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Abstract We investigate the global existence of strong solutions to a non-isothermal ide-
al gas model derived from an energy variational approach. We first show the global well-
posedness in the Sobolev space H?(R?) for solutions near equilibrium through iterated
energy-type bounds and a continuity argument. We then prove the global well-posedness
in the critical Besov space ].3;’,/12 by showing that the linearized operator is a contraction
mapping under the right circumstances.
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1 Introduction

Starting from a given free energy, Lai-Liu-Tarfulea [20] established a general framework for
deriving non-isothermal fluid models by combining classical thermodynamic laws and the ener-
getic variational approach (see [15, 18]). As an application, three full non-isothermal systems
(the non-isothermal ideal gas, non-isothermal porous media, and non-isothermal generalized
porous media equations) are established based on three specific free energies. What is more,
under some appropriate assumptions on the conductivity coefficient k3, a maximum/minimum

principle is developed for the first two models by adapting an idea originally from the work
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[25]. These maximum/minimum principles establish the positivity of the absolute temperature,
which implies the thermodynamic consistency of the corresponding models.

However, [20] does not address the long time behavior (the existence and uniqueness) of the
solution to the non-isothermal models mentioned, which is the core theory for the partial differ-
ential system. At present, there are many results on the existence and behavior of weak solutions
to various non-isothermal fluid models; see [9, 10, 12, 13, 24] for the Navier-Stokes-Fourier sys-
tem, which is a powerful generalization of the classical Navier-Stokes equations and is used
to model thermodynamic fluid flow, [7] for the non-isothermal general Ericksen-Leslie system,
[8] for the non-isothermal Cahn-Hilliard equation, [17] for the non-isothermal Poisson-Nernst-
Planck-Fourier system, and [21] for the Brinkman-Fourier system with ideal gas equilibrium.

This paper aims to study the global well-posedness of the following non-isothermal ideal

gas system in R3:

{ Owp = k1A (pb), (1.1)

ko(p8)r — k1(k1 + K2)V - (OV(p0)) =V - (k3V).

For the reader’s convenience, we briefly sketch the construction of (1.1). As can be seen in the
model, the main unknown variables are:

1. a non-negative measurable function p = p(t, ) which denotes the mass density;

2. a positive measurable function § = (¢, ) representing the absolute temperature.
In addition, a vector field u = u(t, x), denoting the velocity field of the fluid, will be used as an
intermediate variable.

For an ideal gas, we have the following definition of free energy:
U(p,0) = k10plnp — kopf1n 6. (1.2)

Then the (specific) entropy of the system, denoted by 7, and the (specific) internal energy,
denoted by e, are connected to the free energy ¥ by the standard Helmholtz relation (see
formula (2.5.26) in the classical book [5])

1(p,6) = ~0p,

e(p,0) =0 — 9pTO = T + b, (1.3)
_rap

="

The total energy and total dissipation are then chosen to be
1
Erotal = / U(p,0)dz and ptotal — — / pudz.
Qr 2 Jaz

Employing the energetic variational approach then establishes the following Darcy type diffusion
law:
p="Ypp—p=ripd,
Vp = —pu, (1.4)
Opp = K1p-

We remark that, according to [2, 23], the internal energy and pressure are both linearly pro-
portional to the product of temperature and density. It is easy to verify this fact by combining
(1.2), (1.3) and (1.4).
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Now, we rewrite the internal energy function in terms of the new state variables p and 7,
giving that
er(p,n) =e(p,0(p,m)), (1.5)

which then implies that

€1p = 0, €1p = \Ilpv (1 6)
Vp = pVey, +nVeqy,.
We recall the continuity equation for a closed system
pt+ V- (pu) =0, (L.7)

and combine this with the two classical thermodynamic laws, the first of which relates to the
rate of change of the internal energy with dissipation and heat:
de

€ _v. a0 1.8
=V W+Vq (1.8)

Here W denotes the amount of thermodynamic work done by the system on its surroundings
and ¢ denotes the quantity of energy supplied to the system as heat. The second thermodynamic

law describes the evolution of the entropy
Bun+V - (1) = V - (%) A, (1.9)
where A > 0 denotes the rate of entropy production. Fourier’s law then yields that
q=k3V0, (1.10)

where k3 denotes the material conductivity (which may depend on p and 6). Combining (1.6),
(1.7), (1.8), (1.9) and (1.10), we obtain that

dex(p,n)
dt

= €1pPt + E1nTt
= 1, (=Y - (pu) +e1y (=Y - () + V- (5) + 4)
= -V - (e1ppu + e1ynu) + (pVei, + nVery) -u+ 60V - ( ) +0A

=V-W+Vp-u+V- q—f Vo + 6A

2
:V-W—pu2+v-q—’€3|ze| +0A. (1.11)
Therefore,
W = —(e1pp+en)u
1 ,  K3|VO? (1.12)

which in turn gives that
N+ V- (nu) =n9(0; +u-VH
=n9(0; +u -Vl
=090 +u-VO)+ (n—1pp) V- u
=np(0t + u- V) + OppV - u

:V~(Z>+A:V~(g>+9<p|u2—|—qbva), (1.13)

No(pt +u-Vp) +nV - u

)+
)+ 1, (—pV -u) + 1V - u
) +
)
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which finally yields that

. =V (D) 4L (ppup 4+ Y0
10(6y + - V) + 0ppV -u =V (€)+9 <p|u +1=). (1.14)
Combining (1.14), (1.3) and (1.4) alows us to conclude that
0 1 6]2
%(@ Fu-VO) +ri1pV ou=V- <"36V ) +5 (111V(p0) u+ “3|Z | > . (L.15)
so that
r2(pf)e — k1K1 + K2)V - (V(pf)) = V - (k3V0) (1.16)

which completes the derivation of the non-isothermal ideal gas model (1.1).

Our main goal in the present work is to establish the well-posedness for system (1.1).
Motivated by similar works on the classical Navier-Stokes equations ([6, 14]), we first discuss
our choice of working spaces. We observe that (1.1) is invariant under the transformation

(p(tv 33), G(t, Z‘)) — (p()‘Qta /\l‘), 9(A2ta )\.I‘)),
(po(),00(x)) — (po(Ax), bo(Az)).
Definition 1.1 A function space E C S'(R3) x &'(R3) is called a critical space if the

associated norm is invariant under the transformation (1.17).

(1.17)

Obviously H3/2 x H3/? is a critical space for the initial data, but H3/2 is not included
in L*>. We cannot expect to get L control on the density and the temperature by taking
that (pp —1,60p — 1) € H?3/2 x H3/2. Moreover, the product between functions does not extend
continuously from H3/2 x H3/2 to H3/?, so we will run into difficulties when estimating the
nonlinear terms. Similarly to the Navier-Stokes system studied in [6], we could use homogeneous
Besov spaces 3571(]1%3) (defined in [1, Chapter 2]). 337/12 is an algebra embedded in L* which
allows us to control the density and temperature from above without requiring more regularity
on the derivatives of py and 6.

Our first result proves the global well-posedness for (1.1) when the initial data is close to a
stable equilibrium (p, #) in the subcritical space H? x H?. The working space X (') is defined
by the norm

T
ey = sup [u®le+ [ (190l + [0l )
0<t<T 0

for any distribution u and for T" > 0.

Theorem 1.2 Let p, § > 0 be fixed constants. There exist two positive constants, o and
M, such that, for all pg and 6y where (po — p,0 — 0) € H*> x H? and

lpo = pll= + 1160 — Ol = < e, (1.18)

system (1.1) has a unique global solution (p,0) with (p — p,0 — 0) € X(T') for all T > 0.
Moreover, if we define that ¢ := p — p and 7 := 6 — 0, then

(e, )| x (1) < Mo (1.19)

Our second main result then establishes the existence and uniqueness of a solution to system
(1.1) for initial data close to a stable equilibrium (p, ) in the critical space 33/12 X Bg/lz For

convenience, we assume that p = § = 1. The working space E(T') is then defined by

E(T) = {u ec ([O,T}, BS{E) . V2ueL! <O,T; Bﬁff)} , T >0.



No.3 B. Han et al: GLOBAL EXISTENCE FOR NON-ISOTHERMAL IDEAL GAS SYSTEM 869

Theorem 1.3 There exist two positive constants, o and M, such that, for all (ag, ) €
BY? % BY? with
: agn <
llaoll g7z + lI7oll g2 < (1.20)

system (1.1) has a unique global solution (p, 8) with initial data 6y = 1o+ 1 and po = 1/(1+ayp).
Moreover, if we define that p = 1/(1 + a) and 7 = 0 — 1, then, for all T' > 0,

(@, T)llper) < Me. (1.21)

The rest of the paper unfolds as follows: Section 2 will present some basic tools in Fourier
analysis: the Littlewood-Paley decomposition and the paraproduct calculus in Besov spaces.
Section 3 will prove the global existence and uniqueness result in Soblolev spaces (Theorem
1.2). Section 4 will prove the global well-posedness result in the critical Besov space by using

Banach’s fixed point Theorem.

2 Notation and Preliminaries

For any 1 < p < oo and measurable f : R™ — R, we will use || f||1»(®n), or simply | f|,, to

denote the usual L norm. For a vector valued function f = (f1,---, f™), we still denote that
m .
I1f1lp := -21 17 p-
j=
For any 0 < T' < oo and any Banach space B with a norm || - ||, we will use the notation

C([0,T], B) or C’B to denote the space of continuous B-valued functions endowed with the

norm

I Flleqomz = g 1£(2) s

Also, for 1 < p < oo, we define that || f|| rg(o,77) := £ (OBl e (0,77)-

We shall adopt the following convention for the Fourier transform:

¢ —ix- . _ 1 n iz
f(g) = - f(;v)e dev f(x) - (27‘_)” R f(g)e 5d£

For s € R, the fractional Laplacian |V|* corresponds to the Fourier multiplier |¢|® defined as

V7€) = 1E1°f(©)

whenever it is well-defined. For s > 0 and 1 < p < oo, we define the semi-norm and norms as

I llrew = MIVE Al 1 lwew = NIV £l + 11l

When p = 2, we denote that H* = W2 and that H* = W2, in accordance with the usual
notation.

For any two quantities X and Y, we denote that X <Y if X < CY for some constant C' > 0.
Similarly, X 2> Y if X > CY for some C > 0. We denote that X ~ Y if X <Y and YV < X.
The dependence of the constant C' on other parameters or constants are usually clear from the
context, so we will often suppress this dependence. We shall denote that X <z, z,.. z, Y if
X < CY and that the constant C' depends on the quantities Zy,--- , Z.

For any two quantities X and Y, we shall denote that X <« Y if X < ¢Y for some

sufficiently small constant ¢. The smallness of the constant c is usually clear from the context.
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The notation X > Y is similarly defined. Note that our use of <« and > here is different from
the usual Vinogradov notation in number theory or asymptotic analysis.
We will need to use the Littlewood-Paley (LP) frequency projection operators. To fix the

notation, let ¢o be a radial function in C°(R"™) satisfying

0<¢o<1, ¢o(§) =1 for[(] <1, ¢o(§) =0 for[¢]>7/6.

Let ¢(€) := ¢o(£) — do(2€), which is supported in £ < [¢]< %. For any f € S(R"), j € Z, define
that

Sif©) = 002776 f(€),  A;F(E) =276 f(€), €eR™

We will denote that P; = I —.S; (I is the identity operator) and, for any —oo < a < b < oo,
that P,y = >, Aj. Sometimes, for simplicity of notation (and when there is no obvious
a<j<b

b
confusion), we will write f; = A;f and fo<.<p = Y_ f;. By using the support property of ¢,
Jj=a
we have that AjA; = 0 whenever |j — j'| > 1.
Thanks to the above Littlewood-Paley decomposition, a number of functional spaces can

be characterized. Let us give the definition of homogeneous Besov spaces first.

Definition 2.1 For s € R, (p,r) € [1,00]? and u € §'(R3), we set that

1
lell 5, , ey = (Z?J’”HAjum) ,
JEZ
with the usual modification if r = oo.
We then define the Besov space by B;’T = {u € S'(R?), ||u
follows, for the convenience of notation, we always use BS . instead of B;T(H@), and similar

P
notations for other norms. Let us now state some classical properties for the Besov spaces

Bs, (®3) < oo}. In the what

without giving the proofs.

Proposition 2.2 The following properties hold:
1) Derivatives: we have that ||Vu||B;;1 < C\ul

-
Bs ..
3 3

2) Sobolev embedding: if p1 < py and 1 < rg, then B;Ml — B;,f; Pz
If s1 >89 and 1 < p,rq,ry < 400, then B < B2

p,T1 pyr2’
3) Algebraic property: for s >0, B, , N L> is an algebra.
4) Real interpolation: (B;}r, B;fr)e L= Bf)i},""(l—@)w.

We recall some product laws in Besov spaces coming directly from the paradifferential

calculus of Bony (see [4]).

Proposition 2.3 We have the following product laws:

[[wo]

gy, S lullelollg, +wloeliollg, i s> 0,
. 3 3
luollsgs, S Nullggs ol e, i 1< 580> 5 and 1+ 55> 0,

) 3
HUUHBZ},,“T% < ”u”B;}T”UHBZ?T if s1,80 < 3 and s; +s2 >0,

lwollg, S lullg, Iollgs/znpe i 181 < 5.
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Moreover, if r = 1, the third inequality also holds for s1, s < % and s1 + s9 > 0.

3 Global Well-Posedness in Sobolev Spaces

The present section is dedicated to proving Theorem 1.2. Before starting, we assume that
c:=p—p,7:=0—0. We first rewrite (1.1) as
Orc — k10Ac — k1pAT = K1 A(cT),
PR T — k1Ko VT - V(p0) — KV - (0V (p0)) = V - (k3(0)VT), (3.1)
(¢,7) lt=0= (co, 0),
with
co = po—p,To="0p — 0.
For simplicity, here we assume that p = § = 1. Furthermore, we decompose the coefficients

k3(0) = k3 + K3(7), which satisfies that k3(0) = 0. We also assume that x5 and &4 exist and

are bounded. Then (3.1) can be written as
¢ — k1Ac — k1 AT = K1 A(eT),

ko0, T — (K3 + R3)AT — K2Ac = Ky (K1 + ko) (VT -Ve+V7-V7+Vr1- V(T(:)) (3.2)
+ w2A(er) 4+ V - (R3(T)VT) — KocOyT,
(¢, 7) lt=0= (co, 70)-
The principle of the proof of Theorem 1.2 is a very classical one. We use an iterative
method to establish the approximate solutions to the perturbed system (3.2). Define the first
term in the sequence as (c’(¢,z),7°(t,z)) = (0,0) everywhere on RT x R3. We then define

(c"*L(t,x), 7" (¢, x)) by induction, as the solution to the linear approximate system

0™t — g AT — g AT = HT

RO T — (k2 4+ Ry) AT — RZACT = 7, (3.3)
(@) f—0= (¢n, Tn)
with
(¢ns Tn) = (Snco, SnTo), (3.4)
H" = k1 A(c"h), (3.5)
I" = ki (n + 12) (V7™ V" 4 VT V7" 4 97 V(1™ )
+ KIA(C"T™) + V - (R3(T™)VT™) — Koc™OyT™, (3.6)

where the low frequency cut-off operator S,, is as defined in Section 2.

In the next two subsections, we will show that the sequence of approximate solutions
{(c"(t,z), 7 (¢, z)) }nen is uniformly bounded (and moreover Cauchy) in X (T) for all T > 0.
As mentioned in Section 1, the working space X (7T') is defined by the norm

T
ey = sup [u®le+ [ (190l + [0l )
0<t<T 0

for any distribution v and T > 0.
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3.1 Uniform Bound in the Critical Regularity Case

In this part, we prove a uniform estimate in X (T') for (¢, 7"). Denote that

a = |lcollmgz + |70l 2-

We are going to prove the existence of a positive M such that, if « is small enough, then the
solution belongs to the space L3 (H?) x L5°(H?) and also satisfies that

e, ey < Mo (3.7)
Clearly, (3.7) holds for (¢, 7). Assuming that (3.7) holds for (¢, 7"), we will show that it also
holds for (¢l 7nt1).
Step 1 L2 energy estimate

Taking the L? inner product with ¢"*! and 7" with respect to the first and second
equations, one has that

1d
—— |32 + k|| VT2, = —/ﬁ/ vrrttoverttde — Ky [ V(") - VT de
2dt R3 RE
L= I]_ + IQ, (38)
and
1 d
“ho— 1T 32 + (K] + R3) || VT3, = ﬂi%/ vt vertl dg +/ .ty
2 “dt RS R3
Z:I3+I4+I5+IG+I7, (39)
where
I =—r | VL. vt de, L= -k [ V(c"T") VT da,
R3 R3
Iy =—x7 [ Vv tide, L= -—w1 [ V(") V7Tl dg,
R3 R3

Is = k1(k1 + ﬁg)/

(VC" VT4 V-Vt 4+ VTt V(T"c")) g,
R3

k:—/EWﬂWWVWHM,hz—@/c%ﬂ%“%m
R3 R3

First, by the Holder and Cauchy inequalities, we have that

1

SRV 2.

1 1 1
Lo < Sl Vr e + Sl Ve Hze, I < SRtV +
Then, by the linear combination of (3.8) and (3.9), one can get that
d d = n
r1 (14 0) e M Te + ma 17" M Te + 0kT( Ve [T + (2R — okT)(IVT™ 72
S2(I€1<1+5)[Q+I4+]5—|—16+I7), (310)

where § is chosen to satisfy that dx? = k3. To bound I, we use Hélder’s inequality to obtain
that
I, = —k1 / Ve Vet dr — Ky / AV Vet de
R3 R3
< mu|T" L IV 22 [ Ve 12 + wa[le™ | e [V | 2] V7" 2

C n n n n 1 n
< S (I 13 IVe" 122 + IV 12 e 3 ) + 55 0m3 19 . (3.11)
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Similarly, I, and I5 can be bounded by
L < = (I 13 IVe" 32 + 197 2l 3 ) + g5omd 19774 2,
Is < k1 (k1 + 62) | V7| 2|77 | oo (3.12)
x (I9€" 2 + 197" |12 + 97 [z lle o + IV gzl 7" 22 ).
For Ig, notice that K3(0) = 0. Then we use Taylor’s formula and Holder’s inequality to get that

Is < Cllr" |l |V L2 [V 2

C n n 1 n
< gl IE= 10T 5 + gondl Ve (313)
For the last term I7, we use the Holder’s inequality and Sobolev embedding to obtain that
I7 = —R2 / c" 8,57" TnJrl dx S HQHCTL”L?. ||8t7"||L2 ||7_n+1||L6
R3
Cr3. . n 1 n
< W;IIC Fr 0™ 122 + 335Hf||VT 2. (3.14)

Using the bounds (3.11)—(3.14) in (3.10) and integrating over [0, T], we get that

T
s I e+ [ (19 e + 1977 Yo
0
T
< C(lleoll3s + lrol32) + € / (I 12 €™ 132 + 197" 2l 13 )t
T
€ [ Il (196 2+ 197l 17" el + 9 a7 = ) e
0

T
+C / (I 12 17" 12+ o™ I 0er 132 ), (3.15)

where the constant C' only depends on k1, k2 and E3. By the Sobolev embedding H? < L* in

R3, and using assumption (3.7), we obtain that
T
et 3 + 1 2 + / (IVe e + V71 )3 )t

1 1
< Ca® + CM%a + CM?||r" 1% ) + CM2 0?77 % . (3.16)

Step 2 H? energy estimate

Due to the equivalence of [|(c"*1, 77F1) | g2 with ||(c"*, 77| 22 + [|(c™ L, 77| o, it s
sufficient to bound the homogeneous H? energy of (et 7). Applying 97 for i = 1,2,3 to
(3.2) and then taking the L? inner product with (92c¢" 1 9277F1), respectively, we find that

1d
5 0 e + V02 3,
=—ky [ VOITL.VOR T dr — ky [ VOR(c"r") - VORI T da
R3 R3
1 1
< §H1||Vai27'n+1||%2 + §/€1||V8i26”+1\|%2 +J1, (3.17)
and
5
1 d 1
Sk 077" (T2 + (57 + Ra)[VOFT" T2 < SwTIIVOFT" T[T + ) . (3.18)
2 “dt 2 5
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Here, we denote J; to J5 by

J1 = —/@1/ VoZ(c"t™) - VORI T dr, Jy=—k] | VOIc"r") VoI da,
R3 R3

Js = k1(k1 + K2) /R3 07 (Vc” VTtV VTt VT V(T"C")) oFr"tdz,
Jy=— /RS 02 (Ra(T™)VT™) - VOZr" T de,  J5 = ko /RS 02 (c"opT™) 927" da.
By choosing a suitable § as in (3.10), a linear combination of (3.17) and (3.18) implies that
a (14 6) SN2 3 4y S0P
+0r3(IVOF |72 + (2Rs — 0rT) | VOFT" 12,
<2(k1(1+0)N+Jo+Js+Js+J5). (3.19)
By Holder’s inequality and Sobolev embedding, one has that
1 < Cria (I7ll = IV |12 + [V ic™ | o037 |1
IV LallOFT e + [l (| Lo IV OF T 2
+ VO™ || Le[|0:c” | s + ||VT”||L3||3?C"||L6) Vo712

< Oy (I 21V a2 + e 2 V7" |2 ) V07

C n n n n 1 n
< 5 (1713 Ve [ + "3 197" 2 ) + 35083 V02" 7. (3.20)
Similarly, we have that
CRT (1 2 n||2 n||2 ny|2 Lo 2 n+12 (3.21)
Jo < < (I a1V s + e 2 1V 7" ) + 550871V 07e 3. -

and
Js < O3+ k) VR 12 (197 |1 V01" | o + V™ 13V 1o
S Nl PR P R P A P P
sl L P e PRV 2 P g P el PR A e P
+ IV | V7" 15197 10
< C(s3 + IV g2 (I ez + ™ = + 7" e + ™ 2
x (902" |12 + V027" 22 + V27" 12 )

_ O+ 2
- §K3

n n n 1 n
X <||V830 122 + |[VOFT"||32 + || V2T ||%2) + 55&?\\V8§T 3., (3.22)

(17 e + ™z + I e + ™ 2

Similarly, for J4, we have that
Iy < O 1o VT |12l VOFT" [ 12 + 057" | 12 [V O™ |6 [ VOF T 2
0" [ Lo 107" |1 [V OF T 2

c

n n 1 n
<52l 72 IV O™ 2 + S RTIVOFT" I Le (3.23)
1
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As for the last term J5, we split it into two pieces and roughly estimate these as
Js = ko /IR ] O (c"0yr™) 92" da
= —Kog 0;c" o™ 8?T"+1 dz — HQ/ c" 00" 82-37'"“ dz
R3 R3
< Csr, o) (1" a9 B ) + 593190274 3. (3:24)
To close the above H? energy estimate we will need additional bounds on 871! and 8,0,7"**.

For that, applying 0% with k = 0,1 and i = 1,2, 3 to the equation for 7", then taking the L?

inner product with 9;057"*!, we obtain that

d n
Slvorr 3,
"5411 k 12 "531 k k 2
< C;HA@' T + C;HA@‘ ("T™)IL2 + C10F (V™ - V") |72
2 2

1 _
Rall 0T 3 + S (2 + o)

+ C|lOF (V™ - V") |72 + C||0F (V™ - V(7™¢™)) |7
1 - 1
+ 0;2||afv(ﬁ3(7")v7”)|\%2 + wal|OF (") 72 + a0 T, (3.25)
which implies that

1 . 1 _d N
SRal RT3 + 2 (3 + o) V0T

< O jagtertt g+ o agk e + Clok (Ve v
+ C|0F (VT - V) |72 + Cll0F (V™ - V(T e¢™) || 2
+ Cﬂiznafv(ﬁgw)wn) 122 + rallF (") 2. (3.26)
As in the H? estimate, for the right hand side of (3.26), we have that

1AGF (") I72 + 10F (Ve V™) [ 22 + |07 (V" V") ||

< C(lle" e + 17113 ) (19" 152 + 197" 2 ) (3.27)
108V (R () V™) e < Cllr 3197 13, (3.28)
0 (" 0™ 72 < Clle" r=l|n 3, (3.29)
and
108 (V7™ - D) e < O (11" Bl ez + 7" e ) IV e e (3.30)

Multiplying by ;£25d on both sides of (3.26) and combining the resulting inequality with
1

(3.27)—(3.30) and (3.19)—(3.24), we get that
n n d n
e A e e
+ VO 3a + VD232 + 003
< Clrir, iz, o) (7" g2 + Nl Wz + 7"l + el )

x (IVelde + 19713 + 107" 13 ). (3.31)



876 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

Integrating (3.31) over [0,7] in time, using assumption (3.7), and combining these with the L?
estimate and Young’s inequality, we finally have that

||(c”+1,T"+1)||§((T) < Ca? 4+ CM?*a* + CM3a°.
For M sufficiently large and « sufficiently small (compared to C), we see that (3.7) holds for
(el 77+ "and therefore for all n € N.
3.2 Cauchy Sequence in X(7T)

In this part, we shall show that the sequence {c¢", 7"}, en is Cauchy in X (7'). For this, we
consider the difference between two solutions (§¢" 1, §7+1) with

5cn+1 _ Cn+2 n+1 57_n+1

—c , +2 n+1‘

=7 -7
Then (6¢™t1, 67 H1) satisfies that
20" — kI ASET — Ky ASTVHL = 6H™,
ka0 0T — (K2 + Rg) ASTHL — KZASEHL = 5T, (3.32)
(5™ 67" |i—o= (6cni1, 0Tni1)
with
(0¢n,6n) = ((Snt1 = Sn)co, (Sn+1 = Sn)70), (3.33)
SH™ = mi A(" Tt — g A(c™T™), (3.34)
SI" = Ky (k1 + /@2)<VT"+1 B V2SI v R VRN VT"+1V(T"+1C”+1)>
— k1 (#1 + ko) (VT" B VIECNER VIS VRS v V(T"c"))
+ REA(TEY) — B2ZA(CT) + V- (R (7T VT
=V (Rs(t™)V1") — (ﬁgc"+18t7"+1 - chnat7n>. (3.35)

Observe that each term in H™ and I" from (3.3) is either quadratic or cubic in (¢",7™). After
taking the differences and computing the X (T")-norm, we will essentially find that

I8+, 87 ey < € sup (I, ™) ) < 10”677 ey

Since the sequence {(c¢", 7") } nen is bounded by (3.7) uniformly in n, we can choose « sufficiently
small such that the above inequality produces a geometrically convergent Cauchy sequence.

In the remainder of this section, we will perform this lengthy calculation. We follow the
same two steps as those used in Section 3.1 to show (3.7).

Step 1 L2 energy estimate

Taking the L? inner product with dc"*! and §7"*! with respect to the first and second

equations, we arrive at

1d,. ., n
e A L
=—K Vormt . vt da + Ky SH™ - 6c" T da (3.36)

R3 R3
and

1 d ~ n
SR 167 s + (63 + 7o) Vo743
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=—ri [ Vor"tt.ovettda + [ 6167 da. (3.37)
R3 R3

By using the Holder and Cauchy inequalities, a linear combination of (3.36) and (3.37)
yields that

1 d. 1 od, .
(L4 8) 16" 1 7e + Sra o™ 7
1 1
+ SORTIVO T2 + (R — SORT)IVEr™ | Le
<k (1+0) [ oH™ 5" de+ [ SI™- o da. (3.38)
R3 R3
To bound [L3 6H™ - 6¢" ! d, we first rewrite this as

SH™ - 6" do = —ky V(") - v () - Vet da
R3 R3

= —K1 /11&3 ((Vc"+1 — V)t v (rtt — T")) Vot dx
— K1 /]R3 ((c"'“ — MV (vt VT")) Vot dx
=K1+ Ky + K3 + K.
We estimate the K; terms as follows:
Ky :=—r /R3 (Ve —vem) . vt da
< Ol |z VO™ || 2| VO T 2
< Ol Bl VA 2a + 55 0R T8¢ o (3.39)
Similarly, K5, K3, and K4 can be bounded by
Ky + K3+ Ky < C(||VC"||2Lz||5T"||?{2 + 10" |7 V712
e B V) + Ve s, (3.40)
For [o, 61" - 67"+ da, we first rewrite 01" as
OI" = k1(k1 + Ka) (VJT" VT L VT Ve + VOt (VT 4 VT”))
+ k1(k1 + K2) (VéT” Vet L v ettt vt VT"(SC")
+ K1(k1 + K2) (V(ST” Vtntl L vt vt - vt Véc”T")
+ KIV - <V50"7”+1 + Vo™ 4 6V ¢ C”V(ST")
+ V- ((Fal(r ) = o (7)) V7 Ry () VOT" )
— Ko — Ko OO
Therefore,
oI" -6 dz < C(l\V5T"||L2||VT"+1||L3 " oo + V07" | 2| V7™ | o[l | e

R3
VT L[V e8¢ [ oo + V67" L2 Ve | al| 77| v



878 ACTA MATHEMATICA SCIENTIA Vol.44 Ser.B

T | Lo V7" (|28 [V | 2 + (V7" £ [V | 2| 7|
+ VO™ (|2 [ Ve e + VO™ [ 12 [ V7" | s

VT L2V Lo + [V 12|V s

+[10c™ | e |07 2 + ||C”\|L3|\3t5T”IIL2) 167" e

+ C(||V5C"||L2 17" oo + 1V [ 2 |67 2

18" Lo V7" |2 + (|| [VOT" | 2

167" L= V7|2 + IIT”HLwHWT"IILz) IVor™+H e, (3.41)
where in the estimation of terms involving %3(7) we have used Taylor’s formula and Holder’s
inequality. Plugging estimates (3.39)—(3.41) into (3.38), integrating over [0, 7], and using the
uniform bound (3.7) found in the previous subsection, we get that

T
[6c™ 12 + [lar" 12 +/ (IVac™ 1z + [[Var" 2. )dt
0
< Cll(0en+1,07ns1) |72 + CMa?||(3e™,67) | x(z)
1
+ OM20[4H((SCH, (STn)Hx(T) + Z ”(5071-&-17 57_n+1) HX(T) (342)

Step 2 H? energy estimate

As in the proof of the uniform bound, applying 67 for i = 1,2,3 to (3.32) and then taking
the L? inner product with (925¢"*1,9267"1), we find that

1d
Rl PR (e P
= —K1 VoSt . VoZsc T da 4 Ky OFOH™ - 925c" M da
R3 R3
1 1
< imnvﬁfT”HH%z + §ﬁ1||vafc"+1||2L2 —|—/ OFOH™ - 926c" T da. (3.43)
R3
and
1 d

SHa 26T 2 o+ (3 + o) [V 02673
= —k} / VoZor™t L 9Avec T de + | 9FI™ - VORT M da
R3 R3
1 1
< §H%||va37"+1||iz + §n§||va§cn+1\|§2 +/ O™ - Vot da. (3.44)
R3
Choosing a suitable 0, as was done in Section 3.1, yields, through a linear combination of (3.17)

and (3.18), that

1 d 2 n+1
Sra(1+6) 92+

1 1
+ SORAIVOR B + (g — 50k3) [VOPTH 3

1 d
12+ 5"{2&”81‘27n+1”2L2

<C | 9PH™ 925" dx+C [ 926I™- 9P du. (3.45)
R3 R3

Recalling the expressions of §H™ and 41", by Holder’s inequality, the Sobolev embedding, and
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Cauchy’s inequality, we get that

OFOH™ - 925c™ da < |02V |22 |7 T |2 + (|0 VI |26 |0iT™ |25
R3

+ Vo | ZallOFT [T + 107V e |22 107717

+ 0,V [Zal|0im™ 175 + Ve |76 10707 (170

+ 1075 |26 lIVT" T [T + 050" 76110 VT

+ [0 |2 07V T T2 + 107 |76V 07" 1 26

+ [10:8¢™ 7610,V T 17 + (€™ 17 107V 57|72

+ inaﬁwc"ﬂnp. (3.46)

The estimate on the term involving §I™ is similar to (3.46). For the sake of brevity, we omit
the details. Plugging the resulting inequality and (3.46) into (3.45) and performing the time
integration over [0, T], we then have that

T
|028em 3 + 1926r™ 3 + / (Ivo2e 132 + Vo2 |3, )dt
< Cll(6ens1,67a1) 3z + CMA?|(5", 07" )
n n 1 n n
+ OM2at|| (8¢, 67z + 71 0™, 57 . (3.47)

As before, we still require additional estimates on 9;07"*! and 9,0;67"*1. Applying 0F with
k=0,1and i =1,2,3 to the equation for 7"+, taking the L? inner product with 9;,0F§r"+1,

one has that

1 d
m2||8t8f67-”+1||%2 + 5(/‘6? + Rg)@”V(Saan—Fl”%z
= K} / AdFSc L 9,086 da + | OFSI™ - 00F 5T da. (3.48)
R3 R3

which implies that
d
[|0:0F 7113 + &Hvaﬁnﬂniz < C|| A2, + C/ OFsI™ - 0,086t da.  (3.49)
R3
As in the H? estimate, for the right hand side of (3.49), we have that

;61" - 0,0;0m™ T d
R3

< C(Hvai&—nHLGHVTn+1||L3||Cn+1HL°° + VO™ Lo [ VA" s [l [
HIVT e VT Lo [0:c™ Lo + V087" [ Lo [V T Lol | oo
VO |Le [ VO™ || alle™ M| o + [IVET" | 6]V 7" || o 103" | o
HIVOT | Lo [VT [ Lsll6c™ [ oo + (VT [| Lo [V || o] 0:0¢™ || Lo
VO |16 [V Lol oo + V7" || 2l VO || ol 7" | e
VO [V Lo 0"l o + 10:07" || 6l V7" || o [ Ve™ | o
07" | Le VO™ ([ Lol Ve I zo + 167" [ Lo [V [| 6 | VO™ | o
HIVOT s [V [ LollT" | oe + VT Lo IV Oibe™ || Lo |7 || oe
VT [ alI VO (|6l [ Lo + V067" || e [ Ve o
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VT 2o [ VO™ |13 + IV 0:0c™ | 16 V7" || 28 + (VO™ || 16V O 7" | 3
+ IV Lol [VT" | s + V6T | Lo IV O™ [ s + (V67" || 6 [ V7" || Lo
HIVOT™ Lo [V ([ Lo + 10:0¢" [ Lo 07" [ o + [[6¢™ | < 007" | 2
+ 10" | 21067 | o + Nl Lo 106067 | 2 + V06" || g2 7" || Lo
HIVac™ | za |0 | o + IV O™ [ L2 07" |1 + V™ || 13]|0:67" | o
100" | o[V s + (10" || e (VO™ | 2 + 1|83 || Lo [ VOT" | s
+ e |26l V 007" | Lo + 10:07" | Lo V7" T | o + 167" || oo [V D7 1| 2
+ 10| Ls [IVOT" || s + HT"llellVfMT”Hm) 10:0;67" | 2.

Inserting the above estimate into (3.39), combining it with (3.47), and integrating the resulting

inequality in time, we then use the uniform bound (3.7), combined with the L? estimate used

in Step 1 and Young’s inequality to give that

16"+, 67" D)% 7y < Cll(0¢nt1, 0Tnr1) |72 + CMA?||(6¢™, 6715 (1)
+ CM?a|| (5™, 675 (1) - (3.50)

From (3.33) and standard Littlewood-Paley theory, we have that

Ceo, o)1= = Y 11(Aje0, Ago)llzr= 2 D 11(Sen, 57) | 2.

JEZ n=0

Then, if we fix the initial data (cp,79) with « being sufficiently small, (3.50) implies that

1
(6™ 6m" D)l x(ry < + S 100e™, 67%) [ x (1, (3.51)

where 7, = ||(d¢cp, 07,)||g2 is summable. For any | > m > n, we can then conclude (by a
triangle inequality and repeated application of (3.51), and using the uniform bound (3.7) at
the end) that

I, 7 = (@ 7™ xr <2Zm Ly

which shows that the sequence {(c™,7")},en constructed above is Cauchy.

Proof of Theorem 1.2 From the uniform estimates obtained in Section 3.1 and the
Cauchy sequence in Section 3.2, we can send n to oo and obtain a limit in X (7T, called (¢, 7),
with

" —c in LF(H?), V" —c in LA(H?),

3.52
™ =71 in L (H?), (AT",0,7") = (AT,0;7) in L3(H?). (3:52)

Therefore (p,0) := (¢ + 1,7+ 1) is a classical solution to system (1.1).

The uniqueness follows by examining the system of equations for the difference between
two solutions. This system is nearly identical to (3.32), except that the initial data is (0,0).
The same strategy as to that above yields a control on the size of the difference in X (T') which,
thanks to Gronwall’s lemma, proves that the two solutions must be equal. For the sake of

brevity, we omit the details. O
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4 Global Existence for Small Data with Critical Regularity

In this section, we will obtain the global existence of solutions to system (1.1) in Theorem

1.3. From now on, we define the density and the temperature by the form

1
a=—-—-—1, 7:=60—1.
p

Then system (1.1) can be rewritten as

Oia — k1Aa + kiAT = F (4.1)
KOk — (K2 + R3)AT + k1Aa = G, -
where
T+1 9
F = -2k T |Va\ 4+ 2k1Va - VT — k1aAT + k17Aa,
(r + ) 9 (t+1)
G= (1 o |Val? — (3kT + K1k2) 1+a Va-VT 42)
27’ + 27
— K] ————— A + K Aa + R3aAT + KITAT

1
+(1+ a)V - (R3(T)VT) + /@1(/11 + k)| VT
Proving the global existence result is based on the following variant of Banach’s fixed point
theorem, for the proof, we refer, e.g., to [19]:

Lemma 4.1 Let X be a reflexive Banach space or let X have a separable pre-dual. Let
K be a convex, closed and bounded subset of X and assume that X is embedded into a Banach
space Y. Let ® : X — X map K into K and assume that there exists ¢ < 1 such that

[@(z) —2W)lly <cllz—yly, 2yeckK

Then there exists a unique fixed point of ® in K.

Based on the natural scaling of system (1.1), we choose our working space to be
E(T) = {u ec ([O,T},Bg’{f) . Vel (0 T 33/2)} T >o0,
with the norm
lellzgry =l e ey + 1920y v
The following proposition quantifies the smoothing effect of the linear system of (4.1):

Proposition 4.2 Let us consider the initial data (ag,7p) in B§7l(R3) with regularity
s < 3. Introducing a pair of forces (F,G) in L%(B;yl(R‘g)), we denote by (a,7) the unique
solution of the following linear parabolic system:

{ Oa — k1Aa + ki AT=F

9 5 (4.3)
KoOT — (K] + R3)AT + k1Aa = G.

Then (a, 7) belongs to Lg° (3571(]1%3)), and the pairs (9;a, 9,7) and (Aa, A7) belong to L} (B;l (R3)).

Furthermore, there exists a positive constant C' depending only on k1, ke and k3 such that

e gy + 100, Bl gy + (A, AT s

31)

= C(ffl,fiz,R3)(H(60770)||L30(3511) + [(F, G)“L%(B;)J)‘ (4.4)
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Proof We first apply the homogeneous dyadic block Aq to system (4.3), and multiply
both equations by Aqa and AqT, respectively, and integrate over R?. We then get that

1d, . . . . . .
~—||Aall3: + K1 ||VAal3: = /{1/ VAT -VAjadz + AGF Agqadez, (4.5)
2dt R3 R3
and
1 d, . . . . . .
552&”%7”%2 + (k] + R3)|[VA,T||32 = K] /3 VAT VAjade+ [ AG Agrda (4.6)
R R

By the Holder and Cauchy inequalities, the first term on the right side of (4.5) can be bounded
by

. . 1 . 1 .

K1 VAT - VAgadz < §I€1||VAqT||%2 + §/<;1||VAqa||%2.
R3

Plugging the above inequality into (4.5), and adding the linear combination of the resulting

inequality with (4.6), one has that

1 d . 1 d,. . _ 1 .
S#1(1+6) T80l + S ra LI I3 + 6531V Agalfs + (i — 5553) VA7
< i1+ O)[AgF 2| Agalls + 18,G 21 Ayl (47)

where 4 is a small positive number. Setting that f2 = r1(1+ 0)||Aqall2. + k2| A7), and that

= 1 2
k= min{f%7 53—325&1 }, we then have, by Bernstein’s inequality, that
1d . .
L gk g2 < O (180 F e + 184G 1), (1)

To finish this, we multiply the above inequality by 22¢°, and denote that

g = 2115\/,@1(1 + (S)HAanQLg + H2||AqTH%2>

so we then get that
1d
2dt

Using h3 = gg + €2, integrating over [0,¢] and then letting € tend to 0, we infer that

G2+ K262 < O, 52)2% (| A F L2 + | AgGll12)gs- (49)

t

t
gy(t) + r220 / 09(7) dr < gy(0) + Cla, 52)2 / (1A F| 2+ [AGl2)dr.  (4.10)
0 0
We finally conclude that

@) ey + 1@ P gy < Ol ma) (1 0s o)l e g ) + I Gl ) (411)

2,
Combining (4.11) with the equations of (a,7) finishes the proof of this proposition. O

Our construction of the global solution relies on a combination of Proposition 4.2 with
Lemma 4.1. To this end, for any given T' > 0, we define the set K(T') by

K(T) :={(b,7) € E(T) x E(T), b(0) =ag, 7(0) = 50 and [|(b, 7)|| p(ry < ¢}
for some suitable small positive constants ¢, which will be determined shortly. Next, given
(b,7) € K(T), we define the mapping ®(b,7) := (a,7), where (a,7) is defined as the unique
solution of the corresponding linearized problem of (4.1):
Ora — k1Aa + kAT = F(b, 1),
koOyT — (KT + R3)AT + kiAa = G(b,T), (4.12)

(a, 9) |t:0: (ao, ’7'0).



No.3 B. Han et al: GLOBAL EXISTENCE FOR NON-ISOTHERMAL IDEAL GAS SYSTEM 883

Here
T+1 9
Fb,1)= 72/11 |Vb| +261Vb - VT — k1 bAT 4+ k1 TAD,
_ (T + ) 2 2 (T+1)
G(b,7) = (1 )2 [Vb|* — (3K + K1k2) 5 Vb-Vr (413)
72497 b _
— K2 . Ab+ /{%mAb + R3bAT + KITAT

+ (L +0)V - (R3(1)VT) + k1 (k1 + ko) | V|2

Following Proposition 4.2, we easily obtain that
90, 7)lscry < (a0 )l oz + IE By ey + GG gy ). (414)

In order to prove that ®(K (7)) C K(T') under the smallness condition on ag and 79, one needs
to bound the right side of (4.14). We ignore k1, k2, and ks, as they are fixed constants.
For the first term in (4.13), we rewrite it as
T+1
1+

— 1, satisfying that m;(0) = 0. By Lemma 1.6 in [6] and the continuity of

——|Vb|* = my(D)| Vb2 (T + 1) + |Vb]* (1 + 1),

where my(b) := 1+b

the product in Besov spaces ([1, Chapter 2]), we get that
T+ 1
1+

Vbl

<0(1+ bl ) Vb ( o +1)
sz <O (0 Pl ) I901E ey (i

<C(1+¢)°c
Similarly, we have that

Vb - VTHL%F(BS’?) <O, |16 ATHLl ) + HTAbHLl L(BY2) < Cl.

Combining the above estimates, we find that

2 2
[ £ (b, T)HLIT(BSGZ) <C(l+4c¢o)7c
The terms in G can be bounded in essentially the same way. For the first term in G, we rewrite
it as
T+1
21 n b>)2 [V = ma ()| VB (7 + 1)* + [VO]*(r + 1)%,
where ms(b) 1= ﬁ — 1, satisfying that mo(0) = 0. We then infer that

(T+1)

(1 +b)2 [voF

2
<O (1 Il aroy) 19O ey (I oy 1)

‘ Ly (B3/Y)
<C(1+4¢)°

The term 72Vb - V7 is handled the same as 721 |Vb|2. The third term in G can be rewritten

I+b T+b
as 2, o
- i L Ab = ma (B)TAN(T +2) + TAN(r +2),
which is estimated in the same way. The fourth term of G is, in fact, —mq(b)Ab, so that
b 2
Hl—H)Ab . (Bg/g) < C”b”Loe B3/2)||Ab||L1 (BS/Q < CC .
T 2,1
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Likewise,
2
”bAT”L}(B;/f) + HTATHL%,(BS’GZ) S CC .
The seventh term of G becomes (1 + b)&5(7)|V7T|? + (1 + b)k3(7) AT, where £3(0) = 0 and
is bounded by assumption. The LIT(BS’/f)—norm for this term is controlled by C(1 + ¢)c?. The
last term in G is similarly bounded by Cc?. Thus, we have that

|G(b, 7) ,SCL+e) e

Iy 22

Finally, combining the above estimate with the one for F' with (4.14), we obtain that

1906, 7) 1) < Cllan, )l g572 +C(1+)*e? (4.15)
This implies ®(K (1)) C K(T), provided that
1 1
< mi — : < —c. .
¢ < min{1, 160} and ||(a0,T0)||Bg{12 < 30¢ (4.16)

Next, we will prove that, for any 7" > 0, the map ®(b, 7) is contractive on K(T'). Indeed, for
(vi, ;) € K(T), let (a;,7;) = ®(v;, 7;) for i = 1,2. Moreover, we set that @ = a; — a2 and that
= 6, — ;. Then (a, ) satisfies the equation
08 — k1 AG + k1 AG = SF,
ko0l — (K7 + R3) A0 + wiAa = 6G, (4.17)
(@,0) le=o= (0,0),
where §F = F(by, 1) — F(b2,72) and 0G = G(by,71) — F(ba,72). Applying Proposition 4.2
yields that
H(‘_”é)HL%%BS,/f) + ||(A‘_’7M>HL1T<BS,€2) =C (”5F||L1T(B§,/f> + ”5G”L1T<BS,/12>> ‘ (4.18)

Now, §F can be rewritten as

B 1 1 ) 1
oF = 25}1 <1—|—b1 1—'—[)2) |ng\ (’7—2 + 1) 2:‘{1 1 n bl V5b . vbQ(TQ + ].)
1 1
- 2H1ﬂVb1 Vb (12 +1) — 2mﬂwb1|257 + 2k, Vb - Vo
+ 2:‘431Vb1 -Vor — HlabA’Tg - Hlb1A5T + K/l(STAbQ + IilTlA(Sb, (419)

where b = by — by, 0T = 71 — T5. Moreover, for the first term, we also have that
11 1
T+by 14+b;  (L+b2)(1+by)

Then we can estimate the terms in §F' analogously to the terms in (4.13) to obtain that

8b = (ma(by) + 1) (my (b2) + 1)db. (4.20)

IOF Il 3 32y < CUlbLI oo 372y + U2l Lo p372) + 1)||5bHLoT°(B§{f)HVb?”ig@g@
X (||T2||L%o(33{12) +1)
+ C(||bl||L?(Bg{12) + 1)||V5b||L2T(B§(12)HVbQHHT(Bgff)(||7'2HL;9(B§{12) +1)
+ Oball e 372y + DIVOBI 2 (72 VL 2 32y (172l e p372) + 1)
Ol ey + DITBI, v 1971

< CA+ e c(l8bl ey + 167 mcr))-
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A similar methodology is applied for the terms in dG. We write
0G = H%Jl — (3%% + Hllfg)Jg — H%Jg + K%J;; + K3dJs + K%Jﬁ + Jr + I{l(lil + Hz)Js.

Each of the J; terms correspond to the difference operator § applied to each respective term in
the expression for G in (4.13). More specifically, we have that

1 1 (o + 1) (2 +1)? 5
Ji = - b
! (1+b1 1+b2)< 56 T irn ) Ve

Or(m1 + 72+ 2) ,  (m+1)?
——= 2 |\Vby|* + ——=Vbb- (Vb1 + Vbs),
(1+by)2 V| (1+by)2 (Vr 2)
Ty = (2 L) () 1)V - Y 4~V ¥
2T\ 14 2N, Vv
7'1+]. T1+1
ob - by - Vo
g, VO VT Vb Vor,
1 1 2 or(m + 72 +2) 2 427
(e ) Aby + ST T2 T 2) Ny TETE 2T N
& <1+b1 1+b2)(72+72) bt T, bet S, A0
by by by
— (2 A A
Ja (1+b1 1+b2) b2+1+b1 0b,

Js = 6bATy + by AdT,
Jo = 0TATy + 11 AT,
J7 = 0b(R3(12) ATa + Ky(7)|V72|?)
+ (14 b1)(R3(m1) — R3(72))A1e + (1 + by )R3(11)AdT
+ (1 + b1) (R4 (11) — R (12))|V2|® + (1 + b1)R4 (1) VT - (V1 + V),
Js =Vor - (V1 + V2).
The estimate for each J; is similar to those already established, keeping in mind the continuity
of the products in Besov spaces, Lemma 1.6 in [6], and the identity (4.20) to control several

terms in Jy, Jo, J3 and Jy. The only subtle point is that, to estimate J7, we need to invoke the

mean-value theorem to write
[R3(T1) — RK3(2)| < CléT], [R5(m1) — Ry(72)| < Clol,

where C above depends on the upper bound for || and |£%|. Since this upper bound exists

by assumption, we can infer that
H5G||L1T(Bg/12) <C(1+c¢)c (||5b||E(T) + ||5THE(T)) .
Therefore,
(a, 9)IIL%O(33512) + [[(Aa, M)IILlT(ngf) < C(1+¢)’c (10b]l z(ry + 167 | 2ry) -

If we additionally assume that ¢ < %, we then have, for all T > 0, that

_ A 1
1@, )l v, + 10 AD) 1y gorz) < 5 (186 + 167 )

Thus, @ is contractive, as a mapping from E(T) to E(T). The proof of Theorem 1.3 follows
from Lemma 4.1.
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