) ≤ C × sup
k∈N

(
‖(ck, τk)‖X(T )

)
× ‖(δcn, δτn)‖2X(T ).

Since the sequence {(cn, τn)}n∈N is bounded by (3.7) uniformly in n, we can choose α sufficiently

small such that the above inequality produces a geometrically convergent Cauchy sequence.

In the remainder of this section, we will perform this lengthy calculation. We follow the

same two steps as those used in Section 3.1 to show (3.7).

Step 1 L2 energy estimate

Taking the L2 inner product with δcn+1 and δτn+1 with respect to the first and second

equations, we arrive at

1

2

d

dt
‖δcn+1‖2L2 + κ1‖∇δcn+1‖2L2

=− κ1

∫

R3

∇δτn+1 · ∇δcn+1 dx+ κ1

∫

R3

δHn · δcn+1 dx (3.36)

and

1

2
κ2

d

dt
‖δτn+1‖2L2 + (κ2

1 + κ̄3)‖∇δτn+1‖2L2
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=− κ2
1

∫

R3

∇δτn+1 · δ∇cn+1 dx+

∫

R3

δIn · δτn+1 dx. (3.37)

By using the Hölder and Cauchy inequalities, a linear combination of (3.36) and (3.37)

yields that

1

2
κ1(1 + δ)

d

dt
‖δcn+1‖2L2 +

1

2
κ2

d

dt
‖δτn+1‖2L2

+
1

2
δκ2

1‖∇δcn+1‖2L2 + (κ̄3 −
1

2
δκ2

1)‖∇δτn+1‖2L2

≤ κ1(1 + δ)

∫

R3

δHn · δcn+1 dx+

∫

R3

δIn · δτn+1 dx. (3.38)

To bound
∫
R3 δH

n · δcn+1 dx, we first rewrite this as
∫

R3

δHn · δcn+1 dx = −κ1

∫

R3

∇(cn+1τn+1)−∇(cnτn) · ∇δcn+1 dx

= −κ1

∫

R3

(
(∇cn+1 −∇cn)τn+1 +∇cn(τn+1 − τn)

)
· ∇δcn+1 dx

− κ1

∫

R3

(
(cn+1 − cn)∇τn+1 + cn(∇τn+1 −∇τn)

)
· ∇δcn+1 dx

:= K1 +K2 +K3 +K4.

We estimate the Ki terms as follows:

K1 := −κ1

∫

R3

(∇cn+1 −∇cn)τn+1 · ∇δcn+1 dx

≤ C‖τn+1‖L∞‖∇δcn‖L2‖∇δcn+1‖L2

≤ C‖τn+1‖2H2‖∇δcn‖2L2 +
1

32
δκ2

1‖∇δcn+1‖L2 . (3.39)

Similarly, K2, K3, and K4 can be bounded by

K2 +K3 +K4 ≤ C
(
‖∇cn‖2L2‖δτn‖2H2 + ‖δcn‖2H2‖∇τn+1‖2L2

+ ‖cn‖2H2‖∇δτn‖2L2

)
+

1

32
δκ2

1‖∇δcn+1‖L2 . (3.40)

For
∫
R3 δI

n · δτn+1 dx, we first rewrite δIn as

δIn = κ1(κ1 + κ2)
(
∇δτn · ∇cn+1 +∇τn · ∇δcn +∇δτn · (∇τn+1 +∇τn)

)

+ κ1(κ1 + κ2)
(
∇δτn · ∇τn+1cn+1 +∇τn · ∇δτncn+1 +∇τn · ∇τnδcn

)

+ κ1(κ1 + κ2)
(
∇δτn · ∇cn+1τn+1 +∇τn · ∇cn+1δτn +∇τn · ∇δcnτn

)

+ κ2
1∇ ·

(
∇δcnτn+1 +∇cnδτn + δcn∇τn+1 + cn∇δτn

)

+∇ ·
((

κ̃3(τ
n+1)− κ̃3(τ

n)
)
∇τn+1 + κ̃3(τ

n)∇δτn
)

− κ2δc
n∂tτ

n+1 − κ2c
n∂tδτ

n.

Therefore,
∫

R3

δIn · δτn+1 dx ≤ C
(
‖∇δτn‖L2‖∇τn+1‖L3‖cn+1‖L∞ + ‖∇δτn‖L2‖∇τn‖L3‖cn+1‖L∞

+ ‖∇τn‖L2‖∇τn‖L3‖δcn‖L∞ + ‖∇δτn‖L2‖∇cn+1‖L3‖τn+1‖L∞
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+ ‖δτn‖L∞‖∇τn‖L3‖∇cn+1‖L2 + ‖∇τn‖L3‖∇δcn‖L2‖τn‖L∞

+ ‖∇δτn‖L2‖∇cn+1‖L3 + ‖∇δcn‖L2‖∇τn‖L3

+ ‖∇δτn‖L2‖∇τn+1‖L3 + ‖∇δτn‖L2‖∇τn‖L3

+ ‖δcn‖L3‖∂tτ
n+1‖L2 + ‖cn‖L3‖∂tδτ

n‖L2

)
‖δτn+1‖L6

+ C
(
‖∇δcn‖L2‖τn+1‖L∞ + ‖∇cn‖L2‖δτn‖L∞

+ ‖δcn‖L∞‖∇τn+1‖L2 + ‖cn‖L∞‖∇δτn‖L2

+ ‖δτn‖L∞‖∇τn+1‖L2 + ‖τn‖L∞‖∇δτn‖L2

)
‖∇δτn+1‖L2 , (3.41)

where in the estimation of terms involving κ̃3(τ) we have used Taylor’s formula and Hölder’s

inequality. Plugging estimates (3.39)–(3.41) into (3.38), integrating over [0, T ], and using the

uniform bound (3.7) found in the previous subsection, we get that

‖δcn+1‖2L2 + ‖δτn+1‖2L2 +

∫ T

0

(
‖∇δcn+1‖2L2 + ‖∇δτn+1‖2L2

)
dt

≤ C‖(δcn+1, δτn+1)‖
2
L2 + CMα2‖(δcn, δτn)‖X(T )

+ CM2α4‖(δcn, δτn)‖X(T ) +
1

4
‖(δcn+1, δτn+1)‖X(T ). (3.42)

Step 2 Ḣ2 energy estimate

As in the proof of the uniform bound, applying ∂2
i for i = 1, 2, 3 to (3.32) and then taking

the L2 inner product with (∂2
i δc

n+1, ∂2
i δτ

n+1), we find that

1

2

d

dt
‖∂2

i δc
n+1‖2L2 + κ1‖∇∂2

i δc
n+1‖2L2

= −κ1

∫

R3

∇∂2
i δτ

n+1 · ∇∂2
i δc

n+1 dx+ κ1

∫

R3

∂2
i δH

n · ∂2
i δc

n+1 dx

≤
1

2
κ1‖∇∂2

i τ
n+1‖2L2 +

1

2
κ1‖∇∂2

i c
n+1‖2L2 +

∫

R3

∂2
i δH

n · ∂2
i δc

n+1 dx. (3.43)

and

1

2
κ2

d

dt
‖∂2

i δτ
n+1‖2L2 + (κ2

1 + κ̄3)‖∇∂2
i δτ

n+1‖2L2

= −k21

∫

R3

∇∂2
i δτ

n+1 · ∂2
i ∇δcn+1 dx+

∫

R3

∂2
i I

n · ∇∂2
i τ

n+1 dx

≤
1

2
κ2
1‖∇∂2

i τ
n+1‖2L2 +

1

2
κ2
1‖∇∂2

i c
n+1‖2L2 +

∫

R3

∂2
i I

n · ∇∂2
i τ

n+1 dx. (3.44)

Choosing a suitable δ, as was done in Section 3.1, yields, through a linear combination of (3.17)

and (3.18), that

1

2
κ1(1 + δ)

d

dt
‖∂2

i c
n+1‖2L2 +

1

2
κ2

d

dt
‖∂2

i τ
n+1‖2L2

+
1

2
δκ2

1‖∇∂2
i c

n+1‖2L2 + (κ̄3 −
1

2
δκ2

1)‖∇∂2
i τ

n+1‖2L2

≤ C

∫

R3

∂2
i δH

n · ∂2
i δc

n+1 dx+ C

∫

R3

∂2
i δI

n · ∂2
i τ

n+1 dx. (3.45)

Recalling the expressions of δHn and δIn, by Hölder’s inequality, the Sobolev embedding, and
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Cauchy’s inequality, we get that
∫

R3

∂2
i δH

n · ∂2
i δc

n+1 dx ≤ ‖∂2
i ∇δcn‖2L2‖τn+1‖2L∞ + ‖∂i∇δcn‖2L6‖∂iτ

n+1‖2L3

+ ‖∇δcn‖2L6‖∂2
i τ

n+1‖2L3 + ‖∂2
i ∇cn‖2L2‖δτn‖2L∞

+ ‖∂i∇δcn‖2L6‖∂iτ
n‖2L3 + ‖∇cn‖2L6‖∂2

i δτ
n‖2L3

+ ‖∂2
i δc

n‖2L6‖∇τn+1‖2L3 + ‖∂iδc
n‖2L6‖∂i∇τn+1‖2L3

+ ‖δcn‖2L∞‖∂2
i ∇τn+1‖2L2 + ‖∂2

i c
n‖2L3‖∇δτn‖2L6

+ ‖∂iδc
n‖2L6‖∂i∇τn‖2L3 + ‖cn‖2L∞‖∂2

i ∇δτn‖2L2

+
1

4
‖∂2

i ∇δcn+1‖L2 . (3.46)

The estimate on the term involving δIn is similar to (3.46). For the sake of brevity, we omit

the details. Plugging the resulting inequality and (3.46) into (3.45) and performing the time

integration over [0, T ], we then have that

‖∂2
i δc

n+1‖2L2 + ‖∂2
i δτ

n+1‖2L2 +

∫ T

0

(
‖∇∂2

i c
n+1‖2L2 + ‖∇∂2

i τ
n+1‖2L2

)
dt

≤ C‖(δcn+1, δτn+1)‖
2
H2 + CMα2‖(δcn, δτn)‖2X(T )

+ CM2α4‖(δcn, δτn)‖2X(T ) +
1

4
‖(δcn+1, δτn+1)‖2X(T ). (3.47)

As before, we still require additional estimates on ∂tδτ
n+1 and ∂t∂iδτ

n+1. Applying ∂k
i with

k = 0, 1 and i = 1, 2, 3 to the equation for δτn+1, taking the L2 inner product with ∂t∂
k
i δτ

n+1,

one has that

κ2‖∂t∂
k
i δτ

n+1‖2L2 +
1

2
(κ2

1 + κ̄3)
d

dt
‖∇δ∂k

i τ
n+1‖2L2

= κ2
1

∫

R3

∆∂k
i δc

n+1 · ∂t∂
k
i δτ

n+1 dx+

∫

R3

∂k
i δI

n · ∂t∂
k
i δτ

n+1 dx. (3.48)

which implies that

‖∂t∂
k
i τ

n+1‖2L2 +
d

dt
‖∇∂k

i τ
n+1‖2L2 ≤ C‖∆∂k

i c
n+1‖2L2 + C

∫

R3

∂k
i δI

n · ∂t∂
k
i δτ

n+1 dx. (3.49)

As in the Ḣ2 estimate, for the right hand side of (3.49), we have that
∫

R3

∂iδI
n · ∂t∂iδτ

n+1 dx

≤ C
(
‖∇∂iδτ

n‖L6‖∇τn+1‖L3‖cn+1‖L∞ + ‖∇δτn‖L6‖∇∂iτ
n+1‖L3‖cn+1‖L∞

+ ‖∇δτn‖L6‖∇τn+1‖L6‖∂ic
n+1‖L6 + ‖∇∂iδτ

n‖L6‖∇τn‖L3‖cn+1‖L∞

+ ‖∇δτn‖L6‖∇∂iτ
n‖L3‖cn+1‖L∞ + ‖∇δτn‖L6‖∇τn‖L6‖∂ic

n+1‖L6

+ ‖∇∂iτ
n‖L6‖∇τn‖L3‖δcn‖L∞ + ‖∇τn‖L6‖∇τn‖L6‖∂iδc

n‖L6

+ ‖∇∂iδτ
n‖L6‖∇cn+1‖L3‖τn+1‖L∞ + ‖∇δτn‖L2‖∇∂ic

n+1‖L3‖τn+1‖L∞

+ ‖∇δτn‖L6‖∇cn+1‖L6‖∂iτ
n+1‖L6 + ‖∂iδτ

n‖L6‖∇τn‖L6‖∇cn+1‖L6

+ ‖δτn‖L6‖∇∂iτ
n‖L6‖∇cn+1‖L6 + ‖δτn‖L6‖∇τn‖L6‖∇∂ic

n+1‖L6

+ ‖∇∂iτ
n‖L3‖∇δcn‖L6‖τn‖L∞ + ‖∇τn‖L6‖∇∂iδc

n‖L3‖τn‖L∞

+ ‖∇τn‖L6‖∇δcn‖L6‖∂iτ
n‖L6 + ‖∇∂iδτ

n‖L6‖∇cn+1‖L3
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+ ‖∇δτn‖L6‖∇∂ic
n+1‖L3 + ‖∇∂iδc

n‖L6‖∇τn‖L3 + ‖∇δcn‖L6‖∇∂iτ
n‖L3

+ ‖∇∂iδτ
n‖L6‖∇τn+1‖L3 + ‖∇δτn‖L6‖∇∂iτ

n+1‖L3 + ‖∇∂iδτ
n‖L6‖∇τn‖L3

+ ‖∇δτn‖L6‖∇∂iτ
n‖L3 + ‖∂iδc

n‖L3‖∂tτ
n+1‖L6 + ‖δcn‖L∞‖∂t∂iτ

n+1‖L2

+ ‖∂ic
n‖L3‖∂tδτ

n‖L6 + ‖cn‖L∞‖∂t∂iδτ
n‖L2 + ‖∇∂iδc

n‖L2‖τn+1‖L∞

+ ‖∇δcn‖L3‖∂iτ
n+1‖L6 + ‖∇∂ic

n‖L2‖δτn‖L∞ + ‖∇cn‖L3‖∂iδτ
n‖L6

+ ‖∂iδc
n‖L6‖∇τn+1‖L3 + ‖δcn‖L∞‖∇∂iτ

n+1‖L2 + ‖∂ic
n‖L6‖∇δτn‖L3

+ ‖cn‖L6‖∇∂iδτ
n‖L3 + ‖∂iδτ

n‖L6‖∇τn+1‖L3 + ‖δτn‖L∞‖∇∂iτ
n+1‖L2

+ ‖∂iτ
n‖L6‖∇δτn‖L3 + ‖τn‖L∞‖∇∂iδτ

n‖L2

)
‖∂t∂iδτ

n+1‖L2 .

Inserting the above estimate into (3.39), combining it with (3.47), and integrating the resulting

inequality in time, we then use the uniform bound (3.7), combined with the L2 estimate used

in Step 1 and Young’s inequality to give that

‖(δcn+1, δτn+1)‖2X(T ) ≤ C‖(δcn+1, δτn+1)‖
2
H2 + CMα2‖(δcn, δτn)‖2X(T )

+ CM2α4‖(δcn, δτn)‖2X(T ). (3.50)

From (3.33) and standard Littlewood-Paley theory, we have that

‖(c0, τ0)‖H2 ≈
∑

j∈Z

‖(∆jc0,∆jτ0)‖H2 &

∞∑

n=0

‖(δcn, δτn)‖H2 .

Then, if we fix the initial data (c0, τ0) with α being sufficiently small, (3.50) implies that

‖(δcn+1, δτn+1)‖X(T ) ≤ rn +
1

2
‖(δcn, δτn)‖X(T ), (3.51)

where rn = ‖(δcn, δτn)‖H2 is summable. For any l ≥ m ≥ n, we can then conclude (by a

triangle inequality and repeated application of (3.51), and using the uniform bound (3.7) at

the end) that

‖(cl, τ l)− (cm, τm)‖X(T ) ≤ 2
l−1∑

j=n

rj +
Mα2

2n−m
,

which shows that the sequence {(cn, τn)}n∈N constructed above is Cauchy.

Proof of Theorem 1.2 From the uniform estimates obtained in Section 3.1 and the

Cauchy sequence in Section 3.2, we can send n to ∞ and obtain a limit in X(T ), called (c, τ),

with

cn → c in L∞
T (H2), ∇cn → c in L2

T (H
2),

τn → τ in L∞
T (H2), (∆τn, ∂tτ

n) → (∆τ, ∂tτ) in L2
T (H

2).
(3.52)

Therefore (ρ, θ) := (c+ 1, τ + 1) is a classical solution to system (1.1).

The uniqueness follows by examining the system of equations for the difference between

two solutions. This system is nearly identical to (3.32), except that the initial data is (0, 0).

The same strategy as to that above yields a control on the size of the difference in X(T ) which,

thanks to Grönwall’s lemma, proves that the two solutions must be equal. For the sake of

brevity, we omit the details. �
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4 Global Existence for Small Data with Critical Regularity

In this section, we will obtain the global existence of solutions to system (1.1) in Theorem

1.3. From now on, we define the density and the temperature by the form

a :=
1

ρ
− 1, τ := θ − 1.

Then system (1.1) can be rewritten as
{
∂ta− κ1∆a+ κ1∆τ = F,

κ2∂tτ − (κ2
1 + κ̄3)∆τ + κ2

1∆a = G,
(4.1)

where

F = −2κ1
τ + 1

1 + a
|∇a|2 + 2κ1∇a · ∇τ − κ1a∆τ + κ1τ∆a,

G = 2κ2
1

(τ + 1)2

(1 + a)2
|∇a|2 − (3κ2

1 + κ1κ2)
(τ + 1)

1 + a
∇a · ∇τ

− κ2
1

τ2 + 2τ

1 + a
∆a+ κ2

1

a

1 + a
∆a+ κ̄3a∆τ + κ2

1τ∆τ

+ (1 + a)∇ · (κ̃3(τ)∇τ) + κ1(κ1 + κ2)|∇τ |2.

(4.2)

Proving the global existence result is based on the following variant of Banach’s fixed point

theorem, for the proof, we refer, e.g., to [19]:

Lemma 4.1 Let X be a reflexive Banach space or let X have a separable pre-dual. Let

K be a convex, closed and bounded subset of X and assume that X is embedded into a Banach

space Y. Let Φ : X −→ X map K into K and assume that there exists c < 1 such that

‖Φ(x)− Φ(y)‖Y ≤ c‖x− y‖Y , x, y ∈ K.

Then there exists a unique fixed point of Φ in K.

Based on the natural scaling of system (1.1), we choose our working space to be

E(T ) :=
{
u ∈ C

(
[0, T ], Ḃ

3/2
2,1

)
, ∇2u ∈ L1

(
0, T ; Ḃ

3/2
2,1

)}
, T > 0,

with the norm

‖u‖E(T ) := ‖u‖
L∞

T (Ḃ
3/2
2,1 )

+ ‖∇2u‖
L1

T (Ḃ
3/2
2,1 )

.

The following proposition quantifies the smoothing effect of the linear system of (4.1):

Proposition 4.2 Let us consider the initial data (a0, τ0) in Ḃs
2,1(R

3) with regularity

s ≤ 3
2 . Introducing a pair of forces (F,G) in L1

t (Ḃ
s
2,1(R

3)), we denote by (a, τ) the unique

solution of the following linear parabolic system:
{
∂ta− κ1∆a+ κ1∆τ = F,

κ2∂tτ − (κ2
1 + κ̄3)∆τ + κ2

1∆a = G.
(4.3)

Then (a, τ) belongs to L∞
t (Ḃs

2,1(R
3)), and the pairs (∂ta, ∂tτ) and (∆a,∆τ) belong to L1

t (Ḃ
s
2,1(R

3)).

Furthermore, there exists a positive constant C depending only on κ1, κ2 and κ̄3 such that

‖(a, τ)‖L∞

t (Ḃs
2,1)

+ ‖(∂ta, ∂tτ)‖L1
t (Ḃ

s
2,1)

+ ‖(∆a,∆τ)‖L1
t (Ḃ

s
2,1)

≤ C(κ1, κ2, κ̄3)
(
‖(a0, τ0)‖L∞

t (Ḃs
2,1)

+ ‖(F,G)‖L1
t (Ḃ

s
2,1)

)
. (4.4)
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Proof We first apply the homogeneous dyadic block ∆̇q to system (4.3), and multiply

both equations by ∆̇qa and ∆̇qτ , respectively, and integrate over R3. We then get that

1

2

d

dt
‖∆̇qa‖

2
L2 + κ1‖∇∆̇qa‖

2
L2 = κ1

∫

R3

∇∆̇qτ · ∇∆̇qa dx+

∫

R3

∆̇qF ∆̇qa dx, (4.5)

and
1

2
κ2

d

dt
‖∆̇qτ‖

2
L2 + (κ2

1 + κ̄3)‖∇∆̇qτ‖
2
L2 = κ2

1

∫

R3

∇∆̇qτ · ∇∆̇qa dx+

∫

R3

∆̇qG ∆̇qτ dx. (4.6)

By the Hölder and Cauchy inequalities, the first term on the right side of (4.5) can be bounded

by

κ1

∫

R3

∇∆̇qτ · ∇∆̇qa dx ≤
1

2
κ1‖∇∆̇qτ‖

2
L2 +

1

2
κ1‖∇∆̇qa‖

2
L2 .

Plugging the above inequality into (4.5), and adding the linear combination of the resulting

inequality with (4.6), one has that

1

2
κ1(1 + δ)

d

dt
‖∆̇qa‖

2
L2 +

1

2
κ2

d

dt
‖∆̇qτ‖

2
L2 + δκ2

1‖∇∆̇qa‖
2
L2 + (κ̄3 −

1

2
δκ2

1)‖∇∆̇qτ‖
2
L2

≤ κ1(1 + δ)‖∆̇qF‖L2‖∆̇qa‖L2 + ‖∆̇qG‖L2‖∆̇qτ‖L2 , (4.7)

where δ is a small positive number. Setting that f2
q = κ1(1+ δ)‖∆̇qa‖

2
L2 +κ2‖∆̇qτ‖

2
L2 and that

κ = min{ δκ1

1+δ ,
κ̄3−

1
2
δκ2

1

κ2
}, we then have, by Bernstein’s inequality, that

1

2

d

dt
f2
q + κ22qf2

q ≤ Cκ1,κ2
(‖∆̇qF‖L2 + ‖∆̇qG‖L2)fq. (4.8)

To finish this, we multiply the above inequality by 22qs, and denote that

gq = 2qs
√

κ1(1 + δ)‖∆̇qa‖2L2 + κ2‖∆̇qτ‖2L2 ,

so we then get that

1

2

d

dt
g2q + κ22qg2q ≤ C(κ1, κ2)2

qs(‖∆̇qF‖L2 + ‖∆̇qG‖L2)gq. (4.9)

Using h2
q = g2q + ε2, integrating over [0, t] and then letting ε tend to 0, we infer that

gq(t) + κ22q
∫ t

0

gq(τ) dτ ≤ gq(0) + C(κ1, κ2)2
qs

∫ t

0

(‖∆̇qF‖L2 + ‖∆̇qG‖L2)d τ. (4.10)

We finally conclude that

‖(a, τ)‖L∞

t (Ḃs
2,1)

+ ‖(a, τ)‖L1
t (Ḃ

s+2

2,1 ) ≤ C(κ1, κ2)
(
‖(a0, τ0)‖L∞

t (Ḃs
2,1)

+ ‖(F,G)‖L1
t (Ḃ

s
2,1)

)
. (4.11)

Combining (4.11) with the equations of (a, τ) finishes the proof of this proposition. �

Our construction of the global solution relies on a combination of Proposition 4.2 with

Lemma 4.1. To this end, for any given T > 0, we define the set K(T ) by

K(T ) := {(b, τ) ∈ E(T )× E(T ), b(0) = a0, τ(0) = θ̃0 and ‖(b, τ)‖E(T ) ≤ c}

for some suitable small positive constants c, which will be determined shortly. Next, given

(b, τ) ∈ K(T ), we define the mapping Φ(b, τ) := (a, τ), where (a, τ) is defined as the unique

solution of the corresponding linearized problem of (4.1):




∂ta− κ1∆a+ κ1∆τ = F (b, τ),

κ2∂tτ − (κ2
1 + κ̄3)∆τ + κ2

1∆a = G(b, τ),

(a, θ̃) |t=0= (a0, τ0).

(4.12)
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Here

F (b, τ) = −2κ1
τ + 1

1 + b
|∇b|2 + 2κ1∇b · ∇τ − κ1b∆τ + κ1τ∆b,

G(b, τ) = 2κ2
1

(τ + 1)2

(1 + b)2
|∇b|2 − (3κ2

1 + κ1κ2)
(τ + 1)

1 + b
∇b · ∇τ

− κ2
1

τ2 + 2τ

1 + b
∆b+ κ2

1

b

1 + b
∆b+ κ̄3b∆τ + κ2

1τ∆τ

+ (1 + b)∇ · (κ̃3(τ)∇τ) + κ1(κ1 + κ2)|∇τ |2.

(4.13)

Following Proposition 4.2, we easily obtain that

‖Φ(b, τ)‖E(T ) ≤ C
(
‖(a0, τ0)‖Ḃ3/2

2,1
+ ‖F (b, τ)‖

L1
T (Ḃ

3/2
2,1 )

+ ‖G(b, τ)‖
L1

T (Ḃ
3/2
2,1 )

)
. (4.14)

In order to prove that Φ(K(T )) ⊂ K(T ) under the smallness condition on a0 and τ0, one needs

to bound the right side of (4.14). We ignore κ1, κ2, and κ̄3, as they are fixed constants.

For the first term in (4.13), we rewrite it as

τ + 1

1 + b
|∇b|2 = m1(b)|∇b|2(τ + 1) + |∇b|2(τ + 1),

where m1(b) :=
1

1+b − 1, satisfying that m1(0) = 0. By Lemma 1.6 in [6] and the continuity of

the product in Besov spaces ([1, Chapter 2]), we get that
∥∥∥∥
τ + 1

1 + b
|∇b|2

∥∥∥∥
L1

T (Ḃ
3/2
2,1 )

≤ C
(
1 + ‖b‖

L∞

T (Ḃ
3/2
2,1 )

)
‖∇b‖2

L2
T (Ḃ

3/2
2,1 )

(
‖τ‖

L∞

T (Ḃ
3/2
2,1 )

+ 1
)

≤ C (1 + c)
2
c2.

Similarly, we have that

‖∇b · ∇τ‖
L1

T (Ḃ
3/2
2,1 )

≤ Cc2, ‖b ·∆τ‖
L1

T (Ḃ
3/2
2,1 )

+ ‖τ∆b‖
L1

T (Ḃ
3/2
2,1 )

≤ Cc2.

Combining the above estimates, we find that

‖F (b, τ)‖
L1

T (Ḃ
3/2
2,1 )

≤ C (1 + c)
2
c2.

The terms in G can be bounded in essentially the same way. For the first term in G, we rewrite

it as
(τ + 1)2

(1 + b)2
|∇b|2 = m2(b)|∇b|2(τ + 1)2 + |∇b|2(τ + 1)2,

where m2(b) :=
1

(1+b)2 − 1, satisfying that m2(0) = 0. We then infer that

∥∥∥∥
(τ + 1)2

(1 + b)2
|∇b|2

∥∥∥∥
L1

T (Ḃ
3/2
2,1 )

≤ C
(
1 + ‖b‖

L∞

T (Ḃ
3/2
2,1 )

)
‖∇b‖2

L2
T (Ḃ

3/2
2,1 )

(
‖τ‖

L∞

T (Ḃ
3/2
2,1 )

+ 1
)2

≤ C (1 + c)
3
c2.

The term τ+1
1+b∇b · ∇τ is handled the same as τ+1

1+b |∇b|2. The third term in G can be rewritten

as
τ2 + 2τ

1 + b
∆b = m1(b)τ∆b(τ + 2) + τ∆b(τ + 2),

which is estimated in the same way. The fourth term of G is, in fact, −m1(b)∆b, so that
∥∥∥∥

b

1 + b
∆b

∥∥∥∥
L1

T (Ḃ
3/2
2,1 )

≤ C‖b‖
L∞

T (Ḃ
3/2
2,1 )

‖∆b‖
L1

T (Ḃ
3/2
2,1 )

≤ Cc2.
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Likewise,

‖b∆τ‖
L1

T (Ḃ
3/2
2,1 )

+ ‖τ∆τ‖
L1

T (Ḃ
3/2
2,1 )

≤ Cc2.

The seventh term of G becomes (1 + b)κ̃′
3(τ)|∇τ |2 + (1 + b)κ̃3(τ)∆τ , where κ̃3(0) = 0 and κ̃′

3

is bounded by assumption. The L1
T (Ḃ

3/2
2,1 )-norm for this term is controlled by C(1 + c)c2. The

last term in G is similarly bounded by Cc2. Thus, we have that

‖G(b, τ)‖
L1

T (Ḃ
3/2
2,1 )

≤ C (1 + c)
3
c2.

Finally, combining the above estimate with the one for F with (4.14), we obtain that

‖Φ(b, τ)‖E(T ) ≤ C‖(a0, τ0)‖Ḃ3/2
2,1

+ C(1 + c)3c2. (4.15)

This implies Φ(K(T )) ⊂ K(T ), provided that

c ≤ min{1,
1

16C
} and ‖(a0, τ0)‖Ḃ3/2

2,1
≤

1

2C
c. (4.16)

Next, we will prove that, for any T > 0, the map Φ(b, τ) is contractive on K(T ). Indeed, for

(vi, τi) ∈ K(T ), let (ai, τi) = Φ(vi, τi) for i = 1, 2. Moreover, we set that ā = a1 − a2 and that

θ̄ = θ̃1 − θ̃2. Then (ā, θ̄) satisfies the equation




∂tā− κ1∆ā+ κ1∆θ̄ = δF,

κ2∂tθ̄ − (κ2
1 + κ̄3)∆θ̄ + κ2

1∆ā = δG,

(ā, θ̄) |t=0= (0, 0),

(4.17)

where δF = F (b1, τ1) − F (b2, τ2) and δG = G(b1, τ1) − F (b2, τ2). Applying Proposition 4.2

yields that

‖(ā, θ̄)‖
L∞

T (Ḃ
3/2
2,1 )

+ ‖(∆ā,∆θ̄)‖
L1

T (Ḃ
3/2
2,1 )

≤ C
(
‖δF‖

L1
T (Ḃ

3/2
2,1 )

+ ‖δG‖
L1

T (B
3/2
2,1 )

)
. (4.18)

Now, δF can be rewritten as

δF = −2κ1

(
1

1 + b1
−

1

1 + b2

)
|∇b2|

2(τ2 + 1)− 2κ1
1

1 + b1
∇δb · ∇b2(τ2 + 1)

− 2κ1
1

1 + b1
∇b1 · ∇δb (τ2 + 1)− 2κ1

1

1 + b1
|∇b1|

2δτ + 2κ1∇δb · ∇τ2

+ 2κ1∇b1 · ∇δτ − κ1δb∆τ2 − κ1b1∆δτ + κ1δτ∆b2 + κ1τ1∆δb, (4.19)

where δb = b1 − b2, δτ = τ1 − τ2. Moreover, for the first term, we also have that

1

1 + b2
−

1

1 + b1
=

1

(1 + b2)(1 + b1)
δb = (m1(b1) + 1)(m1(b2) + 1)δb. (4.20)

Then we can estimate the terms in δF analogously to the terms in (4.13) to obtain that

‖δF‖
L1

T (Ḃ
3/2
2,1 )

≤ C(‖b1‖L∞

T (Ḃ
3/2
2,1 )

+ 1)(‖b2‖L∞

T (Ḃ
3/2
2,1 )

+ 1)‖δb‖
L∞

T (Ḃ
3/2
2,1 )

‖∇b2‖
2

L2
T (Ḃ

3/2
2,1 )

× (‖τ2‖L∞

T (Ḃ
3/2
2,1 )

+ 1)

+ C(‖b1‖L∞

T (Ḃ
3/2
2,1 )

+ 1)‖∇δb‖
L2

T (Ḃ
3/2
2,1 )

‖∇b2‖L2
T (Ḃ

3/2
2,1 )

(‖τ2‖L∞

T (Ḃ
3/2
2,1 )

+ 1)

+ C(‖b1‖L∞

T (Ḃ
3/2
2,1 )

+ 1)‖∇δb‖
L2

T (Ḃ
3/2
2,1 )

‖∇b1‖L2
T (Ḃ

3/2
2,1 )

(‖τ2‖L∞

T (Ḃ
3/2
2,1 )

+ 1)

+ C(‖b1‖L∞

T (Ḃ
3/2
2,1 )

+ 1)‖∇b1‖
2

L2
T (Ḃ

3/2
2,1 )

‖δτ‖
L∞

T (Ḃ
3/2
2,1 )

≤ C(1 + c)3c
(
‖δb‖E(T ) + ‖δτ‖E(T )

)
.
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A similar methodology is applied for the terms in δG. We write

δG = κ2
1J1 − (3κ2

1 + κ1κ2)J2 − κ2
1J3 + κ2

1J4 + κ̄3J5 + κ2
1J6 + J7 + κ1(κ1 + κ2)J8.

Each of the Ji terms correspond to the difference operator δ applied to each respective term in

the expression for G in (4.13). More specifically, we have that

J1 =

(
1

1 + b1
−

1

1 + b2

)(
(τ2 + 1)2

1 + b2
+

(τ2 + 1)2

1 + b1

)
|∇b2|

2

+
δτ(τ1 + τ2 + 2)

(1 + b1)2
|∇b2|

2 +
(τ1 + 1)2

(1 + b1)2
∇δb · (∇b1 +∇b2),

J2 =

(
1

1 + b1
−

1

1 + b2

)
(τ2 + 1)∇b2 · ∇τ2 +

δτ

1 + b1
∇b2 · ∇τ2

+
τ1 + 1

1 + b1
∇δb · ∇τ2 +

τ1 + 1

1 + b1
∇b1 · ∇δτ2,

J3 =

(
1

1 + b1
−

1

1 + b2

)
(τ22 + 2τ2)∆b2 +

δτ(τ1 + τ2 + 2)

1 + b1
∆b2 +

τ21 + 2τ1
1 + b1

∆δb,

J4 =

(
b1

1 + b1
−

b2
1 + b2

)
∆b2 +

b1
1 + b1

∆δb,

J5 = δb∆τ2 + b1∆δτ,

J6 = δτ∆τ2 + τ1∆δτ,

J7 = δb(κ̃3(τ2)∆τ2 + κ̃′
3(τ)|∇τ2|

2)

+ (1 + b1)(κ̃3(τ1)− κ̃3(τ2))∆τ2 + (1 + b1)κ̃3(τ1)∆δτ

+ (1 + b1)(κ̃
′
3(τ1)− κ̃′

3(τ2))|∇τ2|
2 + (1 + b1)κ̃

′
3(τ1)∇δτ · (∇τ1 +∇τ2),

J8 = ∇δτ · (∇τ1 +∇τ2).

The estimate for each Ji is similar to those already established, keeping in mind the continuity

of the products in Besov spaces, Lemma 1.6 in [6], and the identity (4.20) to control several

terms in J1, J2, J3 and J4. The only subtle point is that, to estimate J7, we need to invoke the

mean-value theorem to write

|κ̃3(τ1)− κ̃3(τ2)| ≤ C|δτ |, |κ̃′
3(τ1)− κ̃′

3(τ2)| ≤ C|δτ |,

where C above depends on the upper bound for |κ̃′
3| and |κ̃′′

3 |. Since this upper bound exists

by assumption, we can infer that

‖δG‖
L1

T (Ḃ
3/2
2,1 )

≤ C(1 + c)5c
(
‖δb‖E(T ) + ‖δτ‖E(T )

)
.

Therefore,

‖(ā, θ̄)‖
L∞

T (Ḃ
3/2
2,1 )

+ ‖(∆ā,∆θ̄)‖
L1

T (Ḃ
3/2
2,1 )

≤ C(1 + c)5c
(
‖δb‖E(T ) + ‖δτ‖E(T )

)
.

If we additionally assume that c ≤ 1
64C , we then have, for all T > 0, that

‖(ā, θ̄)‖
L∞

T (Ḃ
3/2
2,1 )

+ ‖(∆ā,∆θ̄)‖
L1

T (Ḃ
3/2
2,1 )

≤
1

2

(
‖δb‖E(T ) + ‖δτ‖E(T )

)
.

Thus, Φ is contractive, as a mapping from E(T ) to E(T ). The proof of Theorem 1.3 follows

from Lemma 4.1.
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