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Abstract

Although adversarial machine learning attacks on image recognition models have
been heavily investigated, the rising popularity of vision transformers revitalized
the research on this topic. Due to the fundamental architectural differences be-
tween CNNs, which still dominate the image recognition applications, and trans-
formers, the state-of-the-art attacks designed for CNNs are not effective against
transformers, and vice versa. Such lack of transferability in attacks and the grow-
ing architectural heterogeneity in practice make the black-box attack design in-
creasingly challenging. However, skillful attackers can handle the increasing un-
certainty in target model architecture following two main approaches: designing
transferable attacks that are robust to the architectural uncertainty in target model,
and identifying the target architecture for attack selection. In this work, following
the latter approach we propose a novel architecture-agnostic black-box attack de-
sign and analyze its performance. Experiments show that the proposed method,

with a reasonable query overhead, outperforms the recent robust attack designs
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that follow the former approach. Different from the existing methods, the pro-
posed method optimizes a trade-off between prior information about the target
model and number of queries.

Keywords: adversarial machine learning, black-box attacks, transferability of

attacks, vision transformers, sequential hypothesis testing

1. Introduction

Vulnerability of image classification models against adversarial machine learn-
ing attacks has been a very popular research topic since the introduction of fast
gradient sign method (FGSM) (1). The majority of studies in this field are mainly
focused on Convolutional Neural Networks (CNNs) since they constitute the dom-
inant image classifier architecture for many years. But after the recent introduc-
tion of vision transformer (ViT) (2), there is an ongoing increase in the usage
of transformer based architectures (3; 4; 5; 6) as they are shown to outperform
popular CNNs and provide the state-of-the-art performance. While CNNs still
dominate the image classification practice, the rapidly rising popularity of trans-
formers cause a sheer architectural heterogeneity for target image classification
models and in turn architectural uncertainty for black-box attacks.

Because of the rising popularity of transformers, their vulnerabilities against
adversarial machine learning attacks are also being investigated. Latest works
show that, due to the architectural differences between CNNs and transformers,
existing adversarial attacks targeting CNNs are not effective on transformers since
they have been developed with CNNs in mind (7; 8). Therefore several adversar-
ial attacks which were specifically designed for transformers were recently intro-

duced (7; 8; 9). While these attacks are effective on transformers, they are not



as effective against CNNs. This transferability issue, which is explained in Ta-
bles 2, 3, and 5, motivates new research on adversarial attacks that are effective
on a wide range of CNN and transformer architectures. In this work, we show
that a carefully designed Sequential Attack Strategy Selection (SASS) approach
can enable adversaries to perform effective architecture-agnostic attacks on image
recognition systems, as illustrated in Figure 1.

There are two main types of adversarial machine learning attacks, namely
white-box attacks and black-box attacks. In white-box attacks, the attacker has
full access to the target model including its architecture and parameters. On the
other hand, in black-box attacks, the attacker has only access to the output proba-
bilities and/or labels. There are two main black-box attack approaches: (1) transfer
learning approach using the prior knowledge on target network and transferability
of adversarial images, and (ii) fully data-driven approach using queries to estimate
the gradient of the loss function with respect to the input image. While transfer
learning-based black-box attacks suffer from low-transferability under architec-
tural heterogeneity, query-based black-box attacks suffer from prohibitive num-
ber of queries (on the order of tens of thousands) required for gradient estimation.
Minimizing the number of queries is important for an attacker due to several rea-
sons, e.g., there might be stringent limits on the number of queries; queries might
be costly; the risk of attack getting detected by the target increases with the num-
ber of queries.

In the transfer learning approach, the domain knowledge is used to select a
prior model to further train (fine-tune) using queries. For instance, in image clas-
sification, CNNs have been typically used as prior model, also called substitute

network. While adversarial images learned on one type of CNN (e.g., Inception)
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Figure 1: Current state-of-the art attacks are either typically designed for a specific architecture
and not effective on others, or require excessive number of queries to design data-driven attacks. In
this work, we show that attackers can overcome architecture uncertainty with a reasonable number
of queries by following a Sequential Attack Strategy Selection (SASS) approach.

transfers well to another type of CNN (e.g., Resnet-50), the transferability is usu-
ally low when there is an architectural domain shift (e.g., Inception as substitute
network and ViT as target network), as shown in Tables 2, 3, and 5 in Section 4.
With the possibility of such significant domain shifts, it is not clear how to select
the substitute network in the existing works which follow the transfer learning
approach (10).

In the fully data-driven query-based approach, the black-box attack design
methods do not use any prior model, and as a result utilize a large number (tens of
thousands) of queries to learn loss gradients of the target network (11; 12). Since
a good initialization significantly facilitates solving an optimization problem, we
postulate that starting with an appropriate prior can greatly decrease the number
of queries to the target network while designing an effective attack. Although

the task of selecting an effective prior model became harder with the increasing
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popularity of vision transformers, and in turn increasing heterogeneity in target
network architectures, attackers still have a good domain knowledge (i.e., popular
CNN and transformer networks) which they can use to select an effective prior
model. In this work, we present a suitable problem formulation and an effective
solution to minimize the average number of queries while maximizing the attack

success rate. Our contributions can be summarized as follows:

* We present a novel approach driven by both prior information and data,

sequential attack strategy selection (SASS), which can effectively deal with

the architectural uncertainty of target model (i.e., CNN-based or transformer
based) using a practical number of queries (tens or hundreds of queries).
SASS strikes a practical balance between the transfer learning and query-

based approaches.

* We analyze the performance of the proposed method and provide guidance

on how its parameters can be set.

* We benchmark our method with extensive experiments and analyze its ef-
fectiveness compared to the current state-of-the-art attacks. Experimen-
tal results show that SASS achieves consistently high attack success rates
against both CNN-based and transformer-based target models by sending a

feasible number of queries.

The rest of the paper is organized as follows. After reviewing the related works
in the literature in Section 2, we present our method and theoretically analyze its
performance to guide parameter selection in Section 3. The performance of the
proposed method is evaluated with respect to the current state-of-the-art attacks in

Section 4, and the paper is concluded in Section 5.



2. Related Work

The robustness of deep neural networks (DNNs) and their vulnerability against
adversarial machine learning attacks have been investigated for several years since
the seminal work of (1). Many attacks for both white-box and black-box settings
were proposed. In white box settings, the attacker has access to the target model
including its parameters. Hence, very effective and strong methods were intro-
duced including FGSM(1), C&W attack (13), PGD attack (14). For the black-box
setting, in which the adversary does not have any prior information about the tar-
get model, different approaches have been proposed. One of the most common
approaches is introduced in (10). The idea is to use a substitute model for generat-
ing adversarial samples for an unknown target model, utilizing the transferability
of adversarial samples to different CNNs. Another black-box attack approach is
to estimate gradients to generate adversarial data without using a substitute model,
e.g., Z00 (12), NES (11), SPSA (15), SRA (16) and adversarial scratches (17).

In addition to attacks, robustness of models and possible defense methods
were investigated. (18) aims to improve classification performance by adding an
adversarial attack module to the model. (19) proposes a defense method by an-
alyzing the shared information between clean and perturbed data. (20) tries to
eliminate perturbations with the help of adaptive compression and reconstruction.
Also some adversarial benchmark datasets, such as (21), were proposed to evalu-
ate robustness of models. Similar to attacks, these robustness efforts and defense
methods were developed with CNNss in mind.

After the big success of transformers in natural language processing (NLP)
(22), vision transformer (ViT) was introduced for image classification in 2020 (2).

Outperforming the state-of-the-art CNNs, ViTs gained popularity rapidly. Many



different derivations of ViTs have been proposed since then, including DeiT (3),
PiT (23), TNT (24), Le-ViT (4), and ConVit (6).

Because of the increasing popularity of transformers, their robustness has also
become a popular research topic. Some initial research claimed that transformers
are more robust because of their ability to catch global interactions with the help
of patches while CNNs focus on local features (25; 26; 27; 28). On the other hand,
some works claimed that ViTs are also vulnerable to adversarial machine learning
attacks (29; 30; 31; 7).

Although most of the initial works that investigate the robustness of transform-
ers used attacks which were initially designed for CNNs, several recent works
proposed adversarial machine learning attacks which are designed specifically for
transformers. (8) specifically targets the patch structure of transformers by se-
lecting the patches according to how much attention they drew and applying the
perturbations to these areas. (9) suggests that traditional gradient-based attacks
are ineffective against transformers due to high gradient loss, hence they propose
an attack which exploits dot-product mechanism of transformers.

(7) 1s the closest work to ours. Focusing on the low transferability between
attacks designed for CNNs and transformers, authors propose a transferable at-
tack called PNA for both CNNs and transformers by skipping attention gradi-
ents. While we study the same low transferability issue, we show that with a
limited number of queries attackers can accurately identify the target architecture
and select their attack strategy accordingly. Experiments presented in Section 4.2
demonstrate that the proposed method outperforms the PNA attack in (7) with a

wide margin at the cost of a small number of queries.



3. Methodology

3.1. Problem Formulation

In a black-box setting, attacker objectives can be formulated as follows: (i)
maximizing the probability of detecting target model’s architecture to maximize
the attack success rate, and (ii) minimizing the expected number of queries sent
to the target model. We turn this unconstrained two-objective problem into a

constrained single-objective problem:

min E[N]s.t. P(target identification) > -, (1)

where NV represents the number of image samples that are queried to target model,
E[N] is the expectation of N, and ~ is the lower bound for the probability of
correct target identification.

This formulation corresponds to a sequential decision making problem in which
the attacker tries to choose among a set S = {A;,..., Ax} of K substitute net-
work architectures by sequentially sending query batches {Q1,...,Qy,...,Qr}
to the target network. Each query batch consists of M adversarial images de-
signed for K candidate networks. After each query ();, attacker decides to either
continue with the next query batch (), or stop and choose one of the K can-
didates (i.e., ' + 1 possible decisions). Note that the stopping time 7°, which
denotes the number of query batches, and the resulting total number of queries
N = T x M are random variables, which take value according to the stopping
criterion.

Before presenting the optimum stopping criterion for this problem, let us first

discuss how to form the candidate set S, i.e., choosing its elements and the num-
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Figure 2: Digram of the proposed SASS method.

ber of elements K. Obviously, larger A means a richer set of options to select
from &, and thus a better chance to find a close match to the target network. Nev-
ertheless, larger /' also means more queries to the target network to evaluate the
potential of candidate networks in S, i.e., M grows with K. Hence, the sub-
stitute set size K poses a trade-off between minimizing E[N]| and maximizing
P(target identification) in Eq. (1). A rule of thumb to decide on the substitute
set size can be to include the most popular target network architectures in a par-
simonious way and best attack techniques for them. We empirically analyze this

trade-off in Section 4.

3.2. Sequential Attack Strategy Selection (SASS)

By selecting a set of popular target network models (e.g., ResNet, Inception,
ViT, etc.) and the most effective white-box attack techniques against them (e.g.,
PGD (14), Patch-Fool (8), etc.) the attacker turns the optimization problem in
Eq. (1) into a sequential multi-hypothesis testing problem. Given K hypotheses

(i.e., candidate attack strategies), such as PGD for ResNet-50, PGD for Inception,



Patch-Fool for ViT, etc., the attacker aims to select the best hypothesis as soon as
possible and as accurately as possible. Figure 2 summarizes the proposed SASS
method.

For the binary case (K = 2), when the true hypothesis is either one of the two

competing hypotheses:

Hy : A, is the target architecture
(2)

H; : As is the target architecture,

the Sequential Probability Ratio Test (SPRT) is known to be optimum in terms of
minimizing the expected number of samples £[N] under both hypotheses while
satisfying given constraints on the error probabilities P(selecting A;|A; is true)
and P(selecting A;|As is true) (32). The SPRT procedure computes the running
log-likelihood ratio

Ar =AMt +log Bt Ay =0,

g2t
where ¢1; and g9, are the likelihoods of hypotheses A; and A; for query batch @,

and compares it with two thresholds to decide

select A, ifAy>a

0y = 1 select A if Ay < —b

continue with query ;1 if —b < A; < a.

\

We use the extension of SPRT, called matrix SPRT (32), for the multi-hypothesis
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case (K > 2):

Hy : A; is the target architecture
3)

Hy 1 : A is the target architecture.

It computes the running log-likelihood ratio between the K (K —1)/2 unique pairs
of hypotheses

qi
Aije = Nijo1 +log ==, Ayjo = 0, 4)
jt

fortr=1,..., K —1, =1+ 1,..., K, and compares them with two thresholds

to decide
.
select A; if Ajj+ > a;; for some ¢, j
0 = { select A, if A;;; < —b;; for some ¢, j )
continue with query Q41 if —b;; < Ay < a;; forall i, 5.

The proposed SASS method stops the first time when A;;; crosses a threshold for

an ¢, j pair, i.e., at the random time

T = mln{t . Aij,t ¢ <_bij) aij) for some ’i,j},

and chooses the attack strategy according to Eq. (5). In case more than one i, j
pairs stop the test at the same time, among the qualifying attack strategies we
select the one with the strongest likelihood.

As noted in Section 3.1, the K value controls a trade-off between minimizing

the number of queries and maximizing the probability of finding a close match to
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the target network in the candidate set. When the candidate set includes the target
network (i.e., no mismatch between the true hypothesis and the set of tested hy-
potheses), SPRT is known to quickly and accurately identify the true hypothesis.
In the case of a mismatch, we expect the proposed SASS based on matrix SPRT
to find the closest architecture in the candidate set to the target network. Larger /'
values increase the probability for finding a close match and forming an effective
attack to the target network at the expense of more queries in a batch. However,
with a larger K value, the drop in the number of batches to build an effective at-
tack may outweigh the increase in the number of queries in a batch when we look
at the total number of queries on average. Comprehensive experimental results
are presented in Section 4 to analyze this trade-off.

The likelihood ¢;; of attack strategies can be obtained in two different ways
depending on the attacker’s access to the target network’s output.

Probability-accessible setting: If the attacker has access to the class prob-

1

abilities for target network predictions ', then the attack success likelihood of

strategy A; for query (), can be computed as
¢it = 1 — P(true class ofXZ-t]f(it), (6)

where X, is the adversarial image generated using attack strategy A; and X, is
the original image. Note that, in this case, only one adversarial image is used per
attack strategy (M = K), and as a result Q); = {Xu, .. ,f( k¢ - For example, if
the true label of X, is “dog”, then the likelihood ¢;; is how far the predicted “dog”

'If the target network provides confidence scores for different classes, class probabilities can
be obtained by normalizing these scores.
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Algorithm 1 SASS algorithm

Input: error probability constraint 3, set of attack strategies S with size K, num-

ber of images for each attack strategy in a query batch L (e.g., L = 1 for
probability-accessible setting and L > 1 for label-only setting)

Output: selected attack strategy

A

10:
11:
12:
13:

1
2
3:
4
5

Set threshold 7 = — log -2~ (Eq. (10))
Initialize A;; <— 0 for each pair of attack strategies in S
while —h < A;; < hforall ¢, ;j do
Send query batch consisting of L perturbed images for each attack strategy
Receive class probabilities or only the predicted label for each image and
compute likelihoods ¢;; as in Eqs. (6) or (7), respectively.
Update A;; < A;; + log g—; for all 7, j (Eq. (4))
end while
Consider pair (ij)* = arg max; ; |A;|
if A(;jj- > h then
Select attack strategy ¢
else
Select attack strategy j
end if

probability for adversarial image X, is from 1.

Label-only setting: On the other hand, if the attacker has access to the pre-

dicted label only, but not the predicted class probabilities, then the attack success

rate in a mini batch can be used as the likelihood:

# misclassifications in{ X}, ..., X}
7 .

qit = (7

In this case, a mini batch of L adversarial images is used for each attack strat-

egy in each query (M = K L). The proposed SASS algorithm is summarized in

Algorithm 1.
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3.3. Performance Analysis

While in the binary case there are two error probabilities ag = Fy(dr = Ay)
and oy = Pi(07 = Ap), in the general case there are K (K — 1) error cases with
the probabilities ov;; = P;(6r = A;), i = 1,..., K, j # i, where P, denotes the
probability under the true hypothesis. If the hypothesis set S does not include the
target network, then P; denotes the probability under the closest hypothesis in S,
i.e., the best performing attack strategy in S against the target network.

We can find an upper bound for each error probability using the Wald’s likeli-

hood ratio identity (32) as follows

aij =Pi(Ajr < —=bi) = E[1{Ajr < —bi;}] = Ejle™ T 1{Ayr < —by}]

< PPy (0r = Aj) < e, ®)

where 1{-} is the indicator function which takes the value one if its argument is

true and zero otherwise. Similarly,

aji =Pj(Ayr > ay) = E;[1{Ayr > ay}] = Eile™ 97, H{Ayr > ay}]

<e M P(0p = A;) < e . C)

These relationships between the error probabilities and the thresholds can be used
to set the thresholds to a value which will satisfy an error probability constraint.

For instance, if «;; is wanted to be at most @, setting

_bij = IOg o)

14



can satisfy o;; < @ = e, Similarly,
a;; = —log &

can satisfy aj; < o = e 4.

While Egs. (5), (8), (9) are in a general form with potentially different thresh-
olds for testing each pair of hypotheses, in practice one can typically use the same
threshold /» = a;; = b;; and the same error probability constraint & for all 7, j by
setting

h = —loga

Note that given a target model and the corresponding best attack strategy A;,
the total error probability is given by the sum ) ;i - If the upper bound for
each error case is set the same as &, then the total error probability must be
bounded by (K — 1)a. That is, given a total error probability constraint /3, one

can set

s
K—1

h = —log (10)

4. Experiments

In this section we will evaluate our SASS method and compare its perfor-
mance with different types of state-of-the-art black-box adversarial attacks. First,
we will investigate our method’s target model detection success within different
scenarios. Then, we will compare our approach with transferability-based ad-
versarial attacks. Finally, we will discuss our method’s performance when it is
compared to query-based black-box attacks. The following experimental settings

will be used throughout this section:
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Dataset: Following the common practice in literature we have randomly se-
lected 5000 images from the ImageNet 2012 validation set (33) and used this
dataset for our experiments, e.g., (8), (9), (11), (29) use radomly selected 2500,
1000, 1000, 1000 images from the ImageNet validation set, respectively.

Target Models: We use the following popular image classification models as
target in our experiments: InceptionV3 (34), ResNet-50 (35), DeiT-S (3), DeiT-
B (3), Deit-Ti (3), ViT-T (2), ViT-B (2), Vggl6 (36), Vggl19 (36), ResNet-152
(35). These models are publicly available, e.g., in timm (37) and torchvision (38)
libraries.

Adpversarial attacks: Throughout our experiments we use several adversarial
attacks including FGSM (1), C&W (13), PGD (14), PatchFool (8), PNA (7), NES
(11).

Evaluation Metrics: The success rate of an attack is defined as the average
error percentage of the target model on the generated dataset over 1000 trials. For

the proposed SASS method, success rate (SR) is given by
K
SR=> pix SR (11)
i=1

where K is the number of candidate attack strategies (hypotheses), p; € [0, 1] is
the frequency of trials in which attack strategy 7 is selected, and S R; is the success
rate of attack strategy 7. For SASS, we also define the detection rate (DR) as the

selection frequency of best attack strategy.

4.1. Performance of Target Model Identification

We first evaluate our target identification performance considering both the

architectural match and mismatch cases.
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Attack Strategy Target  Threshold  AQ DR SR

SASS-2 ResNet50 0.8 2.7 100 100
SASS-2 ResNet50 8 5.16 100 100
SASS-2 ResNet50 20 878 100 100
SASS-2 ResNet50 40 16.35 100 100
SASS-2 (label only) ResNet50 0.8 20 100 100
SASS-2 (label only) ResNet50 8 717 100 100

SASS-2 (label only) ResNet50 20 136.16 100 100
SASS-2 (label only) ResNet50 40 235.28 100 100

SASS-2 DeiT-S 0.8 9 95.4 88.50
SASS-2 DeiT-S 8 789 100 93.78
SASS-2 DeiT-S 20 1725 100 93.78
SASS-2 DeiT-S 40 348 100 93.78
SASS-2 (label only)  DeiT-S 0.8 23 100 93.78
SASS-2 (label only)  DeiT-S 8 1194 100 93.78
SASS-2 (label only)  DeiT-S 20 248.5 100 93.78
SASS-2 (label only)  DeiT-S 40 481.2 100 93.78

Table 1: The performance of the proposed SASS method with 2 attack strategies (PGD trained on
ResNet-50, PatchFool trained on DeiT-S) against target models ResNet-50 and DeiT-S in terms of
average number of queries (AQ), detection rate (DR) and success rate (SR).

4.1.1. Architectural Match Case

In this best-case scenario, SASS hypothesis set S includes the target model.
Table 1 shows the attack success rate (SR) and target model detection rate (DR)
as a function of the chosen threshold and the resulting average number of queries
(AQ) for a binary hypothesis set, which includes the target model. The two at-
tack strategies in SASS-2 are PGD trained on ResNet-50 and PatchFool trained
on DeiT-S. When the target model is ResNet-50, SASS achieves perfect DR and
SR even with 2.7 queries on average by accessing the class probability predictions
of the target model. When it only accesses the predicted labels, it uses L = 10
adversarial images for each attack strategy, i.e., each batch consists of 20 images,

which naturally increases AQ compared to the probability-accessible setting. Us-
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Figure 3: Detection Rate (DR) and Success Rate (SR) of the proposed SASS method with 2 attack
strategies (PGD trained on Inception and PNA trained on ViT) against target model VGG-16.

ing only one batch SASS achieves again perfect DR and SR. When the target
model is DeiT-S, SASS-2 detects the target model correctly in all trials except for
the smallest threshold in the probability-accessible setting, which attains 95.4%
DR by using 9 queries on average. Although SASS-2 perfectly detects the target
model in other cases, its SR is not 100% because the SR of the PatchFool attack
on DeiT-S is 93.78%. By identifying the target model, SASS turns the black-box

attack into a white-box attack.

4.1.2. Architectural Mismatch Case
In the case when the hypothesis set S does not include the target model, we
expect SASS to identify the closest architecture in S. In Figure 3, the performance

of SASS-2 without an exact match to the target model is shown as a function of the
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Figure 4: Detection Rate (DR) and Success Rate (SR) of the proposed SASS method with 2 attack
strategies (C&W trained on Inception and PNA trained on DeiT-S) against target model ViT-B.

average number of queries. The considered attack strategies is S are PGD trained
on Inception and PNA trained on ViT while the target model is VGG-16. With
average query number of 65.19, we achieve 100% percent of DR and 89.58% SR.
DR here denotes the detection rate of Inception as the substitute model since it is a
CNN-based model like VGG-16. Note that SR is dependent on the chosen attack
strategy’s transferability performance on the target model. This causes relatively
low SR compared to the exact match case (Table 1).

Especially, when we have transformers as target models, transferability is a
more serious issue since adversarial attacks against transformers are not as trans-
ferable as attacks against CNNs. For example, Figure 4 shows the performance
of SASS-2 which includes C&W with Inception and PNA with DeiT-S as attack

strategies against target model ViT-B. In this case, DR refers to the selection of
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DeiT-S as the substitue model. Even when DR reaches 98.1%, SR stays at 52%
due to the low transferability of PNA trained on DeiT-S to ViT-B.

The solution to this problem is enhancing the hypothesis set with more attack
strategies. We conducted an extensive experiment in which S consists of 3, 4, and
5 attack strategies. For SASS-3, we consider PGD with InceptionV3, PGD with
DeiT-S, and PGD with ViT-B in S. Then, in addition to these three, we use PGD
with ResNet-50 in SASS-4 and also PGD with VGG-16 in SASS-5. Ten different
target models (InceptionV3, ResNet-50, DeiT-S, DeiT-B, DeiT-Ti, Vit-T, ViT-B,
VGG16, VGG19, ResNet-152) are attacked in the label-only setting using L = 5
perturbed images per attack strategy in a query batch and four different thresholds
(0.8,8,20,40). The complete SR and AQ values against all target models are
given in Table 6. Figure 5 summarizes the SR vs. AQ performances of SASS-3,
SASS-4, and SASS-5 averaged over the ten target models. The average SR of
SASS-3, SASS-4, and SASS-5 reaches or exceeds 90%. The four-hypothesis case
seems to be the ideal setting in this experiment as SASS-4 clearly outperforms
SASS-3 and SASS-5. Comparing SASS-4 to SASS-3 we see that the reduction in
the average number of batches outweighs the increase in the batch size M = KL,
where K = 3,4 for SASS-3 and SASS-4, respectively. We see the opposite case in
SASS-5, which significantly underperforms due to the increase in the batch size.
Note that we tried to add complementary models while expanding the hypothesis
set. In this particular scenario, while adding PGD with ResNet-50 in SASS-4
yields improved overall performance, the cost of adding PGD with VGG-16 in

SASS-5 outweighs its benefit, resulting in a reduced overall performance.
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Figure 5: Success Rate (SR) as a function of average query number (AQ) for the proposed SASS
method with 3, 4, and 5 attack strategies. PGD with ResNet-50 is added to the three attack strate-
gies (PGD with InceptionV3, DeiT-S, ViT-B) of SASS-3 to obtain SASS-4. And PGD with VGG-
16 is further added to obtain SASS-5.

4.2. Comparison against Transfer Learning-Based Black-Box Attacks

Transfer learning-based black-box attacks are practical because of their sim-
ple approach. In this type of attacks, an adversarial set is generated using a sur-
rogate model, and assuming transferability this set is used for attacking to the
target model. To test our performance against transfer learning-based attacks, we
generated eight adversarial datasets by training FGSM, PGD, PatchFool/C&W,
and PNA on DeiT-S and InceptionV3 as surrogate models. Then, we used these
adversarial sets to attack ten different target models.

Tables 2 and 3 present the attack success rate (SR) of the proposed SASS-4
method (PGD with InceptionV3, DeiT-S, ViT-B, ResNet-50) compared to FGSM,
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PGD, PatchFool, PNA trained on DeiT-S and FGSM, PGD, C&W, PNA trained
on InceptionV3, respectively. Since PatchFool is specifically designed for trans-
former models using image patches, it cannot be trained on a CNN-based sur-
rogate model like InceptionV3. Hence, we replaced it with C&W in Table 3.
SASS-4-vs and SASS-4-s correspond to the very small (0.8) and small (8) thresh-
old cases. The average query numbers for our method are shown in parenthe-
ses. At the cost of a reasonably low number of queries, the proposed method
achieves significantly higher SR on average than the popular transfer-based black-
box attacks, including the recent PNA attack (7), which focuses on the same
low-transferability issue between CNNs and transformers. While the benchmark
black-box methods suffer considerable performance loss against several target
models (e.g., FGSM against ViT-B, PGD against ViT-B, PatchFool against DeiT-
B, PNA against ResNet-152), our approach consistently achieves high SR values
against a wide range of target models, including the ones that are not included
in the hypothesis set S (i.e., last six target models). These results indicate that
the transferability of the proposed SASS method is much higher than the existing

black-box methods, especially when the surrogate model is CNN-based (Table 3).

4.3. Comparison against Query-Based Black-Box Attacks

Following a fully data-driven approach, query-based black-box attacks di-
rectly aim at the target model without using a substitute model. Particularly, they
aim to estimate the gradient of the target model’s classification loss with respect
to the input image by sending queries and generate adversarial perturbations via
this estimation. While not being limited by a surrogate is an important advantage,
the number of queries to target model is typically prohibitive (on the order of tens

of thousands) in practice. Query-based attacks are usually studied under two dif-
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Target Model FGSM (1) PGD (14) PFool (8) PNA (7) | SASS-4-vs SASS-4-s
InceptionV3* (34) 58.5 69.56 33.58 51.52 81.71 (21.8) | 98.27 (174.2)
DeiT-S (3) 41.28 100 93.78 95.26 71.15(20.2) | 88.52(79.4)
ViT-B (2) 25.48 56.94 23.81 52.64 98.6 (20) 99.56 (45.2)
ResNet-50* (35)  67.14 81.68 26.9 54.3 94.69 (28.4) | 100 (273.6)
VGG-16* (36) 80.72 90.76 32.36 62.16 90.68 (43.2) | 91.85 (939.8)
DeiT-T (3) 53.5 93.48 29.87 78.2 74.844 (22.2) | 88.44 (134.2)
DeiT-B (3) 34 86.7 19.23 73.48 67.84 (20) 79.38 (75)
ResNet-152* (35) 57.16 71.64 24.54 479 80.04 (25.8) | 85.44 (252)
VGG-19* (36) 79.56 89.62 30.79 58.7 82.89 (47.2) | 91.06 (897.2)
ViT-T (2) 59.6 90.1 53.24 72.36 80.65 (26.8) | 88.7 (188.6)
Average 55.69 83.04 36.81 64.65 82.31 (27.56) | 91.12 (305.92)

Table 2: Transferability comparison in terms of success rate (SR) between the popular transfer-
based black-box attacks FGSM, PGD, PatchFool (PFoll), PNA, which are trained on DeiT-S, and
the proposed SASS method with four candidate attack strategies (PGD with InceptionV3, DeiT-S,
ViT-B, ResNet-50). SASS-4-vs and SASS-4-s correspond to the very small (0.8) and small (8)
threshold cases. Signficantly higher average SR value of SASS-4-s indicates better transferability.
Numbers in parentheses show the average number of queries. Note that the models marked with *
are CNN based, while the others are transformer based.

ferent attack objectives, namely targeted and untargeted attacks. While untargeted
attacks only aim the misclassication of input into any wrong label, targeted attacks
particularly aim misclassification into a specific wrong label.

For untargeted attacks, our results in Sections 4.1 and 4.2 can be used to com-
pare SASS with query-based black-box attacks. For example, ZOO attack (12)
achieves 88.9% SR against InceptionV3 with more than 100, 000 queries for 150
images from the ImageNet test set. In the same case, if the hypothesis set includes
InceptionV3, as shown in Table 6, SASS-3 achieves 99.98% SR with 17.25 AQ;
SASS-4 achieves 98.27% SR with 174.2 AQ; and SASS-5 achieves 98.63% SR
with 188.5 AQ. Moreover, if the hypothesis set does not include the target model,
as shown in Figure 5, SASS-3 achieves on average 89.58% SR with 529.68 AQ;
SASS-4 achieves on average 91.12% SR with 305.92 AQ; and SASS-5 achieves
on average 85.59% SR with 435.27 AQ.

For targeted attacks, considering InceptionV3 as the target model, we compare
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Target Model FGSM (1) PGD (14) CW (13) PNA (7) | SASS-4-vs | SASS-4-s
InceptionV3* (34) 48.56 99.98 45.1 91.02 | 81.71(21.8) | 98.27 (174.2)
DeiT-S (3) 36.94 415 36.56 314 71.15 (20.2) | 88.52 (79.4)
ViT-B (2) 23.78 28.48 23.7 2198 | 98.6 (20) 99.56 (45.2)
ResNet-50* (35)  67.78 81.12 6747 5018 | 94.69 (28.4) | 100 (273.6)
VGG-16* (36) 81.5 89.58 8128 5856 | 90.68 (43.2) |91.85(939.8)
DeiT-T (3) 52.08 55.28 51.62  42.88 | 74.844 (22.2) | 88.44 (134.2)
DeiT-B (3) 31.79 37.52 3145 2692 | 67.84(20) | 79.38 (75)
ResNet-152% (35)  45.26 30.92 4592 55.02 | 80.04(25.8) | 85.44 (252)
VGG-19* (36) 79.34 87.12 7896  55.88 | 82.89(47.2) | 91.06 (897.2)
VIT-T (2) 57.32 61.44 56.78 4128 | 80.65(26.8) | 88.7 (188.6)
Average 52.435 61204  51.884 47512 | 82.31(27.56) | 91.12 (305.92)

Table 3: Transferability comparison in terms of success rate (SR) between the popular transfer-
based black-box attacks FGSM, PGD, PatchFool (PFoll), PNA, which are trained on InceptionV3,
and the proposed SASS method with four candidate attack strategies (PGD with InceptionV3,
DeiT-S, ViT-B, ResNet-50). SASS-4-vs and SASS-4-s correspond to the very small (0.8) and
small (8) threshold cases. Signficantly higher average SR value of SASS-4-s indicates better
transferability. Numbers in parentheses show the average number of queries. Note that the models
marked with * are CNN based, while the others are transformer based.

our method with the query-based NES attack (11), which estimates the gradients
via queries and then utilizes PGD attack based on the estimated gradients. Table
4 shows that SASS-5 with the same hypothesis set in the previous section, which
includes InceptionV3, achieves 98.36% SR in the label-only setting by using only
55.61 queries on average. Whereas, the fully-data driven NES method needs a
prohibitive 2.7 million queries to attain 90% SR in the same label-only setting.
When all class probabilities are available from the target model, NES achieves
99.2% SR using 11,550 queries, which corresponds to the most query-limited
(QL) performance of NES. And when only the partial information (PI) of top
predicted probability is available from the target model, NES can reach an SR of
93.6% with 49, 624 queries. The sheer difference between the average number of
queries of the proposed SASS and NES is due to the hypothesis testing mechanism
of SASS which effectively utilizes the prior information on target models. The

fact that target models are predominantly based on a handful popular architectures
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provide valuable prior information. When the target model architecture is in the
hypothesis set, SASS is able to drastically reduce the number of queries needed to
successfully attack an unknown target model. However, specifically for targeted
attacks, mismatch between the target model and hypothesis set can prevent the
effective use of such prior information, as discussed next.

For targeted attack, transferability is very low even between similar CNN-
based architectures, as seen in Table 5. This is in contrast with untargeted attack,
for which transferability is an issue if the target and substitute model architectures
are not of similar type. Even in such mismatch cases for untargeted attack, dis-
cussed in Tables 2 and 3, the SR values are much higher than the off-diagonal
SR values in Table 5. Because of this complete lack of transferability for targeted
attacks, our SASS method unfortunately does not work well for targeted attack if
the hypothesis set does not include the target model. Hence, for SASS to be suc-
cessful in targeted attacks, its hypothesis set needs to be large enough to cover the
target model, i.e., should cover a high percentage of popular image recognition
models. This will inevitably result in loss of data efficiency. However, even if all
ten of the popular models considered in Table 6 or even a wider set is included in
the hypothesis set, it is reasonable to expect SASS to need less than millions of
queries (unlike the NES attack) based on the results in Table 6 for SASS-5, which

uses less than 10,000 queries in all cases.

5. Conclusions

In this paper, we showed that a novel architecture-agnostic black-box attack
design method, called sequential attack selection strategy (SASS), can address

the architectural uncertainty in target image recognition in a query-efficient way.
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Attack Method SR AQ
NES-QL (11)  99.2 11,550
NES-PI(11) 93.6 49,624
NES-LO (11) 90 2.7 x 10°
SASS-5 98.36 55.61

Table 4: Targeted attack comparison between our attack and query-limited (QL), partial infor-
mation (PI), and label-only (LO) NES attacks against the target model InceptionV3. Results for
SASS-5 are obtained in the label-only setting. The hypothesis set of SASS-5 includes PGD with
InceptionV3, DeiT-S, ViT-B, ResNet-50, and VGG-16. NES attacks also use the PGD attack with
their gradient estimates. Having the target model in the hypothesis set enables huge query savings
compared to the fully-data driven NES method.

Adversarial Dataset InceptionV3 ResNet50 ViT-B

InceptionV3 & Pgd 98.36 0.26 0.08
ResNet50 & Pgd 0.18 99.34 0.14
ViT-B & Pgd 0.1 0.1 99.32

Table 5: Targeted attack success rates (SRs) of adversarial datasets generated by PGD trained
on InceptionV3, ResNet-50, and ViT-B on target models InceptionV3, ResNet-50 and ViT-B.
There is a complete lack of transferability for targeted attacks even between similar CNN-based
architectures as shown by the very small off-diagonal SRs.

SASS aims to identify the target model architecture as close as possible by send-
ing queries. It chooses its candidate set of substitute models (hypothesis set) using
prior information (domain knowledge) on popular image recognition models (i.e.,
CNNs and transformers), and queries the target model in a data-driven way to
identify the closest match in the hypothesis set. This hybrid nature of SASS,
which is based on both prior information and queries, provides a trade-off be-
tween robustness to architecture heterogeneity and data efficiency. The success
of proposed SASS method is limited by the diversity of hypothesis set. As the
hypothesis set grows, SASS becomes more robust to architectural heterogeneity,
but loses from data efficiency. The number of queries required by a large hypoth-

esis set may be prohibitive for some applications in which queries are costly or

26



significantly increase the risk of detection and prevention.

Through experiments on real data, we showed that the size of hypothesis set
can be set to obtain a balanced treatment by analyzing the Success Rate (SR)
vs. Average Query (AQ) number. Particularly, experiments on randomly chosen
5000 images from the ImageNet dataset yielded SASS with 4 hypotheses as the
optimum choice. Extensive comparisons with state-of-the-art black-box attacks
illustrate that this balanced usage of prior information with a reasonable number
of queries gives SASS an edge over the existing methods.

We also noted that, for performing targeted attacks, the trade-off between ro-
bustness vs. data efficiency should be severely skewed towards robustness due
to the very low transferability of targeted attack techniques even among similar
architectures. Larger hypothesis sets will increase the probability of including the
target model at the expense of more queries. If the hypothesis set does not include
the target model, SASS cannot generate successful targeted attacks due to low
transferability.

As future work, we intend to extend our SASS method to video classifiers and
work on defense mechanisms against adversarial machine learning attacks target-
ing different types of architectures. Also, the knowledge base of SASS should be
regularly updated with new effective attack and defense methods from the litera-

ture, and its hypothesis set should be adjusted accordingly as needed.

6. Acknowledgements

This work was supported by the U.S. National Science Foundation (NSF)
[grant number 2029875].

27



References

[1]

(2]

[3]

[4]

[5]

[6]

I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversar-
ial examples, arXiv preprint arXiv:1412.6572 (2014).

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
N. Houlsby, An image is worth 16x16 words: Transformers for image recog-
nition at scale, in: International Conference on Learning Representations,
2021.

URL https://openreview.net/forum?id=YicbFdNTTy

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Train-
ing data-efficient image transformers & distillation through attention, in:
International Conference on Machine Learning, PMLR, 2021, pp. 10347-
10357.

B. Graham, A. El-Nouby, H. Touvron, P. Stock, A. Joulin, H. Jégou,
M. Douze, Levit: a vision transformer in convnet’s clothing for faster in-
ference, in: Proceedings of the IEEE/CVF international conference on com-

puter vision, 2021, pp. 12259-12269.

Z. Chen, L. Xie, J. Niu, X. Liu, L. Wei, Q. Tian, Visformer: The vision-
friendly transformer, in: Proceedings of the IEEE/CVF International Con-

ference on Computer Vision, 2021, pp. 589-598.

S. d’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, L. Sagun,

Convit: Improving vision transformers with soft convolutional inductive bi-

28



[7]

[8]

[9]

[10]

[11]

[12]

ases, in: International Conference on Machine Learning, PMLR, 2021, pp.

2286-2296.

Z. Wei, J. Chen, M. Goldblum, Z. Wu, T. Goldstein, Y.-G. Jiang, Towards
transferable adversarial attacks on vision transformers, in: Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 36, 2022, pp. 2668—
2676.

Y. Fu, S. Zhang, S. Wu, C. Wan, Y. Lin, Patch-fool: Are vision transformers
always robust against adversarial perturbations?, in: International Confer-
ence on Learning Representations, 2022.

URL https://openreview.net/forum?id=28ib9tfo6zhr

G. Lovisotto, N. Finnie, M. Munoz, C. K. Mummadi, J. H. Metzen, Give
me your attention: Dot-product attention considered harmful for adversarial
patch robustness, in: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022, pp. 15234-15243.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, A. Swami,
Practical black-box attacks against machine learning, in: Proceedings of the
2017 ACM on Asia conference on computer and communications security,

2017, pp. 506-519.

A. Ilyas, L. Engstrom, A. Athalye, J. Lin, Black-box adversarial attacks with
limited queries and information, in: International Conference on Machine

Learning, PMLR, 2018, pp. 2137-2146.

P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order op-

timization based black-box attacks to deep neural networks without training

29



[13]

[14]

[15]

[16]

[17]

[18]

[19]

substitute models, in: Proceedings of the 10th ACM workshop on artificial

intelligence and security, 2017, pp. 15-26.

N. Carlini, D. Wagner, Towards evaluating the robustness of neural net-
works, in: 2017 ieee symposium on security and privacy (sp), leee, 2017,

pp. 39-57.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep
learning models resistant to adversarial attacks, in: International Conference
on Learning Representations, 2018.

URL https://openreview.net/forum?id=rJzIBfZAb

J. Uesato, B. O’donoghue, P. Kohli, A. Oord, Adversarial risk and the dan-
gers of evaluating against weak attacks, in: International Conference on Ma-

chine Learning, PMLR, 2018, pp. 5025-5034.

C. Lin, S. Han, J. Zhu, Q. Li, C. Shen, Y. Zhang, X. Guan, Sensi-
tive region-aware black-box adversarial attacks, Information Sciences 637

(2023) 118929.

L. Giulivi, M. Jere, L. Rossi, F. Koushanfar, G. Ciocarlie, B. Hitaj, G. Bo-
racchi, Adversarial scratches: Deployable attacks to cnn classifiers, Pattern

Recognition 133 (2023) 108985.

S. Yang, J. Li, T. Zhang, J. Zhao, F. Shen, Advmask: A sparse adversar-
ial attack-based data augmentation method for image classification, Pattern

Recognition (2023) 109847.

X. Yu, N. Smedemark-Margulies, S. Aeron, T. Koike-Akino, P. Moulin,

30



[20]

[21]

[22]

[23]

[24]

[25]

M. Brand, K. Parsons, Y. Wang, Improving adversarial robustness by learn-

ing shared information, Pattern Recognition 134 (2023) 109054.

Z.-H. Niu, Y.-B. Yang, Defense against adversarial attacks with efficient
frequency-adaptive compression and reconstruction, Pattern Recognition

138 (2023) 109382.

M. Pintor, D. Angioni, A. Sotgiu, L. Demetrio, A. Demontis, B. Big-
gio, F. Roli, Imagenet-patch: A dataset for benchmarking machine learn-

ing robustness against adversarial patches, Pattern Recognition 134 (2023)

109064.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, Attention is all you need, Advances in neural infor-

mation processing systems 30 (2017).

B. Heo, S. Yun, D. Han, S. Chun, J. Choe, S. J. Oh, Rethinking spatial dimen-
sions of vision transformers, in: Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 11936-11945.

K. Han, A. Xiao, E. Wu, J. Guo, C. Xu, Y. Wang, Transformer in trans-
former, Advances in Neural Information Processing Systems 34 (2021)

15908-15919.

A. Aldahdooh, W. Hamidouche, O. Deforges, Reveal of vision transform-
ers robustness against adversarial attacks, arXiv preprint arXiv:2106.03734

(2021).

31



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

P. Benz, S. Ham, C. Zhang, A. Karjauv, 1. S. Kweon, Adversarial robust-
ness comparison of vision transformer and mlp-mixer to cnns, arXiv preprint

arXiv:2110.02797 (2021).

M. M. Naseer, K. Ranasinghe, S. H. Khan, M. Hayat, F. Shahbaz Khan, M.-
H. Yang, Intriguing properties of vision transformers, Advances in Neural

Information Processing Systems 34 (2021) 23296-23308.

R. Shao, Z. Shi, J. Yi, P-Y. Chen, C.-J. Hsieh, On the adversarial robustness

of vision transformers, arXiv preprint arXiv:2103.15670 (2021).

S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, A. Veit,
Understanding robustness of transformers for image classification, in: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision,

2021, pp. 10231-10241.

K. Mahmood, R. Mahmood, M. Van Dijk, On the robustness of vision trans-
formers to adversarial examples, in: Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2021, pp. 7838-7847.

M. Naseer, K. Ranasinghe, S. Khan, F. Khan, F. Porikli, On improving ad-
versarial transferability of vision transformers, in: International Conference
on Learning Representations, 2022.

URL https://openreview.net/forum?id=D6nH3719vZy

A. Tartakovsky, I. Nikiforov, M. Basseville, Sequential analysis: Hypothesis

testing and changepoint detection, CRC Press, 2014.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

32



A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale vi-
sual recognition challenge, International journal of computer vision 115 (3)

(2015) 211-252.

[34] C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, Z. Wojna, Rethinking the
inception architecture for computer vision, in: Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2016, pp. 2818-2826.

[35] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recogni-
tion, in: Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770-778.

[36] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[37] R. Wightman, Pytorch image models.

URL https://github.com/rwightman/pytorch-image-models

[38] Pytorch, Torchvision pre-trained models.

URL https://pytorch.org/vision/stable/models.html

33



SLI8  STS8SL  0FSTI STLOT  SS8S  STOLO6  S9L91  STITI  SvET S¥SL IAC-SSVS
. 9888 _ _wel6 8098 _ C99L _ clce _ _9tce Q0L ___¥069_ _ 16t6___ 8666 _ ___ .
STT8Y  STIEVE 0°569 sT8el  STeE S8y STOT8 $08 09l SLETY [FE-SSVS
(Je88  8vl6 €698 [9%9  L8S68 STT6_ 1866 _ 8189 Le8L __ITS6 .
0'LST  STS8Tl 0'1€€ 098  OILI  06TSI SSre $T9  0L6 881 5-C-SSVS
_ALSL8 kT8 L8S8  L¥69 8688  10c6 001 8%I9 _¥Ced €986 T .
$8C STV SL'6T sTst §9T 0cs 0ce 0sT  0'sC SLst SA-C-SSVS
68SL  0£18 978 v8'8y  8TTL G616 11°€6 TesE  1S°€S 6T18
vYEL  ¥T6lY 001 0991  000F  ¥'6508 ¥zl 0201 t'981 8'869 Ap-SSVS
. 6668 _ _csl6 8098 I8 616 86 Q0L ___ _00L __L996__ _ 8666 _ ___ _____.
Iy v'S861 9'TES 8601  ¥¥9T  TTIT v'919 919 T9Tl 0'69¢ [-SEVE
o883 IE16 8098 _ VOLL _ _T€68 _tl't6 Q0L _ 9966 _LeW8_ _ _ Lt96 _ .
9881  TL68 e 0SL  TYEL 8656 9€LT TSy veL TyLL S-p-SSVS
_OL88 9016 yvs8 8¢l  vy88 816 Q0L 9566 _cS88 __ LL86 .
8'9C TLy 86T 00T  TTC Tey '8¢ 00T TO0T 81T SA-p-SSVS
$9°08 688 008 v8'L9  Y8VL 8906 696 0986  SI'IL 118
STT09  8°009L L'SSST  Sev8l  8T8E  SI'I6S6  SO'8E0S V68  SEV8I £€9°TSS [A-€-SSVS
_L668 _ c968 _ teL___ 6¥98 _ 8yE6 €688 P18 000I__ 0001 _ _ 8666 _ ________.
STIIE  SSL6YE 8811 060l §'S0T  S89Y9Y  PTYET  SL'E9  SS8TI  S8TY6T E-SSVS
_y868 968 _ OCIL 9868 8FE6 906 6TI8 9566 €886 8666 .
SE991  S8°LTHI €L6S 6'€9  8YCl  €VILI $8°06  S6'Er S99 S:{ual $-E-SSVS
_CLe8 868 e8¢l ¥¥S8  8ve6  _Lt06__ _ L¥I8  LT86__99L6 8666 _ .
€1 9'9¢ $'sT $691  Sv'8l 8er 81¢ SI'ST  S¥Sl STLI SA-€-SSVS
8TL8  €T6L 8SIL LL'ES  9Y'T6 €868 08 LT86 €386 8666

LA 61-DDA  TSI-IONSOY  g-Lled  I-LPd  91-DDA  0S1ONSY  d-LIA  S-LIPa  gAuondeouy POYIPIN

Table 6: SASS-3, SASS-4, SASS-5 attacks against target models Inceptionv3, ResNet-50, DeiT-
s, DeiT-b, Deit-B, Vit-T, ViT-B, Vggl6, Vggl9 and ResNet-152 with different thresholds: very
small (vs), small (s), large (1), very large (vl) correspond to 0.8, 8, 20, 40 respectively. SASS-3
has inception_pgd, deits_pgd and vit_pgd as attack strategies, SASS-4 has resnet_pgd in addition
to SASS-3 and SASS-5 has vggl6_pgd in addition to SASS-4.
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