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We study the correlator of temporal Wilson lines at nonzero temperature in 2þ 1 flavor lattice QCD with

the aim to define the heavy quark-antiquark potential at nonzero temperature. For temperatures 153 MeV ≤

T ≤ 352 MeV the spectral representation of this correlator is consistent with a broadened peak in the

spectral function, position, or width of which then defines the real or imaginary parts of the heavy quark-

antiquark potential at nonzero temperature, respectively. We find that the potential’s real part is not

screened contrary to the widely held expectations. We comment on how this fact may modify the picture of

quarkonium melting in the quark-gluon plasma.
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I. INTRODUCTION

At very high temperatures the strongly interacting matter

undergoes a transition to a new state called quark-gluon

plasma (QGP). Creating and studying the properties of

QGP is the goal of large experimental programs in heavy-

ion collisions at RHIC and LHC [1].

The question of in-medium modifications of the forces

between heavy quark Q and antiquark Q̄ generated a lot of

interest since the seminal paper by Matsui and Satz [2].

They conjectured that color screening in QGP will make

the QQ̄ interaction short ranged, and therefore quarkonium

states cannot be formed in QGP. Thus, QGP formation in

heavy-ion collision will lead to quarkonium suppression.

The study of quarkonium production in heavy-ion colli-

sions is a large part of the experimental heavy-ion program,

see, e.g., Ref. [3] for a recent review.

The idea of having a screened potential between heavy

quarks in QGP is closely related to the exponential screen-

ing of the free energy of infinitely heavy quarks in QGP,

which is well established by lattice QCD calculations, see,

e.g., Ref. [4] for a review. However, the free energy of

heavy quarks describes the in-medium interaction of heavy

quarks at macroscopic time scales much larger than the

inverse temperature. For understanding the quarkonium

properties in QGP one needs to know if and how the heavy

QQ̄ potential is modified at scales comparable to the

internal time scale of quarkonium. The effective field

theory approach provides a natural framework to address

this problem at high temperatures when the weak-coupling

approach is applicable [5,6]. Depending on the separation

of the bound-state scales and the thermal scales the heavy

QQ̄ potential can be modified by QGP and also acquire an

imaginary part. In general, however, the real part of this

potential does not have a screened form in this approach

[6]. How to study the modification of heavy QQ̄ inter-

actions in QGP beyond weak coupling remains an unsolved

problem. However, we could define the heavyQQ̄ potential

at nonzero temperature (T > 0) in analogy with the zero

temperature (T ¼ 0) case in terms of the Wilson loops of

size τ × r [7]. We can write the following spectral repre-

sentation of the Wilson loops in terms of the r-dependent
spectral function:

Wðτ; r; TÞ ¼
Z þ∞

−∞

dωe−ωτρrðω; TÞ: ð1Þ

The distance r between the heavyQ and Q̄ acts as the label

of the spectral function. At T ¼ 0, the spectral function’s
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lowest delta function peak corresponds to the ground state

potential. We expect that there is a dominant, broadened

peak in the spectral function for not too high temperatures;

its position and width determine the real and imaginary

parts of the potential, respectively [7]. For very high

temperatures the spectral function may lack a well-defined

peak such that a potential cannot be defined. While the

relation between the above defined complex potential and

the effective field theory concept of the complex potential is

an unsolved problem, too, the existence of a well-defined

peak in ρrðω; TÞ is necessary, yet not a sufficient condition
for a potential picture of heavy quarkonium at T > 0.

In this paper we present calculations of the real part of

the potential at T > 0 in 2þ 1 flavor QCD using the lattice

QCD approach and estimate the imaginary part. There have

been several attempts to calculate the complex potential at

T > 0 both in quenched QCD [7,8] as well as in 2þ 1

flavor QCD [9,10]. The state of the art calculation of the

complex potential in 2þ 1 flavor QCD has been performed

using lattices with temporal extent Nτ ¼ 12, and thus at a

single lattice spacing per temperature. The new results are

based on several lattice spacings and several values ofNτ in

the range Nτ ¼ 16–36. The rest of the paper is organized as

follows. In Sec. II we give some details of the lattice QCD

calculations. Section III presents the analysis of the lattice

results and the main results of the study, while Sec. IV

contains our conclusions. Many technical details of the

calculations are discussed in the Appendix.

II. DETAILS OF THE LATTICE QCD

CALCULATIONS

In lattice QCD one often considers correlators of Wilson

lines in Coulomb gauge instead of Wilson loops since these

contain the same physical information and are less noisy,

see the discussions in Ref. [10] and Appendix A. We

calculated the Wilson line correlators Wðτ; r; TÞ in 2þ 1

flavor QCD using highly improved staggered quark action

[11] and Lüscher-Weisz action [12,13] on N3
s × Nτ lattices

for physical strange quark mass,ms and two sets of light (u
and d) quark mass,ml ¼ ms=5 andml ¼ ms=20. The latter
corresponds to almost physical pion mass, mπ ¼ 161 MeV

in the continuum limit. Furthermore, the calculations have

been performed for three different lattice spacings corre-

sponding to the following values of bare lattice gauge

coupling β ¼ 10=g2
0
¼ 7.596, 7.825 and 8.249. The lattice

spacing and thus the temperature scale T ¼ 1=ðaNτÞ has

been fixed using the r1-scale determined in Ref. [14] with

the value r1 ¼ 0.3106 fm obtained in Ref. [15]. The value

of the strange quark mass was obtained from the para-

metrization of the line of constant physics from Ref. [16].

We this scale setting for the lattice spacing we obtain:

aðβ ¼ 8.249Þ ¼ 0.0280 fm, aðβ ¼ 7.285Þ ¼ 0.0404 fm

and aðβ ¼ 7.596Þ ¼ 0.0493 fm. For the finest lattices

the spatial size of the lattice is Ns ¼ 96, while for the

two coarser lattices we use Ns ¼ 64. The temporal size of

the lattice is varied in the range Nτ ¼ 16–36, which

corresponds to the temperature range 153 MeV ≤ T ≤

352 MeV. Further details about the parameters of the

lattice calculations are given in Appendix A.

For the smallest lattice spacing, we only consider T ≥

195 MeV, i.e. temperatures well above the chiral crossover

temperatures. For these temperatures we do not expect

significant quark mass dependence of the Wilson line

correlators. Therefore, the calculations for the smallest

lattice spacing have been performed only with ml ¼ ms=5,
while for the coarser lattices we use ml ¼ ms=20. As

discussed later, we do not see any ml dependence of the

Wilson line correlator for T ≥ 195 MeV, as expected.

For lattices with large temporal extents, employed in this

study, noise reduction methods have to be used. We use

gradient flow [17] for noise reduction. To reduce noise even

further, we require that Wðτ; r; TÞ at large r=a is a smooth

function of r=a, and replace it for each value τ by a

corresponding local r=a interpolation. We verified that this

procedure does not introduce bias in our analysis by

varying the interpolation intervals and comparing to the

results that do not use interpolation. Further details on the

noise reduction techniques are presented in Appendix A.

To aid the reconstruction of the spectral function we also

performed calculations on Nτ ¼ 64 and Nτ ¼ 56 lattices,

which we refer to as T ¼ 0 lattices.

III. ANALYSIS AND RESULTS

To analyze the Wilson line correlator Wðτ; r; TÞ in

Eq. (1) it is useful to consider the effective mass defined as

meffðτ; r; TÞ ¼ −∂τ lnWðτ; r; TÞ;

¼ −
1

a
ln

�

Wðτ þ a; r; TÞ
Wðτ; r; TÞ

�

; ð2Þ

where the last equation applies to the case of nonzero lattice

spacing. At T ¼ 0, the effective mass decreases with

increasing τ, and reaches a plateau for sufficiently large

τ, since the spectral function is positive definite and has the

lowest ground state delta function peak followed by many

excited states for ω above the ground state. We show the

results for the effective masses in Fig. 1. We see that at

T ¼ 0 the effective mass decreases with increasing τ, with

the exception of the data at smallest τ, and approaches a

plateau for τ around 0.5 fm. The nonmonotonic behavior is

due to the smearing artifacts coming from the gradient flow,

as discussed in Appendix B. Except for very small τ, meff

decreases at T > 0 with increasing τ for all τ values and

does not reach a plateau. This means that there is no stable

ground state at nonzero temperature. We see from Fig. 1

that the effective masses show neither lattice spacing nor

sea quark mass dependence for T > 200 MeV. This

implies that for these temperatures using ml ¼ ms=5 is

equivalent to using the physical light quark mass and that
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our results are essentially in the continuum limit. We also

compared the effective masses corresponding to different

lattice spacings at lower temperatures and found no

dependence on the lattice spacing.

At small τ the difference between the T ¼ 0 or T > 0

effective masses is the smallest, and their τ dependence is

rather similar, see Fig. 1. Thus, we aim to constrain the

corresponding contributions at T > 0 by using the T ¼ 0

results.

Our objective is to extract information on a dominant

peak in the spectral function corresponding toWðτ; r; TÞ at
T > 0. We choose an ansatz [10] for the spectral function as

ρrðω; TÞ ¼ ρlowr ðω; TÞ þ ρ
peak
r ðω; TÞ þ ρ

high
r ðωÞ; ð3Þ

where ρ
high
r ðωÞ is assumed to be a temperature-independent

part dominating at large ω. ρ
peak
r ðω; TÞ describes a dom-

inant peak encoding the complex potential at T > 0, while

ρlowr ðω; TÞ is a small, medium-dependent contribution

below the dominant peak.

Fixing ρ
high
r ðωÞ to its T ¼ 0 value effectively means

subtracting it from the T > 0 result. We define the

subtracted correlator as follows:

Wsubðτ; r; TÞ ¼ Wðτ; r; TÞ −Whighðτ; rÞ; ð4Þ

which is solely determined by the medium-dependent

contributions to the spectral function,

ρlowr ðω; TÞ þ ρ
peak
r ðω; TÞ ¼ ρrðω; TÞ − ρ

high
r ðωÞ: ð5Þ

Since the T ¼ 0 spectral function has the form

ρrðω; T ¼ 0Þ ¼ Arδðω − Vðr; T ¼ 0ÞÞ þ ρ
high
r ðωÞ; ð6Þ

we define

Whighðτ; rÞ≡
Z

∞

−∞

dωρ
high
r ðωÞe−ωτ ð7Þ

via

Whighðτ; rÞ ¼ Wðτ; r; T ¼ 0Þ − Are
−Vðr;T¼0Þτ: ð8Þ

Thus, it is straightforward to estimate Whighðτ; rÞ using

single-exponential fits for Ar and Vðr; T ¼ 0Þ. The task of

constraining ρ
peak
r ðω; TÞ and ρlowr ðω; TÞ is now reduced to

the analysis of the τ dependence of Wsubðτ; r; TÞ.
The effective masses fromWsubðτ; r; TÞ at T > 0 are also

shown in Fig. 1. The uncertainties in the effective masses

due to the errors in the determination of the ground state

contribution at T ¼ 0 have been taken into account by

combining these uncertainties with the statistical errors of

the T > 0 calculations. We note that the nonmonotonic

behavior at small τ due to smearing artifacts is absent

in these subtracted effective masses msub
eff ðτ; r; TÞ, and,

therefore, these artifacts do not affect ρ
peak
r ðω; TÞ, see

Appendix C. As discussed in Appendix C, msub
eff ðτ; r; TÞ

would decrease linearly in τ if the ground state peak had a

Gaussian shape [10]. msub
eff ðτ; r; TÞ shows linear behavior in

τ at small τ, indicating that the dominant ground state peak

has broadened. Here we note, that the behavior of the

subtracted effective masses obtained from the Wilson line

correlators and from the Wilson loops is the same [10].

As discussed in Ref. [10] ρlowr ðω; TÞ is the contribution

to the spectral function at T > 0, which has support for

energies well below the dominant peak and representing a

heavy QQ̄ state propagating forward in Euclidean time

interacting with a backward propagating light state from the

medium. This contribution is much smaller than ρ
peak
r ðω; TÞ

but dominates the correlator at τ around 1=T. This part of
the spectral function explains the rapid drop ofmeffðτ; r; TÞ
at large τ [10] that can be seen in Fig. 1.

A physically appealing parametrization of ρpeakðω; TÞ is
a Lorentzian form. However, a Lorentzian form is only

valid in the vicinity of the peak. In general, we can assume

that the correlator has a pole at some complex ω, so

ρ
peak
r ðω;TÞ¼ 1

π
Im

ArðTÞ
ω−ReVðr;TÞ− iΓðω;r;TÞ: ð9Þ

For ω ≃ ReVðr; TÞ we can approximate Γðω; r; TÞ by a

constant: Γðω; r; TÞ ≃ ΓLðr; TÞ. However, for ω values far

away from the peak Γðω; r; TÞmust quickly go to zero. The

self-consistent T-matrix calculation of heavy QQ̄ propa-

gators indeed shows an exponential decrease of Γðω; r; TÞ
away from the peak [18]. To incorporate this feature of the

spectral function in our analysis we assume that ρ
peak
r ðω; TÞ

is given by ΓLðr; TÞ=ð½ω − ReVðr; TÞ�2 þ Γ
2
Lðr; TÞÞ for

jω − ReVðr; TÞj≲ ΓLðr; TÞ and is zero otherwise. Such

a cut Lorentzian form gives rise to an almost linear behavior

FIG. 1. The effective masses at T ¼ 0 and at T ≃ 220 MeV

for r ≃ 0.7 fm and a ¼ 0.0280 fm (circles), a ¼ 0.0404 fm

(squares), or a ¼ 0.0493 fm (triangles). The green symbols

correspond to subtracted data. The lines show the fits discussed

in the text. Filled (open) symbols represent ms=ml ¼ 20ð5Þ.
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of msub
eff ðτ; r; TÞ at small τ, too, as required by the

lattice data.

The most general parametrization of ρlowr ðω; TÞwould be
a sum of delta functions at ω well below the dominant peak

position. However, to describe our effective mass data even

a single delta function at sufficiently small ω, ρlowr ðω; TÞ ¼
clowr ðTÞδðω − ωlow

r ðTÞÞ turns out as sufficient.
With these forms of ρ

peak
r ðω; TÞ and ρlowr ðω; TÞ we fitted

the lattice data on msub
eff ðτ; r; TÞ and determined the

fit parameters ReVðr; TÞ, ΓLðr; TÞ, clowr ðTÞ=ArðTÞ, and

ωlow
r ðTÞ. A sample fit is shown in Fig. 1 and details of the

fits are discussed in Appendix C. We typically find that

clowr ðTÞ=ArðTÞ < 5 × 10−4 and decreases with decreasing

r, while ωlow
r ðTÞ is between (1.8–3.8) GeV below the peak

position ω ¼ ReVðr; TÞ.
The results for ReVðr; TÞ are shown in Fig. 2 indicating a

temperature-independent real part in good agreement with

the T ¼ 0 potential. This is not completely unexpected, as

meffðτ; r; TÞ at small τ is close to the vacuum result,

cf. Fig. 1. The peak position is insensitive to the detailed

shape of ρ
peak
r ðω; TÞ; i.e., for a Gaussian form we find the

same peak position within errors. Thus our lattice QCD

results show that the potential’s real part is unscreened.

This observation supersedes conclusions drawn earlier by

applying the Bayesian reconstruction method [19] to older

lattice data [20] with much larger statistical errors and

larger discretization artifacts. There are distortions in

ReVðr; TÞ at the two shortest distances in lattice units

(r ¼ a; 2a), but these distortions are the same both at T ¼ 0

or T > 0, see the discussion in Appendices B and C, and do

no affect our conclusion about the absence of screening.

As discussed above the imaginary part of the potential is

defined as the width of the ground state peak at T > 0. If we

knew the spectral function exactly we could fit it in the

peak’s vicinity with a Lorentzian form, whose width

parameter would give the potential’s imaginary part.

This has been explicitly checked for the spectral function

of an infinitely heavy QQ̄ pair calculated in hard thermal

loop perturbation theory [21]. Yet the correlator is sensitive

to all parts of the spectral function, in particular to

ρlowr ðω; TÞ and to the tails of ρ
peak
r ðω; TÞ. For this reason,

the parameter ΓL cannot be considered as ImVðr; TÞ.
A better way to characterize ImVðr; TÞ is to consider

the cumulants of ρ
peak
r ðω; TÞ. The first two cumulants

are defined as c1 ¼ hωi and c2 ¼ hω2i − hωi2, where

h…i ¼
R

dω…. In the case of the Gaussian, the second

cumulant of the spectral function is the square of the width

parameter. In the case of the cut Lorentzian, it is propor-

tional to the square of the parameter ΓL. Furthermore, if

clowr =Ar is very small, ρ
peak
r ðω; TÞ determines the behavior

of the Wilson line correlator around τ ¼ 0. Therefore, the

second cumulant of ρ
peak
r ðω; TÞ determines the slope of

msub
eff ðτ; r; TÞ at small τ, which is well defined from the

lattice data, see Appendix D. Thus the square root of the

second cumulant of ρ
peak
r ðω; TÞ is a good proxy for the r

and temperature dependence of ImVðr; TÞ. In Fig. 3 we

FIG. 2. The real part of the potential as a function of r at

different temperatures. We show results for a ¼ 0.0280 fm

(circles), a ¼ 0.0404 fm (squares) or a ¼ 0.0493 fm (triangles).

Open symbols for ms=ml ¼ 5 and filled symbols for

ms=ml ¼ 20.

FIG. 3. The estimate of the imaginary part of the potential from the fit using cut Lorentzian form as a function of r or rT for different

temperatures. The three panels focus on different temperature ranges. The circles correspond to a ¼ 0.0280 fm, the squares to

a ¼ 0.0404 fm, and the triangles correspond to a ¼ 0.0493 fm. Open symbols forms=ml ¼ 5 and filled symbols forms=ml ¼ 20. Error

bars include a systematic contribution discussed Appendix D.
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show this proxy for ImVðr; TÞ as a function of distance r
for different temperatures. We scaled the x and y axes by

the temperature in the two middle and right panels of Fig. 3.

We see that for 180 MeV < T ≤ 352 MeV the numerical

results for ImVðr; TÞ scale with the temperature, i.e., the

imaginary part of the potential depends only on rT and is

proportional to the temperature. This is in qualitative

agreement with the weak-coupling results. Since for

rT ≃ 1 the imaginary part of the potential is larger than

the temperature, the forces between heavy quarks are

damped very quickly, i.e., on the time scale comparable

to or shorter than the thermal scale. During that short

timescale, the chromoelectric field between the heavy Q

and Q̄ cannot adjust itself to the medium. The chromo-

electric force between the heavy quarks is simply damped

away, and the heavy Q and Q̄ will not interact. This picture

of quarkonium melting is very different from the one

proposed by Matsui and Satz. While ImV is quite large we

still think the QQ̄ energy is well defined in the considered

temperature interval. For if there would be no well-defined

dominant peak in the spectral functions, different staticQQ̄
correlators would have quite different τ dependence.

However, as shown in our previous study [10] this is not

the case.

IV. CONCLUSION

We studied the complex heavy quark-antiquark potential

at nonzero temperature in 2þ 1 flavor QCD using lattice

calculations with a large temporal extent. We have found

that contrary to some common expectations the real part of

the potential is not screened for temperatures 153 MeV ≤

T ≤ 352 MeV.We also found that the dissipative effects on

the chromoelectric forces between the heavy quarks,

encoded in the imaginary part of the potential are very

large and likely will lead to quarkonium dissolution.

As already mentioned in the introduction, the lack of

screening in the real part of the potential is expected in

weak-coupling limit for rT < 1 [6]. Our study shows that

this also holds nonperturbatively. Furthermore, a numerical

evaluation of the weak-coupling result of the thermal

correction to the real part of the potential shows that this

correction is quite small. For T > 500 MeV and rT < 0.4,

where the weak coupling result of Ref. [6] may be

applicable, the thermal correction to the real part of the

potential is smaller than 0.1T.
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APPENDIX A: LATTICE QCD SETUP

In this appendix we discuss further details of our lattice

QCD calculations. The parameters of the lattice calcula-

tions including the lattice volume and the quark masses are

given in Tables I–III. The gauge configurations used in this

study have been generated using a rational hybrid

Monte Carlo algorithm [24] with grants from PRACE on

Juwels Booster and Marconi 100 and NERSC on

Perlmutter using the SIMULATeQCD code [22]. We also

used the MILC code on Cori at NERSC to generate the

gauge configurations. Some of the gauge configurations

have been generated on the USQCD cluster in JLab. After

removing the initial trajectories for thermalization we

arrived at the data set in Tables I–III. Every fifth trajectory

has been used for Nσ ¼ 96 and every tenth trajectory

for Nσ ¼ 64.

On the generated gauge configurations we calculated

Wilson line correlators in Coulomb gauge with the aim

of determining the static quark-antiquark (QQ̄) potential.

We use Wilson line correlators instead of Wilson loops

because these are much less noisy and provide more

TABLE I. Parameters for the Nσ ¼ 96, β ¼ 8.249, ams ¼
0.01011 lattice configurations used. The last column shows

the flow time used for each Nτ.

Nτ # ms=ml T [MeV] τF=a
2

20 3200 5 352 0.125

24 856 5 293 0.125

28 2400 5 251 0.2

32 1100 5 220 0.4

36 2400 5 195 0.6

56 1000 5 126 0.125, 0.2, 0.4, 0.6
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convenient access to distances at noninteger multiples of

the lattice spacing. At T ¼ 0 both Wilson loops and Wilson

line correlators in Coulomb gauge have been used

for the determination of the QQ̄ potential, see, e.g.,

Refs. [14,25–28]. In the case of Wilson loops, smearing

should be applied to the spatial gauge links entering the

Wilson loops in order to obtain a reasonable signal. In

Ref. [10] both Wilson lines and Wilson loops with three-

dimensional hypercubic smearing [29] in the spatial gauge

links have been studied at nonzero temperature. It was

found there that the behavior of the Wilson line correlators

and Wilson loops is fairly similar except for small τ, where

sensitivity to excited states is different, similar to the T ¼ 0

case [30]. At T > 0 there are also some differences between

the behavior of Wilson loops and Wilson line correlators at

τ ≃ 1=T, which are, however, not related toQQ̄ potential as

discussed below. Thus bothWilson lines in Coulomb gauge

and Wilson loops encode the same temperature modifica-

tion of theQQ̄ potential. In Ref. [10] the calculations of the

Wilson lines have been performed on Nτ ¼ 12 lattices.

Since we use much largerNτ in this study, also the temporal

links have to be smeared. We use gradient flow [17] for the

smearing of the temporal gauge links. More precisely we

use Zeuthen flow [31]. For flow time τF the gauge links are

smeared in a radius
ffiffiffiffiffiffiffi

8τF
p

. This radius should be much

smaller than the inverse temperature. We use different

flow times corresponding to the flow radius in the range

a − 2.53a and study the sensitivity of our results to the flow

time. For the final results presented in the paper, we use the

smallest flow time that gives an acceptable signal. Since the

signal deteriorates with increasing Nτ we use larger flow

time for large Nτ. The range of flow times and the specific

values of flow times for which we show the final result are

presented in Tables I–III for β ¼ 8.249, 7.825, and 7.596,

respectively.

After performing the gradient flow we fix the Coulomb

gauge. The precision of Coulomb gauge fixing was set to

10−6. We also note that neither is the gradient flow the only

option to smear the temporal gauge links nor is it a problem

to fix the Coulomb gauge before performing the gradient

flow, when studying Wilson line correlators. Previously we

used hypercubic smearing after gauge fixing for the

temporal gauge links when calculating the Wilson line

correlators at T > 0 [32] and found that the temperature

and the τ dependence of the correlators are similar to that

reported here. Thus even though smearing destroys the

gauge fixing condition to some extent, the qualitative

behavior of the Wilson line correlators is not affected.

This implies that our findings are neither sensitive to the

details of gauge link smearing nor to details of the Coulomb

gauge fixing.

APPENDIX B: ANALYSIS OF THE WILSON LINE

CORRELATORS AT T = 0

In this appendix we discuss the analysis of the Wilson

line correlators at zero temperature. For the analysis of the

Wilson line correlators, it is useful to consider the effective

masses defined in Eq. (2). The Wilson line correlators

require multiplicative renormalization, which corresponds

to an additive normalization of the effective masses that is

proportional to 1=a. This normalization can be fixed by

requiring for each lattice spacing that the QQ̄ potential at

T ¼ 0 is equal to a prescribed value for one given distance.

Here we use the prescription Vðr ¼ r0Þ ¼ 0.954=r0, where
r0 is the Sommer scale, which for 2þ 1 flavor QCD is

r0 ¼ 0.468ð4Þ fm [27]. This normalization condition was

used in our previous studies [16,27,33]. The normalization

constant depends on the amount of smearing, i.e., the

coefficient 2cQ of the 1=a divergence is smearing depen-

dent. The larger the amount of smearing, the smaller the

coefficient of the 1=a divergence becomes. For unsmeared

Wilson line correlators the coefficient cQ was determined in

Ref. [33] for several beta values including, the two lowest

ones used here, namely cQðβ ¼ 7.596Þ ¼ 0.3545ð11Þ and
cQðβ ¼ 7.825Þ ¼ 0.3403ð12Þ. Interpolating the results for

TABLE II. Parameters for Nσ ¼ 64, β ¼ 7.825, ams ¼ 0.0164

lattice configurations. The last column shows the range of flow

time in lattice units used in the calculations. The numbers in the

square brackets indicate the flow time for which the final results

in the paper are presented.

Nτ # ms=ml T [MeV] τF=a
2

16 5528 20 305 0.0–0.6 [0.125]

18 5230 20 271 0.0–0.6 [0.125]

20 4726 20 244 0.0–0.6 [0.125]

22 3515 20 222 0.0–0.6 [0.125]

24 3345 20 203 0.0–0.6 [0.2]

26 4147 20 188 0.0–0.6 [0.2]

28 3360 20 174 0.0–0.6 [0.4]

30 2679 20 163 0.0–0.6 [0.4]

32 2133 20 153 0.0–0.6 [0.6]

64 1006 20 76 0.0–0.6 [0.125–0.6]

TABLE III. Parameters for Nσ ¼ 64, β ¼ 7.596, ams ¼ 0.0202

lattice configurations. The last column shows the range of flow

time in lattice units used in the calculations. The numbers in the

square brackets indicate the flow time for which the final results

in the paper are presented.

Nτ # ms=ml T [MeV] τF=a
2

16 4697 20 250 0.0–0.8 [0.2]

18 3715 20 222 0.0–0.8 [0.2]

20 3005 20 200 0.0–0.8 [0.4]

22 4158 20 182 0.0–0.8 [0.4]

24 3278 20 167 0.0–0.8 [0.6]

26 2423 20 154 0.0–0.8 [0.8]

64 914 20 63 0.0–0.8 [0.2–0.8]
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cQ from Ref. [33] with cubic polynomial we estimate

cQðβ ¼ 8.249Þ ¼ 0.3144ð10Þ.
In Fig. 4 (top) we show the unrenormalized effective

masses at T ¼ 0 for β ¼ 8.249 at different flow times. The

improvement in the signal with increasing flow time at

large τ is obvious from the figure. We also see that the

effective masses decrease with increasing flow time as one

would expect based on the discussions above. There is a

nonmonotonic behavior of the effective masses in τ for

τ=a ¼ 1–3. This is due to the fact that the gradient flow

distorts short distance physics and potentially can lead to

nonpositive definite spectral function for very large ω.

However, for not too large ω there is no sign of positivity

violation in the spectral function since the effective masses

approach plateaus from above for τ=a > 3. This means that

the gradient flow does not lead to artifacts in the determi-

nation of the QQ̄ potential at T ¼ 0. With a constant, flow-

time dependent shift the effective masses for different τF
can be collapsed to one line, except for very small τ, where

there are τF-dependent distortions due to gradient flow.

This is demonstrated in Fig. 4 (bottom). We determine this

shift by fitting the difference in the effective masses

calculated at different flow times to a constant for

τ=a ¼ 7–18 for β ¼ 8.249 and τ=a ¼ 7–15 for the two

smaller values of β. This constant shift should amount to

the difference in the additive normalization of the QQ̄

potential, and therefore, should be independent of QQ̄
separation, r, apart from the distortions at small r due to

smearing. In Fig. 5 we show the relative shifts as a function

of r for β ¼ 8.249. We see that for very small r there is

some dependence on the value of r implying that there are

distortions in the zero temperature potential at these

distances due to smearing as expected. Namely, when

τF=a
2 ≤ 0.2 we see distortion for r=a < 2, while for larger

flow time we see distortions for r=a < 3. To demonstrate

this in Fig. 6 we show the zero temperature potential for

different smearing levels for relatively small r values. We

see from the figure that except for the smallest distance the

potential does not depend on the smearing level including

the case of no smearing. We found that the situation for the

other two β values is the same.

In addition to the gradient flow, we use polynomial

interpolations to reduce fluctuations in the Wilson line

correlators. For fixed τ the Wilson line correlators should

be a smooth function of r apart from the effects of breaking

of rotational symmetry on the lattice. For Symanzik gauge

action these effects are smaller than the statistical errors for

r=a > 3 [30,34]. Therefore, it is natural to require that the

FIG. 4. The effective masses corresponding to the Wilson line

correlators at r=a ¼ 15, β ¼ 8.249 obtained for different flow

times (top). The effective masses for different flow times after

applying the additive shift are discussed in the text (bottom).

FIG. 5. The additive shifts for different flow times as a function

of r=a for β ¼ 8.249.

FIG. 6. The zero temperature potential for β ¼ 8.249 obtained

with different smearing levels, including no smearing.
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data on the Wilson line correlators are smooth functions of

r at a fixed value of τ. By imposing this requirement we

effectively reduce the fluctuations in the original dataset

since nearby r values usually correspond to very different

path geometries and thereby suffer from quite independent

gauge noise. We perform second order polynomial inter-

polations in a limited range of distances, Δr around a target
value of r and replace the original datum with the

interpolated value. We take into account that, with increas-

ing distance, there are many different separations that are

close to the target value of r and adjust Δr as we vary r.
This additional noise reduction and the interpolation

procedure are demonstrated in Fig. 7. In fact the result

on the effective masses shown in Fig. 4 also incorporate the

noise reduction from the interpolations. Because of the use

of the above noise reduction the determination of the QQ̄
potential at zero temperature is now more accurate.

Therefore, we recalibrated the central value of the constant

cQ and used the following values in the present analysis:

cQðβ ¼ 7.596Þ ¼ 0.3552, cQðβ ¼ 7.825Þ ¼ 0.3401 and

cQðβ ¼ 8.249Þ ¼ 0.3135. These values agree with the

one quoted above within errors.

To check that interpolations do not introduced additional

bias we performed the analysis by doubling the

interpolation range in r, and also obtained the zero temper-

ature potential without any interpolations. The results are

shown in Fig. 8. As one can see the zero temperature

potential is not sensitive to these changes. Doubling the

interval in the interpolations does not change the result,

while skipping the interpolation in the analysis only results

in large statistical fluctuations.

APPENDIX C: ANALYSIS OF THE WILSON LINE

CORRELATORS AT T > 0

In this appendix we discuss the analysis of the Wilson

line correlators at T > 0. Our aim is to gain information on

the spectral function corresponding to the Wilson line

correlator at T > 0. As discussed in the main text we use

the following ansatz for the spectral function

ρrðω; TÞ ¼ ρlowr ðω; TÞ þ ρ
peak
r ðω; TÞ þ ρ

high
r ðωÞ; ðC1Þ

where ρ
high
r ðωÞ is the dominant part of the spectral function

at large ω and is assumed to be temperature independent.

Furthermore, ρ
peak
r ðω; TÞ describes the dominant peak in

the spectral function and encodes the complex potential at

T > 0, while ρlowr is a small contribution to the spectral

function below the dominant peak, which is discussed

below in more detail. The position and width of the

dominant peak in the spectral function should not depend

on the interpolating operator details used in the static QQ̄
correlator, e.g., on the flow time and whether we use

Wilson line correlators in Coulomb gauge or Wilson loops.

On the other hand ρlowr ðω; TÞ and ρ
high
r ðωÞ will depend on

the specific choices of the interpolating operators used in

the correlator, e.g., on the amount of smearing or the gauge

tolerance used. In Fig. 9 we show the effective masses for

T ¼ 305 MeV and r ¼ 0.606 fm for different flow times.

We see nonmonotonic behavior and flow time dependence

FIG. 7. Top: effective mass for Nτ ¼ 64, Nx ¼ 64, r=a ¼ 20,

and τF=a
2 ¼ 0.125 for the raw data, compared to an interpolation

fit done around r=a ¼ 20 in a range �Δr=a ¼ 0.9 with a second

order polynomial. Bottom: the correlator as a function of distance

r at fixed τ ¼ 15a for the same lattice as the top plot.

FIG. 8. The zero temperature potential for different smearing

and interpolation levels for a ¼ 0.0404fm. The label “0 × int”

means no interpolation used in the analysis. The label “2 × int”

means that the r interval used in the interpolation was doubled

compared to the default setup.
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for small τ as we do for the T ¼ 0 case. However, for an

intermediate τ range 0.1 fm < τ < 0.45 fm, where the

contribution from ρ
peak
r ðω; TÞ is the dominant one, the

effective masses for different flow times agree with each

other very well. At τ > 0.5 fm the contribution from

ρlowr ðω; TÞ becomes important, and we see some depend-

ence on the flow time. As discussed in Ref. [10] ρlowr ðω; TÞ
depends on the overlap of the chosen QQ̄ operator with the

light states that propagate backward in the Euclidean time

together with the forward propagatingQQ̄. Similar depend-

ence on the level of spatial link smearing of the effective

mass was observed in Ref. [10].

As discussed in the main text the effective masses

corresponding to Wsubðτ; r; TÞ decrease monotonically

with τ, and for sufficiently small τ they are approximately

linear in τ. This is demonstrated in Fig. 9, where the

effective masses from Wsubðτ; r; TÞ are shown for

T ¼ 305 MeV and r ¼ 0.606 fm at various flow times.

Thus the removal of the high energy part of the spectral

function also removes the artifacts induced by the gradient

flow. For a small contribution from ρlowr ðω; TÞ this linear

behavior of the effective masses in τ for small τ could be

easily explained if ρ
peak
r ðω; TÞ had a Gaussian form

ρGr ðω; TÞ ∼ e−ðω−Vðr;TÞÞ
2=ð2Γ2

G
Þ

Wsubðτ; r; TÞ ∼
Z

dωe−ωτρGr ðω; TÞ;

∼ exp

�

−Vðr; TÞτ þ Γ
2

G

2
τ2
�

: ðC2Þ

However, the Gaussian form of the spectral function is not

physically motivated and the width of the Gaussian cannot

be interpreted as ImVðr; TÞ. If we assume that the detailed

shape of the spectral function away from the peak position

is not too important we can define ImVðr; TÞ as the width
at half maximum height. In this case, a Gaussian form of

the spectral function can be used. A physically appealing

choice of ρ
peak
r ðω; TÞ is a Lorentzian form. However, this

form is only valid for ω values that are not too far

from ω ¼ ReVðr; TÞ. The hard thermal loop spectral

function of staticQQ̄ [21] is Lorentzian only in the vicinity

of the peak and decays exponentially when jReV − ωj is
larger [21]. The same holds for the spectral function in the

T-matrix approach [18]. Therefore, we use a cut Lorentzian

for ρ
peak
r ðω; TÞ in our analysis

ρcLr ðωÞ ¼ 1

π

ArΓLθðCut − jω − ReVjÞ
ðω − ReVÞ2 þ Γ

2
L

: ðC3Þ

It turns out that the cut Lorentzian also gives an almost

linear dependence in τ for the effective masses. In our

analysis, we set Cut ¼ 2ΓL. To cross-check our results we

also use the Gaussian form.

FIG. 9. The effective masses for different flow times at

T ¼ 305 MeV, r ¼ 0.606 fm, β ¼ 7.825. The bottom panel

shows the effective masses for the subtracted correlator. The

lines in the bottom panel show the fits discussed in the text.

FIG. 10. The effective masses for β ¼ 8.249, T ¼ 352 MeV,

r ¼ 0.280 fm and the corresponding fits with the cut Lorentzian

plus the delta function for ρlowr shown as a line. The bottom panel

shows the relative deviation between the fit and the data with the

lines indicating the estimated 1 − σ band of the data.
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It was shown in Ref. [10] that the rapid nonlinear decrease

in the effectivemasses is due to ρlowr ðω; TÞ. This contribution
to the spectral function arises from the light states in the

medium propagating backward in timewhich are coupled to

the static QQ̄ propagating forward in time [10]. This

contribution also depends on the details of the QQ̄ corre-

lators, e.g., whether one uses Wilson line or Wilson loops

and the amount of smearing used [10].Wemodel this part of

the spectral function with a single delta function because

such a simple form is sufficient to describe the data for the

Wilson line correlators with the exception of one data point

very close to the boundary τ ¼ 1=T. We perform fits of

subtracted Wilson line correlator with cut Lorentzian form

of ρ
peak
r ðω; TÞ and a single delta function for ρlowr ðω; TÞ for

all available data sets omitting the first datum, which is

possibly affected by the distortions due to smearing, and the

last data point. Some sample fits are shown in Fig. 9 for

T ¼ 305 MeV, r ¼ 0.606 fm, β ¼ 7.825, and in Fig. 10 for

T ¼ 352 MeV, r ¼ 0.28 fm, β ¼ 8.249. The fits work well

as demonstrated in Fig. 10 (bottom), where the relative

difference between the fit and the lattice data is shown. Fits

using theGaussian form for ρ
peak
r ðω; TÞwork equallywell as

demonstrated in Fig. 11.

The amplitude and the position of the small delta

function that parametrizes ρlowr are shown relative to the

dominant peak in Fig. 12 for β ¼ 8.249 and different

temperatures. As one can see from the figure, the position

of this delta function is between 1.8 and 3.8 GeV below the

position of the dominant peak, and shows only mild

dependence on r. The amplitude of this delta function

on the other hand increases rapidly with increasing r.
Similar results have been obtained for the two other β

values. We also note that for small values of r, typically
smaller than five times the lattice spacing, it is not

necessary to include this small delta function in the fits;

i.e., we can set ρlowr to zero and obtain good fits.

In Fig. 13 we show the width of the spectral function

defined as the width at half of the maximum height as a

function of r and different temperatures obtained from the

fits using Gaussian and cut Lorentzian form for ρ
peak
r ðω; TÞ.

We see that using the Gaussian results in a systematically

larger width. The Lorentzian parameter ΓL though is

dependent on the cut on the Lorentzian. This means that

there is a systematic uncertainty in the determination of

ImVðr; TÞ from the parametrization of the spectral func-

tion. As we discuss in the section below it is possible to

define the width in a model independent way by consid-

ering cumulants of the spectral function.

We also studied the dependence of our results on the real

and imaginary part of the potential on the number of

smearing level and on the interpolations. As in the zero

temperature case we performed the analysis without using

interpolation or doubling the interpolation range. We find

FIG. 11. The effective masses for β ¼ 8.249, T ¼ 251 MeV,

r ¼ 0.392 fm and the corresponding fits with a Gaussian plus the

delta function for ρlowr shown as a line. The bottom panel shows

the relative deviation between the fit and the data with the lines

indicating the estimated 1 − σ band of the data.

FIG. 12. The amplitude of the small delta function divided by Ar (left) and the position of the small delta function relative to the

position of the dominant peak (right) as a function of r. The results are shown at different temperatures for lattice spacing a ¼
0.0280 fm (β ¼ 8.249).
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that the distortions in ReVðr; TÞ due to smearing are the

same as in the zero temperature potential. This is shown in

Fig. 15. This means that while smearing can distort the

potential at very short distances, it does not affect the

temperature dependence of the real part of the potential.

Therefore, we show our results for ReV also at the shortest

distances in the main text. At these distance we use slightly

different values of cQ shown in Fig. 5 to offset the

distortions due to smearing. From Fig. 15 we also show

that using interpolation does not introduce a bias in our

results for ReVðr; TÞ. The dependence of ImVðr; TÞ on the

smearing level and on the interpolations is shown in

Fig. 16. As one can see from the figure also here we do

not see significant dependence on these.

APPENDIX D: CUMULANTS OF THE SPECTRAL

FUNCTION

In this appendix we discuss the cumulants of the spectral

functions and their relation to the effective mass of the

Wilson line correlators. The cumulants of the spectral

functions cn are defined as

c1 ¼ hωi; ðD1Þ

c2 ¼ hω2i − hωi2; ðD2Þ

c3 ¼ hω3i − 3hωihω2i þ 2hωi3; ðD3Þ

where h…i stands for
R

dωρrðω; TÞ…. Cumulants exist if

the spectral function has support in a finite ω range, which

is the case for the subtracted spectral function ρsubr ðω; TÞ ¼
ρrðω; TÞ − ρ

high
r ðωÞ≡ ρlowr ðω; TÞ þ ρ

peak
r ðω; TÞ. In what

FIG. 13. Width at half the maximum height for the cut

Lorentzian fit and Gaussian fit.

FIG. 14.
ffiffiffiffiffi

c2
p

for the Gaussian fit (G), compared to the cut

Lorentzian fit (L), or to a Gaussian fit without accounting for the

low ω structure (G no delta).

FIG. 15. Real part of the potential for the cut Lorentzian fit for

different smearing and interpolation levels for a ¼ 0.0404 fm,

Nτ ¼ 20, T ¼ 244 MeV. The label “0 × int” means no interpo-

lation is used in the analysis, while the label “2 × int” means that

the interpolations range was doubled in the analysis compared to

the default setup. Fits done from τ ¼ 2 to 17. Fits with no

smearing or no interpolation fits have been cut above r=a ≥ 20

due to large errors. The fit for no smearing is only done up to

τ ¼ 16. Error bars are purely statistical.

FIG. 16. Imaginary part of the potential for the cut Lorentzian

fit for different smearing and interpolation levels for

a ¼ 0.0404 fm, Nτ ¼ 20, T ¼ 244 MeV. The label “0 × int”

means no interpolation is used in the analysis, while the label

“2 × int” means that the interpolations range was doubled in the

analysis compared to the default setup. Fits done from τ ¼ 2 to

17. Fits with no smearing or no interpolation have been cut above

r=a ≥ 20 due to large errors. Fit for no smearing is only done up

to τ ¼ 16. Error bars are purely statistical.
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follows we will discuss the moments of this spectral

function. The cumulants of the spectral function are related

to the cumulants of the subtracted Wilson line correlators at

τ ¼ 0, mn defined as

Wsubðτ; r; TÞ ¼ exp

�

X

∞

n¼0

mnð−τÞn
n!

�

: ðD4Þ

This can be seen by Taylor expanding the exponential in the

spectral representation of the subtracted Wilson line corre-

lator

Wsubðτ; r; TÞ ¼
Z

dωe−ωτρsubr ðω; TÞ;

¼
Z

dω
X

∞

n¼0

ð−ωτÞn
n!

ρsubr ðω; TÞ;

¼
X

∞

n¼0

hωni ð−τÞ
n

n!
: ðD5Þ

Expanding the exponential in Eq. (D4) and comparing to

Eq. (D5) we see that

m1 ¼ hωi; ðD6Þ

m2 ¼ hω2i − hωi2: ðD7Þ

The first cumulant of the Wilson line correlators is the

effective mass. The second cumulant is the slope of the

effective mass in τ.

We calculated the second cumulant of the subtracted

spectral function using the Gaussian form and cut

Lorentzian form including and excluding the δ function

at small ω. The result of this analysis is shown in Fig. 14.

We see that the second cumulant of the spectral function is

not sensitive whether we use a Gaussian or cut Lorentzian

in our analysis. Furthermore, the second cumulant does not

change much if we include or exclude the contribution from

ρlowr ðω; TÞ that is the small delta peak. We also see that
ffiffiffiffiffi

c2
p

has a similar dependence on r as the full width half

maximum in Fig. 13 but is somewhat smaller.

We have estimated the systematic uncertainties due to

the ansatz for the spectral function by varying the fit

range for the cut Lorentzian ansatz with τmin=a ¼ 2 and

τmax=a ¼ fNτ − 5; Nτ − 4; Nτ − 3g. The effect of this

variation for
ffiffiffiffiffi

c2
p

exceeds the difference upon changing

the ansatz (to Gaussian) or the cut of the Lorentzian. Thus,

we used the average of the two most outlying results for cut

Lorentzian as central values and the full spread as the

systematic error estimate, which we have added in quad-

rature. For large distances this estimate clearly exceeds the

statistical errors. ReVðr; TÞ is insensitive to these changes

within statistical errors.

We can also fit our lattice results on the subtracted

Wilson line correlator with the following simple form

Wapproxðτ; r; TÞ ¼ expðm0 −m1τ þm2τ
2=2Þ ðD8Þ

in the range τ=a ¼ 2 − Nτ=3, where the effective mass is

approximately linear. From this fit, we can then estimate the

second cumulant of the spectral function and compare it

with the determination of c2 obtained by integrating the

model spectral function based on the cut Lorentzian and the

small delta function in almost the entire τ range. This

comparison is shown in Fig. 17. We see that the two

methods of estimating c2 are in good agreement. This

means that defining ImVðr; TÞ in terms of c2 is model

independent and robust.

We also calculated the third cumulant of the spectral

function using our fitted spectral function based on the cut

Lorentzian form. The result on c3, which is the measure of

skewness of the spectral function, is shown in Fig. 18. We

see that −c3 is close to zero at small r but then rapidly

FIG. 17. The second cumulant of the subtracted spectral

function as a function of r determined from the cut Lorentzian

form of the spectral function (circles) and from the second order

polynomial fit of the Wilson line correlation function in the

τ=a range 2 − Nτ=3 (blue band) for T ¼ 251 MeV and

a ¼ 0.0280 fm.

FIG. 18. ð−c3Þ1=3 as a function of r in temperature units for

lattice spacing a ¼ 0.0280 fm and different temperatures.
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increases with increasing r. For very small distances,

r < 5a ρlowr ðω; TÞwas not included in the fit, and therefore,
c3 is exactly zero here. Unfortunately, our lattice results are
not precise enough to obtain c3 using fits with Eq. (D8)

extended to higher order polynomials in the exponent.

Thus at the present level of accuracy, the short τ behavior

of the effective masses can be parametrized solely by

m1 and m2.
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