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Abstract—This letter studies how a stochastic gradient
algorithm (SG) can be controlled to hide the estimate of
the local stationary point from an eavesdropper. Such prob-
lems are of significant interest in distributed optimization
settings like federated learning and inventory management.
A learner queries a stochastic oracle and incentivizes the
oracle to obtain noisy gradient measurements and per-
form SG. The oracle probabilistically returns either a noisy
gradient of the function or a non-informative measure-
ment, depending on the oracle state and incentive. The
learner’s query and incentive are visible to an eavesdropper
who wishes to estimate the stationary point. This letter
formulates the problem of the learner performing covert
optimization by dynamically incentivizing the stochastic
oracle and obfuscating the eavesdropper as a finite-horizon
Markov decision process (MDP). Using conditions for
interval-dominance on the cost and transition probability
structure, we show that the optimal policy for the MDP has
a monotone threshold structure. We propose searching for
the optimal stationary policy with the threshold structure
using a stochastic approximation algorithm and a multi-
armed bandit approach. The effectiveness of our methods
is numerically demonstrated on a covert federated learning
hate-speech classification task.

Index Terms—Stochastic optimal control, machine learn-
ing, optimization, stochastic systems.

[. INTRODUCTION

HE LEARNER aims to obtain an estimate x for a point

x* € argmin,pa f (x)! by querying a stochastic oracle.
At each time k = 1,2, ..., the learner sends query g; € R4
and incentive i; to a stochastic oracle in state o;. The oracle
returns a noisy gradient, r; evaluated at g as follows:

I Vf(qr) + nk with prob. I (ox, i)
k=11 0 (non-informative) with prob. 1 — T (o, ix).
Here () are independent, zero-mean finite-variance random
variables, and I" denotes the probability that the learner gets
a noisy informative response from the oracle.
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1By arg min or minimizer we mean a local stationary point of f € c2.

An eavesdropper observes query g; and incentive i but
not response r. The eavesdropper aims to estimate X, as an
approximation to the minimizer of the function the eaves-
dropper is interested in optimizing. This letter addresses the
question: Suppose the learner uses a stochastic gradient (SG)
algorithm to obtain an estimate x. How can the learner control
the SG to hide X from an eavesdropper?

Our proposed approach is to dynamically switch between
two SGs. Let ar € {0 = Obfuscate SG,1 = Learn SG}
denote the chosen SG at time k. The first SG minimizes
function f and updates the learner estimate x;. The second
SG is for obfuscating the eavesdropper with estimates Zz. The
update of both SGs is given by the equation,

Xig1 Xk T(ax=1) 0 Tk
N =[] = S, @
[zm} [ZJ “k[ 0 lw=0]x] @
where py is the step size, 7y is a synthetic gradient response

discussed later and a; controls the SG to update.
The query g by the learner to the oracle is given by,

qr = X 1(ap = 1) + Zx 1 (ar = 0). 3)

and u; = (ag, iy) is the control learner variable (action). The
learner needs M informative updates of (2) to achieve the
learning objective in N queries. We formulate an MDP whose
policy m controls the switching of SGs and incentivization
by the learner, to minimize the expected cost balancing
obfuscation and learning. The optimal policy 7* solving the
MDP is shown to have a threshold structure (Theorem 2) of
the form,

a =0 (obfuscate), b < l__)(o, n)
a=1 (learn), b > b(o,n),

a*(b,o0,n) = {

where b is the number of informative learning steps left, n
is the number of queries left and b is the threshold function
dependent on the oracle state o and n. Note that the exact
dependence on the incentive is discussed later. We propose
a stochastic approximation algorithm to estimate the optimal
stationary policy with a threshold structure. We propose a
multi-armed bandits based approach with finite-time regret
bounds in Theorem 3. The optimal stationary policy with a
threshold structure is benchmarked in a numerical study for
covert federated hate-speech classification.

Motivation: The main application of covert (or
learner-private) optimization is in centralized distributed
optimization [9], [10], [12]. One motivating example is in
pricing optimization and inventory management, the learner
(e.g., e-retailer) queries the distributed oracle (e.g., customers)
pricing and product preferences to estimate the optimal
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price and quantity of a product to optimize the profit func-
tion [1], [10]. A competitor could spoof as a customer and use
the optimal price and quantity for their competitive advantage.
Our numerical experiment illustrates another application in
federated learning, a form of distributed machine learning.
The current literature on covert optimization has been
focused on deriving upper and lower bounds on the query
complexity for a given obfuscation level [12]. Query complex-
ity for binary and convex covert optimization with a Bayesian
eavesdropper has been studied in [10], [12]. These bounds
assume a static oracle and a random querying policy can be
used to randomly obfuscate and learn. In contrast, the authors
have looked at dynamic covert optimization where stochastic
control is used to query a stochastic oracle optimally [4].
This is starkly different than the current literature since
a stochastic oracle models situations where the quality of
gradient responses may vary (e.g., due to Markovian client
participation). The success of a response can be determined
by the learner (e.g., based on gradient quality [4]) or by the
oracle (e.g., based on computational resources availability).
Differences from previous work [4]: To prove that the
optimal policy has a monotone threshold structure, [4] requires
supermodularity conditions. This letter proves results under
more relaxed conditions using interval dominance [8] in
Theorem 2, which can incorporate convex cost functions and
more general transition probabilities [5]. The action space in
this letter includes an incentive the learner provides to the
oracle. An incentive that the learner pays is motivated by the
learner’s cost for obtaining a gradient evaluation of desired
quality, it could be a monetary compensation the learner
pays or non-monetary, e.g., controlling latency of services to
participating clients [11]. We had a generic cost function in [4],
but the costs considered in this letter are exact regarding the
learner’s approximation of the eavesdropper’s estimate of x.

I[I. COVERT OPTIMIZATION FOR FIRST-ORDER
STOCHASTIC GRADIENT DESCENT

This section describes the two stochastic gradient algo-
rithms, between which the learner dynamically switches to
either learn or obfuscate using the MDP formulation of the
next section. This section states the assumptions about the
oracle, the learner, the eavesdropper, and the obfuscation strat-
egy. We state the result on the number of successful gradient
steps the learner needs to achieve the learning objective. The
problem formulation for covert optimization is illustrated in
Fig. 1.

A. Oracle

The oracle evaluates the gradient of the function f. The
following is assumed about the oracle and the function f,
O1: Function f : R — R is continuously differentiable
and is lower bounded by f*. Function f is y-Lipschitz
continuous, ||Vf(x) — VFf(@)|l < yllx — z|| Vx,z € R
At time k, the oracle is in state o € {1, ..., R}, where
R are the number of oracle states and for the incentive
iy € {i], ..., 1"}, replies with probability I (o, ix). sg ~
Bernoulli(T" (o, ix)) denotes success of the reply.

For a reply with success s; to the query gx € R, the
oracle returns a noisy gradient response ry according
to (1). The noise terms n; are independent,2 have

02:

03:

2A slightly weaker assumption based on conditional independence was
considered in our paper [4]. We consider independence here for brevity.

Visible to Eavesdropper

~
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Fig. 1. Dynamic Covert Optimization: Learner sends query g, and
incentive Jx to oracle in state ox. The oracle evaluates noisy gradient of
f at q, rx according to (1). An eavesdropper observes g, and i, and
aims to approximate the learner’s estimate. The learner needs to control
the incentive iy and type of SG (ax) to query using (3) to achieve the
learning objective of (4) and obfuscate the eavesdropper with belief (5).

zero-mean and finite-variance, E[r;] =
Elllm?] < 0.
Ol and O3 are standard assumptions for analyzing oracle-
based gradient descent [3]. O2 is motivated by an oracle with
a stochastic state (e.g., client participation), and the success is
determined by the oracle or by the learner.

Vf(gr) and

B. Learner

Similar to oracle-based first-order gradient descent [3], the
learner aims to estimate ¥ € R? which is a e-close critical
point of the function f,

E[[v/)|*] <« @)

Since f is non-convex and not known in closed-form to the
learner, in general, the gradient at z; is non-informative about
the gradient at z, far from z;. Hence, at time k, the learner can
either send a learning or an obfuscating query. We propose
controlling the gradient descent of the learner by the query
action a; € {0 = obfuscating,l = learning}. While
learning, the learner updates its estimate, Xz by performing the
controlled stochastic gradient step of (2). Here, uy is the step
size chosen to be constant in this letter. In the next section,
we will formally state the action space composed of the type
of query ay and the incentive i;. In order to estimate the
number of queries to the oracle that the learner has to spend
on learning queries, we first define the successful gradient
step. We then state the result on the order of the number of
successful gradient steps required for achieving the objective.
Definition 1 (Successful Gradient Step): A gradient step
of (2) is successful when the learner queries the oracle with a
learning query (ax = 1) and gets a successful reply (s = 1).
Theorem 1: For an oracle with assumptions (O1-O3), to
obtain an estimate X which achieves the objective (4), the
learner needs to perform M successful gradient steps (Def. 1)
with a step size (u = min(%, 2o€2y )) where M is of the order,
4Fy 8Fyo?
e €2 )

0(:—22 + %). The exact expression is M = max(
where F = (Ef(xg) — ™).

Proof for a general setting can be found in [4] and in [3]:
Theorem 1 characterizes the number of successful gradient
steps, M that the learner needs to perform to achieve the
learning objective of (4). Theorem 1 guarantees the existence
of a finite queue state space in the next section, which models
the number of successful gradient steps left to be taken. M
in the MDP formulation of the next section can be chosen
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heuristically or be computed exactly if the parameters of
the function are known. It also shows that M is inversely
dependent on € and incorporates the descent dynamics in the
structure of the optimal policy.

C. Obfuscation Strategy

Based on the chosen SG ai, the learner poses queries
using (3) and provides incentives to the oracle. To obfuscate
the eavesdropper, the learner runs a parallel stochastic gradient
with synthetic responses, rx. The synthetic responses can be
generated by suitably simulating an oracle, for, e.g., the learner
can train a neural network separately with an unbalanced
subset of as was done in [4]. If the learner is sure that the
eavesdropper has no public dataset to validate, the learner can
simply take mirrored gradients with (1). When obfuscating, the
learner poses queries from the estimates of the second SG, Z.
The parallel stochastic gradient ensures that the eavesdropper
cannot infer the true learning trajectory from the shape of the
trajectory. In summary, the learner obfuscates and learns by
dynamically chooses the query g, as the current estimate xj
from the controlled stochastic gradient step or as the estimate
Zx of parallel SG. We assume that the learner queries such
that the two trajectories are sufficiently separated, and the
eavesdropper can cluster the queries and distinguish them
uniquely into two trajectories as described next.

D. Eavesdropper

At time k, the eavesdropper observes query ¢ and the
incentive iy by the learner. We use the following assumptions
to approximate the posterior belief of the eavesdropper,

E1: The eavesdropper is passive, does not affect the oracle,
and can not observe the oracle’s responses, 7.

E2: For k > 0, the eavesdropper can classify each query
of the observed query sequence (qi,...,qr) into two
unique trajectory sequences, j]k and jzk which can be
separated by a hyperplane in R?.

E3: The eavesdropper knows that either of j]k and (72]‘ is
a learning trajectory. Given the information till time
k, the eavesdropper computes a posterior belief, §; for
trajectory Jlk being the learning trajectory as,

& =P(k e Tf@u it a0 o)

Assumption El holds if the eavesdropper is considered an
insignificant part of the oracle and can not observe the aggre-
gated response. Assumptions E2 and E3 ensure the dynamic
obfuscation is for a worst-case eavesdropper.’ We consider
the eavesdropper using an incentive-weighed proportional
sampling estimator for the posterior & [4], [12],

_ Zlflfk it]l(qf € jlt)
Zlgtsk it .

The learner has access to the queries and the incentives
and uses (5) as an approximation for the eavesdropper’s
arg min estimate to compute the cost incurred when learning.
The following section formulates an MDP to perform covert
optimization using stochastic control. M from Theorem 1 and
oracle state are used to model the state space, while the

Sk (&)

3 As mentioned above, it is assumed that the queries are posed such that
the two trajectories are sufficiently separated (by a metric known to the
eavesdropper). One of the trajectories can be empty for the initial queries.

Algorithm 1 Stochastic Control for Covert Optimization

Input: Policy &, Queries N, Successful Gradient Steps M
Initialize learner queue state by = M
for kinl,...,N do
Obtain type of SG and incentive, (ag, ix) = (o, bx)
Incur cost c((ag, iy), (ok, br)) from (7)
Query oracle using query gx (3) and incentive i
Receive response r¢ and success of reply sk
Update estimates of the two SGs using (2).
if sy=1 then by = by — si
Oracle state evolves, og4+1 ~ A(-|og)
end for
Incur terminal cost d(bg)

incentives i and the type of SG a; in (2) model the action
space.

Ill. MDP FOR ACHIEVING COVERT OPTIMIZATION

We formulate a finite-horizon MDP to solve the learner’s
decision problem. The learner chooses an incentive, and
dynamically either minimizes the function using the estimate
Xx or obfuscates the eavesdropper using Zx. The learner wants
to perform M successful gradient steps in N total queries.
Using interval dominance, we show that the optimal policy
of the finite-horizon MDP has a threshold structure. The
stochastic control approach for the same is described in
Algorithm 1.

A. MDP Formulation for Optimally Switching Between
Stochastic Gradient Algorithms

The dynamic programming index, n = N, ..., 0 denotes the
number of queries left and decreases with time k.

State Space: The state space is denoted by )V = V8 x Y©
where Y& = {0, 1,..., M} is the learner queue state space
and 2 = {0, 1, ..., R} is the oracle state space. The learner
queue state b, € V8 denotes the number of successful gradient
steps (Def. 1) remaining to achieve (4). The oracle state space
V9 discretizes the stochastic state of the oracle into R levels
(e.g., percentages of client participation in FL). y, denotes the
state with n queries remaining.

Action Space: The action space is U = {0 =
obfuscate,1 = learn} x {il, ..., 1"}. The action when
n queries are remaining is given by, u, = (ay,i,) where
a, € {0 = obfuscate,1 = learn} is the type
of the query and i, e {i',...,"} is the incentive. To
derive structural results on the optimal policy, we consider
the following transformation of the action space, U =
{(0,iY), ..., (0,"), (1,i",..., (1, )}. A deterministic pol-
icy for the finite-horizon MDP is denoted by 7, a sequence of
functions # = (4, : n=0,...,N). Here, u,, : Y — U maps
the state space to the action space. IT denotes the space of all
policies.

Transition Probabilities: We assume that the evolution
of the oracle state and the learner queue state is Markovian.
The oracle state evolves independently of the queue state
evolution. In case of a successful gradient step (Def. 1), the
queue decreases by one, and the oracle state evolves/ to a
state o’ € V© with probability A(o’|o)> 0. Let PZ{” u =
P((0'.)l0.b.)/A(o'l0) denote the transition probability vector of
the buffer state with future oracle state o’ given (o, b, u). The
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transition probability from the state y = (0,b) € ) to state
y = (0, b") € Y with action u = (a, i) can be written as,

Py = (o', b= 1)y, u) = A(0'[0) (0, )1(a) Yo',
P(y = (0, b)ly. u) = (1 =T(0, i) L(a) + (1 — L(a)), (6)

and is O otherwise. The first equation corresponds to a suc-
cessful gradient step, and the second to an unsuccessful one.
We assume that I"(o, i) (from O2) is increasing in incentive i.
Learning and Queueing Cost: The learning cost ¢, : V) x
U — R, is the cost (with n queries remaining) incurred
after every action due to learning at the expense of reduced
obfuscation. We consider the following learning cost which
is proportional to the logarithm of the improvement in the
eavesdropper’s estimate (o log(%/s,,,)) and is given by,

_ I/fl (bﬂ) In + i"/(sn
cn(Yn, Un) = V2 (0n) 10g< I, +i, )]l(an)
Y2 (op) I, _
+1/f1(bn) IOg(ln—i—in)(l 1(an)), (D)

where ¥ : Y8 — Rt and ¢ : Y° — R* are positive,
convex and increasing cost functions, [, = 22111\771 iy is the
sum of the previous incentives and &, is the eavesdropper’s
estimate of the trajectory 7 being the true trajectory computed
using (5). Y1 and v are used to incorporate the cost with
respect to the oracle and queue state, e.g., the functions 1,
and y are considered quadratic in the respective states in the
experiments. The form of the fractions ensures the structure as
discussed next. The first term in (7) denotes the cost incurred
in a learning query and is non-negative (0 < & < 1). The
second term corresponds to an obfuscating query and is non-
positive. The cost increases with the queue state and decreases
with the oracle state. This incentivizes the learner to drive the
system to a smaller queue and learn when the oracle is in a
good state. After N queries, the learner pays a terminal queue
cost computed using the function d : V — R. The queue
cost accounts for learning loss in terms of terminal successful
gradient steps left, by.

Remark: The incentive improves the response probability
I', but also allows for improved obfuscation than a non-
incentivized setup (a high incentive can be used to misdirect
the eavesdropper’s belief in (5)).

B. Optimization Problem

The expected total cost for the finite-horizon MDP with the
initial state yy € ) and policy 7 is given by,

n=1

T 1 Y
VION) =B = D cnm ) +d0o, uo) |yn, 7 | (8)

The optimization problem is to find the optimal policy 7*,
V() = inf VI() Yy e . ©)
mell

To define the optimal policy using a recursive equation, we
first define the value function, V,, with n queries remaining,

V() = min [ ea(v, ) + Y P/ [y) V1Y)
ueld vey

(10)

Let the optimal policy be 7* = (uj‘l),ll:N, where u*(+) is the
optimal action with n remaining queries and is the solution of
the following stochastic recursion (Bellman’s equation),

U, (y) = argmin Qy(u, y), (11)
ueld
where the Q-function Q,, is defined as,
On(u,y) = cal,y) + Y Py, u)Vor (), (12)

yey

with n = 0,...,N and Vy(y) = d(y). If the transition
probabilities are unknown, then Q-learning can be used to
estimate the optimal policy of (11). However, the following
subsection shows that the optimal policy has a threshold
structure, which motivates efficient policy search algorithms.

C. Structural Results

The following is assumed to derive the structural results,
R1: The learning cost, ¢, is 1 (increasing) and convex in the
buffer state, d,, for each action u,, € U.

Transition probability matrix IP(b'|b, o, u) is TP3* with
Yy U'P@'|b,0,u) 1 b and convex in b.
The terminal cost, d is 1 and convex in the queue
state, b.
For ap py > 0 and 1 u, c(b',0,u+1) —c(b,0,u) <
ap pulch,o,u+1) —c(b,o,u), b’ > b.
For By b, > 0 and 1 u,
Py Dy Py @) P w0y Py e
4By pu ¢ By bu ’
b > b, Vo', 0 e Y?; <. denotes convex dominance.
R6: There exist ap py = By p.u S-t. (R4) and (RS) hold.
Assumptions (R1) and (R3) are true by the construction of
cost in (7) and the terminal cost. (R2) is a standard assumption
on bi-diagonal stochastic matrices made when analyzing struc-
tural results [5]. (R4), (RS) and (R6) are the generalization
of the supermodularity conditions made previously in [4] and
are sufficient for interval dominance [5]. Assumption (R4) can
be verified for cost of (7) using algebraic manipulation with
ap pu < 1, and (RS) can be shown with By, , < 1 for the
bi-diagonal matrix of (6) with I'(o, i) 1 i. Therefore (R6) can
be satisfied for some yp py = @ by = Bir.pu < 1. We now
state the main structural result,

Theorem 2: Under assumptions (R1-6), the optimal action
u'(y) (given by (11)) for the finite-horizon MDP of (9) is
increasing in the queue state b.

Proof: Step 1: Conditions of Interval Dominance:

The following condition with yp p, > 0,

On(b',u+1) — 0n(b, u)
= Vb’,b,u[Qn(ba u—+ 1) - Qn(b: I/l)], b/ > b»

R2:

R3:

R4:

RS:

5

(13)
is sufficient for arg min Q, to be increasing in b [5], [8],
u5(b) = arg min O (b. u) 1 b.
We omit the oracle state o from the above expression.

4Totally positive of order 3 (TP3) for a matrix P(a) requires that each of
3rd order minor of P(a) is non-negative.

SProbability vector p is convex dominated by probability vector g iff f'p >
f'q for increasing and convex vector f.
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By plugging (12) in (13) we need to show the following,
Cn(bly u—+ 1) - Cn(b/’ u) = Yo.pulCn(b, u + 1) — cu(b, u))

£ SIR((O (0. ).+ 1)

O’Eyo b’
—P((o',0")1(0, V'), u) — vor u(P((0'. &) (0. b), u + 1)
—P((0",1")I(0, b), u))]V(0', ") <0,b" > b.

By (R4) part (a) of the above inequality is satisfied with
constant oy, 7, < 1. The rest of the inequality can be shown
using (R5) with a constant 8, ;7 , < 1 if we assume the value
function is increasing and convex (see n.5 and [5]). Finally we
apply (R6), with ap y y = Bp.y.u = Vb.p'.u to show that (13)
holds and the optimal action is 1 in learner state b. All that
remains to be shown is that the value function is increasing and
convex, which we now show using (R1, R2, R3) and induction,

Step 2: Value Function is Increasing in »: By (R3),
Vo(y) = d(b) is increasing in b. Let V,(y) 1 b. TP3 (R2)
implies TP2 and hence preserves monotone functions [5].
Therefore by applying preservation of TP2 and linear combi-
nation, Y cyo A(0'10) 3 yeys P('|b, 0, u)V, 1 b. By (R1)
and (12), Qp+1 1 b. And therefore by (10), V,+1(y) 1 b.

Step 3: Value Function is Convex in b: By (R3)
Vo(y) = d(b) is convex in b. Let V, be convex in
b. Then by (R2) and applying [5, Lemma 1] along
with preservation of convexity under positive weighted
sum, Zo,eyo A(0'|o) Zh/eyg P@'|b,0,u)V, is convex in
b. Applying (R1) and (12), Q,41 is convex in b. Since
minimization preserves convexity, V,4+1 = min 0,41 is convex
in b. |

Theorem 2 implies that the policy is threshold in the learner
queue state; hence, the learner learns more aggressively when
the number of successful gradient steps (Def. 1) left is more.
This intuitively makes sense from an obfuscation perspective
since the learner should ideally spend more time obfuscating
when it is closer to the minimizer (the queue state is small).

Using Theorem 2, we can parameterize the optimal policy
by the thresholds on the queue state. Although we can
construct stochastic approximation for estimating the non-
stationary policy, which has a threshold structure and performs
computationally better than Q-learning, this approach still
requires the number of parameters to be linear in time horizon
N. Given this insight, we restrict the search space to stationary
policies with a monotone threshold structure, this restriction
is common in literature [4], [7].

Let the threshold on queue state for oracle state o and
action u be parameterized by b : Y° x U/ — YB. The optimal
stationary policy with a threshold structure can be written as,

() = Zu]l(é*(o, u) <b < b*o,u+1)),
ueld

(14)

where b* is the optimal threshold function.

IV. ESTIMATING THE OPTIMAL STATIONARY PoOLICY
WITH A THRESHOLD STRUCTURE

In this section, we propose two methods to approximate
the optimal stationary policy.® for the finite-horizon MDP

OIn this section, the optimal stationary policy is referred to as optimal
policy.

of (9) which has the monotone threshold structure of (14).
The first method uses a stochastic approximation to update
the parameters over the learning episodes iteratively. The
second method uses a multi-armed bandit formulation to
perform discrete optimization over the space of thresholds. The
proposed methods can be extended to a non-stationary policy
space with an increased time and memory complexity.

A. Simultaneous Perturbation Stochastic Approximation

Taking the thresholds of the stationary policy of (14) as the
parameters, a simultaneous perturbation stochastic approxima-
tion (SPSA) based algorithm can be used to find the parameters
for the optimal policy. We update the policy parameters using
approximate gradients of the costs computed using perturbed
parameters. We use the following sigmoidal approximation for
the threshold policy of (14),

o 1
A(v.b) =" 1 + exp(~(b-bo)/z)’

ueld

15)

where T is an approximation parameter. The parameters are
the F = |U||Vo| threshold values and are represented by ©.
For the optimal parameters, the approximate policy converges
to the optimal policy as T — 0 [7]. For the learning episode i
and current parameter set ®;, the actions are computed using
the current approximate policy (15). The policy parameters
are perturbed independently with probability 12 by +§. Two
learning episodes are performed with each set of perturbed
policy parameters (@f, ©;"). The costs from the two episodes
are used to obtain the approximate gradient \e by the method
of finite differences. The policy parameters are updated using
a stepsize ¢;,

Oir1 = 0; — ¢V Ci.

Under regularity conditions on the noise in the approximate
gradients, the approximate policy parameters asymptotically
converge in distribution to the set of parameters of the optimal
stationary policies with a threshold structure [6]. The SPSA
algorithm can also be used with a constant step size to track
changes in the system [4], [6]. The computational complexity
for each learning episode is O(F + N).

B. Multi-Armed Bandit Approach

The problem of searching the thresholds for (14) is solved
by considering the values each threshold can take and then
taking the product space of the thresholds as bandit arms. Each
threshold can take values over learner state space )p, which
is of the cardinality M 4 1. Consider each permutation of the
F = |U]|Vo| thresholds as an arm, making the total number of
arms (M +1)F. The selection of an arm gives a corresponding
stationary policy of the form (11), and a reward (negative of
the cumulative cost of the episode) is obtained by interacting
with oracle for time horizon N. The noisy reward is sampled
from a distribution centered at the expected value (8). (B1) The
reward is assumed to be sampled independently for a given
policy, and the noise is assumed to be sub-Gaussian [2]. For
brevity, we omit the definition of regret and the exact upper
bound, both of which can be found in [2, Ch. 2]. We now
state the result on the regret for searching the thresholds.

Theorem 3: Consider the finite-horizon MDP of (9) for
covert optimization with an oracle (O1-O3) to achieve (4).
The optimal stationary policy with a threshold structure (14)
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TABLE |
THE OPTIMAL STATIONARY PoLICY WITH A THRESHOLD STRUCTURE
OUTPERFORMS GREEDY POLICY BY 35% ON EAVESDROPPER
ACCURACY AND RANDOM PoOLICY BY 38% ON LEARNER ACCURACY

Type of Policy Learner Acc.  Eaves. Acc.  Incentive
Optimal Policy 90% 54% 254
Optimal Policy from [4] 89% 53% 290
Greedy Policy 91% 89% 300
Random Policy 52% 53% 190

can be searched using the upper confidence bound algorithm
under (B1) with an expected regret after 7 episodes bounded
by O(MF log T), where, M is of the order O(1/e + 0%/e2) and
F = |YollU] is the number of thresholds.

The proof follows from Theorem 1 and plugging the number
of arms in the standard regret bound for UCB [2]. Although the
regret for this approach is bounded, the significant limitations
are that the bound is exponential in the state and action space
and, compared to SPSA, it cannot track changes in the system.

V. EXAMPLE: COVERT FEDERATED LEARNING FOR
HATE-SPEECH CLASSIFICATION

We demonstrate the proposed covert optimization frame-
work on a numerical experiment for hate-speech classification
using federated learning in the presence of an eavesdropper.
An eavesdropper spoofs as a client and misuses the optimal
weights to generate hate speech, which goes undetected by
the classifier. The detailed motivation and experimental setup
can be found in [4]. A balanced subset of the civil comments
toxicity dataset by Jigsaw Al is used, which has comments
along with annotations for whether the comment is toxic or
not The federated learning setup consists of N. = 35 clients,
each having N; = 689 data points. A fully connected neural
network attached to a pre-trained transformer is trained with
a cross-entropy loss to classify the comments as toxic or not.
The accuracy is reported on a balanced validation dataset.’

We consider M = 45 successful gradient steps and N =
100 queries, and the oracle levels are based on client partic-
ipation. Each client participates in a Markovian fashion with
a probability of staying connected or not connected as 0.8.
R = 3 oracle states correspond to the minimum number of
participating clients VO =11 = 1,2 = 12,3 = 24]. We
consider n; = 3 incentive levels as {1, 2,3}. The number
of samples each client contributes in each round depends on
the incentive, as [10%, 40%, 80%] of N, for the respective
incentives. We consider a round successful if the number of
samples exceeds 4000. The empirical success probabilities
are I'(o,7) =[[0, 0.1, 0.2], [0.1, 0.2, 0.6], [0.3, 0.6, 0.9]]. The
functions ¥; and v, in (7) are quadratic in b and o, respec-
tively. This satisfies assumptions R1, R2, R3. The empirical
success probabilities along with the resulting cost function
of (7) ensure that R4, R5, R6 are satisfied for oy, =
Boy.u < 1. The queue cost is d(b) b*. The optimal
stationary policy with the threshold structure is obtained using
SPSA with ¢ = 0.01, § = 0.1, and H = 3000 episodes.

The results are averaged for N, = 100 runs and reported
in Table 1. The greedy policy learns first with a maximum

TThe results are reproducible and can be found on the Github repository:
github.com/aditj/CovertOptimization. The repository also contains links to the
dataset, the complete set of experimental parameters, and a supplementary
document with additional benchmarks and illustrations.

incentive, and random policy uniformly samples from the
action space. The optimal policy is better than the greedy
policy in terms of the eavesdropper accuracy corresponding
to the maximum a posteriori trajectory of (5). The optimal
policy outperforms the random policy on learner accuracy.
The learner saves 14% incentive spent compared to the
greedy policy. We also benchmark against the optimal policy
from [4] with constant incentivization (i = 3) and similar
to the greedy policy, the accuracies are comparable, but the
optimal policy of this letter improves incentive expenditure
by 12%.

VI. CONCLUSION

The proposed MDP framework solves the learner’s problem
of dynamically optimizing a function by querying and incen-
tivizing a stochastic oracle and obfuscating an eavesdropper
by switching between two stochastic gradients. Using interval
dominance, we prove structural results on the monotone
threshold nature of the optimal policy. In our numerical
experiments, the optimal stationary policy with the threshold
structure outperformed the greedy policy on the eavesdropper
accuracy and the incentive spent. In future work, the problem
of obfuscating sequential eavesdroppers can be formulated
as a Bayesian social learning problem, where initially the
eavesdropper is obfuscated maximally to make it stop par-
ticipating and its departure provides an indication to the
subsequent eavesdroppers that the learner is obfuscating.
Hence, the eavesdroppers can eventually be made to herd,
forming an information cascade so that they don’t eaves-
drop anymore, regardless of whether the learner is learning
or not.
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