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Abstract

Nonlocal operators with integral kernels have become a popular tool for
designing solution maps between function spaces, due to their efficiency
in representing long-range dependence and the attractive feature of being
resolution-invariant. In this work, we provide a rigorous identifiability
analysis and convergence study for learning kernels in nonlocal operators.
It is found that kernel estimation is an ill-posed or even ill-defined inverse
problem, leading to divergent estimators in the presence of modeling errors
or measurement noises. To resolve this issue, we propose a nonparametric
regression algorithm with a novel data adaptive RKHS Tikhonov regular-
ization method based on the function space of identifiability. The method
yields a noisy-robust convergent estimator of the kernel as the data reso-
lution refines, on both synthetic and real-world datasets. In particular,
the method successfully learns a homogenized model for stress wave
propagation in a heterogeneous solid, revealing the unknown governing
laws from real-world data at the microscale. Our regularization method
outperforms baseline methods in robustness, generalizability, and accuracy.

Keywords: ill-posed inverse problem, identifiability, RKHS, Tikhonov
regularization
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1 Introduction

Nonlocal operators are increasingly used to represent nonlocal or long-range
dependence, with numerous applications in such as nonlocal and fractional diffu-
sion [1-9], homogenization problems [10-13], fast partial differential equations
(PDE) solvers [14-17], control problems [15, 18], subsurface transport [19-
23], multi-agent systems with nonlocal interaction [24-26], phase transitions
[27-29], nonlocal network in machine learning [30, 31] and image processing [32—
37]. Motivated by these applications, an important inverse problem emerges:
learning the integral kernels of the nonlocal operators from data. Such kernel
functions, with examples including the Gaussian kernel and Green’s functions,
are resolution-invariant and reveal the law of nonlocal interaction; thus, they
are fundamental for the nonlocal operators. However, despite a long line of work
on nonlocal model learning, there is limited theoretical characterization of this
inverse problem, even in the linear setting. In this paper, we aim to fill the gap
by studying the learning of kernels in nonlocal diffusion operators from data.

Suppose that we are given data consisting of discrete noisy observations of
function pairs:

D = {(us, fi)}er = {(wi(zy), fi(z;)) 15 =1,..., T}, (1)
where (u;, f;) are pairs of real-valued continuous functions on a bounded open
connected set @ C R? and {x; € Q} are spatial mesh points. The task is to

learn an optimal kernel function ¢ fitting a nonlocal operator Ly[u] = f to the
data, in the form:

Lyful(z) = /Q o1y — 2 uly) — u(z)]dy = f(z),Vz € Q. )

This operator is nonlocal in the sense that it depends on the function w non-
locally through the convolution of u(y) — u(z), unlike a (local) differential
operator (see Appendix C for more details). Here the data pairs can be functions,
solutions to PDEs or images [10, 11, 34].

Our goal is to infer the kernel ¢ from data via nonparametric regression, so
as to address the general situations that there is limited information to derive
a parametric form or constraints for the kernel, which can be either smooth
or singular. The regression utilizes the linear dependence of the operator on
the kernel, making it possible to treat the large-size function data in a scalable
fashion.

Three challenges are to be overcome. First, the function space of identifiabil-
ity (FSOI) is yet to be specified properly. Otherwise, the inverse problem can
be ill-defined in the sense that multiple kernels fit the data. This is fundamen-
tally different from classical nonparametric regression that learns a function
Y = ¢(X) from random samples {(X;, Y;)} from the joint distribution of (X,Y),
for which the FSOI is L?(p) with p being the distribution of X and the optimal
estimator is the conditional expectation. Second, the kernel estimator should
be resolution independent and converge in a proper function space when the
data resolution refines, so that it can be applied to problems and simulation
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tasks with different grids or discretization methods and provides a guaranteed
modeling accuracy. Third, beyond resolution invariance, the estimator should
be robust to imperfect data to apply to real applications.

To overcome these challenges, we first introduce an exploration measure
PN, the counterpart of the measure p in classical regression, quantifying the
exploration of the kernel’s variable by data. The support of py is where
there is information from data to learn the kernel. With this measure, we
have an ambient function space of learning L?(py) that consists of square-
integrable functions. Second, we study the identifiability of the kernel via the
nonparametric regression, which leads to two findings: (1) the FSOI is data-
dependent, it can be a proper subspace of L?(py), and beyond the FSOI, the
inverse problem is ill-defined; (2) even in the FSOI, the inverse problem is ill-
posed. Therefore, to ensure that the learning takes place inside the FSOI and
to overcome the ill-posedness, we introduce a novel regularization method that
uses the norm of a system-intrinsic data-adaptive reproducing kernel Hilbert
space (SIDA-RKHS), whose closure is the FSOI. Finally, in experimental
studies, we compare our SIDA-RKHS regularization method with two common
Tikhonov /ridge regularizers that use /2 and L? norms. Results on benchmark
problems with synthetic data and real-world data show that only the SIDA-
RKHS regularizer can consistently obtain convergent estimators for all kernels,
especially when the data is noisy.

We summarize our major contributions below:

1) We establish a rigorous identifiability theory for the nonparametric learning
of kernels in nonlocal operators, and specify a data-adaptive function space of
identifiability (FSOI, see Lemma 3 and Theorem 1). The theory also indicates a
pitfall of the nonlocal kernel learning problem: the inverse problem is ill-defined
beyond the FSOI and is ill-posed in the FSOL.

2) We introduce a nonparametric regression algorithm equipped with a novel
regularization method based on the SIDA-RKHS (see Section 2.3), which
ensures that the learning takes place inside the FSOI and overcomes the ill-
posedness to yield a convergent estimator robust to noise.

3) We validate the theory and the proposed algorithm on three benchmark
problems, including various synthetic datasets and a real-world dataset where
the governing law is unknown (see Section 3). Results show that the proposed
algorithm provides a stable and converging estimator, while the common
Tikhonov /ridge regularizers with {? or L2-norm fail this task.

1.1 Related Work

Nonlocal operators: The inverse problem for nonlocal diffusion has been
studied in [38, 39| from a single solution. To discover nonlocal physical laws
from data, a parametric learning approach has been proposed in [11, 40, 41],
where the coefficients of Bernstein polynomials are learned with physics-based
constraints and a Tikhonov regularization. Beyond the linear nonlocal model
and the regression methods, nonlocal operators were further combined with
neural networks, and nonlocal kernel networks were developed for learning
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maps between high-dimensional variables in dynamical systems or function
spaces [16, 42, 43]. An attractive feature of these nonlocal kernel/operator
learning methods is the generalizability among approximations corresponding
to different underlying levels of resolution and discretization. However, as seen
in [10, 11, 42, 43], none of them yield estimator convergence when trained on
finer resolution, and the test error may even increase, due to the ill-posedness
of the inverse problem. This work tackles this issue by introducing a new
regularization method based on a data-adaptive RKHS in a nonparametric
learning approach.

Functional data analysis: Functional data analysis (see, e.g., [44-46] and the
references therein) studies the learning of an infinite-dimensional operator from
functional data. In contrast, we focus on learning a radial kernel in an operator,
exploiting the low-dimensional structure of the operator, which enables us to
learn the kernel (hence the operator) from limited data.

Regularization methods: Our SIDA-RKHS regularization is a
Tikhonov/ridge regularization that adds a penalty term to the loss function.
It differs from previous methods in the penalty term. The commonly used
penalty terms include the Euclidean norm in the classical Tikhonov regulariza-
tion [47, 48], the RKHS norm with an ad hoc reproducing kernel (often the
Gaussian kernel) [49, 50], the total variation norm in the Rudin-Osher-Fatemi
method [51], or the L' norm in LASSO [52]. Whereas each of these penalty
terms has its specific applications, none of them take into account the FSOI,
which is fundamental for learning kernels in operators. Also, our regularization
method is inspired by the kernel flow method that learns hyper-parameters of
the reproducing kernel [53-55], but our reproducing kernel is determined by
the system and the data. Given the importance of regularization to overcome
ill-posedness and overfitting, we expect our SIDA-RKHS regularization method
to be applicable to a wide range of linear inverse problems and machine
learning methods.

Kernel methods: The learning of kernels in nonlocal operators in this study
differs from the widely used kernel methods (see, e.g.,[56-58]). The kernel
methods tackle the approximation of high-dimensional functions. In contrast,
our goal is to recover a resolution-invariant kernel function that reveals the
low-dimensional structure of the nonlocal operator on an infinite-dimensional
function space.

2 Learning theory and algorithm

2.1 Nonparametric regression with regularization

We construct an estimator by minimizing the loss functional of mean square
error:

N N J
OEF DY [ Eelul(@) = fita) e ~ 5 >3 elul(as) = el
3)
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where the constant ¢ depends on the mesh, e.g., cq = Az when d = 1 with
uniform mesh size Az. Hereafter, for simplicity of notation, we view (u;, f;) as
continuous functions and write only the integral form of all elements, as long
as the approximation from the discrete data is clear.

Note that the loss functional is quadratic in ¢ because the nonlocal operator
is linear in ¢. Thus, the minimizer of the loss functional is the least squares
estimator (LSE), which is handy once one selects a hypothesis space Hn =
span{¢y } 1—; with basis functions ¢;. Specifically, for each ¢> Sho1 ck¢>k € Hn,
we can write the loss functional in (3) as £(c) = £(¢) = ¢ Apc — 2¢ by + Cf
where C]fv = £ 5N, [1fi(2)]*dz, and the normal matrix A and vector b are
given by

Ak 1) = (05, 6, B NZ [ralwiwf@a @

and the bilinear form (-,-) is defined by
| X
(6.0) = 53 | Lolul@)Loful(@)de o)

The LSE is the minimizer of £(c):
= ZEM%, where ¢ = Z;lgn, (6)
k=1

where A, " is the inverse (or pseudo-inverse when the inverse does not exist) of
An.

However, the above least squares regression encounters a big challenge in
obtaining convergent estimators for this ill-posed inverse problem (see Section
2.2). As a nonparametric method, selecting a relatively large hypothesis space
is often necessary to make the model flexible enough. However, the large
hypothesis space leads to a highly ill-conditioned normal matrix. As a result,
the estimator in (6) oscillates violently when the data is imperfect due to either
measurement noise or model error, and the estimator does not converge when
the data mesh refines.

Regularization methods overcome the ill-posedness by adding a penalty
term to the loss functional:

Ex(9) = €(9) + AR(¢), (7)

where R(¢) is a regularization term, and A is a hyper-parameter controlling
the contribution of the regularization term. Various penalty terms have been
proposed, however, none of them take into account of the function space of
identifiability, which is at the foundation of learning (see Section 2.2). Based on
it, we will introduce a data-adaptive RKHS regularization method (in Section
2.3). Thus, it is different from classical regularization using an ad hoc RKHS
[50, 59].
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2.2 Function space of identifiability

The identifiability theory characterizes the function space of learning. There
are two key elements in our identifiability theory: 1) an exploration measure,
which is a probability measure that quantifies the exploration of the kernel’s
variable by the data, and 2) the function space of identifiability, in which the
loss functional has a unique minimizer. They are described as follows.

The exploration measure. As the first key element, we introduce a novel
measure on R, that quantifies the exploration of the independent variable
of the kernel by the data. We assume the radial kernel’s support to be in an
interval [0, Ro]. A given dataset may only explore part of this interval. More
specifically, the discrete data set in (1) explores only the pairwise distances
|z — x| in RY = {rijr = lz; — x| < Ro : ui(z;) —ui(zxy) # 0 for some i, j, k}, the
set of all the pairwise distances |z; — x| with repetition. We define an empirical
measure and its continuous limit

N J

=30 By ) 2 )
xTj—x) V=

i=1 j,k=1 ‘R |

v (dr) Z//%m wl )ddy

for r € [0, Ro], where |R%/| is the cardinality of the set RY, ds(r) is the
Kronecker delta function with value 1 when s = r and with value zero otherwise,
and Z is the normalizing constant. Here the weight function is w;(z,y) =
s () — s (y)|-

The exploration measure plays an important role in the learning of the kernel.
It reflects the strength of exploration to |« — y| by the data |u;(x) —u;(y)| in the
loss function, and it will act as a re-weighting factor through the SIDA-RKHS
regularization to be introduced in Section 2.3. Thus, we will use it to quantify
the accuracy of the kernel’s estimator in L?(px) (or L?(p%;) for discrete data).

Main result: function space of identifiability. We define the function
space of identifiability (FSOI) as the largest linear space in which the loss
functional has a unique minimizer. In other words, the variational inverse
problem of finding a unique minimizer of the loss functional is well-defined
in this space. In the following, we write only the continuous function space
L?(pn), but all the arguments apply to the discrete function space L?(p%) in
an obvious manner (see Remark 2).

Theorem 1 (Function space of identifiability) Consider the problem of learning the
kernel ¢ by minimizing the loss functional € in (3) with {u;, fl}ivzl being continuous
wn a bounded domain Q. Then, the function space of identifiability (FSOI), the largest
subspace of L2(pN) in which € has a unique minimizer, is the eigen-space of nonzero
eigenvalues of L, an integral operator defined by

Lao(r) = /0 " $(5)C(r, 8)p (ds). ()
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Here the integral kernel G comes from data:

G(r,s) = [P (Mpn ()7 G(rs), (10)
where py is the density of py and G is

r,s) = M S U (T T — U\ T ) || U\ T S — U (X i
G(r,s) = 4 ;/ﬂ_l/m_l/[ i@+ 7€) — ua(@)] [+ s) — o)) e,
(1)

for r,s € supp(pn), and G(r,s) = 0 otherwise, where cg = 2x%?/(I'(d/2)) is the
area of unit sphere in R*. Furthermore, the minimizer of £ is

6= Ls ' PoL,
where P is the projection to the FSOI Here (;5{\, € L%(pN) is the Riesz
representation of the bounded linear functional defined by (qﬁ{wzp)Lz(pN)

LN 2Ly (@) fi(x)de, Vi € L2 (py).

When the data is continuous and noiseless, we have (b{\, = LzPtrue, then,
the true kernel, if it is in the FSOL, is the unique minimizer, i.e., it is identifiable
by the loss functional, since ¢ = L'g_lP(b{\, = ¢true- When the data is discrete
or noisy, the unique minimizer is an optimal estimator in the FSOI, and it is
expected to converge to the true kernel when the perturbations to qbf\, vanish,
which happens when the data mesh refines and the noise reduces.

The proof of Theorem 1 is based on the uniqueness of zero of the Fréchet
derivative of the loss functional, which becomes clear from the following lemma.
Their proofs are deferred to Appendix A.

Lemma 2 The Fréchet derivative of the loss functional £ in L2(pN), with Le defined
n (9) and ¢>{V defined in Theorem 1, is VE(¢) = 2(Lzd — d){v)

Remark 1 (Examples of FSOI) Here we show the FSOI in three simple cases with
N =1 (i.e., with a single pair of functions (u1, f1)) and d = 1. In the first two cases
we consider u; = 1 and uj(z) = z, both of which give f; = 0 for any radial kernel
¢, revealing no information about the kernel. In either case, we have G(r,s) = 0,
which follows from (11) (or (B5) in the appendix); hence, the FSOI is a null space,
detecting that the data provide no information about the kernel. In contrast, in the
third case we consider u1(z) = 22, and f(z) will vary with the kernel, hence revealing
information about the kernel; on the other hand, we have G(r,s) = 47"252, leading to
a non-empty FSOI. Thus, these cases highlight the importance and meaning of the
data-dependent FSOI.

System-intrinsic data-adaptive RKHS. Theorem 1 highlights two fun-
damental challenges: the inverse problem is well-defined only in the FSOI, and
it is ill-posed in the FSOI because it involves the inverse of a compact operator
L (as shown in the next lemma). Fortunately, the integral kernel G defines
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a reproducing kernel Hilbert space (RKHS), which provides a regularization
norm to ensure the learning takes place in the FSOI and overcomes the ill-
posedness. This RKHS is system intrinsic as it depends on the structure of
the system of nonlocal operators, and it is data-adaptive, utilizing both the
exploration measure and the data {u;}. Thus, we call it SIDA-RKHS.

Lemma 3 (Characterization of the SIDA-RKHS) Suppose that the data {u;} are
continuous in Q. Then, the following statements hold.
(a) The integral kernel G defined in (10) is positive semi-definite.
(b) The integral operator L : L*(pn) — L*(pn) defined in (9) is compact and
positive semi-definite, and we have, for any ¢,v € L*(py),

(P, 0) = (Lgd, ¥)L2(pn)- (12)

(¢c) The RKHS Hg with G as reproducing kernel satisfies Hg = 551/2(L2(pN)),
and its inner product satisfies (¢, V), = <£§_1/2¢7[’§_1/2w>L2(pN) for
any ¢,¢ € Hg.

(d) The eigenvalues of Lg converges to zero, and its eigen-functions {1y }i. form
a complete orthonormal basis of L*(pn). For any ¢ = >, citbi, we have

(9,0) = ;Akci, 101Z2 (o) = ;ci, 613, = %A?ci, (13)

where the last equation is restricted to ¢ € Hg.

Remark 2 (Discrete data) When the space LQ(pJ‘{,) is a discrete vector space due
to discrete data, we learn the kernel on finitely many points {ry}7_; explored by
the data. In this case, the integral kernel G in (11) becomes a positive semi-definite
matrix in R"*", so is G in (10). Now the operator L is defined by the matrix G
on the weighted vector space R™ and its eigenvalues is the generalized eigenvalue of
(G, Bn) with By, being a basis matrix Bn(i,5) = Y p_q ¢i(T%)0; (1) pr (r1), where
{¢;} are linearly independent basis functions of the hypothesis space H. As a result,
the FSOI is the vector space spanned by the eigenvectors with nonzero eigenvalues.
Furthermore, the norm of the SIDA-RKHS H; in (13) can be computed directly from
the eigen-decomposition. This norm is better suited for regularization even when the
FSOI has the same dimension as L2(p%;) (or dense in it). As data mesh refines, these
vector spaces converge to the corresponding function spaces.

2.3 Algorithm: LSE with SIDA-RKHS regularization

Based on the function space of identifiability, we introduce next a nonpara-
metric learning algorithm with SIDA-RKHS regularization. The algorithm is
nonparametric in the sense that we select the best hypothesis with proper
smoothness and dimension adaptive to data. Such a selection of the hypothesis
space is important in recovering a resolution invariant kernel when there is
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Input: The data {u;, fi}L, = {ul(xj),fl(mj)}f\f]’il to construct the nonlocal
model Ly[u] = f.
Output: Estimator $
1. Estimate the exploration measure p}{, as in (8), and denote R the upper bound
of its support.
2. Get regression data (see Appendix B).
3. Select a class of hypothesis spaces Hn = span{¢y}—; with n in a proper range.
4. For n in the range

4a) Compute (An,bn,Bp) for Hn = span{é,}l_, with B, =
(P> @1 12(pf ) ) 1<k 1<ni

4b) If the basis matrix By, is singular, stop and remove n from the range;

4c) Solve the generalized eigenvalue problem A,V = Bn AV, where A is the
diagonal matrix of eigenvalues and VTBnV =In;

4d) Compute the RKHS-norm matrix By, = (VAV 1) 7L

4e) Use the L-curve method find an optimal estimator (ZAZ‘
5. Select the optimal dimension n* (and degree if using B-spline basis) with the
minimal loss value (along with other cross-validation criteria if available). Return

the estimator ¢ = ZZ; .

Algorithm 1: Nonparametric learning of the nonlocal kernel with SIDA-RKHS
regularization

limited prior knowledge to derive a parametric kernel and requires a robust
regularization method. The algorithm consists of three steps. First, we utilize
the data to estimate the exploration measure and the support of the kernel.
Based on them, we set a class of hypothesis spaces, with their dimensions, i.e.,
the number of basis functions, in a proper range moving from under-fitting
to over-fitting. For each hypothesis space H,, = span{¢y}}_,, we compute the
basis matrix B, = ({¢x, ¢1>L2(p}{]))1§]€’lgn € R™ " Second, we assemble the
regression matrices from data for each of these hypothesis spaces. We approxi-
mate the integrals by Riemann sum or another numerical integrator. Finally,
we identify an estimator with SIDA-RKHS regularization for each of these
hypothesis spaces by the L-curve method [48] and select the hypothesis space
with the best fitting. We summarize the method in Algorithm 1, with its details
provided in Section B.

The core innovations are the exploration measure and the regularization
using the SIDA-RKHS norm. Importantly, they bring little extra computational
cost. The exploration measure is available directly from data. The SIDA-RKHS

norm is computed directly from the triplet (A, by, B;,) using the generalized
eigenvalue problem detailed in the algorithm.

Our SIDA-RKHS regularization uses the RKHS norm R(¢) = ¢ BrihsC,
where By ips is defined in (4d) in Algorithm 1. It differs from the commonly-used
Tikhonov /ridge regularization using either the />-norm that sets R(¢) = Y, c7
or the L?(p%;)-norm that sets R(¢) = ¢' B,,c. We note that the three norms
become the same when B, = I,, and all the eigenvalues of A,, are 1.
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3 Tests on synthetic and real-world data

We test our method on both synthetic and real-world data in 1D examples.
We compare our SIDA-RKHS regularizer on each dataset with two baseline
regularizers using the [? and L?(p¥;) norm (denoted as 12 and L2, respectively).
All three regularizers use the same L-curve method to select the hyper-parameter
A as described in Appendix D.2. Importantly, they all use a projection to the
FSOI (i.e., projecting the normal vector into the FSOI) to avoid an ill-defined
inversion. We do not compare with other penalty norms, such as total variation
or LASSO, because it is difficult to modify them to take into account the FSOI
(and we leave it for future study).

In synthetic data examples, we systematically examine the method with
three representative types of kernels considering both noiseless and noisy data.
Since the ground-truth kernel is known, we study the convergence of estimators
to the true kernel as the data mesh refines. We also apply our method to a
real-world dataset for stress wave propagation in a heterogeneous bar, with the
goal of constructing a homogenized model from microscale data. Since there
is no ground truth, we examine the performance of estimators by studying
their physical stability and capability of reproducing the wave motion on a
cross-validation dataset. All datasets and codes used will be released on GitHub.

Settings for the learning algorithm. In the implementation of Algo-
rithm 1, we use B-spline basis functions consisting of piece-wise polynomials
with degree 2 so that the estimated kernel is twice differentiable (see Section
D.1 for a brief introduction of B-splines). The knots of B-splines are evenly
spaced on interval [0, R], with one additional knot at 0 to make the first basis
nonzero at = 0. We select the dimension with minimal loss from a sequence
of dimensions in the range | AL ] x [0.2,1] as long as the basis matrix B,, is
well-conditioned.

3.1 Examples with synthetic data

Numerical settings. We consider three kernels: a sine kernel, a Gaussian ker-
nel, and a fractional Laplacian kernel (specified below). They represent bounded
smooth single-scale, bounded multiscale and singular multiscale kernels, with
increasing levels of challenges to learn from discrete data due to the numerical
error in the approximation of the integrals. They act on the same set of func-
tions {u;}i=1,2 With uy = sin(z)1j_; r(z) and uz(z) = cos(z)1j_ - (z). In the
ground-truth model, the integral Ly[u;] is computed by the adaptive Gauss-
Kronrod quadrature method, which is much more accurate than the Riemann
sum integrator that we use in the learning stage. To create discrete datasets
with different resolutions, for each Az € 0.0125 x {1,2,4, 8,16}, we take values
{ui, fidy = {ui(zj), fi(zj) : x; € [-40,40],5 = 1,...,J}N,, where z; is a
point on the uniform grid with mesh size Ax.

For each kernel, we consider both noiseless and noisy data with different
noise levels, with a noise-to-signal ratio (nsr) taking values {0,0.5,1,2}. Here
the noise is added as f;(x;) = Lg[u;] + n;; for each 4,7, where {n;;} are
independent and identically distributed A/(0,0?) and the noise-to-signal-ratio
is the ratio between ¢ and the average L? norm of f;.
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The three ground-truth kernels are specified as follows.

e Sine kernel. The sine kernel is ¢y (r) = sin(67)1g,10(). This sine kernel
represents a smooth oscillating kernel in the same class as the data u;. The
estimated support is [0, R] with R = 11.02.

e Gaussian kernel. The Gaussian kernel ¢y, is the Gaussian density centered
at 5 with a standard deviation of 1. This kernel represents a smooth kernel. It
has R = 11.58.

e Fractional Laplacian kernel. It is a truncated version of the fractional
Laplacian kernel that has been widely studied in fractional and nonlocal
diffusions (see, e.g., [2, 4, 6, 9]). We set dprue(r) = car™ 291 g () +
1Od+231[070‘1] (x) with exponent s = 0.5 and d = 1, where ¢q s = 457427 (d/2 +
s)I'(—s). It is almost singular with multiscale values and its values near the
singularity are crucial to the operator. It has R = 6.51.

(a) Sine kernel Gaussian kernel Fractional Laplacian (b) Relative Lz(/),v) error
------ True === 2 L2 === SIDA-RKHS
1 i Kernel 12 L2 | SIDA-

Q RKH
§ Sine 3.33% | 2.75% | 3.36%
3 0
Q
g Gaussian 69.6% |51.7% | 2.21%
4

-1 Fractional Laplacian |24.2% | 18.7% | 17.3%

Fig. 1 (a): Typical estimators from noisy data with noise-to-signal-ratio nsr = 1 and Az =
0.025. (b): the relative L2(p%;) errors of these estimators. Bold numbers highlight the best
method. The SIDA-RKHS regularizer consistently obtains accurate estimators in all three
cases.

Performance of the regularizers. We present the typical estimators and
the convergent rate of the estimator as data mesh refines, i.e., the exponent
a st |0 = drruellL2(p0) = O((Az)®). Figure 1 shows typical estimators for
the three examples from noisy data with a noise-to-signal ratio nsr=1 and
Az = 0.025. The hypothesis space’s dimension is selected by minimal loss value.
All three regularizers can estimate the Sine kernel accurately and the Frac-
tional Laplacian kernel reasonably. The SIDA-RKHS regularizer significantly
outperforms the regularizers with [2 or L?-norm in the example of the Gaussian
kernel.

(a) Convergence rates as mesh refines (b) Error decay as number of data pair increases .
Sine kernel Gaussian kernel Fractional Laplacian Sine kernel Gaussian kernel Fractional Laplacian
~ 50.03; -1 0.
13l T~ 1.3 _--osf, 3 e 10 P S
o 1 So 4___ IPR - w02 "% o, 15PN ,
bS] . Sso_ 08L 0.4 =~ = AN 102 ..., S
T 09f R « 03 R SN 0.1
i 03} - ] S 001 . AT
05 R 0.2 1= N ~e v
0 05 _1 2 0 05_1 2 0 05_1 2 2 4 8 163264 2 4 8 16 32 64 2 4 8 16 32 64
nsr nsr nsr N

""" 12 L2 === SIDA-RKHS
Fig. 2 (a) The means and standard deviations of the convergence rates as mesh refines
in 100 independent simulations. We stress the goal is to seek an accurate estimator with
a consistent rate, and the SIDA-RKHS regularizer obtains consistent rates for noisy data.
‘We also note that the SIDA-RKHS regularizer has deceivingly lower rates for noiseless data.
However, it actually has more accurate estimators (see Figure E1 in appendix). (b) Error
decay as the number of data pairs increases when nsr = 1 and Az = 0.0125. No convergence
rate is expected here since the data are deterministic (see text).
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The SIDA-RKHS regularizer’s superior performance is further validated by
the rates of convergence when Ax decreases, from 100 independent simulations
with noises with nsr € {0,0.5, 1,2}, as shown in Figure 2. It has rates generally
higher than those of the other two regularizers when the data gets more noisy.
Here the rates for the smooth kernels are higher than for the singular kernel,
because the order of numerical error in the Riemann sum integrator is higher
(see [60]).

Increasing the number of data pairs. Since the operator is linear, only
linearly independent data brings new information for learning. Thus we use
data {u;(x)}Y, = {sin(iz), cos(ix)}gvz/f. Figure 2(b) shows that as N increases,
the estimators become more accurate but without a convergence rate. Note
that the data pairs do not provide independent (random) samples of py, which
also varies with data. Thus, our learning problem fundamentally differs from
regression for random samples, and we do not expect a convergence rate N~1/2.
An interesting future direction is to design experiments to collect informative
data to enlarge the FSOI and accelerate the convergence.

In summary, the SIDA-RKHS regularizer consistently obtains accurate
convergent estimators when data mesh refines for either noiseless or noisy data.
On the contrary, the regularizers with /2 norm or L? norm, are not robust to
noise and may fail to converge, due to their negligence of the FSOI.

3.2 Homogenization of wave propagation in
meta-material

(a) Wave propagation in (c) Rquularizer 12 Regularizer L2 Regularizer SIDA-RKHS
a heterogeneous bar 4 <10 200
o
: = 20 [\
i / Py —— 1 ] T 10
ks e 3 o Vr\ A / \
T s, o VA
[ 1 2 0 1 2 0 1 2
[C) o o
i 506 — 0.6 N 0.6 —
Az go4 0.4 \ 0.4
20.2 \ 0.2 \ 0.2
g | l 1 |
. 4 0
(b) D|$P|acemem error on a Angular frequency Angular frequency Angular frequency
cross-validation dataset (e) 100 20
Resolution 12 L2 SIDA-RKHS “a M /VL\/\V&M 10 — A
Coarse (Az = 0.05)[23.5% 28.4% 21.8% 100 o
Fine (Az = 0.025) | INF 23.4% 19.2% 100 100 0 50 100
Wave number Wave number Wave number
——DNS coarse dataset 1 coarse dataset 2 fine dataset

Fig. 3 Real-world application: wave propagation in a heterogeneous bar with the
ordered microstructure of period L = 0.4, and the estimated support of the kernel
has a bound R = 1.65.

We seek a nonlocal homogenized model for the stress wave propagation
in a one-dimensional heterogeneous bar with a periodic microstructure. For
this problem, the goal is to obtain an effective surrogate model from high-
fidelity (HF) datasets generated by solving classical wave equations, acting
at a much larger scale than the size of the microstructure. Differing from
previous examples, this problem has no ground-truth kernel. Therefore, we
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evaluate the estimator by measuring its effectiveness in reproducing HF data
in applications subject to different loading conditions with a much longer time
than the problems used as training data.

For both training and validation purposes, we use the HF dataset generated
by the direct numerical solver (DNS) introduced in [61], which provides exact
solutions of velocities including the appropriate jump conditions for the discon-
tinuities in stress that occur at waves. Although the DNS has high accuracy on
wave velocity, it is unsuitable for long-term prediction because it requires the
modeling of wave propagation through thousands of microstructural interfaces,
making the computational cost prohibitive. To accelerate the computation, we
approximate the HF model by a nonlocal model:

Onu(z,t) — Lylul(z,t) = g(z,t), for (z,t) € Q x [0,T7, (14)

where Ly is a nonlocal operator in the form of (2) with a kernel ¢ being
supported in [0, R].

Experiment settings. We counsider four types of data: three for training
and one for validation of our algorithm. Three types of training datasets are
employed: In Type 1 dataset, the bar is subject to an oscillating source g(z, t);
In Type 2 dataset, a boundary velocity loading d;u(—50,t) = cos(jt) is applied;
In Type 3 dataset, all settings are the same as in Type 2, except that the
cos(jt) type loading is replaced by sin(jt). In all training datasets we consider
a relatively small domain Q = [—50,50] and short time ¢ € [0, 2]. Two spatial
resolutions, Az = 0.05 and Ax = 0.025 are considered, which we denote as the
“coarse” and “fine” datasets, respectively.

With these three types of training datasets, we design three experiment
settings to validate our method:

e Coarse dataset 1: we train the estimator using “coarse” dataset of Types 1
and 2.

e Coarse dataset 2: we train the estimator using “coarse” dataset of Types 1
and 3. By comparing the learnt estimator from this setting with the result from
setting 1, we mean to investigate the sensitivity of the inverse problem with
respect to the choice of datasets.

e Fine dataset: we train the estimator using “fine” dataset of Types 1 and 2. By
comparing the learnt estimator from this setting with the result from setting 1,
we aim to check the convergence of the estimator with increasing data resolution.
Note that the problem might becomes more ill-posed when decreasing Ax.
Therefore, proper regularization is expected to become more important.

Additionally, we create a validation dataset, denoted as Type 4 dataset,
very different from the training dataset. It considers a much longer bar (Q =
[—133.3,133.3]), under a different loading condition from the training dataset,
and with a 50 times longer simulation time (¢ € [0,100]). Therefore, the
cross-validation error checks the generalizability of the estimators.

Results assessment. We present the learnt estimators in Figure 3. Since
there is no ground-truth kernel, we assess the performance of each estimator
based on three criteria. Firstly, we report in Figure 3(b) the prediction L? error
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of displacement on the cross validation dataset at T' = 100. Secondly, we report
in Figure 3(d) the resultant estimators the group velocity curves from our model
and compare them with the curves computed with DNS. These curves directly
depicts how much our surrogate model reproduces the dispersion properties in
the heterogeneous material. At last, the learnt model should provide a physically
stable material model. To check this, we also report the dispersion curve in
3(e). Its positivity indicates that the learnt nonlocal model is physically stable.

Performance of the estimators. Comparing the three estimators in
Figure 3(c), one can see that only the SIDA-RKHS regularizer obtains con-
sistent estimators in all three experiment settings. The oscillatory estimators
of regularizers with {2 or L?-norm verify the ill-posedness, and highlight the
importance of using proper regularizers in nonlocal operator learning methods.
The dispersion curves in Figure 3(e) stress the importance of regularizer from
another aspect of view: our SIDA-RKHS regularizer provides physically stable
material models in all settings, while the regularizers with [? or L?-norm may
result in highly oscillatory and non-physical models.

We further examine the regularized estimator in terms of its capability to
reproduce DNS simulations through the prediction error of u on the cross-
validation dataset. When Ax = 0.025, it takes about 48 hours for the DNS
simulation to generate one sample, while the homogenized nonlocal model only
requires less than 20 minutes. From 3(b), we can see that when Az = 0.05,
all three regularizers are robust and able to reproduce the DNS simulation
with reasonable accuracy (~ 20%). When we increase the data resolution
to Az = 0.025, the estimated nonlocal model from [? regularizer becomes
unstable, which again verifies our analysis: when the data mesh refines, the
kernel learning problem becomes more ill-posed and a good regularizer becomes
a necessity. Meanwhile, both the L? and SIDA-RKHS regularizers lead to a
more accurate estimator, indicating a trend of convergence. On both datasets,
the SIDA-RKHS regularizer obtains the most accurate estimators.

3.3 Limitations and future directions

Non-radial high-dimensional kernels. When the kernel is radial, our algorithm
readily applies to higher dimensions (see Appendix B). However, when the
kernel is non-radial high-dimensional, the regression will face the well-known
curse of dimensionality, but our identifiability theory remains valid. Thus, a
future direction is to utilize kernel-regression or neural networks and further
develop the SIDA-RKHS regularization.

Convergence analysis. We have obtained convergent regularized estimators, but
a convergence analysis is left as future work. The main difficulty to overcome is
the complex combination of three factors: operator spectrum decay, numerical
errors and noise, and regularization.

4 Conclusion
We have characterized the identifiability pitfall in the learning of kernels in

nonlocal operators, and proposed a new regularization method to fix this
issue and achieve estimator convergence. In particular, we have established
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a rigorous identifiability theory for the nonparametric learning of kernels in
nonlocal diffusion operators, specifying the function space of identifiability.
Based on the theory, we introduced a nonparametric regression algorithm
with a data-adaptive RKHS regularization method. Tests on synthetic and
real-world datasets show that our algorithm consistently obtains accurate
and convergent estimators, outperforming common benchmark regularizers.
Our method addresses the critical estimator diverging phenomena observed
in previous nonlocal operator learning methods, and the proposed framework
provides a promising new direction toward overcoming the ill-posedness to
achieve convergence in operator learning.
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Appendix A Proofs

Proof of Lemma 3 Part (a) follows directly from the definition of G. Recall that a
bivariate function G is positive semi-definite iff for any (c1,...,cm) € R™ and any
{ri}j=1 C R%, the sum Y7, Py ckc;jG(rg,rj) > 0 (see e.g. [50, 62, 63]). Then,
noting that from (11) and (10) we have

Z Z Cijé(Tk, T“j)

k=1j=1

1 N m m 4[Ui(l’+'f'kf) — wi(@)][ui(z + rn) — ui(z))
_Ng/n—l/g_l /ZZC’“CJ ; d | dédn

P e P (1) (i)
N
1
N ; /\mzl /\5\:1 /

Thus, G is positive semi-definite. -
For Part (b), the operator Lz is compact because G € L? (pN X pN), which

m 2
S e [wi(z +p7;k(§2k; U@ gl | dedy > 0.
k=1 N

follows from the fact that each u; is bounded (thus, G is also bounded). Also, since
G is positive semi-definite, so is L. The equation (12) follows from (A2).

Part (c) is a standard operator characterization of the RKHS Hg (see e.g., [50]).

For Part (d), the eigenfunctions are orthonormal and the eigenvalues decay to
zero because the operator L is positive semi-definite and compact, as shown in Part
(b). The first equation in (13) follows from (12), and the second equation follows from
the orthogonality of the eigenfunctions. At last, if ¢ € H¢, by the characterization of
Hg’s inner product in Part (c), we have the third equation in (13). O
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Proof of Lemma 2 Recall that with the bilinear form (:,-), defined in (5), we can
rewrite the loss functional as

N
€)= (0:6) = ;3 [ 2olul@i(arie + . (A1)

where CN = N Zk 1 [ |fi(x)|?dz. Then, the derivative VE(¢) follows from (12) and
a rewriting of the bilinear form:

<<¢1,¢2>>=}V§_V; ] [orthtuste +2) — wtanoatubtuste + v - wswlayaz] aa

:Jiré//%(ﬁl)aﬁz(lyl) U[w(ﬂcﬂ) — ui(@)][ui(z +y) fu,-(:v)]dx] dydz

- /Ooo /0°O¢1<r>¢2<s> (r, s)drds = / / 61()62(5)G(r, 5)p (dr)px (ds),
(A2)

with G and G given in (11) and (10), where the last equality is a re-weighting by
PN- g

Proof of Theorem 1 By Lemma 2, the Fréchet derivative of the loss functional is
VE(P) = 2(Lzp — qﬁ{v) Thus, the loss functional has a unique minimizer only in
the function space where VE(#) has a unique zero, that is, the operator L has an
inversion. The largest such a space is the eigenspace expanded by all eigenfunctions
with non-zero eigenvalues of L. Furthermore, projecting qb{v to this sapce, we have

the the minimizer 5 = £§_1P¢{V as given in the theorem. ]

Appendix B Algorithm: nonparametric
regression with SIDA-RKHS
regularization

In this section we provide detailed description of the algorithm proposed in
Section 2.3.

Our algorithm consists of three steps. First, we utilize the data to estimate
the exploration measure and the support of the kernel. Based on them, we set
a class of hypothesis spaces, with their dimensions i.e., the number of basis
functions, in a proper range moving from under-fitting to over-fitting. Second,
we assemble the regression matrices vectors from data for each of the hypothesis
spaces. Finally, we identify the estimators with SIDA-RKHS regularization for
these hypothesis spaces and select the one with the best fitting.

To start, we assume that the discrete data {u;(z;), fi(x;)}Y, comes with
equidistant mesh points {z; = jAm}}-]ZO. For simplicity, we con51der only the
1D case, and the extension to multi-dimensional cases is straightforward. We
note that the current problem setting assumes data on mesh points, thus the
data size increases exponentially as the dimension increases, which is the well-
known curse-of-dimensionality. To overcome this curse-of-dimensionality, one
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can consider other settings with mesh-free representation of data by random
samples and a loss functional based on expectations (see, e.g. [64]), and this is
beyond the scope of the current study.

Step 1: Set a class of hypothesis spaces.

We set a class of data-adaptive hypothesis spaces with their dimensions set to
range from under-fitting to over-fitting. The key is the exploration measure
and the support of the kernel estimated data. The exploration measure p}{[ is
computed from data as in (8), which uses only the information from w;. To
estimate the support of the kernel, we extract the additional information from
{fi} as follows. We set the data-adaptive support of the kernel to be [0, R] with
R defined by

R = L1min{R,, max{|L] — L¥|,|R] — RY[}},}, (B3)

where (LY, RY) and (L{ , le ) are the lower and upper bounds of the supports
supp(u;) and supp(f;) respectively, and R, is the maximum of the support of
p3r- That is, the support of the kernel lies inside the support of the exploration
measure, and it is the maximal interaction range indicated by the difference
between supports of u; and f;, which extracts the additional information in the
data {f;}. Here the multiplicative factor 1.1 is an artificial factor to enlarge the
range, so that the supports of the basis functions will fully cover the explored
region. To avoid unbounded support in the data-based estimation in (B3), in
numerical experiments we set a threshold to be 1078 when estimating supports
of u;, f; and p%. This truncation narrows the interaction range.

The estimated support of the kernel is the region explored by data. Outside
of the region, the data provides little information about the kernel. Thus, we
focus on learning the kernel in this region and set the local basis functions to
be supported in it. Furthermore, we constrain the exploration measure to be
supported in [0, R]. For simplicity of notation, we still denote it by p3, or px.

With the exploration measure and the support of the kernel, we select a
class of basis functions {¢;}7_, and a range of n for the hypothesis space
H,, = span{¢y }7_,. The basis function can be either global basis functions such
as Bernstein polynomials as those used in [10, 41] and trigonometric functions,
or local basis functions such B-spline polynomials (see Appendix D.1 for a brief
introduction). We focus on local basis functions because they are more flexible
to adaptive to local structure of the kernel. To set the range for n, we note
that the mesh points of the kernel’s independent variable explored by data
are {kAz : k=1,...,[ £ |}. Meanwhile, the basis function should be linearly
independent in L?(p%;) so that the basis matrix

By = ({r, 01} 12(ps,) ) 1<k1<n € R™" (B4)

is non-singular. Thus, we set the range of n to be in L%J x [0.2, 1] such that B,
is non-singular while covering a wide range of dimensions. For example, when we
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use piecewise constant basis, we can set n = L%J, and we get B,, = Diag(p%,).
Thus, we estimate the kernel as a vector of its values on the mesh points, with
L?(p%;) being a vector space with a discrete-measure p%;.

Step 2: Assemble regression matrices and vectors.

We assemble the regression matrix A,, and vector by, as defined in (4), for each
hypothesis spaces H,, = span{¢y}}_,. Together with the basis matrix B,, in
(B4), the triplet (A, by, B,) is all we need for regression with SIDA-RKHS
regularization in the next step.

To avoid repeated reading of data, we extract the regression data that can
be used for all hypothesis spaces by utilizing the regression structure, which
requires reading the data only once. Note that to compute A, (k, k') = (¢x, dr')
for any pair of basis functions, with the bilinear form defined in (A2), we only
need G defined in (11). We note that when d = 1, the integral f nl=1 g(n)dn =
g(n) + g(—n), therefore, denoting AU;(z,7) = u;(z + 1) + u;(z — 1) — 2u;(z),
we have

N
Glr,s) = %Z / AU (2, 7)AU; (x, )d (B5)

for r,s € supp(py). Similarly, for a basis function ¢;, to compute b(i)
in (4), which can be re-written as b,(k) = + ZZI\; [ Ly, [w)(z) fi(z)dx =
fOR qﬁk(r)gf\, (r)dr, we only need the function g}i, defined by

f’f’*iN u;(r T — U; \ T (T X
o=y 3 [ [, bt r) - w0

Letr; =lAxforl=1,..., L%J, which are all the mesh points the data explore.
Then, all the regression data we need in the original data (1) are

. R
{G(m,rl/),g]’:,(rl),p}’\,(rl/), with ,I'=1,..., fo } , (B7)

where G, gN and p¥; are defined respectively in (11), (B6) and (8).

With these regression data, the triplet (A,,,b,, B,) can be efficiently evalu-
ated for any basis functions using a numerical integrator to approximate the
corresponding integrals. For example, with Riemann sum approximation, we
compute the normal matrix A,, and vector b,, and the basis matrix B,, as

Ak, B = (r, 1) = > dx(r)di (r) G (ri, mr)) Aa?,

LU

k)~ > on(r)gh (n)Ax, (BS)
l
~ Y br(r)ow (r)pk () Az
l



Nonparametric learning of kernels in nonlocal operators 19

Step 3: Regress with SIDA-RKHS regularization.

Our SIDA-RKHS regularization method uses the norm of the SIDA-RKHS so
as to ensure the learning to take space in the function space of identifiability
as discussed in Section 2.2. That is, our estimator is the minimizer of the
regularized loss in (7) with the regularization norm R(¢) = | ¢[|%;,, defined in
(13).
Computation of the RKHS norm. We can effectively approximate the RKHS
norm [|¢||3;, using the triplet (A, by, By). It proceeds in two steps. First, we
solve the generalized eigenvalue problem A,V = B, VA, where A is a diagonal
matrix of the generalized eigenvalues and the matrix V' has columns being
eigenvectors orthonormal in the sense that VTBHY = I,,. Here these eigenvalues
approximate the eigenvalue of Lz in (9), and v, = Vji¢; approximates the
eigenfunctions of L. Then, we compute the square RKHS norm of ¢ = 3, ¢;¢;
as
613, = ¢ Brgnsc, with Brgps = (VAVT) ™!, (B9)

where the inverse is taken as pseudo-inverse, particularly when A has zero
eigenvalues.

With the RKHS-norm ready, we write the regularized loss for each function
¢ = >, as Ex(¢) = c"(Ay + ABrihs)c — 2¢ by, + ijv. The regularized
estimator is

¢)\ = Zci\gbia Cx = (Zn + )\Brkhs)_lgn- (B]-O)
i=1
We will select the hyper-parameter that balances the loss £ and the regular-
ization term by the widely-used L-curve method [48]. It identifies the optimal
hyper-parameter as the maximizer of the curvature of the curve (see Section
D.2).

Appendix C Nonlocal Operators

In this section we introduce the classical and nonlocal Laplacian (diffusion)
operators relevant to this paper.

Given a scalar function u(z) : 2 — R, the classical Laplacian operator is
defined as Au := V - Vu and boundary value problems on the domain € related
to A are often associated with the Sobolev space H*(£2). On the other hand,
when incorporating long-range interactions into the model such that where
every point x € () is interacting with a finite neighborhood of points, a nonlocal
Laplacian operator is then given by

Lylu)(x) = / o, y)(uly) — u(z))dy, =€,

where ¢(z, y) is a kernel function which should be specified problem by problem,
Q=QUQ; and

Qr = {y € RN\Q such that ¢(x,y) # 0 for some z € Q}



20 Nonparametric learning of kernels in nonlocal operators

is the interaction domain of €2. This work aims to learn the kernel function ¢
from data.

In this paper we further adopt the popular choice that the interacting
neighborhood of each point z € € is a Euclidean ball surrounding =z, i.e.,
B(z,R) := {y € R?: |y — z| < R}. Here R is the interaction radius or horizon.
This fact has implications on the boundary conditions that are prescribed on
a collar of thickness R outside the domain €2, that we have the interaction
domain Q= {y € RN\Q : dist(y, Q) < R}. Without loss of generality, we con-
sider homogeneous Dirichlet conditions in our examples on €2y, i.e. u|q, = 0.
Moreover, we focus on the radial kernel such that ¢(z,y) := ¢(|x — y|), which
is widely employed in nonlocal problems accounting for homogenized proper-
ties (see, e.g., [2]). However, we point out that it is actually straightforward,
with more complicated notations and labor in coding, to extend the current
framework to non-equidistant cases or low-dimensional non-radial cases.

Appendix D B-spline basis functions and the
L-curve method

D.1 B-spline basis functions

B-spline is a class of piecewise polynomials, and is capable of representing the
local information of the target function. Here we review briefly the recurrence
definition and properties of the balanced B-splines, for more details we refer to
the Chapter 2 of [65] and [66].

Given a non-decreasing sequence of real numbers {rg,r1,...,7,,} (called
knots), the B-spline basis functions of degree p, denoted by {N;,}. "7, is
defined recursively as

1, r <r<ri,
Nio(r):{ +1

’ 0, otherwise, (D11)
o r—r; 7"1'+p+1 -Tr
Nip(r) = ————Nip-1(r) + ————Niy1p-1(1).
Titp = Ti Titp+1 — Titl

The B-spline basis has the following properties:

¢ Each function IV; , is a nonnegative local polynomial of degree p, supported
on [ri, Tigp+1l;

® At a knot with multiplicity k, it is p — k times continuously differentiable.
Hence, the smoothness increases with the degree but decreases when the
knot multiplicity increases;

® The basis satisfies partition unity: for each r € [ri,rip1], 325 Njp(r) =

Z;’:ifp val)(r) =1
We set the knots to be a uniform partition of the support of g, [Rymin, Rmaz),

Rmin:T0§T1§”'§7"m:Rmm~
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We set the basis functions of the hypothesis H, whose dimension is n = m — p,
to be

¢i(r) =N, p(r), i=1,....,m—p.
Thus, the basis functions {¢;} are piecewise degree-p polynomials with knots
adaptive to data.

D.2 Hyper-parameter selection by the L-curve method

We select the parameter A by the L-curve method [48, 64]. Let | be a
parametrized curve in R2:

1(A) = (2(\), y(N) = (log(€(d2), 1og(R(92)),

where 5(&) = c] Apen — 2¢] b, + C']Jt], and R(¢) is the regularization term,
for example, ’R((Z;) = H@H%{f = ¢\ Bygnsca. The optimal parameter is the
maximizer of the curvature of [. In practice, we restrict A in the spectral range
[Amin, Amagz) of the operator Lz,

x’y” _ x’y”
A= argmax k(l(A\))= argmax ————"—
Amnin SAS A () Ammin A (2 4y 2)3/2

(D12)
where A\jin and Apq. are computed from the smallest and the largest general-
ized eigenvalues of (Zn, B,,). This optimal parameter Ao balances the loss £ and
the regularization (see [48] for more details). In practice, instead of computing
the second order derivatives, we compute the curvature by the reciprocal of
the radius of the interior circle of three consecutive points'.

Appendix E Additional numerical results for
synthetic data examples

This section provides additional numerical results for the examples with
synthetic data.

Figure E1 shows that the SIDA-RKHS regularizer leads to converging
estimators in all three examples for both noisy and noiseless data, whereas the
1?-norm and the L?-norm regularizers’ estimators have slow convergent rates
or even no convergence when the data is noisy.

We note that the performance of these regularizers depends on the optimal
regularization strength Ao, which is selected by the L-curve method introduced
in Section D.2. In our tests, all regularizers can successfully select the optimal
Ao for most of the time, and the SIDA-RKHS regularizer has the most well-
shaped L-curve, which leads to the most robust regularization (see Figure E2
for typical L-curve plots).

! Are Mjaavatten (2022). Curvature of a 1D curve in a 2D or 3D space (https://www.mathworks.
com/matlabcentral/fileexchange/69452- curvature-of-a- 1d-curve-in-a-2d-or-3d-space), MATLAB
Central File Exchange.


https://www.mathworks.com/matlabcentral/fileexchange/69452-curvature-of-a-1d-curve-in-a-2d-or-3d-space
https://www.mathworks.com/matlabcentral/fileexchange/69452-curvature-of-a-1d-curve-in-a-2d-or-3d-space
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Regularizer 12 izer L2 R izer SIDA-RKHS

Loss value Loss value

Fractional kernel Gaussian kernel — Sine kernel

Loss value

Az =0.0125 x {1, 2, 4, 8, 16}
—E— nsr=0, error —X— nsr=1, error ~—&— nsr=0, loss —X— nsr=1, loss
Fig. E1 Convergence of the estimators as the data mesh-size Az refines, along with the

values of the loss function. The SIDA-RKHS regularizer consistently converges for both
noiseless and noisy data, with better rates (slope) than the other two regularizers for noisy
data. Note that for the fractional kernel, it has a lower rate though being more accurate.

L-curve with norm: 12 Signed curvature L-curve with norm: L2 1 5 Signed curvature L-curve with norm: RKHS 5 Signed curvature
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Fig. E2 Typical L-/\curve plots for the selection of ghe optimal regularization parameter \g
for the Gaussian kernel with Az = 0.05 and nsr = 1. From left to right: the [2, L? and SIDA-
RKHS regularizers. All regularizers successfully select the optimal Ao, and the SIDA-RKHS
regularizer has the most well-shaped L-curve.

Appendix F Detailed Real-world Dataset
Experiment Settings

In this section we provide further experiment details for the real-world dataset
studied in 3.2.

For both training and validation purposes we generate data using high-
fidelity (HF) simulations for the propagation of stress waves within the
microstructure of the heterogeneous, linear elastic bar. In the following, we use @
to denote the HF solution, to distinguish the HF dataset from the homogenized
solution of (14). The HF-model is a classical wave equation: the displacement
a(x,t) satisfies, for (z,t) € Q x [0,7] with Q C R,

Opt(x,t) — Lyrli)(z,t) = g(z,t), (F13)

with a force loading term g(z,t), proper boundary conditions and initial con-
ditions @(x,0) = 0, d:i(x,0) = 0. Considering the heterogeneous bar of two
materials depicted in Figure 3, (F13) describes the stress wave propagating
with speed ¢; = \/E1/p in material 1 and speed ¢2 = \/FE3/p in material 2.
We solve the HF-model (F13) by the direct numerical solver (DNS) introduced
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in [61]. The DNS employs the characteristic line method, which provides exact
solutions of velocities. For each grid point ; €  at time step t" = nAt, where
At is the time step size, with the calculated exact velocity 0(z;,t™) and the
estimated displacement from the last time step @(z;,t" ') we update the HF
displacement by

a(xy, t") = a(x;, t" 1) + Ato(z;, 7).

With the above procedure, we then consider various boundary velocity loading
Ot (z,t), x € 99, and force loading g;(x,t) scenarios, and solve for the
corresponding HF displacement field 4i;(z, ). Resultant data pairs {i;, g;} Y, =
{t;(x,t"), gi(x;,t") 1 j=1,..., J}ZJ\LIT{IA:O are employed as the training and
validation datasets. Discretization parameters for the DNS solver are set to
At = 0.01 and max Az = 0.01.

The homogenization problem is then to learn the kernel of the nonlocal
operator Ly that approximates the operator Ly p from data {u, f} generated
by Lyr[u] = f, where f = 0yt — g. Discretizing the time derivative in (14)
with the central difference scheme, we obtain

1 ~Nn ~Nn SN — n n
g (7 (2) = 20 (2) 4 07 () — gla, 1) 1= [ (2),
where @"(-) := 4(-,t"™) denotes the solution at time t". Given D =
{a?(z), fﬁ(x)}ﬁiifﬁﬁ, our goal is to learn the kernel ¢. The loss functional is
At N T/At
£(0) = o= 3 3 ILgli] ~ il (F14)
k=1 n=1

F.1 Settings on real-world data

In the learning problem, we consider four types of data and use the first three
for training and the last one for validation of our algorithm. For all data we
set L = 0.2, At =0.02, By =1, E; =, p = 1, and the symmetric domain
Q = [-b,b]. The estimated support of the kernel has a bound R = 1.65. Two
spatial resolutions, Az = 0.05 and Az = 0.025 are considered, which we denote
as the “coarse” and “fine” datasets, respectively.

Type 1 Oscillating source (20 samples in total). b = 50, T = 2, g(z,t) =

expf(%)Q exp~ (55’ COSQ(QJ?TTI), where j =1,2,---,20.

Type 2 Plane wave with cos loading (11 samples in total). b = 50, T = 2,
g(z,t) = 0 and 9;u(—50,¢) = cos(jt), where the loading frequency j =
0.35,0.70, - - - , 3.85.

Type 3 Plane wave with sin loading (11 samples in total). b = 50, T = 2,

g(x,t) = 0 and Opu(—50,t) = sin(jt), where the loading frequency j =
0.35,0.70, - - - , 3.85.
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Type 4 Wave packet (8 samples in total). b = 133.3, T = 100, g(z,t) = 0 and
Ou(—b,t) = sin(jit) exp (—(¢/5 — 3)?), for j =1, 2, 3.

Notice that the validation dataset (Type 4 dataset) is under a different loading
condition from the training dataset, and with a much longer simulation time.

Appendix G 2D MD dataset:
On this 2D dataset, the nonlocal model for the the R2-valued field u writes:

Lol = s [ ey =) (v =) (069 +0()) dy

0 [ olly =) O () ) dy = ()
Bs(x)

m(d) ly — x|
(G15)
where scalar nonlocal dilation 6 is
2
0(x) == ——= o(ly —x[)(y —x) - (u(y) — u(x)) dy,

m(@) = [ g PllblaPe

Unknowns include: ¢(|z|), A = Ev/(1 —v?), p = E/(2(1 +v)), here E and v
are Young’s modulus and Poisson ratio, respectively.

To simplify the problem, we can approximate the nonlocal dilatation, 6,
with the local one, i.e., rewrite 6(x) ~ V - u(x). Moreover, since m(d) is a
scalar constant, we can treat (A — u)/m(0) := « and p/m(0) := 8 as trainable
parameters, then the nonlocal model writes:

Lolu](x) :=— /B()O@(IyXI)(YX)(V'U(X)+V'U(y))dy

16 [ polly - =00 =% (4(y) — ux)) dy = £(x).
Bs(x)

ly —x[*
(G17)
Moreover, to further make this problem a linear regression, we might consider
using the Poisson ratio from literature, i.e., v = —0.43 for temperature 0K and
v = —0.42 for temperature 300K, so we have a fixed ratio between o and g as:

a/B=0—w)/n=(r—1)/1-).
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Taking the temperature 0K data for example, we will have o/ = —1.6011.
Denoting ¢ := 8¢, problem (G17) can then be reformulated as:

£3[u)(x) = — 3.2022 /B L Olly =Xy =) (7w + 9 - uly) dy

16 [y _xp =X =X ) () dy = £(x)
Bs(x) ly — x|

_ / Sy — x))g[u] (x, y)dy,
Bs(x)

(G18)

where the R?-valued function g[u](x,y) is defined accordingly.
In computation: we assemble the regression matrix and vector as in Step
2 in Section B. Suppose we have the discrete observations of u, and f, at
uniform grid {z; j}i j=1,.. s with h = a},, ; —a}; = 27, — 27, With the
uniform mesh, we have pairwise distances {h, v/2h, 2h, v/5h,2v/2h,3h,...,} =
{V#? + j2h,0 < i,j < J}. Then, we count the different pairwise distances, and
assemble radial G. When the number of different pairwise distances is large
(e.g., more than 5000, which would lead a large non-sparse matrix), we use a
histogram with a specified number of bins to control the size of G. Denote the
distinct pairwise distances by {r;}£ ;. Then, we proceed as in (B7) and (BS).
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