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A metacognitive radar switches between two modes of cognition—

one mode to achieve a high-quality estimate of targets, and the other

mode to hide its utility function (plan). To achieve high-quality es-

timates of targets, a cognitive radar performs a constrained utility

maximization to adapt its sensing mode in response to a changing

target environment. If an adversary can estimate the utility function

of a cognitive radar, it can determine the radar’s sensing strategy

and mitigate the radar performance via electronic countermeasures

(ECM). This article discusses a metacognitive radar that switches

between two modes of cognition: achieving satisfactory estimates of

a target while hiding its strategy from an adversary that detects

cognition. The radar does so by transmitting purposefully designed

suboptimal responses to spoof the adversary’s Neyman–Pearson de-

tector. We provide theoretical guarantees by ensuring that the Type-I

error probability of the adversary’s detector exceeds a predefined

level for a specified tolerance on the radar’s performance loss. We
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illustrate our cognition-masking scheme via numerical examples in-

volving waveform adaptation and beam allocation. We show that small

purposeful deviations from the optimal emission confuse the adversary

by significant amounts, thereby masking the radar’s cognition. Our

approach uses ideas from revealed preference in microeconomics and

adversarial inverse reinforcement learning. Our proposed algorithms

provide a principled approach for system-level electronic counter-

countermeasures to hide the radar’s strategy from an adversary. We

also provide performance bounds for our cognition-masking scheme

when the adversary has misspecified measurements of the radar’s

response.

GLOSSARY OF SYMBOLS

Abbreviations

IRL Inverse reinforcement learning.

I-IRL Inverse–inverse reinforcement learning.

IRL for Identifying Radar Cognition (see Section II)

k = 1, 2, . . . , K Time index.

αk ∈ R
d
+ Target probe.

βk ∈ R
d
+ Radar action.

xk Target state.

yk ∼ pβk
(y|xk ) Radar observation.

πk = T (πk−1, yk ) Radar tracker.

β̂k = βk + ωk Observed radar action.

ωk ∼ fω Measurement noise.

R Radar tracker obs. noise covariance.

Q Radar tracker state noise covariance.

C Radar sensor gain.

� Radar tracker covariance.

u Radar utility function.

g(·) ≤ 0 Radar resource constraint.

D Adversary’s IRL dataset.

D ≡ Dg (a) When constraint is known.

D ≡ Du (b) When utility is known.

A(·,Du/g) ≤ 0 Adversary’s IRL feasibility test.

θ Variable for IRL feasibility test.

uIRL Reconstructed utility function.

gIRL − γ ≤ 0 Reconstructed resource constraint.

Masking Radar Cognition (see Section III)

Margin of IRL feasibility test.

Mu(Dg) (a) When constraint is known.

Mg(Du) (b) When utility is known.

η Extent of cognition masking.

{β∗
k }K

k=1 Radar’s naive utility-masking response.

{β̃∗
k }K

k=1 Radar’s cognition-masking response.

Masking Radar Cognition in Noise (see Section IV)

IRL detector for noisy radar responses.

φ∗(D̂) Statistical test ≶H0

H1
h(γ ).

D̂ Adversary’s noisy IRL dataset.

φ∗(D̂) Test statistic.

γ Significance level.

λ Extent of IRL detector mitigation.
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I. INTRODUCTION

In abstract terms, a cognitive radar is a constrained

utility maximizer with multiple sets of utility functions

and constraints that allow the radar to deploy different

strategies depending on changing environments. Cognitive

radars adapt their waveform scheduling and beam allocation

by optimizing their utility functions in different situations.

If a smart adversary can estimate the utility function or

constraints of the cognitive radar, then it can exploit this in-

formation to mitigate the radar’s performance (e.g., jam the

radar with purposefully designed interference). A natural

question is: How can a cognitive radar hide its cognition

from an adversary? Put simply, how can a smart sensor

hide its strategy by acting dumb? We term this cognition-

masking functionality as metacognition.1 A metacognitive

radar [1] switches between two modes of cognition; one

mode to achieve a high-quality estimate of a target, and the

other mode to hide its utility function (plan).

A metacognitive radar pays a penalty for stealth—it

deliberately transmits suboptimal responses to keep its

strategy hidden from the adversary resulting in perfor-

mance degradation. This article investigates how a cognitive

radar hides its strategy when the adversary observes the

radar’s responses. Our metacognition results are inspired

by privacy-preserving mechanisms in differential privacy

and adversarial obfuscation in deep learning with related

works discussed in the following text. Although this article

is radar-centric, we emphasize that the problem formulation

and algorithms also apply to adversarial inverse reinforce-

ment learning (IRL) in general machine learning appli-

cations, namely, how to purposefully choose suboptimal

actions to hide a strategy.

Related Works

Cognitive radars are widely studied in the literature [2],

[3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],

[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],

[26], [27], [28], [29], [30], [31], [32], [33], [34];2 see [2],

[3], [4], and [22] for comprehensive discussions on the

cognitive radar literature. More recently, our articles [35]

and [36] deal with IRL algorithms for cognitive radars,

namely, how can an adversary estimate the utility function of

a cognitive radar by observing its decisions. Reconstructing

a decision maker’s utility function by observing its actions

is the main focus of IRL [37], [38], [39] in machine learning

and revealed preference [40], [41] in the microeconomics

literature. In the radar literature, such IRL-based adversarial

actions to mitigate the radar’s operations are called elec-

tronic countermeasures (ECM) [35], [42], [43]. This article

builds on [35], [36], [44] and develops electronic counter-

countermeasures (ECCM) [45], [46], [47] to mitigate ECM.

1“Metacognition” [1] is used to describe a sensing platform that switches

between multiple objectives (constrained utility functions).
2We discuss cognitive radars in more detail in Section II-B and contextual-

ize the conventional models of radar cognition to the abstract constrained

utility maximization framework assumed throughout this article.

This article assumes that the adversary’s ECM is unaware

if the radar has ECCM capability, which is consistent

with state-of-the-art ECCM literature. The central theme

of this article is to apply results from revealed preference

in microeconomics theory [40], [48]. To the best of our

knowledge, this approach for ECCM to hide cognition is

not explored in the literature.

Several works in the literature [49], [50], [51] highlight

how an adversary benefits from learning the radar’s utility

function. In [49], the adversary optimizes its probes to

increase the power of its statistical hypothesis test for utility

maximization. The authors in [50] and [51] show how

revealed preference-based IRL techniques can be used to

manipulate consumer behavior.

In the radar context, Sakuma et al. [52] use the

Laplacian mechanism for metacognition; the cognitive

radar anonymizes its trajectories via additive Laplacian

noise. Differential privacy-based adversarial obfuscation

has seen success in applications, such as ML [53], user

data sharing [54], and recommendation systems [55]. In our

cognition-masking approach, the radar mitigates adversar-

ial IRL via purposeful perturbations from an optimal strat-

egy, where the perturbations are computed via stochastic

gradient algorithms (see Algorithm 2 in Section IV-B).

Outline and Organization of Results

1) Background—IRL: In Section II, we formulate the

interaction between a cognitive radar and an ad-

versary target. We first discuss several cognitive

radar models studied in optimal waveform design

and sensor management in Section II-B. We then

review the main idea of revealed preference-based

adversarial IRL algorithms, namely, Theorems 1 and

5 in Section II-C, that the adversary uses to recon-

struct the radar’s strategy from its actions. Then,

we outline two examples of cognitive radar func-

tionalities, namely, waveform adaptation and beam

allocation. Theorem 6 stated that in Appendix F, the

supplementary document extends adversarial IRL to

the case where the cognitive radar faces multiple

constraints. Theorem 6 is omitted from the main text

for readability.

2) Masking Radar’s Strategy From Adversarial IRL:

Section III contains our main metacognition results,

namely, Theorem 2 for mitigating adversarial IRL by

masking the radar’s strategy. The key idea is for the

radar to deliberately deviate from its optimal (naive)

response to ensure the following.

a) Its true strategy almost fails to rationalize its per-

turbed responses (masked from adversarial IRL).

b) Its performance degradation due to suboptimal re-

sponses does not exceed a particular threshold. The-

orem 7 in Appendix F extends Theorem 2 to the

case where the cognitive radar has multiple con-

straints. Theorem 8 provides performance bounds on

the cognition-masking scheme of Theorem 2 when
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the adversary has misspecified measurements of the

radar’s response.

3) Masking Radar’s Strategy From Adversarial IRL

Detectors in Noise: Section IV extends our IRL

and cognition-masking results to the case where the

adversary has noisy measurements of the radar’s re-

sponse. First, we define IRL detectors (Definition 4)

that detect radar’s cognition in noise. Then, we en-

hance our cognition-masking scheme of Theorem 2

to mitigate the IRL detectors. The radar’s cognition-

masking objective is now used to maximize the de-

tectors’ conditional Type-I error probability, subject

to a bound on its deliberate performance degradation.

4) Numerical Illustration of Masking Cognition by

Metacognitive Radars: Section V illustrates our

metacognition results on two target tracking func-

tionalities, namely, waveform adaptation and beam

allocation. Our numerical experiments show that the

metacognition algorithms in this article can effec-

tively mask both the radar’s utility function and re-

source constraint when the cognitive radar is probed

by the adversarial target. Our main finding is that a

small deliberate performance loss of the metacogni-

tive radar suffices to mask the radar’s strategy from

the adversary to a large extent. For conciseness, we

include the appendix in an online document separate

from the main text as supplementary material.

Running Example: Since the concept of ECCM via

cognition masking is somewhat abstract, for the reader’s

convenience, we relate each assumption, definition, and the-

orem introduced in this article at an implementation level to

a real-world cognitive radar example. Specifically, we con-

sider a cognitive radar [20] tracking an adversarial target.

II. BACKGROUND: IRL TO ESTIMATE COGNITIVE
RADAR

Since this article investigates how to construct a cog-

nitive radar that hides its utility from an adversarial IRL

system, this section gives the background on how an adver-

sarial system can use IRL to estimate the radar’s utility. An

important aspect of the IRL framework below is that it is a

necessary and sufficient condition for identifying cognition

(utility maximization behavior); hence, it can be considered

an optimal IRL scheme. Appendixes H and G discuss

cognition masking when the adversary performs suboptimal

IRL.

A. Radar–Adversary Dynamics

MODEL 1 (RADAR–TARGET INTERACTION) The cognitive

radar–adversary interaction has the following dynamics:

target probe: αk ∈ R
d
+

radar act ion: βk ∈ R
d
+

target state: xk = {xk (t ), t = 1, 2, . . .},
xk (t + 1) ∼ pαk

(x|xk (t )), x0 ∼ π0

radar observation: yk ∼ pβk
(y|xk )

radar tracker: πk = T (πk−1, yk )

observed radar act ion: β̂k = βk + ωk, ωk ∼ fω (1)

REMARKS We now give examples for the abstract

model (1).

1) A widely used example [56], [57] for the radar–

adversary dynamics model (1) is that of linear Gaus-

sian dynamics for target kinematics and linear Gaus-

sian measurements

xk (t +1)=Axk (t )+wt (αk ), xk (0) ∼ π0 =N (x̂0, �0)

yk (t ) = Cxk (t ) + vt (βk ), k = 1, 2, . . . , K.

(2)

Here, xk (t ) ∈ X = R
X and yk (t ) ∈ Y = R

Y . A is a

block diagonal matrix [58] when the target state

represents its position and velocity in Euclidean

space. The variables wt ∼ N (0, Q(αk )) and vt ∼
N (0, R(βk )) are mutually independent Gaussian

noise processes.

2) In this article, we are only concerned with the

asymptotic statistics of the radar tracker T (1) for

our cognition-masking algorithms. One example is

that of a Bayesian tracker (Kalman filter) where the

asymptotic covariance of the state estimate is the

unique positive semidefinite solution of the algebraic

Riccati equation (ARE). Other tracker examples in-

clude the particle filter, interacting multiple-model

filter, etc.

We now proceed to define a cognitive radar, which we

assume in this article to be a constrained utility maximizer.

DEFINITION 1 (COGNITIVE RADAR) Consider the radar–

adversary interaction dynamics of Model 1. The cognitive

radar chooses its response β∗
k (1) at time k by maximizing

a utility function u(αk, ·) subject to constraint g(αk, ·) ≤ 0

β∗
k ∈ argmax u(αk, β )

g(αk, β ) ≤ 0. (3)

We assume that g(·) is an increasing function of β.

From a radar practitioner’s perspective, let us briefly

relate the parameters in Definition 1 to a cognitive radar–

adversary interaction. Consider a cognitive radar as mod-

eled in [20, Sec. 4B] tracking an adversarial target. The

response β parameterizes the radar’s transmitted waveform,

and the probe αk parameterizes the state noise covariance

matrix due to the adversary’s maneuvers. In the cognitive

radar context of [20], the utility function u(·) is equivalent

to the inverse of the transmitted signal power (radar mini-

mizes its transmission power); the constraints g(αk, ·) ≤ 0
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can be interpreted as posterior Crámer–Rao bound (PCRB)

constraints on the radar’s estimate of the target’s state3

REMARKS

1) In the main text of this article, we consider a single

constraint. This is consistent with most works in cog-

nitive radar literature, which also assume a single op-

erating constraint. For example, in [59], the cognitive

radar is constrained by a bound on the target dwell

time (monotone in the time the radar spends tracking

each target). In [22], the radar’s constraint is a bound

on the receiver sensor processing cost (monotone

in the radar’s choice of sensor accuracy for target

tracking). Hence, we only consider the operating cost

of the radar in the main text, which is reflected in the

radar’s scalar-valued constraint g in (3).

2) Multiple Resource Constraints: Our IRL method-

ology discussed in the following text can be ex-

tended to multiple resource constraints (g is vector

valued). However, for readability, we only consider

a scalar-valued constraint g in the main text of this

article. We consider multiple resource constraints in

Appendix F. The notation for IRL and cognition-

masking results is complicated for vector-valued cost

g(·) and, hence, omitted from the main text and

discussed in the supplementary document.

B. Radar Cognition as Constrained Utility Maximization

Cognitive radars have been studied extensively in the

literature [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],

[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],

[34]. In this section, we discuss relevant works from the

cognitive radar literature and contextualize widely used

models of radar cognition to the abstract constrained utility

maximization framework proposed in Definition 1.

Cognitive Radars: The term “cognition” in cognitive

radars is used to describe a number of functionalities, such

as optimal waveform design, knowledge-aided radar de-

tection and tracking for minimizing response times, and

sensor management. A cognitive radar [22], [59], [60]

uses the perception–action cycle of cognition to sense the

environment and learn from it relevant information about

the target and the environment. Cognitive radars have also

been modeled as reinforcement learners in the literature

that maximize their utility [35], [36], [61], [62], [63] and

tune their sensing resources to optimally satisfy mission

objectives.4

Table I displays works in the cognitive radar literature

related to the constrained utility maximizer framework

3It is straightforward to show that PCRB is inversely proportional to

the radar sensor’s SNR that depends on the target’s maneuvers; hence,

g(αk ) can be viewed as SNR constraints with explicit dependence on the

adversarial probe αk .
4In the context of Data Fusion Information Group (DFIG) process

model [64], sensor adaptation by the radar can be viewed as Level 4-process

refinement in the DFIG model.

of Definition 1. For brevity, we limit our discussion of

cognitive radars to waveform design, sensor management,

and joint waveform–receiver filter design.

1) Radar cognition for optimal waveform design: The

signal-to-interference noise ratio (SINR) is a widely used

objective maximized by cognitive radars for waveform

adaptation [5], [6], [7], [8], [9], [10]. In [5] and [6], the radar

is constrained by the maximum peak-to-average ratio (PAR)

of the transmission code that controls the variation of the

code about its mean value, and hence, controls the transmis-

sion bandwidth. In [7], [8], and [9], the radar is constrained

by the total contiguous bandwidth available for transmis-

sion, and the resulting optimization problem results in the

well-studied sense–react–notch paradigm. The cognitive

radar in [10] faces multiple constraints, namely, bounds on

the total transmission power, Hamming/Manhattan distance

with respect to a reference code, and the interference power

spilled over in undesirable frequency bands. We extend our

cognition-masking result of Theorem 2 to vector-valued

constraints in Theorem 7 in the supplementary document.

The cognitive radar discussed in [11] minimizes a

convex combination of two metrics, namely, the spectral-

integrated level ratio (SILR), a variable that is inversely pro-

portional to the SINR, and the integrated cross-correlation

level (ICCL) that measures the cross correlation of the trans-

mitted waveforms across multiple antennas. The transmit-

ted waveform is constrained to be either constant modulus

or discrete phase (equivalent to M-ary phase-shift keying

with a prespecified alphabet size). In [12], the radar mini-

mizes the L2-norm between the ambiguity function of the

transmitted waveform and that of a reference waveform con-

strained by the total transmission power. The waveform de-

sign scheme in [16] resembles that of [12] in which the cog-

nitive radar minimizes a convex combination of the interfer-

ence power and the side lobe correlation, subject to a bound

on the transmission power. In [13], [14], and [15], the radar

maximizes the M.I. (based on differential entropy) between

the received signal and the impulse response of the target

subject to a bound on the transmission power. In [21], the

cognitive radar minimizes the posterior Crámer–Rao lower

bound (CRLB) of the target estimate subject to a bound on

the transmission power. The CRLB for the target estimate

is also widely used in cognitive radars performing optimal

sensor management as discussed in the following text.

2) Radar cognition for optimal sensor management:

Analogous to optimal waveform design, SINR is also a

widely used objective for optimal sensor management in

cognitive radars [17], [18], where the radar is constrained by

sensing constraints, such as the cost of changing the tracked

cell in Euclidean space [17] and bound on downlink interfer-

ence power [19]. The posterior and predicted CRLBs for the

target estimate are also widely used optimization metrics for

cognitive radar performing optimal sensor deployment [21],

[22], where the radar faces constraints, such as bounds on

the communication cost with the central processing unit [21]

and bounds on the sensing and processing cost [22]. A

similar model is proposed in [23], where the radar optimizes

its sensor deployment locations and the number of active
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TABLE I

Cognitive Radars as Constrained Utility Maximizers

sensors. The radar minimizes the mean squared tracking

error subject to constraints on the number of sensors de-

ployed. The authors in [24], [25], and [26] address optimal

beamsteering for cognitive radars. To choose the optimal

cell for focusing its transmit beam, the radar maximizes

the entropy of the target’s location. For target tracking, the

optimal sensor parameters minimize the target’s tracking

entropy (based on the location and velocity of the target).

Finally, Aubry et al. [27], [28] design cognitive radars for

adaptive target detection that maximize the likelihood of

target emission on a two-dimensional (2-D) grid, subject to

block sparsity constraints on the target location.

3) Radar cognition for joint waveform–receiver filter

optimization: Joint optimization of waveform and receiver

filter design is well explored in the cognitive radar literature;

we discuss a few notable works in the following text. Note

that the radar optimizes over two variables, namely, the re-

ceiver filter and the transmitted waveform. In [29] and [30],

the radar minimizes the clutter/interference power at the

receiver subject to the well-known Capon [65] constraint,

namely, a normalization constraint on the received signal

power. In addition, the radar in [29] is subject to an equality

(normalization) constraint on the received signal power,

and a bound on the transmission power in [29]. The radar

in [30] faces an additional waveform constraint (identical

to [12]), namely, the transmission waveform is constrained

to be either constant modulus or discrete phase. On a related

note, robust constrained Capon beamforming is investigated

in [66], [67], and [68]. Rossetti and Lambotharan [31] con-

sider a bistatic cognitive radar transmitting two waveforms.

The joint waveform–receiver filter optimization is done in

two steps: First, the optimum receiver filters are computed

that maximize the receiver SINR. Then, the optimal wave-

forms are computed that maximize the signal power at the

radar receiver subject to orthogonality constraints on the two

waveforms, transmission power constraints, and bounds on

L2-deviation from a set of reference waveforms. Rossetti

and Lambotharan [31] generalize their work to multistatic

radars in [32] and to cognitive radar networks in [33].

Finally, Guerci et al. [34] maximize the signal-to-clutter

noise ratio (SCNR) at the receiver subject to a bound on the

transmission power. The key idea is that the introduction

of a physics-based scattering model for the clutter environ-

ment makes the maximization of SCNR tractable unlike the

traditional approaches.

Metacognitive Radars: A metacognitive radar [2],

[69], [70], [71] transcends conventional notions of “cog-

nition” in radars. In this article, we view metacognition
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Fig. 1. Schematic of adversarial IRL against cognitive radars. The

adversary observes a sequence of decisions of the cognitive radar in

response to a sequence of adversarial probes. Revealed preference-based

adversarial IRL (Afriat’s Theorem) [40], [48] is equivalent to checking

the existence of a feasibility polytope for a set of inequalities (Afriat’s

Theorem [40], [48]). Our aim in this article is to make adversarial IRL

cumbersome—how to purposefully distort radar responses metacognition

objective in this article is to spoof adversarial IRL, namely, how to make

checking linear feasibility difficult.

as the radar’s sensing ability to identify an adversary in

its environment and strategic ability to spoof the adversary

using inverse–inverse reinforcement learning (I-IRL) tech-

niques to “mask” its cognition. The working assumption of

the article is that an adversary can identify the cognitive

ability of a radar and mitigate the radar’s operations based

on this information. Recent works address how to identify

cognitive radars by analyzing a finite time series of emission

exchanges with the radar [35], [36], [44]; a summary of the

strategy identification results is presented in Section II-C in

the following text.

Radar functionalities that mitigate adversarial systems

are termed ECCM in the radar literature; see [72] for a

comprehensive discussion. Low-probability-of-intercept

(LPI) transmission design [45], [73], [74] achieves stealth

for cognitive radars and avoids cognition detection.

Waveform adaptation schemes to counter barrage jamming

are studied in [45] and [46]. Frequency diversity for

stealth-based ECCM in multitarget and moving target

tracking applications is studied in [75], [76], and [77].

While the works discussed above mitigate an adversary,

the ECCM measures do not necessarily mask the radar’s

cognition. The metacognitive radar’s aim in this article is to

confuse the adversary’s detector and hide its cognition, i.e.,

ensuring the adversary incorrectly reconstructs the radar’s

strategy with high probability, by deliberately transmitting

suboptimal responses. Specifically, this article contributes

to antistealth and anti-ARM ECCM [78] by ensuring that

adversarial mitigation is ineffective with a large probability.

C. Adversarial IRL for Identifying Strategy of Cognitive
Radar

We now review the main results for adversarial IRL,

namely, how an adversary can identify and reconstruct the

radar’s strategy by observing the radar’s responses. The

adversarial IRL system is schematically shown in Fig. 1.

The key idea is to formulate the adversary’s task of iden-

tifying the radar’s strategy as a linear feasibility problem

in terms of the radar’s responses. This article considers

two distinct scenarios in terms of the dependence of the

adversary’s probe αk on the radar’s utility u and resource

constraint g in (3). The two scenarios are formalized in

Assumptions 1 and 2 below in our IRL results, Theorems 1

and 5, and justified in Section II-D in the tracking examples

of waveform adaptation and beam allocation.

IRL for Identifying Radar’s Utility Function

In works, such as [11] and [16], the adversary can

mitigate the cognitive radar if the adversary knows the utility

weights. Theorem 1 below provides a set-valued reconstruc-

tion algorithm to estimate the radar’s utility function when

the adversary controls the radar’s resource constraint. Such

scenarios where the adversary knows the radar’s resource

constraint is formalized below in Assumption 1.

ASSUMPTION 1 The radar’s resource constraint g(·) in (3)

is linear in the adversary’s probe αk and the radar’s utility

u(·) is independent of αk

g(αk, β ) = α′
kβ − 1, u(αk, β ) ≡ u(β ) (4)

IRL objective: The adversary aims to reconstruct the radar’s

utility u(·) using the dataset Dg, where Dg is defined as

follows:

Dg = {g(αk, ·), βk}K
k=1 (5)

where g(αk, ·) is defined in (4).

In spite of its linear structure, the constraint in (4) can

model nonlinear radar constraints via a suitable definition

of the radar’s response β and the adversary’s probe α. For

example, an upper bound on the asymptotic precision of

the radar’s state estimate (inverse of the solution of the

ARE) can be expressed as a linear constraint in terms of

the eigenvalues of the state and noise covariance matrix;

see [35, Lemma 3] for a detailed exposition. Let us now state

Theorem 1 for achieving IRL when assumption 1 holds.

THEOREM 1 (IRL FOR IDENTIFYING RADAR’S UTILITY

FUNCTION) Consider the cognitive radar described in

Model 1. Suppose assumption 1 holds. Then

1) The adversary checks for the existence of a feasible

utility function that satisfies (3) by checking the feasibility

of a set of linear inequalities

T here exists a f easible θ ∈ R
2K
+ s.t .A(θ,Dg) ≤ 0

⇔ ∃ u s.t .βk ∈ argmax u(β ), α′
kβ ≤ 1 ∀k (6)

where dataset Dg is defined in (5) and the set of inequalities

A ≤ 0 is defined in Appendix A.

2) If A(·,Dg) ≤ 0 has a feasible solution, the set-valued

IRL estimate of the radar’s utility u is given by

uIRL(β ) ≡ {uIRL(β; θ ) : A(θ,Dg) ≤ 0}
uIRL(β; θ ) = min

k∈{1,2,...,K}
{θk + θk+K α′

k (β − βk )}. (7)

Theorem 1 is well known in microeconomics as Afriat’s

theorem [40], [48] and widely used for set-valued estimation

of consumer utilities from the offline data. In complete

analogy, the adversary also performs IRL on a batch of
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probe–response exchanges with the cognitive radar to re-

construct the radar’s utility.5 Abstractly, Theorem 1 says

that given a finite dataset, the adversary can at best construct

a polytope of feasible strategies that rationalize the adver-

sary’s dataset. Theorem 1 achieves IRL when the radar faces

a single operating constraint. We discuss adversarial IRL for

multiple resource constraints in Theorem 6 in Appendix F.

Then, the linear feasibility test of (6) generalizes to a

mixed-integer linear feasibility test, linear in the real-valued

feasible variables in the multiconstraint case.

The important aspects of Theorem 1 to a practitioner

are the following: Unlike typical reactive ECM systems, the

adversarial target in this article is assumed to be a cognitive

entity [80]. The cognitive ECM entity has the capability to

estimate the radar’s strategy encoded in its utility function

u, and then perform adversarial maneuvers (α1:K )Adv that

minimize the radar’s utility

(α1:K )Adv ∈ argmin
α1:K

K∑

k=1

max
β1:K

u(βk ), g(αk, βk ) ≤ 0 (8)

In the context of the cognitive radar modeled in [20], the

utility function could be a Quality-of-Service (QoS) met-

ric [81] the radar maximizes to yield the optimal waveform

parameter (instead of simply minimizing the transmission

power). The ECM objective in this scenario would be to

identify the radar’s QoS function for mitigating its oper-

ations. Through the reconstructive procedure of (47) in

Theorem 1, the adversary can estimate the radar’s utility,

and then use (8) to design optimal maneuvers that minimize

the radar’s QoS.6

IRL for Identifying Radar’s Resource Constraints

In certain scenarios, the utility of the radar is well known

[e.g., signal-to-noise ratio (SNR)], but the operational con-

straints of the radar are not known, for example, bound

on the PAR [5], [6]. We formalize such scenarios where

the adversary knows the radar’s utility function below as

Assumption 2:

ASSUMPTION 2 The radar’s utility function u(·) (3) is con-

trolled by the adversary’s probe αk , the radar’s resource

constraint g is independent of αk and has the following form:

g(αk, β ) ≡ g(β ) − γk, γk > 0 (9)

where γk, g are independent of αk .

IRL objective: The adversary aims to reconstruct g(·)
using the dataset Du, where Du is defined as follows:

Du = {u(αk, ·), βk}K
k=1. (10)

5Afriat’s theorem with linear constraints (4) has been generalized to

nonlinear monotone constraints in the literature [79]. For the radar context

in this article, it suffices to assume a linear constraint when the adversary

is trying to estimate the radar’s utility.
6Popular framework to study radar–adversary interactions of the form in

(8) is the principal agent problem (PAP). We refer the reader to [82] and

[83], where Krishnamurthy et al. design ECCM strategies using a PAP

framework for adversarial mitigation.

IRL for estimating the radar resource constraints has the

same structure as that of Theorem 1 and is discussed in the

online supplementary document. IRL for Assumption 2 is

formally stated in Theorem 5 in Appendix B and summa-

rized as follows:

gIRL(β ) ≡ {gIRL(β; θ ) : A(θ,Du) ≥ 0}
gIRL(β; θ ) = max

k∈{1,2,...,K}
{θk + θK+k (u(αk, β ) − u(αk, βk ))}

(11)

where gIRL is the adversary’s set-valued estimate of the

radar’s constraint g, dataset Du is defined in (10) and θ ∈
R

2K
+ is a feasible vector w.r.t. the feasibility test A(·,Du) ≥

0. Note how the IRL feasibility inequalities in (11) are

identical to that of (6) in Theorem 1 but with the inequality

direction reversed.

Theorem 5 is useful when the adversary is interested

in evaluating the radar’s constraints. Consider the cognitive

radar in [20]. The adversary knows the radar’s utility, for ex-

ample, the SNR. The adversary’s aim instead is to estimate

the radar’s constraints on the cost of communication [20,

eq. (40)] with the central processing unit. Knowledge of the

radar’s communication cost facilitates adversarial maneu-

ver selection as follows:

(α1:K )Adv ∈ argmin
α1:K

K∑

k=1

max
β1:K

u(αk, βk ), g(βk ) ≤ γk (12)

where the utility function is simply the radar sensor’s

SNR that indeed depends on the adversary’s maneuvers

(parametrized by probe αk), g(·) is the radar’s communi-

cation cost, and γk is the cost threshold at time step k.

D. Examples of IRL for Identifying Radar Cognition

Below, we discuss two examples of cognitive radar

functionalities, namely, waveform adaptation and beam

allocation. Throughout this article, we will use the two

examples below for contextualizing our cognition-masking

results.7

1) Example 1—Waveform Adaptation for Cognitive

Radar: Waveform adaptation [84], [85], [86], [87], [88],

[89] is a crucial functionality of a cognitive radar. Consider

a cognitive radar with linear Gaussian dynamics and mea-

surements (2). The cognitive radar’s aim is to choose the

optimal sensor mode (observation noise covariance) based

on the target’s maneuvers. The more accurate sensor results

in more precise observations but is also costlier to deploy.

Appendix D formalizes the optimal waveform adaptation

and abstracts the problem as the constrained utility maxi-

mization problem of (3). In simple terms, the cognitive radar

maximizes its observation noise covariance (least accurate

sensing mode) subject to a lower bound on the radar’s SNR.

The key idea is to assume that the adversary’s probe αk

and radar’s response βk are the eigenvalues of covariance

matrices Q and R−1, respectively, and hence, parameterize

7In Appendixes C and D, we formally relate the variables in (13) and (14)

to tracker-level parameters of the cognitive radar.
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the state and observation noise covariance in the state-space

model of (2). Appendix D then shows the equivalence be-

tween an upper bound on the radar’s asymptotic covariance

(�∗(αk, βk ))−1 and the linear constraint α′
kβ ≤ 1. In sum-

mary, the cognitive radar’s optimal waveform adaptation

strategy can be abstracted as follows:

βk ∈ argmax u(β ), α′
kβ ≤ 1 (13)

where u is the radar’s utility, and the linear constraint α′
kβ ≤

1 equivalently bounds the asymptotic precision of the radar.

Let us briefly discuss the state-of-the-art in waveform

design in the radar literature and show how optimal wave-

form design can be embedded in the abstract constrained

utility maximization setup of (13). In [84], the constraint in

(13) is a bound on the waveform power; the utility function

is either the conditional M.I. between the target impulse

response and the reflected waveforms, given the knowledge

of transmitted waveform, or simply the negative of the mean

squared error between the true and estimated location of the

target being tracked, with both choices of utility function

yielding the same optimal waveform choice. Liu et al. [86]

study waveform design in omnidirectional radars where the

radar’s utility function (13) is the negative of the downlink

multiuser interference and the resource constraint is simply

a bound on the transmitted power. In [88], the radar’s utility

is the negative of the Crámer–Rao bound on the variance

of the radar’s state estimate; the radar’s resource constraint

is a bound on its transmission power. Wei et al. [87] design

optimal waveforms with an added ECCM functionality to

mitigate ECM. The key idea is to first send a pilot waveform

to estimate the parameters of the adversary’s ECM, followed

by intrapulse frequency coding with appropriate parameters

to deceive the adversary’s ECM. Our ECCM approach is

similar to that of [87] with the only difference that, instead

of increasing the bandwidth of our transmitted signal to

combat smart noise jamming, the cognitive radar transmits

suboptimal waveforms to avoid its strategy from being

reconstructed by the adversary.

IRL for optimal waveform adaptation: The adversary’s

aim is to identify the radar’s utility function u. Also, the

setup of (13) falls under Assumption 1. Hence, the adver-

sary uses the IRL test of (6) in Theorem 1 for identifying

u.

2) Example 2—Beam Allocation for Cognitive Radar:

Appendix C discusses optimal beam allocation [90], [91],

[92], [93], [94]. The cognitive radar’s aim is to allocate its

beam intensity optimally between multiple targets. Com-

pared to a target with less jerky maneuvers, a target with un-

predictable maneuvers requires a more focused beam for the

SNR to lie above a certain threshold. Appendix C formalizes

the beam allocation problem and abstracts the problem as

a constrained utility maximization problem (3). The key

idea is to relate the adversary’s probe αk to the asymptotic

predicted precision of the radar tracker. In summary, the

cognitive radar’s optimal waveform adaptation problem can

be abstracted as follows:

βk ∈ argmax u(αk, β ) ≡
m∏

i=1

β(i)αk (i), ‖β‖κ ≤ γk (14)

where the radar maximizes a Cobb–Douglas utility subject

to a bound γk on the total transmit beam intensity (κ-norm

of intensity vector) for all k.

IRL for optimal beam allocation: Since the adversary

knows the radar’s utility (Assumption 2), its aim is to

identify the radar’s constraint g(·) − γk ≤ 0 using the IRL

test (50) in Theorem 5.

Summary: This section discussed how an adversary

can deploy IRL to estimate a cognitive radar’s utility and

constraint. While IRL with a single operational constraint is

discussed in [35], the IRL algorithm for multiple constraints

(in Appendix F) is new. This section also related Theorem 1

for identifying radar cognition to the parameters of a cog-

nitive radar [20].

III. I-IRL: MASKING RADAR UTILITY AND CON-
STRAINTS FROM ADVERSARIAL IRL

Having discussed how an IRL system can detect a

cognitive radar, we are now ready to design a cognitive radar

that is aware of the adversary’s IRL motives and hides its

strategy (utility function and resource constraints) from the

IRL system. In radar terminology, IRL for mitigating a radar

system falls under the field of ECM. Since metacognition

deals with spoofing adversarial IRL, it can be viewed as

a form of ECCM against ECM, see schematic outlined in

Fig. 2.

Rationale: How to hide cognition? Recall that the fea-

sibility of (6) and (50) is both necessary and sufficient for

identifying utility maximization behavior (3); see [40] and

[48] for the proof. Hence, a cognitive radar’s true strategy

lies within the polytope of feasible strategies computed by

the adversary (see Fig. 1). The cognition-masking rationale

in this article is to transmit purposefully the designed per-

turbed responses that ensure that the radar’s true strategy

lies close to the edge of the polytope of feasible strategies.

The distance from the edge of the feasibility polytope is

a measure of goodness-of-fit of the strategy to the radar’s

responses; see Definitions 2 and 3 in the following text. In

other words, the radar deliberately sacrifices performance

to ensure that its strategy poorly rationalizes its perturbed

responses, hence hiding its strategy from adversarial IRL.

Main Result: How a radar can mask its utility/constraints

Theorem 2 below is our main result for cognition mask-

ing. Theorem 2 uses the concept of feasibility margin—how

far is a strategy from failing the IRL feasibility tests (6)

or (50). We define two margins—Mu and Mg—for the

feasibility margins of feasible utilities u and constraints g,

respectively.

DEFINITION 2 (FEASIBILITY MARGIN FOR RECONSTRUCTED

UTILITY (6)) Consider the dataset Dg defined in (5). The

feasibility margin Mu(Dg) defined below measures how
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Fig. 2. Schematic of the cognitive radar masking its strategy from adversarial IRL (via Theorem 2).

Naive response scheme (Left): The adversary sends a sequence of probe signals to the radar and records its responses to the adversary’s probes. The

radar’s strategy passes the IRL feasibility test of Theorem 1 with a large margin if the radar transmits naive responses (3) and can be reconstructed by

IRL.

Cognition-masking scheme (Right): If the radar is aware of adversarial IRL, the radar deliberately perturbs its responses according to Theorem 2 to

hide its strategy from the adversary at the cost of performance degradation. In Section V, we illustrate via numerical examples how small deliberate

perturbations in the radar’s naive responses mask the radar’s strategy from adversarial IRL to a large extent.

far is the utility u from failing the IRL feasibility test (6)

Mu(Dg) = min
ε≥0

ε, A(u,Dg) + ε1 ≥ 0 (15)

where 1 is the column vector of all ones.

DEFINITION 3 (FEASIBILITY MARGIN FOR RECONSTRUCTED

CONSTRAINTS (50)) Consider the dataset Du defined in

(10). The feasibility margin Mg(Du) defined below mea-

sures how far the constraint g is from failing the IRL

feasibility test (50)

Mg(Du) = min
ε≥0

ε, A(g,Du) − ε1 ≤ 0 (16)

where 1 is the column vector of all ones.

The margins (15) and (16) are measure of goodness-of-

fit for the IRL feasibility inequalities (6) and (50), respec-

tively, for any feasible strategy.8 If u is a feasible utility that

rationalizes Dg (5), we have A(u,Dg) ≤ 0 from (6). Hence,

the margin for u is the minimum nonnegative perturbation

so that the IRL test of (6) fails, that is, A(·,Dg) + ε1 ≥ 0.

Similarly, if g is a feasible resource constraint that ratio-

nalizes Du (10), we have A(u,Dg) ≥ 0 from (50). Hence,

the margin for u is the minimum nonpositive perturbation

so that the IRL test of (6) fails, that is, A(·,Dg) − ε1 ≥ 0.

Equivalently, the margin measures how far a strategy lies

from the edge of the polytope of feasible strategies.9 The

concept of margins arises in many prominent areas of ma-

chine learning, for example, in support vector machines [99]

for classification tasks and also max-margin IRL [100]. In

the radar context, a strategy with a large feasible margin is a

8Strictly speaking, the margin (15) is the minimum perturbation so that

A(uA,Du ) is infeasible, where uA is the finite-dimensional projection of

u for the IRL feasibility test defined in (48) in Appendix A. However, we

abuse notation and express the feasibility test as A(u,Du ) for the sake of

simplicity of exposition. We abuse notation in a similar way for (16).
9There exist several robustness measures in the literature [95], [96], [96],

[97], [98] that check how well a dataset satisfies economic-based ratio-

nality. Our cognition-masking aim is more subtle—our aim is to ensure

that a particular strategy rationalizes a dataset poorly by minimizing its

feasibility margin (15), (16).

high-confidence point estimate of the radar’s strategy and,

hence, at higher risk of getting exposed.

We are now ready to state our first cognition-masking

result, Theorem 2. Theorem 2 ensures that the radar’s true

strategy has a low feasibility margin w.r.t. the IRL tests

of Theorems 1 and 5 by deliberately perturbing the radar’s

naive responses (3). In a sense, the radar optimally switches

between maximizing its performance and maximizing the

privacy of its plan.

THEOREM 2 (MASKING COGNITION FROM ADVERSARIAL

IRL FEASIBILITY TESTS.) Consider the cognitive radar (3)

in Definition 1. Let {β∗
k }K

k=1 denote the naive response

sequence (3) that maximizes the cognitive radar’s utility.

Then:

1) Masking Utility Function From IRL: Suppose As-

sumption 1 holds. The response sequence {β̃∗
1:K} defined

below masks the radar’s utility u from the adversary by

ensuring that u passes the IRL feasibility test (6) with a

sufficiently low margin (15) parametrized by η ∈ [0, 1]

{β̃∗
1:K} = argmin

{βk≥0, α′
k
βk≤1}

K∑

k=1

u(β∗
k ) − u(βk ) (17)

Mu(Dg) ≤ (1 − η) Mu(D∗
g ) (18)

where dataset D∗
g = {α′

k (·) − 1, β∗
k }K

k=1 is the adversary’s

dataset when the radar transmits naive responses {β∗
k }K

k=1,

and Dg is defined in (5).

2) Masking Resource Constraint From IRL: Suppose

Assumption 2 holds. The response sequence {β̃∗
1:K} defined

below masks the radar’s resource constraint g from the

adversary by ensuring that g passes the IRL feasibility

test (50) with a sufficiently low margin (16) parametrized

by η ∈ [0, 1]

{β̃∗
1:K} = argmin

{βk≥0, g(βk )≤γk}

K∑

k=1

u(β∗
k ) − u(βk ) (19)

Mg(Du) ≤ (1 − η)Mg(D∗
u ) (20)
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Fig. 3. Cognition masking for mitigating adversarial IRL. The radar’s

naive responses pass the IRL feasibility tests in Theorems 1 and 5 with a

large feasibility margin M1. Cognition masking distorts the feasibility

polytope so that the radar’s true strategy is almost infeasible (low margin

M2) w.r.t. the IRL feasibility inequalities (close to the edge of feasibility

polytope). Hence, the true strategy is a low-confidence estimate for IRL

and successfully hidden from the adversary.

where dataset D∗
u = {u(αk, ·), β∗

k }K
k=1 is the adversary’s

dataset when the radar transmits naive responses {β∗
k }K

k=1,

and Du is defined in (10).

Theorem 2 is our first result for masking cognition;

see Algorithm 1 for a stepwise procedure for masking the

radar’s utility (17). This is schematically illustrated in Fig. 3.

Theorem 2 computes the optimal suboptimal response of the

radar that sufficiently mitigates adversarial IRL. The radar

minimizes its performance degradation (maximizes QoS)

due to suboptimal responses subject to a bound (18) and (20)

on the feasibility margin of the radar’s strategy (maxi-

mizes adversarial confusion). Theorem 2 can be viewed

as an I-IRL scheme that mitigates an IRL system and is

a critical feature of a metacognitive radar that switches

between different plans. For completeness, Appendix F

extends cognition masking to the case where the cognitive

radar faces multiple constraints. Theorem 7 generalizes the

cognition-masking scheme of Theorem 2 to the multicon-

straint case where the adversary uses Theorem 6 for optimal

IRL. Also, Appendix G discusses cognition masking when

the adversary has misspecified measurements of the radar’s

responses. Our key result is Theorem 8 that provides a

performance bound on the cognition-masking scheme of

Theorem 2 in terms of the misspecification error magnitude.

Extent of cognition masking η in Theorem 2: A smaller

value of η implies a larger extent of cognition masking from

adversarial IRL and also a greater degradation in the radar’s

performance. One extreme case is setting η = 0. This results

in maximal masking of the radar’s strategy. That is, the IRL

feasibility inequalities (6) and (50) are no more feasible and

there exists no feasible strategy that rationalizes the radar’s

responses. Setting η = 0 also causes the radar to deviate

maximally from its naive responses (3), and hence results

in a large performance degradation. The other extreme case

is setting η = 1. In this case, the radar simply transmits its

naive response (3) and its strategy is not hidden from the

adversary.

Algorithm 1: Masking Radar’s Utility Via Theorem 2

From IRL Feasibility Test (6).

Step 1. Compute radar’s naive response sequence

β∗
1:K by solving the convex optimization problem (3)

β∗
k =argmin u(β ),g(αk, β )≤0,β ≥0∀k ∈{1, 2, . . . , K}

where u is the concave monotone in β and g(αk, β )

is the convex monotone in β.

Step 2. Choose η ∈ [0, 1] (extent of cognition

masking from IRL feasibility test).

Step 3. Compute upper bound Mthresh on the desired

margin (15) after cognition masking:

Mthresh = (1 − η) Mu({αk, β
∗
k }K

k=1), where Mu is

defined in (15).

Step 4. Compute the cognition-masking responses by

solving the following optimization problem:

{β̃∗
1:K}MASK-U = argmin

K∑

k=1

u(β∗
k ) − u(βk )

βk ≥ 0, α′
kβk ≤ 1 ∀k ∈ {1, 2, . . . , K}

Mu({αk, βk}K
k=1) ≤ Mthresh . (21)

Due to the nonlinear margin constraint in (21), the

optimization problem can be solved using a general

purpose nonlinear programming solver, for

example, fmincon in MATLAB, to obtain a local

minimum.

Let us briefly explain the essence of the cognition-

masking algorithm in Theorem 2 through our running cogni-

tive radar example from [20]. We first assume that the naive

cognitive radar maximizes its QoS subject to constraints

on its PCRB. The adversary exploits the ECM scheme of

Theorem 1 to estimate the radar’s QoS function and gener-

ates malicious probes (8). As an ECCM measure, the radar

intentionally chooses a suboptimal waveform that trades off

between maximizing the radar’s QoS (17) and ensuring a

poor reconstruction of the radar’s strategy by the adversary

[margin constraint (18)]. Let us consider the second scenario

where the cognitive radar’s utility is the inverse of the

PCRB, that is, the radar minimizes its PCRB [20, eq. (40)]

subject to a constraint on its communication cost with the

central processing unit. The adversary can use Theorem 5

to estimate the radar’s communication cost and can then use

(12) to generate malicious probes. As an ECCM measure,

the radar intentionally violates the communication cost

constraint that trades off between minimizing the radar’s

transmission power (19) and ensuring a poor reconstruction

of the radar’s communication cost by the adversary [margin

constraint (20)].

Summary

In this section, we introduced our key cognition-

masking result, namely, Theorem 2 that mitigates the ECM

attempts of the adversary (Theorems 1 and 5) to estimate the

radar’s strategy (utility function/resource constraint). From
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a practitioner’s perspective, we also related the cognition-

masking scheme to a formal model of a cognitive radar [20]

that chooses its waveform by solving a constrained opti-

mization problem. This section sets the stage to address

cognition masking from an adversary under noisy measure-

ments. In the rest of this article, we motivate our cognition-

masking results using two radar functionalities, namely,

optimal waveform adaptation and optimal beam allocation,

instead of the cognitive radar model of [20].

IV. HOW TO MASK COGNITION FROM DETECTOR?

The framework considered in Theorem 2 was determin-

istic; we assumed that the adversary had accurate mea-

surements of the radar’s responses. In this section, we

generalize Theorem 2 to the case where the adversary has

noisy measurements of the radar’s decisions. That is, the

noise term ωk in the radar’s response measurement β̂k in

(1) of Model 1 is a nonzero random variable with pdf fω.

If the adversary deploys a Neyman–Pearson10 type detec-

tor, how can we design our cognition-masking strategy to

spoof this detector so that the radar can hide its utility and

constraints? Before generalizing Theorem 2 to the noisy

case, we first address the following question: How do the

adversary’s IRL algorithms, Theorems 1 and 5, adapt to

noisy measurements?

A. Noisy Adversarial IRL Detectors Against Cognitive
Radars

Our key IRL results for noisy radar measurements are

outlined in Definition 4 in the following text. Recall from

Section II that the adversary’s IRL algorithm in Theorem 1

comprises a linear feasibility test to identify a feasible

strategy that rationalizes the radar’s responses. When the

adversary has noisy measurements of the radar’s response,

the deterministic feasibility test generalizes to a feasibility

hypothesis test to detect the existence of feasible strategies

(utilities and constraints) so that the radar responses satisfy

utility maximization (3).

For our hypothesis tests below, let H0 and H1 denote the

null and alternate hypotheses that the adversary’s noiseless

datasets defined in (5) and (10) pass, and not pass, respec-

tively, the IRL feasibility tests (6) and (50), respectively.

H0 : Radar is a constrained utility maximizer (3)

H1 : Radar is NOT a constrained utility maximizer (3).

(22)

The two types of error that arise in hypothesis testing are

Type-I and Type-II errors. In the radar context, the Type-I

and Type-II errors have the following interpretation:

Type−I: Classify a cognitive radar as noncognitive

10By Neyman–Pearson’s lemma [101], it is impossible to maximize the

Type-I and Type-II error of a detector simultaneously. In this article, we

focus on mitigating the detector by maximizing its conditional Type-I error

probability.

Type−II: Classify a noncognitive radar as cognitive.

(23)

In analogy to Theorems 1 and 5, our IRL detectors de-

fined below assume two scenarios, namely, Assumptions 3

and 4 that generalize Assumptions 1 and 2, respectively, to

the case where the adversary has noisy response measure-

ments.

ASSUMPTION 3 Consider the radar–adversary interaction

scenario of Assumption 1. The adversary has access to the

noisy dataset D̂g defined as follows:

D̂g = {g(αk, ·), β̂k}K
k=1, β̂k = βk + ωk, ωg ∼ fω (24)

where g(αk, ·) is defined in (4), βk is the radar’s response,

and ωk is the adversary sensor’s measurement noise (1) with

pdf fω known to the radar.

IRL objective: The adversary uses the IRL detector (27)

in Definition 4 to detect if the noise-free dataset Dg (5)

passes the IRL test (6) of Theorem 1

ASSUMPTION 4 Consider the radar–adversary interaction

scenario of Assumption 2. The adversary has access to the

noisy dataset D̂u defined as follows:

D̂u = {u(αk, ·), β̂k}K
k=1, β̂k = βk + ωk, ωg ∼ fω (25)

where βk is the radar’s response, and ωk is the adversary

sensor’s measurement noise (1) with pdf fω known to the

radar.

IRL objective: The adversary uses the IRL detector (27)

in Definition 4 to detect if the noise-free dataset Du (10)

passes the IRL test (50) of Theorem 5.

Our IRL hypothesis tests for detecting radar’s cognition

(feasible utilities and resource constraints) for noisy radar

response measurements are stated in Definition 4.

DEFINITION 4 (IRL DETECTORS FOR NOISY RESPONSE

MEASUREMENTS) Consider the cognitive radar (3) from

Definition 1 and the radar–adversary interaction from

Model 1.

1) IRL for detecting feasible utilities: Suppose Assump-

tion 3 holds. Then, the statistical test below detects

if the radar’s responses satisfy utility maximization

behavior (3)

P(φ∗
u (D̂g) ≤ Lg) ≶H1

H0
γ . (26)

2) IRL for detecting feasible resource constraints: Sup-

pose Assumption 4 holds. Then, the statistical test

below detects if the radar’s responses satisfy utility

maximization behavior (3)

P(φ∗
g (D̂u) ≤ Lu) ≶H1

H0
γ . (27)

In the statistical tests (26) and (27) γ ∈ [0, 1] is the

“significance level” of the test. Lg and Lu are the random

variables defined as follows:

Lg ≡ max
s,k

α′
k (ωk − ωs) (28)
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Lu ≡ max
s,k

(u(αk, β̂k ) − u(αk, β̂s))

− (u(αk, β̂k − ωk )) − u(αk, β̂s − ωs)) (29)

where ωk ∼ fω is the measurement noise in the adversary’s

measurement of the radar’s response (1). The test statistics

φ∗
g (·) and φ∗

u (·) are the minimum perturbations required for

the noisy datasets D̂g and D̂u, respectively, to pass the IRL

feasibility tests (6) and (50)

φ∗
u (D̂g) = min

ε,θ>0
ε, A(θ, D̂g + ε) ≤ 0 (30)

φ∗
g (D̂u) = max

ε,θ>0
ε, A(θ, D̂u − ε) ≥ 0 (31)

REMARKS

1) The random variable Lg (28) bounds the perturbation

needed for D̂g to pass the IRL test (6), if H0 holds

H0 : ∃θ >0 s.t. A(θ,Dg)≤0⇒A(θ, D̂g+Lg)≤0

where Dg is the noise-free version of the noisy

dataset D̂g. Similarly, the random variable Lu (29)

bounds the perturbation needed for D̂u to pass the

IRL test (50), if H0 holds

H0 : ∃θ >0 s.t. A(θ,Du)≥0⇒A(θ, D̂u+Lu)≥0

where Du is the noise-free version of the noisy

dataset D̂u.

2) The IRL detectors (26) and (27) classify the radar

as a utility maximizer if the perturbation needed for

the feasibility of the IRL inequalities lies under a

particular threshold, and vice-versa. Consider the

statistical test of (26). Equation (26) can be expressed

differently as follows:

φ∗
u (D̂g) ≶H0

H1
F−1

Lα
(1 − γ ) (32)

where the RHS term in (32) is the test threshold for

test statistic φ∗
u (·). Intuitively, the larger the perturba-

tion needed for the feasibility of the IRL inequalities,

the less confidence the adversary has to classify the

radar as a utility maximizer.

Computational Complexity of IRL Detectors: The con-

strained optimization problems (30) and (31) are nonconvex

since the RHS of the constraint is bilinear in the feasible

variable. However, since the objective function depends

only on a scalar, a 1-D line search algorithm can be used to

solve for φ∗
u (·) in (30) and φ∗

g (·) in (31). That is, for any fixed

value of ε, the constraints in (30) and (31) specialize to a set

of linear inequalities for which feasibility is straightforward

to check.

We now discuss a key feature of the statistical tests (26)

and (27) in Theorem 3 that bounds the Type-I error proba-

bility P(H1|H0) of the IRL detectors. Recall that the Type-I

error probability is the probability of incorrectly classifying

the radar as noncognitive, when the radar’s response is the

solution of a constrained utility maximization problem (3).

THEOREM 3 (PERFORMANCE OF IRL DETECTORS (DEFI-

NITION 4)) Consider the statistical tests (26) and (27) in

Definition 4. The Type-I error probability of the tests is

bounded by the significance level of the tests γ

P(H1|H0) ≤ γ f or both detectors (26) and (27). (33)

The proof of Theorem 3 is in Appendix E. The key idea

in the proof is to show that, given that the null hypoth-

esis H0 holds, the random variables Lg and Lu dominate

the test statistics φ∗
g (D̂u) and φ∗

u (D̂g), respectively. Since

the IRL detectors have a bounded Type-I probability, our

cognition-masking rationale for the noisy case discussed in

the following text is to maximize their conditional Type-I

error probability.

B. Masking Cognition From IRL Detectors

In Section IV-A, we generalize the IRL results of The-

orems 1 and 5 in Section II to the case where the adversary

has noisy measurements of the radar’s responses. The key

idea is that the IRL feasibility tests (6) and (50) generalize to

IRL detectors (26) and (27) in Definition 4, respectively, that

detect utility maximization behavior. This section addresses

cognition masking when the adversary uses the IRL detec-

tors of Definition 4: How to mitigate the statistical tests

of (26) and (27) and make utility maximization detection

difficult?

Intuition for hiding cognition from IRL detectors: Sup-

pose the radar follows the cognition-masking scheme of

Theorem 2 for the noisy case. Indeed, the radar’s strategy is

hidden from the IRL feasibility tests of Theorems 1 and 5

but does not affect the performance of the IRL detectors of

Definition 4. To do so, the radar maximizes the conditional

Type-I error probability11 of the IRL detectors by deliber-

ately deviating from its naive responses (3). The conditional

Type-I error probability can be viewed as the noisy analog

of the inverse of the feasibility margin in the noiseless case.

DEFINITION 5 (CONDITIONAL TYPE-I ERROR PROBABIL-

ITY FOR IRL DETECTORS (DEFINITION 4)) Consider the

datasets Dg and Du defined in (5) and (10), and their

corresponding noisy versions D̂g and D̂u defined in (24)

and (25), respectively. Let φu(D̂g, u) and φg(D̂u, g) de-

note the minimum perturbations required for the tuples

(D̂g, u) and (D̂u, g), respectively, to pass the IRL feasibility

tests (6), (50)

φ∗
u (D̂g, u) = min

ε≥0
ε, A(u, D̂g + ε) ≤ 0

φ∗
g (D̂u, g) = min

ε≥0
ε, A(g, D̂u − ε) ≥ 0 (34)

where u and g are the radar’s utility and resource constraint,

respectively. Then:

1) For IRL detector (26), the conditional Type-I error

probability, conditioned on D̂g (24) and radar’s utility

11Radar can at best maximize the conditional Type-I error probability to

mitigate the IRL detectors as the Type-I error probability is bounded by

the detectors’ significance level γ due to Theorem 3.
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u, is given by P(H1|Dg, u) and defined as follows:

P(H1|Dg, u) = P( φ∗
u (D̂g, u) > F−1

Lg
(1 − γ ) ).

(35)

2) For IRL detector (27), the conditional Type-I er-

ror probability conditioned on D̂u (25) and radar’s

constraint g is given by P(H1|D̂u, g), and defined as

follows:

P(H1|Du, g) = P( φ∗
g (D̂u, g) > F−1

Lu
(1 − γ ) )

(36)

In (35) and (36), the alternate hypothesis event H1 is

expressed differently in the equivalent representation form

of (32), and the random variables Lu and Lg are defined in

(28) and (29)

REMARKS

1) The test statistics of the IRL detectors defined in

(35) and (36) are computed via an optimization over

R
2K+1
+ , whereas the optimization in (36) is over R+.

Hence, φ∗
u (D̂g, u) and φ∗

g (D̂u, g) (36) are cheaper

to compute than the test statistics φ∗
u (D̂g) (35) and

φ∗
g (D̂u) (36), respectively.

2) The IRL detector performance is already constrained

due to Theorem 3 (bounded Type-I error probability).

Hence, to mitigate the IRL detector, the best the radar

can do is to maximize its conditional Type-I error

probability using the statistics defined in (34).

We are now ready to state our cognition-masking result,

Theorem 4, that mitigates IRL detectors (Definition 4). In

analogy to Theorem 2 for mitigating the IRL feasibility

tests of Theorems 1 and 5, the radar deliberately degrades

its performance to maximize the IRL detectors’ conditional

Type-I error probability defined in (35) and (36).

THEOREM 4 (MASKING COGNITION FROM ADVERSARIAL

IRL DETECTORS) Consider the cognitive radar (3) from

Definition 1. Let {β∗
k }K

k=1 denote the naive response se-

quence (3) that maximizes the cognitive radar’s utility.

Then:

1) Masking Utility Function From Detector: Suppose

Assumption 3 holds. Then, the response sequence defined

below makes cognition detection difficult by ensuring that

the detector (26) has a sufficiently large conditional Type-I

error probability

{β̃∗
1:K}= argmin

{βk≥0, α′
k
βk≤1}

K∑

k=1

u(β∗
k )−u(βk )−λ P(H1|Dg, u).

(37)

2) Masking Resource Constraint From Detector: Suppose

Assumption 4 holds. Then, the response sequence below

makes cognition detection difficult by ensuring that the

detector (27) has a sufficiently large conditional Type-I error

probability

{β̃∗
1:K}= argmin

{βk≥0, g(βk )≤γk}

K∑

k=1

u(β∗
k )−u(βk )−λ P(H1|Du, g).

(38)

In (37) and (38), the positive scalar λ parameterizes the

extent of mitigation of the IRL detector.

Theorem 4 is our second result for cognition masking;

see Algorithm 2 for a stepwise procedure for masking

cognition in noise (37) when the adversary knows the

radar’s constraints. Equations (37) and (38) compute the

optimal suboptimal radar response that sufficiently hides

the radar’s cognition from being detected by the IRL hy-

pothesis tests of Definition 4. The parameter λ in The-

orem 4 is analogous to parameter η in Theorem 2. A

larger value of λ (37) results in a larger conditional Type-I

error probability for the IRL detector (larger adversarial

confusion) while increasing the radar’s deviation from its

optimal response (greater performance degradation), and

vice-versa.

The optimization problems (37) and (38) can be solved

by stochastic gradient algorithms. Algorithm 2 outlines a

constrained simultaneous perturbation stochastic approxi-

mation (SPSA) [102], [103] implementation for computing

the cognition-masking scheme of Theorem 4. The objective

function is nonconvex in the radar’s responses; hence, SPSA

converges to a local optimum. SPSA is a generalization

of adaptive algorithms where the gradient computation in

(37) requires only two empirical estimates of the objec-

tive function per iteration, i.e., the number of evaluations

is independent of the dimension of the radar’s response.

For decreasing step size η = 1/i (42), the SPSA algo-

rithm converges with probability one to a local stationary

point. For constant step size η, it converges weakly (in

probability).

Summary: In this section, we generalized our cognition-

masking results of Theorem 2 to the case where the ad-

versary has noisy measurements of the radar’s responses.

We first generalized our adversarial IRL feasibility tests

of Theorems 1 and 5 to IRL hypothesis tests (26) and

(27) in Definition 4 to detect utility maximization behavior,

given noisy radar response measurements. We then present

Theorem 4 that masks the radar’s cognition by making

utility maximization detection erroneous by maximizing

the conditional Type-I error probability of the IRL detec-

tors via purposeful suboptimal responses. Our cognition-

masking results can be extended without loss of generality

(WLOG) to any suboptimal IRL algorithm, as discussed in

Appendix H.

V. NUMERICAL RESULTS FOR I-IRL

In this section, we illustrate how our cognition-masking

results of Theorems 2 and 4 successfully confuse adversarial

IRL via the two radar tracking functionalities, namely,

waveform adaptation and beam allocation, as discussed in

Section II.
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TABLE II

Parameters for Numerical Experiments

A. Cognition Masking Via Theorem 2 for Noiseless
Adversary Measurements

Consider the scenario where the adversary has accu-

rate measurements of the radar’s responses. Recall from

Section II-D that the adversary knows the radar’s constraints

for waveform adaptation and the radar’s utility function for

beam allocation. For waveform adaptation, the probe signal

parameterizes the state covariance matrix of the radar’s

Kalman filter due to the adversary’s maneuvers, and the

response signal parameterizes the sensory accuracy chosen

by the radar. Recall that the probe signal αk is the diagonal of

the state noise covariance matrix: Qk = diag[αk (1), αk (2)].

For beam allocation, the ith component of the probe signal

αk (i) is the asymptotic predicted precision of the radar

tracker for target i. The probe αk parameterizes the radar’s

Cobb–Douglas utility for beam allocation. Our simulation

parameters for our numerical experiments are listed in

Table II.

Parameters for Numerical Experiments

In Table II, Unif(a, b) denotes the uniform pdf with sup-

port (a, b). The elements of the probes αk (3) and intensity

thresholds γk (14) are generated randomly and indepen-

dently over time k = 1, 2, . . . , K . For waveform adaptation,

we conduct our numerical experiments for two distinct util-

ity functions u1 and u2. Given the probe sequence {αk}K
k=1,

the cognitive radar chooses its smart response sequence

via (17) for masking optimal waveform adaptation and

via (19) for masking optimal beam allocation. Recall from

Section II that response βk is the diagonal of the inverse of

radar’s observation noise covariance matrix for waveform

adaptation. For beam allocation, βk (i) is the beam intensity

directed toward target i at time k.

Figs. 4 and 5 show the performance loss (minimum per-

turbation from optimal response computed via (17) and (19)

in Theorem 2) of the cognitive radar as a function of η

(extent of cognition masking) when the cognitive radar

Fig. 4. Masking waveform adaptation strategy from adversarial IRL:

Small deliberate performance loss (vertical axis) of the cognitive radar

results in large performance mitigation of the adversary (horizontal axis).

The figure illustrates a cognitive radar operating with two distinct utility

functions.

1) η = 1 corresponds to maximum cognition masking and, hence, results

in maximum performance loss. 2) For a fixed value of η, the quadratic

utility (b) requires smaller perturbation (≈ 10 times) from the optimal

response compared with the sublinear utility of subfigure (a).

(a) u(β ) =
∑m

i=1

√
β(i). (b) u(β ) =

∑m
i=1 β(i)2.

Fig. 5. Masking beam allocation strategy from adversarial IRL: Small

deliberate utility loss of the radar (vertical axis) results in large

performance loss (extent of strategy masking η) of the adversarial IRL

algorithm (horizontal axis). η = 0 corresponds to zero strategy masking,

and η = 1 corresponds to complete strategy masking by the radar. As

expected, the deliberate utility loss of the radar increases with η.

performs waveform adaptation and beam allocation, respec-

tively. We see that for both functionalities, both the radar’s

performance loss and adversarial IRL mitigation increase

with η. This is expected since larger η implies a larger shift

of the set of feasible strategies computed via IRL to ensure

that the radar’s strategy is sufficiently close to the edge of the

feasible set at the cost of greater deviation from the radar’s

optimal strategy.
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Fig. 6. Masking cognition from IRL detectors: Performance of metacognitive radar for waveform adaptation (a) and beam allocation (b) when the

adversary deploys an IRL detector (26) and (27) for cognition detection. The key takeaway is that a small sacrifice in performance of the radar results

in a large performance loss of adversary’s IRL detector. The performance loss of both the radar and the adversary due to metacognition increases with

scaling factor λ (37) and significance level γ of the adversary’s IRL detectors (26) and (27).

B. Cognition Masking Via Theorem 4 for Noisy Adver-
sary Measurements

We now consider the scenario where the adversary has

noisy measurements of the radar’s response. Consider the

simulation parameters of Table II. For our second set of

numerical experiments for both waveform adaptation and

beam allocation, we set the noise pdf fω (1) to N (0, 0.3I ),

whereN (μ, �) denotes the multivariate normal distribution

with mean μ and covariance �, and I denotes the identity

matrix in Theorem 4.

For the noisy case, we consider only a single utility func-

tion for waveform adaption, namely, u(β ) =
∑m

i=1

√
β(i).

We performed our numerical experiments for three values

of γ = {0.05, 0.1, 0.2} for both waveform adaptation and

beam allocation. Recall from Section IV that γ is the

significance level of the adversary’s IRL detectors (26) and

(27) in Definition 4.

Given the probe sequence {αk}K
k=1, we generated the

cognition-masking response sequence via (37) for wave-

form adaption and (38) for beam allocation by varying

the parameter λ (37) over the interval [100, 105]. Recall

from Theorem 4 that the radar minimizes the detectors’

conditional Type-I error probabilities (35) and (36) to mit-

igate adversarial IRL while deliberately compromising on

its performance (utility).

Our SPSA algorithm [102], [103] (Algorithm 2) for

stochastic gradient descent was executed over 104 iterations

for all pairs of (λ, γ ), λ ∈ {100, 101, 102, 103, 104, 105} and

γ ∈ {0.05, 0.1, 0.2}. Fig. 6 shows the conditional Type-I

error probability (adversarial IRL mitigation) of the detector

and performance loss of the radar as the parameter λ is

varied for three different values of the significance level α

of the adversary’s detector. Recall from Theorem 4 that the

parameter λ controls the extent of cognition masking for

noisy I-IRL. From Fig. 6, we see that both the conditional

Type-I error probability of the IRL detectors and radar’s

performance loss increase with λ as well as γ .

If λ = 0, the radar simply transmits its naive response

that maximizes its utility (no performance loss) and also re-

sults in zero adversarial mitigation. For the limiting case of

λ → ∞, the radar’s cognition-masking response computed

via Theorem 4 degenerates to a constant for all time k, hence

maximizing the conditional Type-I error probability of the

detector at the cost of maximal performance loss for the

radar.

Let us briefly discuss the variation of the radar per-

formance and adversarial mitigation as the parameter γ is

varied. γ (26) can be viewed as the risk-aversion tendency

of the adversary’s IRL system since it bounds the detector’s

Type-I error probability. Recall from (22) that the Type-I
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error is the probability of detecting a cognitive radar as

noncognitive. Higher γ implies that the detector is risk

seeking and a lower γ implies that the detector is risk averse.

Naturally, a larger deviation from the optimal strategy is

required to mitigate a risk-averse detector compared with a

risk-seeking detector to the same extent.

VI. CONCLUSION AND EXTENSIONS

This article investigated how a cognitive radar can

hide its cognition from an adversary when the adversary

performs IRL to estimate the radar’s utility function by

observing its actions. The adversary’s IRL estimate of the

radar’s strategy is a polytope of feasible solutions to a set

of convex inequalities. Our first cognition-masking result is

Theorem 2. When the adversary has accurate measurements

of the radar’s response, cognition masking via Theorem 2

ensures that the radar’s true strategy lies close to the edge of

the feasibility polytope computed via adversarial IRL (true

strategy poorly rationalizes adversary’s dataset). When the

adversary has noisy measurements of the radar’s response,

adversarial IRL generalizes to a cognition detector defined

in Definition 4. Our second cognition-masking result is

Theorem 4. The key idea is to maximize the probability

of the radar being classified as noncognitive by the detector

subject to a bound on the radar’s performance loss. Finally,

in Section V, we illustrate our cognition-masking results

on a cognitive radar that performs waveform adaptation

and beam allocation for target tracking. We show that small

purposeful deviations from the optimal strategy of the radar

suffice to significantly confuse the adversarial IRL system.

This article builds significantly on our previous

work [35] on ECM for identifying cognitive radars,

and [104], [105], and [106] on ECCM for masking radar

cognition. Theorem 6 extends IRL for cognitive radars [35]

when the radar faces multiple resource constraints. The

linear IRL feasibility test for a single constraint case gen-

eralizes to a mixed-integer feasibility test. Theorem 7 gen-

eralizes the cognition-masking result of [104] to multiple

constraints. Our previous works [104], [105], [106] assume

optimal adversarial IRL via Afriat’s theorem. This article

generalizes cognition masking to suboptimal adversarial

IRL algorithms. Algorithm 3 outlines a cognition scheme

when the adversary uses an arbitrary IRL algorithm to esti-

mate the radar’s strategy. Theorem 8 provides performance

bounds for our cognition-masking scheme when the adver-

sary has misspecified measurements of the radar’s response.

Although this article is radar-centric, we emphasize that the

problem formulation and algorithms developed also apply

to adversarial IRL in general machine learning applications.

Finally, a useful extension of this article would be to

study cognition masking in a dynamic radar–adversary

interaction environment in comparison with the batchwise

probe–response exchange considered in this article. Also,

how to mask cognition when the adversary knows of the

radar’s ECCM capability? Such an approach warrants a

game-theoretic discussion in terms of a Stackelberg game

where the adversary moves first and the radar responds

Algorithm 2: SPSA for Mitigating Utility Maximiza-

tion Detection for Adversarial IRL Detector (26) [(37)

in Theorem 4].

Step 1. Set β0 = {β∗
1:K}, the naive response

sequence (13) that maximizes the radar’s utility (3).

Step 2. Choose λ > 0 (extent of cognition masking).

Step 3. For iterations i = 0, 1, 2, . . ., (i) Compute

P̂(H1|{αk}K
k=1, βi, u), the empirical probability

estimate of the conditional Type-I error probability

of the detector (26) defined in (35) using R × K

fixed realizations {ωr,k}R,K
r,k=1

of adversary’s

measurement noise ωk ∼ fω (1)

1

R

R∑

r=1

1

{
φ∗

u ({αk, βi,k + ωr,k}K
k=1, u) > F−1

Lg
(1 − γ )

}

(39)

In (39)

• βi ≡ {βi,1:K} ≥ 0 is a vector of responses.

• 1{·} denotes the indicator function.

• R controls the accuracy of the empirical probability

estimate.

• FLg
(·) is the distribution function of the r.v. Lg (26).

• The statistic φ∗
u (·, u) is defined in (34). Let J (βi )

denote the objective being maximized in (37)

J (βi ) =
K∑

k=1

u(βi,k ) − u(βi,k ) − λP(H1|{αk}K
k=1, βi, u)

(40)

Then: (ii) Compute empirical estimate Ĵ (βi )

Ĵ (βi ) =
K∑

k=1

u(β∗
k ) − u(βi,k ) − λ P̂(H1|{αk}K

k=1, βi, u)

(41)

where P̂(H1|{αk}K
k=1, βi, u) is computed in (39).

(ii) Compute the estimate of the gradient ∇β J (βi )

as follows:

∇̂β (̂J (βi )) =
�i

ω‖�i‖2
F

Ĵ (βi + δ �i ) − Ĵ (βi − δ �i )

where δ is the gradient step size, || · ||2 denotes the

Frobenius norm, and �i ∈ {−1, +1}m×K is a

random perturbation vector whose each element is

±1 with probability 1/2. (iii) Update the radar’s

response as follows:

βi+1 = ProjSα

(
βi + η

�i

‖�i‖F

∇̂βĴ (βi )

)
(42)

where η is the response update step size and ProjSα
is

the projection operator to the hyperplane

Sα = {β1:K : α′
kβk = 1, βk ≥ 0}.

Step 4. Set i ← i + 1 and go to Step 3.

to the adversary’s probes. It is also worthwhile exploring

state-of-the-art concepts in chance constrained optimiza-

tion [107] and robust optimization [108], [109] to achieve

cognition masking under uncertainty—when the radar has

noisy measurements of the adversary’s probes.
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