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We study the nature of charm degrees of freedom in hot strong interaction matter by performing lattice 
QCD calculations of the second and fourth-order cumulants of charm fluctuations, and their correlations with 
net baryon number, electric charge and strangeness fluctuations. We show that below the chiral crossover 
temperature thermodynamics of charm can be very well understood in terms of charmed hadrons. Above 
the chiral transition charm quarks show up as new degrees of freedom contributing to the partial charm 
pressure. However, up to temperatures as high as 175 MeV charmed hadron-like excitations provide a significant 
contribution to the partial charm pressure.

1. Introduction

It is now well established that strong interaction matter at van-
ishing baryon chemical potential undergoes restoration of the sponta-
neously broken chiral symmetry via a crossover transition since the 
small yet non-vanishing up and down quark masses result also in 
the explicit breaking of the �� (2)� ×�� (2)� chiral symmetry group. 
This chiral crossover transition occurs at a pseudo-critical tempera-
ture, ��� = 156.5 ± 1.5 MeV [1]. However, the deconfinement aspect 
of the transition is not well understood in QCD with light dynamical 
quarks. Ultimately, the deconfinement can be related to the nature of 
the underlying degrees of freedom in the hot matter. We expect that 
with increasing temperatures hadronic excitations become broader and 
may have masses different from the vacuum ones. This is the case for 
the pseudo-scalar mesons [2] and the vector mesons, e.g. the 	-meson 
[3–6]. There is some evidence that also charmed hadrons get modified 
with increasing temperature [7–9]. At sufficiently high temperatures 
the hadronic excitations will become too broad and not well defined, 
and partonic excitations will be the dominant ones.

Fluctuations of conserved charges and correlations among different 
conserved charges can be used to understand the relevant degrees of 
freedom in the hot matter. Precision lattice QCD calculations showed 
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that the Hadron Resonance Gas (HRG) [10] provides a good description 
of the fluctuations and correlations of conserved charges in the light and 
strange quark sector below the chiral crossover [11,12]. There are indi-
cations that the same is true for charm fluctuations and charm baryon 
number correlations [13]. However, because of the large statistical er-
rors no firm conclusion could be drawn in the earlier studies about the 
onset for the presence of charm quark degrees of freedom [13]. At high 
temperature the fluctuations and correlations of conserved charges can 
be well understood in terms of a quark gas [11,13–15].

For understanding of the spectrum and elliptic flow of charmed 
hadrons it is important to know how these hadrons are formed and 
whether charmed hadron states can exist also above the chiral crossover 
temperature [16,17]. Using previously obtained lattice QCD data 
on charm baryon number correlations [13] it has been argued that 
charmed hadron-like excitations can exist above ��� [18].

The aim of this letter is to clarify the nature of charm degrees of 
freedom in the vicinity of ��� using high precision calculations of charm 
fluctuations and correlations. We test to what extent the HRG model 
can describe the thermodynamics of charm below the chiral crossover. 
Furthermore, we probe the onset of deconfinement and establish the 
existence of charmed hadronic excitations above ��� .
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��
� � [MeV] LCP[a] LCP[b]

6.315 145.1 1.04112 0.892231
6.354 151.1 0.97025 0.857304
6.390 156.9 0.91534 0.816144
6.423 162.4 0.87069 0.787450
6.445 166.1 0.84320 0.765223
6.474 171.2 0.80920 0.742996
6.500 175.8 0.78059 0.723946

Table 1
The lattice gauge coupling � = 10∕
2

0
, the 

corresponding temperature values and the 
bare charm quark masses for LCP[a] and 
LCP[b].

2. Details of the lattice QCD calculations

In order to study the nature of the charm degrees of freedom we cal-
culate so-called generalized susceptibilities, i.e. derivatives of the QCD 
pressure (� ) with respect to chemical potentials of net baryon number 
(�), electric charge (�), strangeness (�) and charm (�),

�����
����

=
�(�+�+�+�) [� (�̂� , �̂�, �̂� , �̂� ) ∕�

4]

��̂�
�
��̂�

�
��̂�

�
��̂�

�

||||�⃗=0
, (1)

in lattice QCD. We introduced a dimensionless notation for chemical 
potentials, �̂� = ��∕� , with � ∈ {�, �, �, �}.

We performed lattice QCD calculations in (2+1)-flavor QCD using 
the Highly Improved Staggered Quark (HISQ) action [19] for physical 
strange quark mass, ��, and light quark mass, �� = ��∕27. The latter 
corresponds to a pion mass of 140 MeV in the continuum limit. We 
consider the temperature range from 145 MeV to 175 MeV. To fix the 
lattice spacing the �� scale setting from Ref. [12] is used. The values 
of lattice strange quark mass are taken from Ref. [20]. We use a set of 
gauge field configurations generated on lattices of size 323 ×8 and used 
in earlier studies of the HotQCD collaboration [12]. The charm quarks 
have been treated in quenched approximation, which can be justified 
since the charm quark mass, �� , is quite large, and earlier lattice cal-
culations showed that the influence of dynamical charm quarks can be 
neglected in the temperature range of interest for our current analysis 
[21]. The HISQ action is very well suited for the study of charm quarks 
[19]. Discretization effects related to the charm quarks can be reduced 
by using a mass-dependent coefficient in the HISQ action which elim-
inates ((
��)

4) tree level lattice artifacts [19,22]. We calculated all 
generalized susceptibilities involving charm up to fourth order. The cal-
culation of �����

����
involves derivatives of the pressure and on the lattice 

this is achieved by the unbiased stochastic estimation of various traces 
– consisting of inversions and derivatives of the fermion matrices (�) 
– using the random noise method [23]. In particular, 500 random vec-
tors have been used to calculate various traces per configuration, except 
for Tr 

(
�−1 ��

��

)
– which turned out to be particularly noisy. Therefore, 

2000 random vectors have gone into its calculation. We used two differ-
ent lines of constant physics (LCPs) to tune the charm-quark mass. The 
first LCP corresponds to keeping the spin-averaged charmonium mass, 
(3��∕ +�!��̄ )∕4 fixed to its physical value. We calculated the �∕ and 
!� masses using the zero temperature lattices generated for the study of 
chiral crossover temperature and equation of state [20]. As in Ref. [13], 
we fitted the corresponding values of the bare charm quark mass 
��
with renormalization group inspired form to obtain 
�� as function of 
the inverse gauge coupling, � = 10∕
2

0
. In Table 1 we give the values 

of the charm quark masses obtained through this procedure used in our 
calculations for different � as well as the temperature values. The sec-
ond LCP is defined by the physical charm to strange quark mass ratio, 
��∕�� = 11.76 [24]. Results based on the above two LCPs will hence-
forth contain subscripts [a] and [b], respectively. Results without any 
of these subscripts will correspond to LCP[b]. For � > 6.75, the ratio

Fig. 1. The ratios of different baryon-charm fluctuations as functions of temper-
ature. The open symbols represent the results from Ref. [13]. The yellow band 
represents ��� with its uncertainty. The red solid line is the ideal charm quark 
gas limit of the ratio ���

13
∕���

22
.

��∕�� on LCP[a] converges to the experimental value used for LCP[b] 
[25]. At �-values close to the pseudo-critical � of #$ = 8 lattices used 
here, this ratio varies, however, by (10-15)% as can be seen in Table 1. 
As a consequence, the charmed hadron masses calculated on different 
LCPs differ. For instance, at � = 6.39, corresponding to � = 156.9 MeV, 
we find �!��̄ = 3.077(7) GeV on LCP[a] and 2.879(2) GeV on LCP[b], i.e.
the larger than physical quark mass ratio on LCP[a] results in a larger 
charmonium mass on that LCP. The same holds for the open charm 
hadron masses.

As stated above our aim is the high statistics lattice QCD calculations 
of the generalized susceptibilities involving charm. The generalized sus-
ceptibilities involving charm have been first studied in Ref. [13] using 
323 × 8 lattices in (2+1)-flavor. We extend this study as well as the 
analysis of charmed degrees of freedom [18] in two significant ways. 
We included in the analysis two temperatures below the crossover tem-
perature and increased the statistics by a factor (60-70) in the vicinity 
of ��� and a factor 20 at � ≃ 175 MeV. The smallest temperature used 
in Ref. [26] was � = 157 MeV, which is too high to test the range of 
validity of HRG model calculations. We have used approximately one-
third of the available (2+1)-flavor HISQ configurations generated by 
the HotQCD collaboration [12]. At the highest two temperatures, i.e., 
at � = 171.6MeV and � = 176.7MeV we also performed calculations on 
483 × 12 lattices. At these two temperatures we used 36078 and 39080 
gauge configurations, respectively.

3. Generalized charm susceptibilities and hadron resonance gas 
model

In a non-interacting HRG model the QCD pressure can be written 
as the sum of the partial pressures of hadrons carrying open charm 
degrees of freedom and the partial pressure of hadrons with no charm. 
Furthermore, the partial pressure of charmed hadrons can be written as 
the sum of partial pressures of charmed mesons and charmed baryons.

�� (� , �⃗) = �
�
%
(� , �⃗) + ��

�
(� , �⃗) . (2)

As the masses of charmed mesons and baryons are much larger than 
the temperature range of interest, one can use Boltzmann statistics and 
write ��

%
and ��

�
in the following form [13]:

��
�∕%

(� , �⃗) =
1

2&2

∑

'∈C-B/M


'

(
�'
�

)2

�2(�'∕� )

× cosh(�'�̂� +�'�̂� + �'�̂� +�'�̂� ) .

(3)
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Fig. 2. The ratio ���
13

∕��
4
as a function of temperature obtained for LCP[a] and 

LCP[b]. Also shown is the result obtained in PDG-HRG and QM-HRG model 
calculations. The yellow band represents ��� with its uncertainty.

Here � = 0 gives the meson pressure, ��
%
, and � = ±1, ±2, ... gives the 

baryon pressure, ��
�
; �2(() is a modified Bessel function of the second 

kind; the summation is over all charmed baryons/mesons with masses 
given by �'; 
' denotes the degeneracy factors of states with identical 
mass and quantum numbers. In the HRG phase, generalized susceptibil-
ities introduced in Eq. (1) are calculated by making use of the partial 
pressure expressions introduced above in Eq. (3). In particular, for the 
calculation of generalized susceptibilities at vanishing chemical poten-
tial in the charm sector, it suffices to replace the QCD pressure, � , with 
the partial charm pressure, �� . The final expression for �

����
����

takes 
the following form:

�����
����

=
1

2&2

∑

'∈C-H


'

(
�'
�

)2

�2(�'∕� ) �
�������, (4)

where the sum is over all charmed hadrons. According to Eq. (4), parti-
cles with different quantum numbers contribute with different weights 
to different generalized susceptibilities. Fore example, for ���

13
the con-

tribution of a particle with � = 2 will contain a factor 2, whereas for 
���
22

it will contain a factor 22. On the other hand particles with � = 1

contribute with the same weight to ���
13

and ���
22
. Therefore, below 

��� one thus would expect to find �
��
13

∕���
22

< 1, if there is significant 
contribution from dibaryons and ���

13
∕���

22
≃ 1 otherwise.

For large value of the argument, �2(�'∕� ) is exponentially sup-
pressed. Therefore, the contribution of multi-charm baryons is expo-
nentially small, and effectively only the |�| = 1 sector contributes to 
the pressure. This means that ��

2
= ��� = �� (� , �⃗), for � even, and 

���
11

= ���
1�

= ��
�
, for � odd. We also note that these relations should 

hold also for � > ��� , where charm quarks are expected to be the rele-
vant degrees of freedom, because for temperatures a few times ��� , the 
Boltzmann approximation also works for an ideal massive charm quark 
gas, see discussion in the next section. We find that these relations are 
indeed well satisfied in the temperature range used in our calculations 
as shown in Fig. 1. From Fig. 1 we also see that ���

13
∕���

22
close to one 

up to the crossover temperature. As discussed above this is expected in 
a hadron gas if the contribution of |�| = 2 sector is small. Our lattice 
results cannot rule out a small contribution from charmed dibaryons 
given the statistical errors. In Fig. 1 we also show the earlier lattice 
QCD results as open symbols for � > 176 MeV [13]. At lower temper-
atures our results agree with those of Ref. [13] within the large errors 
of the latter. The present results have much smaller errors. Just above 
the chiral crossover temperature the HRG description breaks down and 
the ratio approaches a value which at 330 MeV is only 10% below the 
value of an ideal charm quark gas.

Fig. 3. Partial pressures of charmed mesons, charmed baryons and charm 
quarks as functions of temperature. All three observables have been normal-
ized to the total partial charm pressure. The dashed lines show corresponding 
results obtained from the QM-HRG model. The open symbols show the results 
for #$ = 12 lattices, see text. The yellow band represents ��� with its uncer-
tainty.

In Fig. 2 we show the ratio ���
13

∕��
4
, which is a proxy for the ra-

tio of the charmed baryon pressure and the total charm pressure. We 
compare our lattice QCD results with HRG model predictions where 
we include all charmed hadrons listed by the Particle Data Group [24]
(PDG-HRG). As can be seen, the PDG-HRG under-predicts the lattice 
data significantly. This is not surprising since it was pointed out already 
in Ref. [13] that many charmed baryons predicted in quark model [27]
as well as lattice QCD calculations [28] are missing in PDG tables. There 
are also missing charmed meson states in PDG-HRG. However, their 
number is significantly smaller [13]. When including all the missing 
hadron states, using the spectrum obtained in quark model calcula-
tions [29,27,30], in the HRG model, we obtain very good agreement 
between the lattice QCD results and the quark model extended hadron 
resonance gas (QM-HRG) for ���

13
∕��

4
for � ≤ 170MeV. We do not con-

sider dibaryon contribution to QM-HRG since there is no clear evidence 
for such states. The heaviest state in our QM-HRG data set has a mass 
of about 4.4 GeV. In our previous work [13], we showed that QM-HRG 
calculations based on QM-HRG data set containing states with masses 
less than 3.5 GeV agree with the complete QM-HRG model results to 
better than 1%. Furthermore, as one can also see in Fig. 2 the ratio 
���
13

∕��
4
is not very sensitive to the choice of the LCP for the charm 

mass. Thus our present findings are in agreement with the observations 
of Ref. [13] that additional charmed baryon states are needed to ex-
plain the lattice QCD results on generalized susceptibilities, but now 
this claim is on more solid numerical footings, because now we have 
two more data points below ��� , and our statistical errors are smaller. 
The apparent agreement between the lattice QCD results and HRG also 
for � > ��� , that can be seen in Fig. 2, is somewhat accidental. It is re-
lated to the fact that at high temperatures ���

13
∕��

4
approaches 1/3. In 

fact, any other ratio with a smaller ideal charm quark gas limit, e.g., 
���
22

∕��
4
, shows a clear departure from the HRG description at ��� (see 

also the data in the �� sector [25]). Thus, the HRG description breaks 
down for � > ��� , and we also see that for ��� < � < 350 MeV the ratio 
���
13

∕���
22

moves from the hadron gas to the quark gas expectations. In 
the next section we discuss the implication of this finding for effective 
charm degrees of freedom.

4. Charm degrees of freedom below and above ���

As shown in the previous section the simple hadron gas model, 
given by Eqs. (2) and (3), breaks down for � > ��� . Therefore, follow-
ing Ref. [18] we extend this model by allowing the presence of partial 
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Fig. 4. Constraints �1 and �4 on the quasi-particle model given by Eq. (5), see text and Eqs. (9) and Eq. (12), respectively. The dashed lines indicate that these 
constraints are explicitly fulfilled in non-interacting HRG models. The yellow band represents ��� with its uncertainty.

charm quark pressure and by treating the charmed baryon and charmed 
meson sectors as quasi-particle excitations,

�� (� , �⃗) = �
�
%
(� , �⃗) + ��

�
(� , �⃗) + ��) (� ) cosh

(
2

3
�̂� +

1

3
�̂� + �̂�

)
,

(5)

where the last term corresponds to the charm quark partial pressure. 
Here we explicitly give the dependence on chemical potentials, us-
ing Boltzmann approximation, and ��) (� ) being a function of tem-
perature only. At very high temperature we can also write ��) (� ) =

3

&2

(
��
�

)2

�2(��∕� ), where �� is the mass of a quasi-particle with 

quantum numbers of charm quark. Using Eqs. (3) and (5) we can ex-
press the partial pressures of quasi-particles with quantum numbers of 
charm quarks, charmed baryons and charmed mesons, respectively. For 
�⃗ = 0 we express these partial pressures in terms of generalized suscep-
tibilities as follows,

��) = 9(���
13

− ���
22

)∕2 , (6)

��
�
= (3���

22
− ���

13
)∕2 , (7)

��
%

= ��
4
+ 3���

22
− 4���

13
. (8)

Using lattice QCD results on the generalized susceptibilities in the above 
expressions we estimate the different partial pressures and normalize 
them by dividing with the total partial charm pressure, �� = ��

4
. Re-

sults are shown in Fig. 3. Corresponding results obtained in QM-HRG 
model calculations are shown as dashed lines in this figure. Obviously 
the quark pressure is zero in this model. As can be seen, the HRG works 
well up to ��� . Above ��� , however, the charmed baryon and charmed 
meson partial pressures drop below the HRG results. At the same time 
the quark pressure becomes non-zero just above ��� . These results may 
be taken as evidence for partial melting of the hadron-like states and 
the liberation of quark degrees of freedom at ��� . For the highest two 
temperatures we also show our results for the charm quark pressure ob-
tained on #$ = 12 lattices, which agree with the #$ = 8 results within 
errors, indicating that our main conclusion is not affected by lattice ar-
tifacts.

As was pointed out in Ref. [18], if the model given by Eq. (5) takes 
care of all relevant degrees of freedom below and above ��� , then there 
are four constraints that the generalized susceptibilities up to fourth 
order must satisfy:

�1 ≡ �
��
13

− 4���
22

+ 3���
31

= 0, (9)

�2 ≡ 2����
121

+ 4����
112

+ ���
22

− 2���
13

+ ���
31

= 0, (10)

�3 ≡ 3����
112

+ 3����
121

− ���
13

+ ���
31

= 0, (11)

�4 ≡ �
���
211

− ����
112

= 0. (12)

The lattice results in Ref. [13] were consistent with these constraints. 
However, because of the large errors it was not possible to test the 
model for � < 200 MeV. With our new lattice data one can show that 
these constraints are clearly satisfied in the vicinity of ��� within errors. 
As an example in Fig. 4 we show the constraints �1 (left) and �4 (right). 
The observables defined by Eq. (9) and Eq. (12) are in fact related to the 
partial pressures of charm diquarks, ��

*
, and charm-strange diquarks, 

��
*�
. Namely we can write ��

*
= −9�1∕2 and �

�
*�

= 9�4∕2. While the 
current data on �1 and �4 are consistent with not having a diquark 
contribution to the pressure at � > ��� , the current bounds coming from 
the data on �1 and �4 are still too weak to rule out the existence of 
diquarks above ��� completely.

Additional insight into the charm degrees of freedom above ��� can 
be obtained by considering partial charm pressures corresponding to 
different electric charge sectors. Again using Eqs. (3) and (5) we can 
determine the partial charm pressures in different � and � sectors using 
the following expressions:

��=0
�

=
1

4

[
4��

4
− 12���

13
+ 11���

22
− 3���

31

]
(13)

��=1
�

= −4���
13

+ 8���
22

− 3���
31

(14)

��=2
�

=
1

8

[
2���

13
− 5���

22
+ 3���

31

]
(15)

�
�=2∕3

�
=

1

8

[
54���

13
− 81���

22
+ 27���

31

]
(16)

��=1,�=2
�

=
1

4

[
− ����

211
+ 2����

121
− ����

112

]
(17)

��=1,�=1
�

= 2����
211

− ����
121

(18)

��=1,�=0
�

=
1

2
[2���

22
− 13����

112
+ ����

121
+ 10����

211
] (19)

�
�=1∕3,�=2∕3

�
=

27

4

[
����
112

− ����
211

] (20)

We expect the partial pressures for |�| = 2∕3 and/or (|�| = 2∕3, 
|�| = 1∕3) sectors will agree with ��) . Using the lattice QCD results for 

the generalized susceptibilities we estimated ��=2∕3
�

and ��=1∕3,�=2∕3
�

. 
The results are shown in Fig. 5. As expected these partial pressures 
vanish below ��� and agree with the charm quark pressure ��) . This 
again shows that charm quark degrees of freedom appear just above 
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Fig. 5. The partial pressures of quasi-particles carrying (i) baryon number 
1∕3 (� �

)
), (ii) electric charge � = 2∕3 (��=2∕3

�
), and (iii) (� = 1∕3, � = 2∕3) 

(� �=1∕3,�=2∕3
�

), respectively. All three observables have been normalized to the 
total partial charm pressure. The figure confirms that these three observables 
project onto the same quasi-particle sector. The yellow band represents ��� with 
its uncertainty. Note that the T-coordinates of case (ii) and case (iii) are shifted 
by ±0.51 MeV respectively.

the chiral crossover temperature. The partial charm pressures with in-
teger values of � correspond to combinations of charmed baryon and 
charmed meson pressures. We find that all these partial pressures differ 
significantly from zero above the chiral crossover temperature. In par-
ticular, the partial charm pressure with |�| = 2 comes from charmed 
baryon contributions. In Fig. 6 we show the corresponding lattice QCD 
results. As can be seen, the partial charm pressures � |�|=0,1,2

�
are non-

zero above ��� implying again that charmed hadron-like excitations still 
exist at � ≃ 175MeV. At the same time these partial pressures show sig-
nificant deviations from QM-HRG.

5. Summary and conclusions

In this paper we studied the nature of charm degrees of freedom 
across the chiral crossover transition using high statistics lattice QCD 
calculations on generalized charm susceptibilities. We showed that be-
low the chiral crossover transition the generalized susceptibilities agree 
with HRG model calculations, although in order to achieve this agree-
ment additional charmed baryon states need to be included that are 
not yet included in the PDG tables, but are expected to exist based on 
quark model and lattice QCD calculations. We thus confirm and cor-
roborate earlier assertions about the existence of additional charmed 
hadrons [13]. The high statistics results of generalized susceptibilities 
also allow to clarify the nature of the charm degrees of freedom above 
��� . We find that a charm quark contribution to the pressure appears 
as new degree of freedom just above ��� . However, charm quarks be-
come the dominant degree of freedom only at � > 175 MeV. Charmed 
meson- and baryon-like excitations exist above ��� and make up half of 
the contribution to the charmed pressure at temperature � ≃ 175 MeV.

The lattice QCD calculations presented in this paper have been per-
formed at a single value of lattice spacing in temperature units that 
correspond to #$ = 8 lattices. We find that cutoff effects in the gener-
alized susceptibilities are insignificant in ratios of different generalized 
susceptibilities because one of the main sources of these cut-off effects 
in the generalized susceptibilities is the bare charm quark mass, and 
while taking a ratio this effect largely cancels. These cutoff effects can 
be estimated by considering different prescriptions for fixing the lines 
of constant physics for the charm quark mass. While the choice of LCP 
has a large influence on the absolute values of generalized susceptibili-
ties the effect cancels in ratios of generalized susceptibilities. Thus our 
conclusions will not be affected by discretization errors. All data from 

Fig. 6. Partial charm pressures for � = 0, 1 and 2 sectors normalized by the total 
charm pressure as functions of temperature. Dashed lines show the prediction 
of the QM-HRG model. The yellow band represents ��� with its uncertainty.

our calculations, presented in the figures of this paper, can be found in 
Ref. [31].
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