2023 57th Asilomar Conference on Signals, Systems, and Computers | 979-8-3503-2574-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/IEEECONF59524.2023.10476894

Conic Descent Redux
for Memory-Efficient Optimization

Bingcong Li, and Georgios B. Giannakis

Abstract—Conic programming has well-documented merits in
a gamut of signal processing and machine learning tasks. This
contribution revisits a recently developed first-order conic descent
(CD) solver, and advances it in three aspects: intuition, theory,
and algorithmic implementation. It is found that CD can afford
an intuitive geometric derivation that originates from the dual
problem. This opens the door to novel algorithmic designs,
with a momentum variant of CD, momentum conic descent
(MOCO) exemplified. Diving deeper into the dual behavior CD
and MOCO reveals: i) an analytically justified stopping criterion;
and, ii) the potential to design preconditioners to speed up dual
convergence. Lastly, to scale semidefinite programming (SDP)
especially for low-rank solutions, a memory efficient MOCO
variant is developed and numerically validated.

I. INTRODUCTION

Consider a conic programming setup of the form

min f(x) st.x€eK ()
x€R?
where the differentiable objective function f is convex, and
denotes a convex cone. Conic problems are frequently encoun-
tered in machine learning and signal processing, where cones
can for instance capture non-negative orthant constraints,
second-order cones, positive semidefinite cones, exponential
cones, and copositive cones [1], [3], [7]. The generality of
conic problems fertilizes a number of application domains,
leading to the well-documented success in applications such
as community detection, and multi-task learning [9], [10], [14].
This work considers first order methods for solving (1).
We will focus on Frank Wolfe (FW) variants [8], [12], [17]
since their computationally lightweight subproblems can avoid
projection onto cones. Taking positive semidefinite cones S’}
as an example, projection requires a full SVD with complexity
O(n?®), while a FW subproblem only needs to find out
the eigenvector associated with largest eigenvalue for certain
matrix, reducing the overall complexity to O(n?).
Nonetheless, the noncompact cone constraint prevents ap-
plying FW directly on problem (1). A straightforward ap-
proach is to include a manually designed constraint to shrink
the original constraint set to a compact one K. Consider a
simple example with = {(z,y)lz > 0,y > 0}, one
manner to define K is to turn the non-negative orthant into a
polyhedron by adding another constraint, e.g., x +vy < 1. This
idea is formalized and generalized in [11], yet prior knowledge
is of critical importance to the shrunk constraint K otherwise
it may not contain optimal solutions to (1).

B. Li and G. B. Giannakis are with the Dept. of Electrical and Com-
puter Engineering, University of Minnesota, Minneapolis, MN 55455 USA.
Emails: {lixx5599, georgios } @umn.edu.

979-8-3503-2574-4/23/$31.00 ©2023 IEEE 594

Work [19] considers problem (1) with C having a relatively
simple atomic expression. This additional assumption on XC
wipes out constraints such as doubly nonnegative cones,
which are useful for reformulating combinatorial problems
[5]. Moreover, the convergence rate in [19] depends on the
geometry of the cone, thus can be challenged by some “illy
conditioned” ones.

A recent method [6] develops conic descent (CD) that can
cope with general convex cones regardless of the atomic form
of K. However, many of first order approaches, including
CD, only target at the primal convergence, leaving the dual
properties relatively untouched despite conic duality can be
informative. In this work, a detailed study is carried out to
understand the dual convergence of CD. In particular, we first
provide an explanation to CD that is not only geometrically
intuitive, but also having matching mathematical support in
the dual domain. This explanation brings up opportunities on
algorithmic design, and resulting in a new variant of CD,
momentum conic descent (MOCO). MOCO is equipped with
heavy ball momentum for faster convergence. Then, extensive
theoretical analyses on dual domain bring up deeper insights,
and a practical stopping criterion to estimate suboptimality.

We then focus on an instance of (1), SDP problems [20],
[24] with the goal of improved scalability. The key observation
that motivates the study of memory efficient SDP is that many
SDP instances are raised up from vector problems. We term
such problems as raised-up SDPs. Consider a simple quadratic
problem minycga ||x[|3 as an example. Upon letting X :=
xx |, one can rewrite this problem as minx tr(X) s.t. X € ST
and Rank(X) < 1. Dropping the rank constraint, one ends
up with a SDP problem. While the previous example is too
simple to visualize the benefit of raising up vector problem
to SDPs, often times such a technique is helpful to turn a
nonconvex problem into a convex one; see e.g., [25], [26] for
more benefits in real-world applications. However, the raised-
up SDP is at an obvious cost of increasing storage relative to
its vector form. Our goal is to alleviate such a memory issue
leveraging the observation that the desirable solution is usually
low rank (recall the rank constraint in our toy example). We
propose a memory efficient implementation of MOCO, and
leverage Burer-Monteiro (BM) factorization heuristic [4] to
further enhance its empirical performances.

In succinct form, our contributions are listed as follows.

« It is found that conic descent (CD) admits a geometrical

explanation. Interestingly, the geometry has a rigorous
mathematical foundation in the dual domain of (1).

< A new algorithm is developed based on the geometrical

interpretation. The resultant approach, MOCO, improves

Asilomar 2023

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

the convergence rate of CD, and showcases numerical

merits on tested problems.

« Comprehensive analyses to the dual properties are pro-
vided for MOCO. It is observed that the primal and
dual convergence do not share the same rate, and the
dual behavior can be influenced via preconditioning.
We further modify MOCO for memory efficiency of
large-scale (raised-up) SDPs. BM heuristic is also in-
corporated into modified MOCO to facilitate numerical
performances.

Notational conventions. Bold lowercase (capital) letters
denote column vectors (matrices); || - || stands for a norm of
either a vector or a matrix, whose dual norm is denoted by
|| - [|+; and {-,-) is the inner product. Given a cone K, its
dual cone is written as K*. For a set S, we let dist(x,S)
and dist, (x, S) denote the distance of vector x to set S w.r.t.
[l - ||, and || - ||, respectively. We use S™ for symmetric real
matrices, and S’} to denote the semidefinite positive cone, i.e.,
all symmetric real positive semidefinite matrices of size n x n.

Appendices. Missing proofs can be found in the online
version of this work [16].

K2
»

II. UNDERSTANDING CONIC DESCENT GEOMETRICALLY

This section first describes in detail the class of problems
that we are interested in, and then exemplifies a 2-dimensional
toy problem to unveil the underlying intuition of CD.

A. Basic assumptions

We formally pinpoint problem (1) by mildly confining the
class of objective functions.

Assumption 1 (Lipschitz continuous gradient). The objective
function f : K — R has L-Lipchitz continuous gradients; i.e.,
IVF(x) = Vi)l < Lix-yl,Vx,y € K.

Assumption 2 (Strictly convex loss). The objective function
f + K = R is strictly convex; that is, f(y) — f(x) >
(Vf(x),y —x),Vx,y € X where x #.

Assumption 1 is standard in optimization literatures [6],
[12], [15], [17], [18], [21], [28]. Assumption 2 is slightly
stronger than the commonly adopted one that only requires
convexity. This is because of the need of a regularity condition
on f to ensure the existence of an optimal solution. Although
not stated, other works such as [19] also need this regu-
larity conditions. For example, it is impossible to minimize
f(x,y) = —x + y?, which is not strictly convex, over the
cone K := {(z,y)|z > 0,y > 0}. Nonetheless, Assumption 2
is easily satisfied in practice, since it covers many prevalent
loss functions, for example, squared /5 loss and logistic loss.
Note that Assumption 2 is slightly stringent for SDPs, and
we will relax it for a large class of SDPs later in Section
IV. It is also possible to regulate f with assumptions other
than strictly convex. For example, the work [6] assumes f
to have no nonzero direction of recession in XC. Despite this
assumption is difficult to verify in practice, our results extends
to this setting after justifying the notation accordingly.

For the constraint, we also require the cone to be convex,
implying convexity of (1).

Fig. 1. An example of an ice-cream cone.

Assumption 3 (Convex cone). The constraint set K € R? is
a convex cone; i.e., \iX + Aoy € K for any Ay >0, Ay >0
and x,y € K.

There are several natural approaches to solve (1) under
Assumptions 1 — 3.

Approach 1. Projected gradient descent (GD) is the most
straightforward approach. The issue with GD, however, is that
projection on a cone can be expensive; see the earlier example
of semidefinite positive cone in Section I.

Approach 2. If one has a hint of ||x*||, where x* is an
optimal solution to (1), it is possible to manually impose
compactness by including an additional constraint ||x|| < R
to (1) to clear the obstacles of applying FW. While the
FW subproblem is typically much cheaper than projection, a
proper estimation on ||x*|| is challenging if not impossible. An
overestimated ||x*|| degrades the performance of FW since its
convergence is shaped heavily by the diameter of the constraint
[12]; while an underestimated ||x*|| may exclude the optimal
solution from the feasible domain.

Given the downside of these two approaches, there is a
pressing need of more efficient methods. A recent work [6]
introduces conic descent (CD). However, the lack of intuition
somehow shades the popularity of this approach with great
potential. Next, we unveil CD’s underlying geometry.

B. Geometric interpretation for CD

Our novel interpretation of CD is built on two key observa-
tions. The first one is that a convex cone can be viewed as a set
of rotated rays. We will only consider rays initialed at 0, that
is, {tx|t > 0} for some x # 0. For example, the first orthant in
a 2d-Cartesian plane can be viewed as the area scanned over by
spinning the ray {(z,y)|x > 0,y = 0} counterclockwise by 90
degrees. Another example can be visualized in the ice-cream
cone in Figure 1. The second observation is that minimizing
over a ray is an ld-convex problem and can be solved easily
or even analytically.

Indeed, finding an optimal solution x* to (1) amounts to
seeking for the ray containing it. While it is challenging
to find the desirable ray in just a single step, one may
progressively improve the quality on a ray, which is defined as
the minimum function value of this ray. This intuition prompts
us to decouple (1) into two (series of) subproblems: i) ray
search, where the goal is to guess a ray that may contain
x*; and ii) ray minimization, where this ray is minimized to
obtain its quality. The overall goal is that the quality of a ray
is improved iteratively until the optimal ray is found. It turns
out that CD follows exactly this iterative procedure.

595

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

A polar-coordinate perspective. The previous intuition
can be understood more concretely through a 2-dimensional
example. Consider a simple quadratic objective function

fl@y) = (@ -1 +4°
with the cone constraint being the positive orthant, i.e.,
K= {(z,y)lz >0,y > 0}.

This problem can be transformed into polar coordinate, where
(z,y) are substituted to angular variables (r,6), where r €
[0, +00), and 6 € [0, 5]. Defining ¢ := cos @, we can further

change the variables as * = rt and y = rv1 —t2. The
problem therefore becomes
mitn g(r,t) == (rt — 1)> +r%(1 — %))
T,

s.t.r >0, tel0,1].

From this reformulation (2), it is clear that ray search targets
at the optimal ¢*, and ray minimization is used to obtain 7*
on the previously found ray.

Why not working on polar coordinate. Despite reformu-
lation (2) is geometrically intuitive, challenges remain even for
this toy example. The first difficulty comes from the fact that
problem (2) is not necessarily convex as it is straightforward
to verify that the Hessian of g is negative-definite, i.e.,

2 =2

2.

Vg = [_2 0 } .

Secondly, it is not always easy to reformulate a problem to
its polar form, especially for those high dimensional cases.
Therefore, it is more attractive to work with non-reformulated
form (1), performing ray search in an implicitly manner

through the key message from (2), that is, ray search is
essentially a problem on compact domain (t € [0, 1]).

C. The MOCO algorithm

The conic problem (1) can be solved by alternating between
ray search and ray minimization as explained in previous
subsection. In contrast with CD that adopts vanilla FW for
ray search [6], here we propose to augment ray search with
with momentum FW [17]. The resultant approach, MOCO, is
summarized in Alg. 1. While ray minimizing is straightforward
in line 3, ray search is more involved; see lines 4 — 7. Note
that MOCO boils down to CD in [6] if §;, = 1.

It is known that V f(x;) is not the best coefficient to
use in FW subproblems [17], [18]. This motivates the use
of the heavy ball momentum in MOCO. MOCO subproblem
in line 5 instead relies on g, a weighted average of past
gradients. The average g;, smoothes the possible rapid changes
of gradients in consecutive iterations, leading to a more stable
searching direction. Another benefit of using momentum is
the possibility to continue optimizing even if §; = 0. This
can be helpful for (matrix SDP) problems with structural
solutions, e.g., sparsity or low rankness. The CD iteration
stops if 6, = 0 (since later iterations will not move), and an
optimal solution is thus found. On the other hand, the heavy
ball momentum further adjusts the weight for V f(x;) and

Algorithm 1 Momentum conic descent (MOCO)

1: Initialize: xg, J, = %HVk

2: for k=0,1,..., K do

3: n = argmin, ~q f(7xy,) > Ray minimization
4 gr=(1—0k)gr—1+ 0V Sf(mxx)

5: v = argmin,(gx, V) s.t. [[v]| < 1L,ve Kk

6: O = argmingsq f(mexx + Ovi)

7: Xp41 = Xk + Op v > Ray search

8: end for
9: Return: nxxx

continues optimizing. To see this, note that when 6, = 0, we
have M+1Xk1+1 = NpXg- As aresult, geyo = (1—0k+1)8rr1+
OV f(kt1Xp41) = (1 — k)81 + k1 VI (Xp),
that is, the weight on V f(nrxy) is adaptively increased to
0k (1 — Og+1) + Or+1 if one further unpacks gj41. This gives
a different search direction to continue the search for e.g.,
solutions with lower rank.

Different from standard FW subproblems, which is
arg ming ¢ (g, v), the MOCO subproblem (for ray search)
adds an additional constraint ||v|| <1 to ensure that the sub-
problem is solvable. Concretely, this amounts to our constraint
t € [0,1] in the toy example (2), and the additional constraint
can be taken as the range on the cosine of angular variables.
Adding the additional constraint ||v|| < 1 typically induces
no extra computational burden compared to FW subproblems.
For example in the SDPs considered later, the subproblems
of MOCO and FW have the same complexity. More on ray
search will be discussed in Section III-B, where we will view
ray search from a duality lens.

ITII. PRIMAL-DUAL CONVERGENCE OF MOCO
Having explained the intuition of MOCO, we next focus on
its theoretical properties. It is not difficult to see that MOCO
converges after the first iteration for any initialization xy €
K if x* = 0. We will hence cope with nontrivial problems
assuming x* # 0 in the following subsections.

A. Primal convergence

We first deliver a direct result of ray minimization.

Lemma 1. For every iteration, MOCO ensures that

(Mexk, Vf(nexx)) = 0. (3)

Another preparation for the convergence proof is a series of
helper functions @ 1(x), defined as

Ppy1(x) :=(1 — 0k)Pr(x))
+ 0 [mex) + (V f (nexi,), x)], Yk > 0.

The definition of ®g(x) does not influence ®j41(x) since
0o = 0. Similar to the spirit of [17], the helper functions
can be regarded as lower bounds for f(x), where the detailed
implications can be found later in Lemma 2. However, there
is a key difference that brings up additional challenges to
the analysis of MOCO. Unlike [17], ®p41(x) in (4) may
have a minimum reaching —oco due to the noncompactness of

596

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

K. Consequently, one cannot adopt minyex Pry1(x) directly
as the lower bound for f(x*). The remedy for this issue is
summarized in the next lemma.

Lemma 2. & ;(x) satisfies that: i) vi, minimizes Ppy1(x)
over {x|x € K, ||x|| < 1}; and, ii) there exists py, > 0 such
that f(x*) > @y (||x*|| Vi) + pi holds, where p, = 0 only if
{n:x, = x*}¥_,. The rigorous expression of py, can be found
in Appendix B.

Lemma 2 shows that by concentrating on a region that is the
intersection of K and a norm ball, minimizing ®(x) enables
an underestimate of f(x*).

Theorem 1 (Primal convergence). Suppose that Assumptions
1, 2, and 3 hold. Choosing 6, = 2, MOCO in Alg. 1

k+2
guarantees that
2L||x*||?
_ * < 2=
(M1 Xk41) k1 (X lvi) < k2

where py. is defined in Lemma 2.

The convergence rate of MOCO can be established as a
simple combination of Theorem 1 and Lemma 2.

Corollary 1. Under assumptions and parameter choices in
Theorem 1, Alg. 1 converges with a rate

2Lx|*

kE+2

Comparing the rate of MOCO to its non-momentum coun-
terpart, CD [6], it is observed that momentum tightens the

convergence rate by a small term py. This validates the merits
of applying momentum to ray search.

Jkr1Xp41) — f(X7) <

B. Dual convergence

We then tackle the dual convergence of MOCO to gain a
complete understanding of its behaviors. Note that our analysis
techniques can be directly extended to CD [6].

Definition 1. Let € > 0 be some desirable tolerance. A point

*

x? is said to satisfy KKT condition of (1) e-approximately if

€

xr e (5a)
(Vf(x:),x:)=0 (5b)
dist, (V f(x2),K* 2 <e. (5¢)
[dist. (V f(x7), K*)]

In particular, (5a) denotes primal feasibility of x}, (5b) and
(5¢) characterize complementary slackness and dual feasibil-
ity, respectively. Note that the KKT condition is satisfied if
[dist. (V£ (x),K*)]* = 0 (ie., € = 0). Our gaol here is to
understand that how fast can {n;x;} generated by MOCO
converge to an e-approximate KKT point.

An obvious fact is that MOCO never generates points
outside of K. In other words, (5a) is satisfied automatically.
Equation (5b) is also satisfied by 7,x) as a result of ray
minimization; see Lemma 1. This further explains the role
of ray minimization, that is, it seeks x* by eliminating points
that are not complementarily slack. It turns out that {n.xy}
is not always dual feasible. Hence, the number of iterations

required to ensure dual feasibility characterizes how fast an e-
approximate KKT solution is found. Toward this goal, the key
inequality leveraged is summarized in the following lemma.

Lemma 3. Suppose that Assumptions 1 — 2 hold. We have
that

)= fy) 2(VI(y),x—y)+ %HVJC(Y) - Vi)

Lemma 3 extends [21, Theorem 2.1.5] to non-Euclidean
norms, and it is critical to MOCQ’s dual convergence.

Theorem 2 (Dual convergence). Suppose that Assumptions 1,
2 and 3 hold. With 6y, = 1%2’ MOCO guarantees that
, 12 o AL x|
(dist, (V f (mexi)), K*)]” < il
Theorem 2 asserts that an e-approximate KKT point can
be found by MOCO after at most O(X 1212 jterations. A
critical observation is that the L dependence is different on
primal (Theorem 1) and dual (Theorem 2). This difference
will influence the design of stopping criterion, which will be
discussed in detail in the upcoming subsection.

C. Stopping criterion

While Theorems 1 and 2 characterize the primal and dual
convergence, it is still unclear that when is a good time to stop
MOCO iteration. Simply setting K = O(2) works, but it could
be too pessimistic since the rates are established for worst
cases. In this subsection, we pursue a quantifiable overestimate
of suboptimality that not only converges to 0 as k grows, but
also can be obtained as a byproduct of MOCO subproblem.

Stopping criterions can be designed based on either pri-
mal or dual errors. If working with the primal, f(nrxy) —
@ (||x*||[vk—1) in Theorem 1 can be leveraged as an opti-
mality measure. However, its value is impossible to compute
due to the lack of knowledge about ||x*||. The attempt on
dual domain is to rely on [dist* (Vf(nkxk)JC*)}Q in The-
orem 2. The issue is, however, computationally expensive
and impractical since it requires a projection onto K*. To
overcome these limitations, we find that (g, vi) approximates
[dist, (V f (nkx), IC*)]2 well, and can be used as a tractable
certification for optimality. To see this, we first write out the
dual for MOCO subproblem in line 5,

(©)

This dual problem (6) projects g onto K*, and the optimal
objective value is —dist. (g, *). Comparing with (5¢), it can
be seen that long as dist.(gr, K*) ~ dist.(V f(nexk), £*),
one can use the optimal value of (6) as stopping criterion.
This observation is formalized in the following theorem.

max —||gr — ul|« s.t. ue K.
u

Theorem 3 (Stopping criterion). Suppose that Assumptions
1, 2, and 3 hold. Upon choosing 0 = k%%, the following
inequality holds for MOCO in Alg. 1 for any k > 2
. 2 9.TL2|x*||?
[dlst*(gk,lc)] S %
Theorem 3 shows that dist. (g, K*) converges at the same
rate of dist,(V f(nixx), C*) up to constant factors. It further

@)

597

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

gives a math interpretation for ray search, that is, it projects
gk to K* for (approximated) dual feasibility.

Next we show that dist,(V f(nexy), C*) can be conve-
niently obtained, suiting for the need of the stopping cri-
terion. Strong duality between (6) and line 5 means that
dist.(gr, K*) = —{(gk, V). Therefore, one can simply ap-
proximate dist,(V f(mxxx), K*) via (g, vk), and assert an
e-approximated KKT point is found whenever

(8, Vi) = —O(Ve). (3

It worth pointing out that the criterion (8) is an estimation
on dual feasibility, as oppose to the primal error f(x;) —
f(x*) in standard FW literatures [12], [17]. In other words,
(8) is no longer affine invariant as in standard FW, opening
the possibility for preconditioning.

Preconditioning. With the hope of faster numerical per-
formance, preconditioning applies a linear transformation to
x and solves the transformed problem. It is observed that
preconditioning has different impacts on primal and dual of
MOCO. In particular, precondition does not reduce L|x*|?
in primal error (cf. Theorem 1), but it can shrink L||x*|| in
dual error (cf. Theorems 2 and 3). Consider the following
simple example with f(x) = (z — 2)2, whose preconditioned
version is given by g(z) = f(2z) = (2z — 2)%. We will
use subscript f and g to denote constants and variables
related to f(z) and g(x), respectively. In this case, one can
verify that Ly|}]3 = Ly|l2lI3. but Lyllejlls # Lolle: o,
demonstrating that the dual error can be scaled down with-
out affecting primal error via proper precondition schemes.
Henceforth, an optimal preconditioner can reduce the value of
stopping criterion, leading to faster termination of the iterative
procedure. This gives new questions on how to find the best
preconditioner, which we leave for future work.

IV. MEMORY EFFICIENT MOCO FOR SDPs

Next, We develop a specific implementation for MOCO to
reduce the memory consumption of large-scale semidefinite
programing problems (SDP). By leveraging the problem struc-
ture, it is possible not only to store vectors in lieu of full matrix
variables, but also to relax the regularity condition, i.e., strict
convexity, in Assumption 2. We also augment this memory
efficient MOCO with a greedy step based on a Burer-Monteiro
(BM) factorization heuristic. When injecting a greedy step, it
usually improves MOCO convergence.

A. Problem statement

Consider SDPs of the following form
m)én f(G(X)—z) st XeSt)

where z € R? is a given vector. The linear operator G
maps X € S7 to R and it is defined as G(X) :=
[tr(G1X),...,tr(G4X)]T, where G; € S",i = 1,...,d.
Problem (9) appears frequently in machine learning and statis-
tics, where {G;} are often structural, e.g., low rank, sparse, or
discrete Fourier transformation matrices. Given G, its adjoint
on a vector a € RY is

G'(a)=a1G1+ ...+ aqGy. (10)

In the sequel, we assume that n? > d, and efficient methods
exist for computing matrix-vector product G;v, Vi. The latter
can be easily satisfied relying on the inherit structure of G;.

For notational convenience, we will write f o G(X) :=
f(G(X)—1z), where f :dom f € R’ — R, and foG:S? —
R. The matrix norm || - || in this section refers to Schatten
1-norm (also known as nuclear or trace norm), and its dual
norm, || - ||eo, is therefore the Schatten-inf norm (or operator
norm). The inner product of matrices is standard trace inner
product. We do not strict the form for vector norm.

B. Memory efficient implementation of MOCO

Applying MOCO for solving (9) requires the storage of n x
n matrices X and gj. Note that here g is a matrix, and we
keep the same notation as Alg. 1 for consistence. This memory
consumption is a significant barrier for scaling problems up.
Moreover, it is extremely not economical for raised-up SDPs
as discussed in Section I. To facilitate memory efficiency in
MOCO, the changes are represented below.

Vectorized representation of X;. Let y, = G(Xj) — z.
The vector yy, is helpful for memory saving of MOCO iterates.
In particular, 73 can be obtained using only vectors y and z

ne = argmin f o G(nX},) = arg min f(G(nXy) — z)
n>0 n>0

= arg minf(ng(Xk) — z) = argmin f(nyx + nz — z).
n>0 n>0

Similarly, y avoids explicit use of X when solving for 6
in line 6 in Alg. 2. Another merit of y lies in the fact that
VfoG(Xy) = G*(Vf(yr)). Owing to the linearity of G*,
ie., G*(a+b) =G*(a) + G*(b), it is possible to leverage a
vector g5, € R? to retrieve the full gradient g, as G*(gy); see
line 4 of Alg. 2.

MOCO subproblem. The MOCO subproblem in line 5
under Schatten 1-norm is equivalent to find the minimum
eigenvalue and its normalized eigenvector of G*(gy.). This can
be carried out efficiently through shifted power method or the
Lanczos method [22].

Sketched representation of X;. Although y; removes the
explicit need of Xy, it does not support to reconstruct Xg.
Random sketches Sj are adopted to address this problem in
memory efficient form following [27]. In particular, a random
Gaussian matrix © € R™ % is fixed for some predefined
parameter R < n. The sketch is then defined as S = X (2.
The linearity of sketch also permits a simple update for Sy, in
line 8 of Alg. 2. For the ease of understanding and analyses,
the update of Xy, is written in line 9, however, this line should
be omitted when coding. The overall memory consumption for
Alg. 2 is O(d + nR), which can be much less than O(n?) in
the naive implementation of MOCO.

Recover X, from Sj. One can find a rank 7 approximation
Xk to the real variable X, using a stable implementation [27,
Algorithm 5.1]. The reconstruction error is bounded as the
following if r < R — 1

n

> oilXa).

i=r+1

- r
E[[Xa — Xal|] < (1 + er)

598

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Memory efficient MOCO for (9)

I Initialize: yo = —2, 6 = 2,k So = 0 € R"*"

2: for k=0,1,..., K do

3: nk = argmin, > f(Nyr + 1z — 2)

4: gr=(1—0k)8k—1 + s VInyr + 1z —2)

5 find Ay = Amin(G*[€k]) and associated normalized

eigenvector qy

6 O = argmings f(mkyr + mez — z + 0G(qarqy)
7 Ykt = mkYk + Mz — 2 + 0:G(qraqy,)
8
9

Option I: S;1 = 7xSk + Orax(q, 2)
Option II: X1 = 7x Xy + Orqra)
0: (optional) greedy step in Alg. 3
11: end for
12: Return: 1Sk (to recover X)

Algorithm 3 Greedy step at iteration &
1: find (¢, Uyg) by solving (11)
2 yit1 < ti(yes1 +2) + G(ULUL) —z
3: Sk+1 — tz(SkH + Z) + Uk(U;—Q) —Z

The reconstruction error is sufficient small when the true X
is low rank. This means that the memory efficiency is almost
obtained for free for problems such as raised-up SDPs.

C. Convergence

This subsection strengthens Theorems 1 — 3 by relaxing
Assumption 2. Due to space limitation, please find the details
in Section IV. C of the online version [16].

D. Practical heuristic 1: Greedy step

This heuristic aims to handle raised-up SDPs through Burer-
Monteiro (BM) factorization [2], [4]. The idea is to greadily
move X1 to a point on another ray to reduce the objective
value. This can be done by solving the following unconstrained
problem through any descent method [23]

(tr, Up) = argmin f(G(t*Xy41 +UUT) —2)

teR,UCRn X"
= argmin f (t*(ys41 +2) + G(UU") — z).

t,U

an

Note that ¢, X + U;CU;r is a positive semidefinite matrix.
Then, the feasible point t5 Xy +UkU,;',— is used as the starting
point of next iteration of Alg. 2. Accordingly, the way to
update y; and Sy based on (11) is given in Alg. 3. The greedy
step is optional and can be helpful to run every a few (e.g.,
100) iterations to speedup convergence.

Another manner to understand the greedy step is by viewing
MOCO as a theoretical justified wrapper for the BM approach,
where the convergence of latter is difficult to establish. Be-
cause problem (11) is solved through a descent approach, the
greedy step aided MOCO converges naturally. Note that when
choosing a proper solver for (11), the memory consumption
of the greedy step aided MOCO is still O(d +nR). Although
the greedy step also applies to CD [6], we find that it is more
suitable for MOCO because of the improved performance as
shown later in our numerical tests.

E. Practical heuristic 2: magical 0y,

Next, we introduce another practical variant when || X*|| can
be estimated. This variant can be useful for raised-up SDPs
especially when X* = x*(x*)T for some vector x*. In this
case, it can be possible to use the relation || X*|| = ||x*|2 to
estimate || X*||. An example will be provided in Section V-B
together with numerical tests.

This heuristic is motivated by the empirical wisdom that
line search can be conservative for numerical performances
of heavy ball momentum for FW [17]. Let M > 0 be an
estimate of ||X*||, then our heuristic step size is 0 = %”2
This step size comes from the detailed derivation of Theorem
1; see the first line of Appendix C. For problems where M
is difficult to estimate, it is also possible we can run MOCO
for a few iterations, then use | Xy|| as an estimate of || X*||.
The heuristic 8}, eliminates the need for line search, therefore
saving runtime.

V. NUMERICAL TESTS

Experiments are conducted to visualize the performance of
the proposed MOCO and its practical heuristics.

A. Matrix completion

MOCO is first tested on matrix completion problems using
synthetic data. Suppose the ground truth matrix A € S} to be
recovered is low rank and positive semidefinite. We are given
noisy entries of A sampled randomly, that we denote as b;; =
A;j + ¢;; for some index (7,7) € Z, where ¢;; are zero mean
i.i.d. Gaussian random variables. Let A = VV T for some
V € R"*3 denote the low-rank ground truth. The estimated
matrix can be found by solving the following problem

o1 2
min - 5 > (Xi;—byy)

(i,5)€T

st. XeS;!. (12)

To understand how MOCO scales, we consider (12) with
number of data n € {100, 200, 400, 800, 1600}. Following [6],
we sample every entry in the upper left 10 x 10 block and
other entries with probability 0.1. The Gaussian noise ¢;; is
randomly generated so that the SNR is 20dB.

The benchmark algorithms are chosen as CD and CD with
a greedy heuristic (CDg) [6]. Our numerical tests rely on
memory efficient implementation of MOCO. MOCO with
the greedy heuristic (MOCOg) is also considered to improve
numerical performance. Each tested algorithm is run for 300
iterations. The primal error versus runtime is plotted in Figure
2. For the matrix completion problem, MOCO exhibits slightly
worse performance compared to CD. On the other hand, the
greedy step appears to be more suitable for MOCO since it
clearly boosts the performance of MOCO but not CD with the
only exception on the test case with smallest scale n = 100.
In addition, given the same amount of time, MOCOQOg achieves
the lowest primal error compared with other tested algorithms,
thus confirming its scalability and efficiency. The greedy step
does not make enough progress for CD, but it significantly
helps MOCO. This empirically suggests that the merits of the
greedy step are amplified by the momentum in MOCO.

599

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

¢ 1 2 3 4 s ¢ 2 4 & & W 1 W 0 10 N

— b — CDg

— MOCO

0 0 0 % s 75 100 125 150 175 0 100 200 300 400 500 €00 700

—— MOCOg

Fig. 2. Performances (runtime vs primal error) of different algorithms for the matrix completion problem (12). From left to right, the sizes of problems are

n = 100, 200, 400, 800, 1600.

Ay
gy
"l
T

L :

o
IR

=
e
ks
™l
-

[I I)

]

I

]

I I IEE]

MOCOg MOCOh

Fig. 3. Performances of various algorithms for the phase retrieval problem. Each column contains the result using a specific image. The first row plots raw
images, and other rows (from 2nd to 7th) contain images recovered using FW, CD, MOCO, CDg, MOCOg, MOCOh, respectively. And the last row lists the

optimality error vs iteration of compared approaches.

B. Phase retrieval

Suppose that x € R™ is a signal to be retrieved from
measurements b; = (a/ x)? + ¢;, where a; € R" are rows
of matrix A = [DSy,...,DS,,]" with D being the discrete
cosine transform and Sy,...,S,, being diagonal matrices of
independent random signs. One means to recover the original
signal is to solve the following problem

mn

1
min — % " [[b; — (a] %)° |13 +7]x]3.

x€R™ mn 4
=1

The unsatisfactory of this formulation resides in the fact that
the objective function is a polynomial of forth order. This
challenges optimization since it is non-smooth. Raised-up SDP
is the remedy. Noticing that (a/ x)? = a/ xx"a; := a Xa,
where X := xx ', we can reformulate the problem as

—

min (13)

1
min —[|AX) ~ b|* + 7 tx(X)
+

where A = [tr(aja] X),...,tr(amnma,,,,X)]. Since X =
xx ', it is natural to assume that there exists a rank-1 optimal

600

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

solution X* = x*(x*)T. The rank-1 assumption also enables
an estimate of || X*|| for the heuristic 6y,

X7 =tr(X) =[x [3 = — 3@ x-S b (14)
=1 i=1

For the experiment setup, 10 images from CIFAR10 dataset
are randomly chosen as the raw signal x*. The Gaussian noise
€; is generated with 20dB SNR. Other parameters are set
to m = 10 and v = 5 x 107°. The benchmark algorithms
are chosen as FW, CD, and CD with greedy heuristic (CDg).
When working with FW, we add another constraint tr(X) <
% Z:’Z{ b; to ensure the compactness of the constraint set,
where the right hand side of this inequality is roughly 2||X*||.
Three MOCO variants are tested: MOCO in Alg. 2, MOCO
with greedy heuristic (MOCOg), and MOCO with heuristic 6y,
(MOCOh). All algorithms are run for 300 iterations. We use
R = 3 for the sketches.

The original and recovered figures are shown in Fig. 3,
where the first row lists raw images, and other rows are
recovered images via FW, CD, MOCO, CDg, MOCOg, and
MOCON, respectively. Among all implemented approaches,
the recovered images using FW have the worst quality. CD
and MOCO have almost the same recovery quality, and CDg,
MOCOg and MOCOh share the best figure quality. This
demonstrates that MOCO and CD not only improve numerical
performances over FW, but remove the need for the compact
domain requirement.

To further showcase the merits of MOCO over CD, we
also plot f o G(X) — f o G(X*) versus runtime. The loss
curve for FW is omitted here because it works on a different
problem from (13) due to the added constraint. Despite the
runtime of MOCO is longer than CD because of updating gy,
the runtime of MOCOg is less than that of CDg. Hence, the
greedy heuristic is better use with MOCO than CD. Although
we do not have an exact explanation, our guess is that the loss
curvature of the greedy subproblem could be ill-conditioned in
CD. In addition, although relying on a heuristic 6, MOCOh
often converges faster than MOCO, and even matches to
the performance of MOCOg sometimes. As the heuristic 6
eliminates the need for line search, the runtime of MOCOh is
shorter than MOCO.

VI. CONCLUSION

This paper revisits conic descent (CD) for conic pro-
gramming problems. CD is refined through a geometrical
interpretation that has matching mathematical foundation in
the dual domain. Then a new approach, momentum conic
descent (MOCO), is proposed to improve CD empirically and
theoretically. Lastly, the dual behavior of MOCO (as well as
CD) is comprehensively examined, where it is discusses about
stopping criterion and opportunities to accelerate convergence
via preconditioning. A memory efficient implementation of
MOCO for SDPs is then developed based. Memory efficiency
is achieved almost for free given the low rankness of the
solution. Numerical results further validate the efficiency of
proposed MOCO and its practical variants.

(1]
[2]

(3]
[4]

(3]

[6]

(71
(8]
[91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]
[22]
(23]
[24]

[25]

[26]

[27]

(28]

601

REFERENCES

“MOSEK modeling cookbook
modeling-cookbook/powo.html.

S. Bhojanapalli, A. Kyrillidis, and S. Sanghavi, “Dropping convexity for
faster semi-definite optimization,” in Conference on Learning Theory.
PMLR, 2016, pp. 530-582.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

S. Burer and R. D. Monteiro, “A nonlinear programming algorithm for
solving semidefinite programs via low-rank factorization,” Mathematical
Programming, vol. 95, no. 2, pp. 329-357, 2003.

Y. Cui, L. Liang, D. Sun, and K.-C. Toh, “Projecting onto the degenerate
doubly nonnegative cone,” arXiv preprint arXiv:2009.11272, 2020.

J. C. Duchi, O. Hinder, A. Naber, and Y. Ye, “Conic descent and its
application to memory-efficient optimization over positive semidefinite
matrices,” Advances in Neural Information Processing Systems, vol. 33,
pp. 8308-8317, 2020.

M. Diir, “Copositive programming — a survey,” in Recent advances in
optimization and its applications in engineering. ~Springer, 2010.

M. Frank and P. Wolfe, “An algorithm for quadratic programming,”
Naval Research Logistics Quarterly, vol. 3, no. 1-2, pp. 95-110, 1956.
B. Hajek, Y. Wu, and J. Xu, “Achieving exact cluster recovery thresh-
old via semidefinite programming,” IEEE Transactions on Information
Theory, vol. 62, no. 5, pp. 2788-2797, 2016.

G. A. Hanasusanto and D. Kuhn, “Conic programming reformulations of
two-stage distributionally robust linear programs over wasserstein balls,”
Operations Research, vol. 66, no. 3, pp. 849-869, 2018.

Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient
algorithms for norm-regularized smooth convex optimization,” Mathe-
matical Programming, vol. 152, no. 1, pp. 75-112, 2015.

M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization.” in Proc. Intl. Conf. on Machine Learning, 2013, pp. 427-435.
S. Kakade, S. Shalev-Shwartz, A. Tewari et al., “On the duality of strong
convexity and strong smoothness: Learning applications and matrix
regularization.”

T. Kato, H. Kashima, M. Sugiyama, and K. Asai, “Multi-task learning
via conic programming,” Advances in Neural Information Processing
Systems, vol. 20, 2007.

B. Li, M. Coutino, G. B. Giannakis, and G. Leus, “A momentum-guided
Frank-Wolfe algorithm,” IEEE Trans. on Signal Processing, vol. 69, pp.
3597-3611, 2021.

B. Li and G. B. Giannakis, “Conic descent redux for memory-efficient
optimization,” arXiv preprint arXiv:2308.07343, 2023.

B. Li, A. Sadeghi, and G. Giannakis, “Heavy ball momentum for
conditional gradient,” Proc. Advances in Neural Info. Process. Syst.,
vol. 34, 2021.

B. Li, L. Wang, G. B. Giannakis, and Z. Zhao, “Enhancing Frank
Wolfe with an extra subproblem,” in Proc. of AAAI Conf. on Artificial
Intelligence, 2021.

F. Locatello, M. Tschannen, G. Ritsch, and M. Jaggi, “Greedy algo-
rithms for cone constrained optimization with convergence guarantees,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

Y. Nesterov, H. Wolkowicz, and Y. Ye, “Semidefinite programming
relaxations of nonconvex quadratic optimization,” in Handbook of
semidefinite programming. Springer, 2000, pp. 361-419.

Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Springer Science & Business Media, 2004, vol. 87.

Y. Saad, Numerical methods for large eigenvalue problems: revised
edition. SIAM, 2011.

J. R. Shewchuk et al., “An introduction to the conjugate gradient method
without the agonizing pain,” 1994.

L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
review, vol. 38, no. 1, pp. 49-95, 1996.

X. Wang, Y. Zhang, G. B. Giannakis, and S. Hu, “Robust smart-
grid-powered cooperative multipoint systems,” IEEE Transactions on
Wireless Communications, vol. 14, no. 11, pp. 6188-6199, 2015.

W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling
for gaussian vector multiple-access channels,” IEEE Transactions on
Information Theory, vol. 50, no. 1, pp. 145-152, 2004.

A. Yurtsever, J. A. Tropp, O. Fercoq, M. Udell, and V. Cevher, “Scalable
semidefinite programming,” SIAM Journal on Mathematics of Data
Science, vol. 3, no. 1, pp. 171-200, 2021.

Y. Zhang, B. Li, and G. B. Giannakis, “Accelerating frank-wolfe with
weighted average gradients,” 2021, pp. 5529-5533.

3.3.0,” https://docs.mosek.com/

Authorized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 08:40:27 UTC from IEEE Xplore. Restrictions apply.

