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A metacognitive radar switches between two modes of cognition—
one mode to achieve a high-quality estimate of targets, and the other
mode to hide its utility function (plan). To achieve high-quality es-
timates of targets, a cognitive radar performs a constrained utility
maximization to adapt its sensing mode in response to a changing
target environment. If an adversary can estimate the utility function
of a cognitive radar, it can determine the radar’s sensing strategy
and mitigate the radar performance via electronic countermeasures
(ECM). This article discusses a metacognitive radar that switches
between two modes of cognition: achieving satisfactory estimates of
a target while hiding its strategy from an adversary that detects
cognition. The radar does so by transmitting purposefully designed
suboptimal responses to spoof the adversary’s Neyman—-Pearson de-
tector. We provide theoretical guarantees by ensuring that the Type-I
error probability of the adversary’s detector exceeds a predefined
level for a specified tolerance on the radar’s performance loss. We
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illustrate our cognition-masking scheme via numerical examples in-
volving waveform adaptation and beam allocation. We show that small
purposeful deviations from the optimal emission confuse the adversary
by significant amounts, thereby masking the radar’s cognition. Our
approach uses ideas from revealed preference in microeconomics and
adversarial inverse reinforcement learning. Our proposed algorithms
provide a principled approach for system-level electronic counter-
countermeasures to hide the radar’s strategy from an adversary. We
also provide performance bounds for our cognition-masking scheme
when the adversary has misspecified measurements of the radar’s
response.

GLOSSARY OF SYMBOLS

Abbreviations
IRL Inverse reinforcement learning.
I-IRL Inverse—inverse reinforcement learning.

IRL for Identifying Radar Cognition (see Section II)

k=1,2,...,K Time index.
ap € RY Target probe.
Bk € R Radar action.
Xx Target state.

Radar observation.

Radar tracker.

Observed radar action.
Measurement noise.

Radar tracker obs. noise covariance.
Radar tracker state noise covariance.
Radar sensor gain.

Radar tracker covariance.

Radar utility function.

Radar resource constraint.
Adversary’s IRL dataset.

A (a) When constraint is known.

(b) When utility is known.
Adversary’s IRL feasibility test.

0 Variable for IRL feasibility test.
Reconstructed utility function.
Reconstructed resource constraint.
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Br = Bk + wx
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Masking Radar Cognition (see Section I1I)
Margin of IRL feasibility test.
M, (Dy) (a) When constraint is known.
M(D,) (b) When utility is known.
n Extent of cognition masking.

{ﬂ,f}szl Radar’s naive utility-masking response.
{ﬁ,f}szl Radar’s cognition-masking response.

Masking Radar Cognition in Noise (see Section IV)
__ IRL detector for noisy radar responses.
¢*(D) Statistical test §Z? h(y).
D __ Adversary’s noisy IRL dataset.
¢*(D) Test statistic.
y Significance level.
A Extent of IRL detector mitigation.
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[. INTRODUCTION

In abstract terms, a cognitive radar is a constrained
utility maximizer with multiple sets of utility functions
and constraints that allow the radar to deploy different
strategies depending on changing environments. Cognitive
radars adapt their waveform scheduling and beam allocation
by optimizing their utility functions in different situations.
If a smart adversary can estimate the utility function or
constraints of the cognitive radar, then it can exploit this in-
formation to mitigate the radar’s performance (e.g., jam the
radar with purposefully designed interference). A natural
question is: How can a cognitive radar hide its cognition
from an adversary? Put simply, how can a smart sensor
hide its strategy by acting dumb? We term this cognition-
masking functionality as metacognition.! A metacognitive
radar [1] switches between two modes of cognition; one
mode to achieve a high-quality estimate of a target, and the
other mode to hide its utility function (plan).

A metacognitive radar pays a penalty for stealth—it
deliberately transmits suboptimal responses to keep its
strategy hidden from the adversary resulting in perfor-
mance degradation. This article investigates how a cognitive
radar hides its strategy when the adversary observes the
radar’s responses. Our metacognition results are inspired
by privacy-preserving mechanisms in differential privacy
and adversarial obfuscation in deep learning with related
works discussed in the following text. Although this article
is radar-centric, we emphasize that the problem formulation
and algorithms also apply to adversarial inverse reinforce-
ment learning (IRL) in general machine learning appli-
cations, namely, how to purposefully choose suboptimal
actions to hide a strategy.

Related Works

Cognitive radars are widely studied in the literature [2],
(31, [4], [S], [6], [71, 8], [9], [101, [11], [12], [13], [14],
[15], [16], [17], [18], [19], [201, [21], [22], [23], [24], [25],
[26], [27], [28], [29], [301, [31], [32], [33], [341;* see [2],
[3], [4], and [22] for comprehensive discussions on the
cognitive radar literature. More recently, our articles [35]
and [36] deal with IRL algorithms for cognitive radars,
namely, how can an adversary estimate the utility function of
a cognitive radar by observing its decisions. Reconstructing
a decision maker’s utility function by observing its actions
is the main focus of IRL [37], [38], [39] in machine learning
and revealed preference [40], [41] in the microeconomics
literature. In the radar literature, such IRL-based adversarial
actions to mitigate the radar’s operations are called elec-
tronic countermeasures (ECM) [35], [42], [43]. This article
builds on [35], [36], [44] and develops electronic counter-
countermeasures (ECCM) [45], [46], [47] to mitigate ECM.

1“Metacognition” [1] is used to describe a sensing platform that switches
between multiple objectives (constrained utility functions).

2We discuss cognitive radars in more detail in Section II-B and contextual-
ize the conventional models of radar cognition to the abstract constrained
utility maximization framework assumed throughout this article.
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This article assumes that the adversary’s ECM is unaware
if the radar has ECCM capability, which is consistent
with state-of-the-art ECCM literature. The central theme
of this article is to apply results from revealed preference
in microeconomics theory [40], [48]. To the best of our
knowledge, this approach for ECCM to hide cognition is
not explored in the literature.

Several works in the literature [49], [50], [51] highlight
how an adversary benefits from learning the radar’s utility
function. In [49], the adversary optimizes its probes to
increase the power of its statistical hypothesis test for utility
maximization. The authors in [50] and [51] show how
revealed preference-based IRL techniques can be used to
manipulate consumer behavior.

In the radar context, Sakuma et al. [52] use the
Laplacian mechanism for metacognition; the cognitive
radar anonymizes its trajectories via additive Laplacian
noise. Differential privacy-based adversarial obfuscation
has seen success in applications, such as ML [53], user
data sharing [54], and recommendation systems [55]. In our
cognition-masking approach, the radar mitigates adversar-
ial IRL via purposeful perturbations from an optimal strat-
egy, where the perturbations are computed via stochastic
gradient algorithms (see Algorithm 2 in Section IV-B).

Outline and Organization of Results

1) Background—IRL: In Section II, we formulate the
interaction between a cognitive radar and an ad-
versary target. We first discuss several cognitive
radar models studied in optimal waveform design
and sensor management in Section II-B. We then
review the main idea of revealed preference-based
adversarial IRL algorithms, namely, Theorems 1 and
5 in Section II-C, that the adversary uses to recon-
struct the radar’s strategy from its actions. Then,
we outline two examples of cognitive radar func-
tionalities, namely, waveform adaptation and beam
allocation. Theorem 6 stated that in Appendix F, the
supplementary document extends adversarial IRL to
the case where the cognitive radar faces multiple
constraints. Theorem 6 is omitted from the main text
for readability.

2) Masking Radar’s Strategy From Adversarial IRL:
Section III contains our main metacognition results,
namely, Theorem 2 for mitigating adversarial IRL by
masking the radar’s strategy. The key idea is for the
radar to deliberately deviate from its optimal (naive)
response to ensure the following.

a) Its true strategy almost fails to rationalize its per-
turbed responses (masked from adversarial IRL).

b) Its performance degradation due to suboptimal re-
sponses does not exceed a particular threshold. The-
orem 7 in Appendix F extends Theorem 2 to the
case where the cognitive radar has multiple con-
straints. Theorem 8 provides performance bounds on
the cognition-masking scheme of Theorem 2 when
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the adversary has misspecified measurements of the
radar’s response.

3) Masking Radar’s Strategy From Adversarial IRL
Detectors in Noise: Section IV extends our IRL
and cognition-masking results to the case where the
adversary has noisy measurements of the radar’s re-
sponse. First, we define IRL detectors (Definition 4)
that detect radar’s cognition in noise. Then, we en-
hance our cognition-masking scheme of Theorem 2
to mitigate the IRL detectors. The radar’s cognition-
masking objective is now used to maximize the de-
tectors’ conditional Type-I error probability, subject
to abound on its deliberate performance degradation.

4) Numerical Illustration of Masking Cognition by
Metacognitive Radars: Section V illustrates our
metacognition results on two target tracking func-
tionalities, namely, waveform adaptation and beam
allocation. Our numerical experiments show that the
metacognition algorithms in this article can effec-
tively mask both the radar’s utility function and re-
source constraint when the cognitive radar is probed
by the adversarial target. Our main finding is that a
small deliberate performance loss of the metacogni-
tive radar suffices to mask the radar’s strategy from
the adversary to a large extent. For conciseness, we
include the appendix in an online document separate
from the main text as supplementary material.

Running Example: Since the concept of ECCM via
cognition masking is somewhat abstract, for the reader’s
convenience, we relate each assumption, definition, and the-
orem introduced in this article at an implementation level to
a real-world cognitive radar example. Specifically, we con-
sider a cognitive radar [20] tracking an adversarial target.

[I. BACKGROUND:
RADAR

IRL TO ESTIMATE COGNITIVE

Since this article investigates how to construct a cog-
nitive radar that hides its utility from an adversarial IRL
system, this section gives the background on how an adver-
sarial system can use IRL to estimate the radar’s utility. An
important aspect of the IRL framework below is that it is a
necessary and sufficient condition for identifying cognition
(utility maximization behavior); hence, it can be considered
an optimal IRL scheme. Appendixes H and G discuss
cognition masking when the adversary performs suboptimal
IRL.

A. Radar-Adversary Dynamics

MODEL 1 (RADAR-TARGET INTERACTION) The cognitive
radar—adversary interaction has the following dynamics:

target probe: oy € Ri
radar action: By € Ri
target state: x; = {xp(¢), t =1,2,...},

Xt + 1) ~ pg, (x]xx(2)), x0 ~ 7o
radar observation: y, ~ pg, (y|xx)
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radar tracker: w = T (71, Yx)

observed radar action: Bk =pr+wk, o ~ f, (1)

REMARKS
model (1).

We now give examples for the abstract

1) A widely used example [56], [57] for the radar—
adversary dynamics model (1) is that of linear Gaus-
sian dynamics for target kinematics and linear Gaus-
sian measurements

xp(t 4+ 1) =Axp (1) +w, (), x(0) ~ 9 =N (%o, Zo)
ye(t) = Cxp(t) + v, (Be), k=1,2,....K.
(2)

Here, x;(t) e X =RX and y;(t) e Y =R". Ais a
block diagonal matrix [58] when the target state
represents its position and velocity in Euclidean
space. The variables w, ~ N (0, Q(ct)) and v, ~
N0, R(B)) are mutually independent Gaussian
noise processes.

2) In this article, we are only concerned with the
asymptotic statistics of the radar tracker 7 (1) for
our cognition-masking algorithms. One example is
that of a Bayesian tracker (Kalman filter) where the
asymptotic covariance of the state estimate is the
unique positive semidefinite solution of the algebraic
Riccati equation (ARE). Other tracker examples in-
clude the particle filter, interacting multiple-model
filter, etc.

We now proceed to define a cognitive radar, which we
assume in this article to be a constrained utility maximizer.

DEFINITION 1 (COGNITIVE RADAR) Consider the radar—
adversary interaction dynamics of Model 1. The cognitive
radar chooses its response B (1) at time k by maximizing
a utility function u(ey, -) subject to constraint g(ay, -) < 0

B € argmax u(ay, B)
glag, B) < 0. 3)

We assume that g(-) is an increasing function of S.

From a radar practitioner’s perspective, let us briefly
relate the parameters in Definition 1 to a cognitive radar—
adversary interaction. Consider a cognitive radar as mod-
eled in [20, Sec. 4B] tracking an adversarial target. The
response B parameterizes the radar’s transmitted waveform,
and the probe o parameterizes the state noise covariance
matrix due to the adversary’s maneuvers. In the cognitive
radar context of [20], the utility function u(-) is equivalent
to the inverse of the transmitted signal power (radar mini-
mizes its transmission power); the constraints g(oy, -) <0
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can be interpreted as posterior Cramer—Rao bound (PCRB)
constraints on the radar’s estimate of the target’s state’

REMARKS

1) In the main text of this article, we consider a single
constraint. This is consistent with most works in cog-
nitive radar literature, which also assume a single op-
erating constraint. For example, in [59], the cognitive
radar is constrained by a bound on the target dwell
time (monotone in the time the radar spends tracking
each target). In [22], the radar’s constraint is a bound
on the receiver sensor processing cost (monotone
in the radar’s choice of sensor accuracy for target
tracking). Hence, we only consider the operating cost
of the radar in the main text, which is reflected in the
radar’s scalar-valued constraint g in (3).

2) Multiple Resource Constraints: Our IRL method-
ology discussed in the following text can be ex-
tended to multiple resource constraints (g is vector
valued). However, for readability, we only consider
a scalar-valued constraint g in the main text of this
article. We consider multiple resource constraints in
Appendix F. The notation for IRL and cognition-
masking results is complicated for vector-valued cost
g(-) and, hence, omitted from the main text and
discussed in the supplementary document.

B. Radar Cogpnition as Constrained Utility Maximization

Cognitive radars have been studied extensively in the
literature [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34]. In this section, we discuss relevant works from the
cognitive radar literature and contextualize widely used
models of radar cognition to the abstract constrained utility
maximization framework proposed in Definition 1.

Cognitive Radars: The term “cognition” in cognitive
radars is used to describe a number of functionalities, such
as optimal waveform design, knowledge-aided radar de-
tection and tracking for minimizing response times, and
sensor management. A cognitive radar [22], [59], [60]
uses the perception—action cycle of cognition to sense the
environment and learn from it relevant information about
the target and the environment. Cognitive radars have also
been modeled as reinforcement learners in the literature
that maximize their utility [35], [36], [61], [62], [63] and
tune their sensing resources to optimally satisfy mission
objectives.*

Table I displays works in the cognitive radar literature
related to the constrained utility maximizer framework

31t is straightforward to show that PCRB is inversely proportional to
the radar sensor’s SNR that depends on the target’s maneuvers; hence,
g(ay) can be viewed as SNR constraints with explicit dependence on the
adversarial probe ay.

“In the context of Data Fusion Information Group (DFIG) process
model [64], sensor adaptation by the radar can be viewed as Level 4-process
refinement in the DFIG model.
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of Definition 1. For brevity, we limit our discussion of
cognitive radars to waveform design, sensor management,
and joint waveform-receiver filter design.

1) Radar cognition for optimal waveform design: The
signal-to-interference noise ratio (SINR) is a widely used
objective maximized by cognitive radars for waveform
adaptation [5], [6], [7], [8], [9], [10]. In [5] and [6], the radar
is constrained by the maximum peak-to-average ratio (PAR)
of the transmission code that controls the variation of the
code about its mean value, and hence, controls the transmis-
sion bandwidth. In [7], [8], and [9], the radar is constrained
by the total contiguous bandwidth available for transmis-
sion, and the resulting optimization problem results in the
well-studied sense—react—notch paradigm. The cognitive
radar in [10] faces multiple constraints, namely, bounds on
the total transmission power, Hamming/Manhattan distance
with respect to a reference code, and the interference power
spilled over in undesirable frequency bands. We extend our
cognition-masking result of Theorem 2 to vector-valued
constraints in Theorem 7 in the supplementary document.

The cognitive radar discussed in [11] minimizes a
convex combination of two metrics, namely, the spectral-
integrated level ratio (SILR), a variable that is inversely pro-
portional to the SINR, and the integrated cross-correlation
level (ICCL) that measures the cross correlation of the trans-
mitted waveforms across multiple antennas. The transmit-
ted waveform is constrained to be either constant modulus
or discrete phase (equivalent to M-ary phase-shift keying
with a prespecified alphabet size). In [12], the radar mini-
mizes the £,-norm between the ambiguity function of the
transmitted waveform and that of a reference waveform con-
strained by the total transmission power. The waveform de-
sign scheme in [16] resembles that of [12] in which the cog-
nitive radar minimizes a convex combination of the interfer-
ence power and the side lobe correlation, subject to a bound
on the transmission power. In [13], [14], and [15], the radar
maximizes the M.I. (based on differential entropy) between
the received signal and the impulse response of the target
subject to a bound on the transmission power. In [21], the
cognitive radar minimizes the posterior Cramer—Rao lower
bound (CRLB) of the target estimate subject to a bound on
the transmission power. The CRLB for the target estimate
is also widely used in cognitive radars performing optimal
sensor management as discussed in the following text.

2) Radar cognition for optimal sensor management:
Analogous to optimal waveform design, SINR is also a
widely used objective for optimal sensor management in
cognitive radars [17], [18], where the radar is constrained by
sensing constraints, such as the cost of changing the tracked
cellin Euclidean space [17] and bound on downlink interfer-
ence power [19]. The posterior and predicted CRLBs for the
target estimate are also widely used optimization metrics for
cognitive radar performing optimal sensor deployment [21],
[22], where the radar faces constraints, such as bounds on
the communication cost with the central processing unit [21]
and bounds on the sensing and processing cost [22]. A
similar model is proposed in [23], where the radar optimizes
its sensor deployment locations and the number of active
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TABLE 1

Cognitive Radars as Constrained Utility Maximizers

Works Category Utility Constraint
[5], [6] Waveform Minimum SINR of finitely many users Bound on Peak-to-Average Ratio (PAR)
[7], [81, [9] Waveform SINR (Sense—React—Notch Paradigm) Bound on contiguous transmission bandwidth
Bounds on interference power in restricted fre-
[10] Waveform SINR quency bands, total transmission power, and lower
bound on similarity wrt a reference code
(1] Waveform Negative of convex combination' of SILR (interfer- Baseband transmission codes' are constrained to be
ence), ICCL (waveform correlation) either constant modulus or discrete phase
[12] Waveform NegaFive of Lo-deviation from a desired ambiguity Bound on transmission power
function
[13], [14], [15] Waveform M.L tl?e be'tweevn measured signal and target Bound on transmission power
impulse response
Negative of convex combination of interference
[16] Waveform power in restricted frequency bands and side-lobe | Bound on transmission power
correlation
Bounds on Euclidean distance between current and
[171,[18],[19] Tracked cell SINR next tracked cell (cost of shifting target cell), down-

link interference power

[20], [21] Sensor, Waveform

Negative of predicted posterior CRLB for target

Bounds on transmission power, communication cost

[311,[32],[33]| Joint waveform—receiver filter

estimate
Negative of predicted conditional CRLB of target . .
[22] Sensor satv predi . & Bounds on sensing cost, processing cost
estimate
(i) For sensor deployment locations: unconstrained
Negative of root-mean-squared error between (global optimum achieved in finitely many steps),
[23] Sensor X <
target state and estimate (ii) For number of sensors to be deployed: Bound
on deployed sensors
[24], [25], [26] Beamsteering Target position entropy (as a function of target cell) | Bound on target tracking entropy
Likelihood of emissi a 2-D grid und aus- . .. . .
[27], [28] Sensor Akelhood Of emission on a grid under Gaus Emission activity norm (block-sparsity constraint)
sian measurement model
. . Normalization constraint on the received signal
. . . Negative of interference and clutter power at the . SIg!
[29] Joint waveform—receiver filter receiver power (Capon constraint), Bound on transmission
power
[30] Joint waveform-receiver filter | Negative of interference power at the receiver Capon constraint, code constraint from [12]
Orthogonality —constraint between waveforms,

SINR, signal power at the receiver

bounds on transmission power, bounds on La-
distance from a set of reference waveforms

[34] Joint waveform—receiver filter | SCNR

Bound on transmission power

In the table above, we contextualize several notable works in the cognitive radar literature according to the abstract constrained utility maximization setup of Definition 1. For
every cognitive radar model, as discussed in Section II-B, we list the optimization type or “category,” the equivalent utility being maximized by the radar and the resource
constraint faced by the radar. The metacognition algorithms in this article provide a principled approach to spoof an adversary that can identify the radar’s plan and mitigate

the radar’s operations.

sensors. The radar minimizes the mean squared tracking
error subject to constraints on the number of sensors de-
ployed. The authors in [24], [25], and [26] address optimal
beamsteering for cognitive radars. To choose the optimal
cell for focusing its transmit beam, the radar maximizes
the entropy of the target’s location. For target tracking, the
optimal sensor parameters minimize the target’s tracking
entropy (based on the location and velocity of the target).
Finally, Aubry et al. [27], [28] design cognitive radars for
adaptive target detection that maximize the likelihood of
target emission on a two-dimensional (2-D) grid, subject to
block sparsity constraints on the target location.

3) Radar cognition for joint waveform—receiver filter
optimization: Joint optimization of waveform and receiver
filter design is well explored in the cognitive radar literature;
we discuss a few notable works in the following text. Note
that the radar optimizes over two variables, namely, the re-
ceiver filter and the transmitted waveform. In [29] and [30],
the radar minimizes the clutter/interference power at the
receiver subject to the well-known Capon [65] constraint,
namely, a normalization constraint on the received signal
power. In addition, the radar in [29] is subject to an equality
(normalization) constraint on the received signal power,
and a bound on the transmission power in [29]. The radar
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in [30] faces an additional waveform constraint (identical
to [12]), namely, the transmission waveform is constrained
to be either constant modulus or discrete phase. On a related
note, robust constrained Capon beamforming is investigated
in [66], [67], and [68]. Rossetti and Lambotharan [31] con-
sider a bistatic cognitive radar transmitting two waveforms.
The joint waveform-receiver filter optimization is done in
two steps: First, the optimum receiver filters are computed
that maximize the receiver SINR. Then, the optimal wave-
forms are computed that maximize the signal power at the
radar receiver subject to orthogonality constraints on the two
waveforms, transmission power constraints, and bounds on
L,-deviation from a set of reference waveforms. Rossetti
and Lambotharan [31] generalize their work to multistatic
radars in [32] and to cognitive radar networks in [33].
Finally, Guerci et al. [34] maximize the signal-to-clutter
noise ratio (SCNR) at the receiver subject to a bound on the
transmission power. The key idea is that the introduction
of a physics-based scattering model for the clutter environ-
ment makes the maximization of SCNR tractable unlike the
traditional approaches.

Metacognitive Radars: A metacognitive radar [2],
[69], [70], [71] transcends conventional notions of “cog-
nition” in radars. In this article, we view metacognition
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Fig. 1. Schematic of adversarial IRL against cognitive radars. The
adversary observes a sequence of decisions of the cognitive radar in
response to a sequence of adversarial probes. Revealed preference-based
adversarial IRL (Afriat’s Theorem) [40], [48] is equivalent to checking
the existence of a feasibility polytope for a set of inequalities (Afriat’s
Theorem [40], [48]). Our aim in this article is to make adversarial IRL
cumbersome—how to purposefully distort radar responses metacognition
objective in this article is to spoof adversarial IRL, namely, how to make
checking linear feasibility difficult.

as the radar’s sensing ability to identify an adversary in
its environment and strategic ability to spoof the adversary
using inverse—inverse reinforcement learning (I-IRL) tech-
niques to “mask” its cognition. The working assumption of
the article is that an adversary can identify the cognitive
ability of a radar and mitigate the radar’s operations based
on this information. Recent works address how to identify
cognitive radars by analyzing a finite time series of emission
exchanges with the radar [35], [36], [44]; a summary of the
strategy identification results is presented in Section II-C in
the following text.

Radar functionalities that mitigate adversarial systems
are termed ECCM in the radar literature; see [72] for a
comprehensive discussion. Low-probability-of-intercept
(LPY) transmission design [45], [73], [74] achieves stealth
for cognitive radars and avoids cognition detection.
Waveform adaptation schemes to counter barrage jamming
are studied in [45] and [46]. Frequency diversity for
stealth-based ECCM in multitarget and moving target
tracking applications is studied in [75], [76], and [77].

While the works discussed above mitigate an adversary,
the ECCM measures do not necessarily mask the radar’s
cognition. The metacognitive radar’s aim in this article is to
confuse the adversary’s detector and hide its cognition, i.e.,
ensuring the adversary incorrectly reconstructs the radar’s
strategy with high probability, by deliberately transmitting
suboptimal responses. Specifically, this article contributes
to antistealth and anti-ARM ECCM [78] by ensuring that
adversarial mitigation is ineffective with a large probability.

C. Adversarial IRL for Identifying Strategy of Cognitive
Radar

We now review the main results for adversarial IRL,
namely, how an adversary can identify and reconstruct the
radar’s strategy by observing the radar’s responses. The
adversarial IRL system is schematically shown in Fig. 1.
The key idea is to formulate the adversary’s task of iden-
tifying the radar’s strategy as a linear feasibility problem
in terms of the radar’s responses. This article considers
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two distinct scenarios in terms of the dependence of the
adversary’s probe o on the radar’s utility u and resource
constraint g in (3). The two scenarios are formalized in
Assumptions 1 and 2 below in our IRL results, Theorems 1
and 5, and justified in Section II-D in the tracking examples
of waveform adaptation and beam allocation.

IRL for Identifying Radar’s Utility Function

In works, such as [11] and [16], the adversary can
mitigate the cognitive radar if the adversary knows the utility
weights. Theorem 1 below provides a set-valued reconstruc-
tion algorithm to estimate the radar’s utility function when
the adversary controls the radar’s resource constraint. Such
scenarios where the adversary knows the radar’s resource
constraint is formalized below in Assumption 1.

ASSUMPTION 1 The radar’s resource constraint g(-) in (3)
is linear in the adversary’s probe «; and the radar’s utility
u(-) is independent of o

g(Olk, :3)201]/(/3_19 u(O(k, ﬂ)Eu(ﬂ) (4)

IRL objective: The adversary aims to reconstruct the radar’s
utility u(-) using the dataset Dy, where D, is defined as
follows:

Dy = {g(eu. ), Bitie (5)
where g(oy, -) is defined in (4).

In spite of its linear structure, the constraint in (4) can
model nonlinear radar constraints via a suitable definition
of the radar’s response § and the adversary’s probe «. For
example, an upper bound on the asymptotic precision of
the radar’s state estimate (inverse of the solution of the
ARE) can be expressed as a linear constraint in terms of
the eigenvalues of the state and noise covariance matrix;
see [35, Lemma 3] for a detailed exposition. Let us now state
Theorem 1 for achieving IRL when assumption 1 holds.

THEOREM 1 (IRL FOR IDENTIFYING RADAR’S UTILITY
FUNCTION) Consider the cognitive radar described in
Model 1. Suppose assumption 1 holds. Then

1) The adversary checks for the existence of a feasible
utility function that satisfies (3) by checking the feasibility
of a set of linear inequalities

T here exists a feasible 6 € RiK st. AB,Dy) <0
& Jus.t.fi € argmaxu(B), o f < 1Vk (6)
where dataset D, is defined in (5) and the set of inequalities
A < 0is defined in Appendix A.
2) If A(-, Dy) < 0 has afeasible solution, the set-valued
IRL estimate of the radar’s utility u is given by
ure (B) = {urL(B; 0) : A0, D,) < 0}
urL(B; 0) = min {6 + Ok o (B — B} (D)
ke(l.2,...K}
Theorem 1 is well known in microeconomics as Afriat’s
theorem [40], [48] and widely used for set-valued estimation

of consumer utilities from the offline data. In complete
analogy, the adversary also performs IRL on a batch of
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probe-response exchanges with the cognitive radar to re-
construct the radar’s utility.> Abstractly, Theorem 1 says
that given a finite dataset, the adversary can at best construct
a polytope of feasible strategies that rationalize the adver-
sary’s dataset. Theorem 1 achieves IRL when the radar faces
asingle operating constraint. We discuss adversarial IRL for
multiple resource constraints in Theorem 6 in Appendix F.
Then, the linear feasibility test of (6) generalizes to a
mixed-integer linear feasibility test, linear in the real-valued
feasible variables in the multiconstraint case.

The important aspects of Theorem 1 to a practitioner
are the following: Unlike typical reactive ECM systems, the
adversarial target in this article is assumed to be a cognitive
entity [80]. The cognitive ECM entity has the capability to
estimate the radar’s strategy encoded in its utility function
u, and then perform adversarial maneuvers (o.x)aqv that
minimize the radar’s utility

K
(@ )aay € argmin ) | maxu(By), gl f) <0 (§)

oK k=1

In the context of the cognitive radar modeled in [20], the
utility function could be a Quality-of-Service (QoS) met-
ric [81] the radar maximizes to yield the optimal waveform
parameter (instead of simply minimizing the transmission
power). The ECM objective in this scenario would be to
identify the radar’s QoS function for mitigating its oper-
ations. Through the reconstructive procedure of (47) in
Theorem 1, the adversary can estimate the radar’s utility,
and then use (8) to design optimal maneuvers that minimize
the radar’s QoS.°

IRL for Identifying Radar’s Resource Constraints

In certain scenarios, the utility of the radar is well known
[e.g., signal-to-noise ratio (SNR)], but the operational con-
straints of the radar are not known, for example, bound
on the PAR [5], [6]. We formalize such scenarios where
the adversary knows the radar’s utility function below as
Assumption 2:

ASSUMPTION 2 The radar’s utility function u(-) (3) is con-
trolled by the adversary’s probe «, the radar’s resource
constraint g is independent of oy and has the following form:

glax, B) =gB) — vk, vk >0 ©)

where yy, g are independent of o.
IRL objective: The adversary aims to reconstruct g(-)
using the dataset D,,, where D, is defined as follows:

D, = {u(a, ), Bikies- (10)

S Afriat’s theorem with linear constraints (4) has been generalized to
nonlinear monotone constraints in the literature [79]. For the radar context
in this article, it suffices to assume a linear constraint when the adversary
is trying to estimate the radar’s utility.

Popular framework to study radar—adversary interactions of the form in
(8) is the principal agent problem (PAP). We refer the reader to [82] and
[83], where Krishnamurthy et al. design ECCM strategies using a PAP
framework for adversarial mitigation.
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IRL for estimating the radar resource constraints has the
same structure as that of Theorem 1 and is discussed in the
online supplementary document. IRL for Assumption 2 is
formally stated in Theorem 5 in Appendix B and summa-
rized as follows:

girL(B) = {grL(B; 0) : AB, D,) > 0}
grL(B; 0) = ke{{IlzaX K]{Qk + Og i (ulag, B) — ulay, Bi))}

an

where grp is the adversary’s set-valued estimate of the
radar’s constraint g, dataset D,, is defined in (10) and 6 €
R?X is a feasible vector w.r.t. the feasibility test A(-, D,) >
0. Note how the IRL feasibility inequalities in (11) are
identical to that of (6) in Theorem 1 but with the inequality
direction reversed.

Theorem 5 is useful when the adversary is interested
in evaluating the radar’s constraints. Consider the cognitive
radar in [20]. The adversary knows the radar’s utility, for ex-
ample, the SNR. The adversary’s aim instead is to estimate
the radar’s constraints on the cost of communication [20,
eq. (40)] with the central processing unit. Knowledge of the
radar’s communication cost facilitates adversarial maneu-
ver selection as follows:

K
(@)aay € argmin ) 7 maxu(e, B, 8B < v (12)

oK k=1

where the utility function is simply the radar sensor’s
SNR that indeed depends on the adversary’s maneuvers
(parametrized by probe «4), g() is the radar’s communi-
cation cost, and y; is the cost threshold at time step k.

D. Examples of IRL for Identifying Radar Cognition

Below, we discuss two examples of cognitive radar
functionalities, namely, waveform adaptation and beam
allocation. Throughout this article, we will use the two
examples below for contextualizing our cognition-masking
results.’

1) Example I—Waveform Adaptation for Cognitive
Radar: Waveform adaptation [84], [85], [86], [87], [88],
[89] is a crucial functionality of a cognitive radar. Consider
a cognitive radar with linear Gaussian dynamics and mea-
surements (2). The cognitive radar’s aim is to choose the
optimal sensor mode (observation noise covariance) based
on the target’s maneuvers. The more accurate sensor results
in more precise observations but is also costlier to deploy.
Appendix D formalizes the optimal waveform adaptation
and abstracts the problem as the constrained utility maxi-
mization problem of (3). In simple terms, the cognitive radar
maximizes its observation noise covariance (least accurate
sensing mode) subject to a lower bound on the radar’s SNR.
The key idea is to assume that the adversary’s probe oy
and radar’s response S are the eigenvalues of covariance
matrices Q and R™!, respectively, and hence, parameterize

"In Appendixes C and D, we formally relate the variables in (13) and (14)
to tracker-level parameters of the cognitive radar.
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the state and observation noise covariance in the state-space
model of (2). Appendix D then shows the equivalence be-
tween an upper bound on the radar’s asymptotic covariance
(Z*(otg, Br))~" and the linear constraint o, < 1. In sum-
mary, the cognitive radar’s optimal waveform adaptation
strategy can be abstracted as follows:

Br € argmax u(B), o B <1 (13)

where u is the radar’s utility, and the linear constraint oe,’( B <
1 equivalently bounds the asymptotic precision of the radar.

Let us briefly discuss the state-of-the-art in waveform
design in the radar literature and show how optimal wave-
form design can be embedded in the abstract constrained
utility maximization setup of (13). In [84], the constraint in
(13) is a bound on the waveform power; the utility function
is either the conditional M.I. between the target impulse
response and the reflected waveforms, given the knowledge
of transmitted waveform, or simply the negative of the mean
squared error between the true and estimated location of the
target being tracked, with both choices of utility function
yielding the same optimal waveform choice. Liu et al. [86]
study waveform design in omnidirectional radars where the
radar’s utility function (13) is the negative of the downlink
multiuser interference and the resource constraint is simply
a bound on the transmitted power. In [88], the radar’s utility
is the negative of the Crdmer—Rao bound on the variance
of the radar’s state estimate; the radar’s resource constraint
is a bound on its transmission power. Wei et al. [87] design
optimal waveforms with an added ECCM functionality to
mitigate ECM. The key idea is to first send a pilot waveform
to estimate the parameters of the adversary’s ECM, followed
by intrapulse frequency coding with appropriate parameters
to deceive the adversary’s ECM. Our ECCM approach is
similar to that of [§7] with the only difference that, instead
of increasing the bandwidth of our transmitted signal to
combat smart noise jamming, the cognitive radar transmits
suboptimal waveforms to avoid its strategy from being
reconstructed by the adversary.

IRL for optimal waveform adaptation: The adversary’s
aim is to identify the radar’s utility function u. Also, the
setup of (13) falls under Assumption 1. Hence, the adver-
sary uses the IRL test of (6) in Theorem 1 for identifying
u.

2) Example 2—Beam Allocation for Cognitive Radar:
Appendix C discusses optimal beam allocation [90], [91],
[92], [93], [94]. The cognitive radar’s aim is to allocate its
beam intensity optimally between multiple targets. Com-
pared to a target with less jerky maneuvers, a target with un-
predictable maneuvers requires a more focused beam for the
SNR to lie above a certain threshold. Appendix C formalizes
the beam allocation problem and abstracts the problem as
a constrained utility maximization problem (3). The key
idea is to relate the adversary’s probe oy to the asymptotic
predicted precision of the radar tracker. In summary, the
cognitive radar’s optimal waveform adaptation problem can
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be abstracted as follows:

Bi € argmax u(ex, B) = [ [BO™D, 1Bl <y (14)

i=1

where the radar maximizes a Cobb—Douglas utility subject
to a bound y; on the total transmit beam intensity («x-norm
of intensity vector) for all k.

IRL for optimal beam allocation: Since the adversary
knows the radar’s utility (Assumption 2), its aim is to
identify the radar’s constraint g(-) — ¥ < 0 using the IRL
test (50) in Theorem 5.

Summary: This section discussed how an adversary
can deploy IRL to estimate a cognitive radar’s utility and
constraint. While IRL with a single operational constraint is
discussed in [35], the IRL algorithm for multiple constraints
(in Appendix F) is new. This section also related Theorem 1
for identifying radar cognition to the parameters of a cog-
nitive radar [20].

. 1-IRL: MASKING RADAR UTILITY AND CON-
STRAINTS FROM ADVERSARIAL IRL

Having discussed how an IRL system can detect a
cognitive radar, we are now ready to design a cognitive radar
that is aware of the adversary’s IRL motives and hides its
strategy (utility function and resource constraints) from the
IRL system. In radar terminology, IRL for mitigating a radar
system falls under the field of ECM. Since metacognition
deals with spoofing adversarial IRL, it can be viewed as
a form of ECCM against ECM, see schematic outlined in
Fig. 2.

Rationale: How to hide cognition? Recall that the fea-
sibility of (6) and (50) is both necessary and sufficient for
identifying utility maximization behavior (3); see [40] and
[48] for the proof. Hence, a cognitive radar’s true strategy
lies within the polytope of feasible strategies computed by
the adversary (see Fig. 1). The cognition-masking rationale
in this article is to transmit purposefully the designed per-
turbed responses that ensure that the radar’s true strategy
lies close to the edge of the polytope of feasible strategies.
The distance from the edge of the feasibility polytope is
a measure of goodness-of-fit of the strategy to the radar’s
responses; see Definitions 2 and 3 in the following text. In
other words, the radar deliberately sacrifices performance
to ensure that its strategy poorly rationalizes its perturbed
responses, hence hiding its strategy from adversarial IRL.

Main Result: How a radar can mask its utility/constraints

Theorem 2 below is our main result for cognition mask-
ing. Theorem 2 uses the concept of feasibility margin—how
far is a strategy from failing the IRL feasibility tests (6)
or (50). We define two margins—AM, and M ,—for the
feasibility margins of feasible utilities # and constraints g,
respectively.

DEFINITION 2 (FEASIBILITY MARGIN FOR RECONSTRUCTED
UTILITY (6)) Consider the dataset D, defined in (5). The
feasibility margin M, (D,) defined below measures how
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Naive Response Scheme : Only maximizes utility function

Naive responses *

: Cognition Masking Scheme : Maximizes utility and hides strategy from IRL
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I Probes o, | 1 Probes oy, !

Fig. 2. Schematic of the cognitive radar masking its strategy from adversarial IRL (via Theorem 2).

Naive response scheme (Left): The adversary sends a sequence of probe signals to the radar and records its responses to the adversary’s probes. The
radar’s strategy passes the IRL feasibility test of Theorem 1 with a large margin if the radar transmits naive responses (3) and can be reconstructed by
IRL.

Cognition-masking scheme (Right): If the radar is aware of adversarial IRL, the radar deliberately perturbs its responses according to Theorem 2 to
hide its strategy from the adversary at the cost of performance degradation. In Section V, we illustrate via numerical examples how small deliberate
perturbations in the radar’s naive responses mask the radar’s strategy from adversarial IRL to a large extent.

far is the utility u from failing the IRL feasibility test (6)

My (D) = min ¢, Aw, D) +el=0 (15

where 1 is the column vector of all ones.

DEFINITION 3 (FEASIBILITY MARGIN FOR RECONSTRUCTED
CONSTRAINTS (50)) Consider the dataset D, defined in
(10). The feasibility margin M,(D,) defined below mea-
sures how far the constraint g is from failing the IRL
feasibility test (50)

Mg(Du) = H1>igl€, A(g, Du) —€el1<0 (16)

where 1 is the column vector of all ones.

The margins (15) and (16) are measure of goodness-of-
fit for the IRL feasibility inequalities (6) and (50), respec-
tively, for any feasible strategy.® If u is a feasible utility that
rationalizes D, (5), we have A(u, D,) < 0 from (6). Hence,
the margin for u is the minimum nonnegative perturbation
so that the IRL test of (6) fails, that is, A(-, D,) + €1 > 0.
Similarly, if g is a feasible resource constraint that ratio-
nalizes D, (10), we have A(u, D,) > 0 from (50). Hence,
the margin for u is the minimum nonpositive perturbation
so that the IRL test of (6) fails, that is, A(-, D) — €l > 0.
Equivalently, the margin measures how far a strategy lies
from the edge of the polytope of feasible strategies.” The
concept of margins arises in many prominent areas of ma-
chine learning, for example, in support vector machines [99]
for classification tasks and also max-margin IRL [100]. In
the radar context, a strategy with a large feasible margin is a

8Strictly speaking, the margin (15) is the minimum perturbation so that
A(uy, D,) is infeasible, where u 4 is the finite-dimensional projection of
u for the IRL feasibility test defined in (48) in Appendix A. However, we
abuse notation and express the feasibility test as A(u, D,,) for the sake of
simplicity of exposition. We abuse notation in a similar way for (16).
9There exist several robustness measures in the literature [95], [96], [96],
[97], [98] that check how well a dataset satisfies economic-based ratio-
nality. Our cognition-masking aim is more subtle—our aim is to ensure
that a particular strategy rationalizes a dataset poorly by minimizing its
feasibility margin (15), (16).

8834

high-confidence point estimate of the radar’s strategy and,
hence, at higher risk of getting exposed.

We are now ready to state our first cognition-masking
result, Theorem 2. Theorem 2 ensures that the radar’s true
strategy has a low feasibility margin w.r.t. the IRL tests
of Theorems 1 and 5 by deliberately perturbing the radar’s
naive responses (3). In a sense, the radar optimally switches
between maximizing its performance and maximizing the
privacy of its plan.

THEOREM 2 (MASKING COGNITION FROM ADVERSARIAL
IRL FEASIBILITY TESTS.) Consider the cognitive radar (3)
in Definition 1. Let {,3,’("},{(=1 denote the naive response
sequence (3) that maximizes the cognitive radar’s utility.
Then:

1) Masking Utility Function From IRL: Suppose As-
sumption 1 holds. The response sequence {Bi‘:K} defined
below masks the radar’s utility u from the adversary by
ensuring that u passes the IRL feasibility test (6) with a
sufficiently low margin (15) parametrized by n € [0, 1]

K
{Bix} = argmin u(By) —u(Br) 17

T o a,;ﬁksl},; ‘ ‘
Mu(Dg) = (1 - 77) Mu(DZ) (18)

where dataset D;‘ ={o () — 1, ﬂ,’f}szl is the adversary’s
dataset when the radar transmits naive responses {f; }x_,,
and D, is defined in (5).

2) Masking Resource Constraint From IRL: Suppose
Assumption 2 holds. The response sequence {87, } defined
below masks the radar’s resource constraint g from the
adversary by ensuring that g passes the IRL feasibility
test (50) with a sufficiently low margin (16) parametrized
by n € [0, 1]

K
{Bix)= argmin > () —u(B) (19)
{Be=0, g(B=n} 1 2
Mg(D,) < (1= Mg(D})  (20)
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A Feasible set before
cognition masking

(Theorem 2) Radar's strategy

M Feasible set after
cognition masking

(Theorem 2)

A

A\ 4

Fig. 3. Cognition masking for mitigating adversarial IRL. The radar’s
naive responses pass the IRL feasibility tests in Theorems 1 and 5 with a
large feasibility margin M. Cognition masking distorts the feasibility
polytope so that the radar’s true strategy is almost infeasible (low margin
M) w.rt. the IRL feasibility inequalities (close to the edge of feasibility
polytope). Hence, the true strategy is a low-confidence estimate for IRL
and successfully hidden from the adversary.

where dataset D} = {u(ay, -), Bf}5_, is the adversary’s
dataset when the radar transmits naive responses {ﬁ:}szl,
and D, is defined in (10).

Theorem 2 is our first result for masking cognition;
see Algorithm 1 for a stepwise procedure for masking the
radar’sutility (17). This is schematically illustrated in Fig. 3.
Theorem 2 computes the optimal suboptimal response of the
radar that sufficiently mitigates adversarial IRL. The radar
minimizes its performance degradation (maximizes QoS)
due to suboptimal responses subject to a bound (18) and (20)
on the feasibility margin of the radar’s strategy (maxi-
mizes adversarial confusion). Theorem 2 can be viewed
as an I-IRL scheme that mitigates an IRL system and is
a critical feature of a metacognitive radar that switches
between different plans. For completeness, Appendix F
extends cognition masking to the case where the cognitive
radar faces multiple constraints. Theorem 7 generalizes the
cognition-masking scheme of Theorem 2 to the multicon-
straint case where the adversary uses Theorem 6 for optimal
IRL. Also, Appendix G discusses cognition masking when
the adversary has misspecified measurements of the radar’s
responses. Our key result is Theorem 8 that provides a
performance bound on the cognition-masking scheme of
Theorem 2 in terms of the misspecification error magnitude.

Extent of cognition masking n in Theorem 2: A smaller
value of 1 implies a larger extent of cognition masking from
adversarial IRL and also a greater degradation in the radar’s
performance. One extreme case is setting 7 = 0. This results
in maximal masking of the radar’s strategy. That is, the IRL
feasibility inequalities (6) and (50) are no more feasible and
there exists no feasible strategy that rationalizes the radar’s
responses. Setting n = 0 also causes the radar to deviate
maximally from its naive responses (3), and hence results
in a large performance degradation. The other extreme case
is setting n = 1. In this case, the radar simply transmits its
naive response (3) and its strategy is not hidden from the
adversary.
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Algorithm 1: Masking Radar’s Utility Via Theorem 2
From IRL Feasibility Test (6).

Step 1. Compute radar’s naive response sequence
Bi.x by solving the convex optimization problem (3)

Bi =argminu(pB), g(ay, B)<0,8>0Vke(l,2, ..., K}

where u is the concave monotone in 8 and g(oy, B)
is the convex monotone in f.

Step 2. Choose 71 € [0, 1] (extent of cognition
masking from IRL feasibility test).

Step 3. Compute upper bound M gesn On the desired
margin (15) after cognition masking:
Mthresh =~ 77) Mu({ak’ ﬁ;:}f:l)’ where Mu is
defined in (15).

Step 4. Compute the cognition-masking responses by
solving the following optimization problem:

K

{B; xIMask.u = argmin Zu(ﬁff) —u(By)
k=1

Bi >0, o <1Vkefl,2,....,K}

Mu({ak’ :Bk}llc(:l) = Mthresh .

Due to the nonlinear margin constraint in (21), the
optimization problem can be solved using a general
purpose nonlinear programming solver, for
example, fmincon in MATLAB, to obtain a local
minimum.

2

Let us briefly explain the essence of the cognition-
masking algorithm in Theorem 2 through our running cogni-
tive radar example from [20]. We first assume that the naive
cognitive radar maximizes its QoS subject to constraints
on its PCRB. The adversary exploits the ECM scheme of
Theorem 1 to estimate the radar’s QoS function and gener-
ates malicious probes (8). As an ECCM measure, the radar
intentionally chooses a suboptimal waveform that trades off
between maximizing the radar’s QoS (17) and ensuring a
poor reconstruction of the radar’s strategy by the adversary
[margin constraint (18)]. Let us consider the second scenario
where the cognitive radar’s utility is the inverse of the
PCRB, that is, the radar minimizes its PCRB [20, eq. (40)]
subject to a constraint on its communication cost with the
central processing unit. The adversary can use Theorem 5
to estimate the radar’s communication cost and can then use
(12) to generate malicious probes. As an ECCM measure,
the radar intentionally violates the communication cost
constraint that trades off between minimizing the radar’s
transmission power (19) and ensuring a poor reconstruction
of the radar’s communication cost by the adversary [margin
constraint (20)].

Summary

In this section, we introduced our key cognition-
masking result, namely, Theorem 2 that mitigates the ECM
attempts of the adversary (Theorems 1 and 5) to estimate the
radar’s strategy (utility function/resource constraint). From
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a practitioner’s perspective, we also related the cognition-
masking scheme to a formal model of a cognitive radar [20]
that chooses its waveform by solving a constrained opti-
mization problem. This section sets the stage to address
cognition masking from an adversary under noisy measure-
ments. In the rest of this article, we motivate our cognition-
masking results using two radar functionalities, namely,
optimal waveform adaptation and optimal beam allocation,
instead of the cognitive radar model of [20].

IV. HOW TO MASK COGNITION FROM DETECTOR?

The framework considered in Theorem 2 was determin-
istic; we assumed that the adversary had accurate mea-
surements of the radar’s responses. In this section, we
generalize Theorem 2 to the case where the adversary has
noisy measurements of the radar’s decisions. That is, the
noise term wy, in the radar’s response measurement Bk in
(1) of Model 1 is a nonzero random variable with pdf f,,.
If the adversary deploys a Neyman—Pearson' type detec-
tor, how can we design our cognition-masking strategy to
spoof this detector so that the radar can hide its utility and
constraints? Before generalizing Theorem 2 to the noisy
case, we first address the following question: How do the
adversary’s IRL algorithms, Theorems 1 and 5, adapt to
noisy measurements?

A. Noisy Adversarial IRL Detectors Against Cognitive
Radars

Our key IRL results for noisy radar measurements are
outlined in Definition 4 in the following text. Recall from
Section II that the adversary’s IRL algorithm in Theorem 1
comprises a linear feasibility test to identify a feasible
strategy that rationalizes the radar’s responses. When the
adversary has noisy measurements of the radar’s response,
the deterministic feasibility test generalizes to a feasibility
hypothesis test to detect the existence of feasible strategies
(utilities and constraints) so that the radar responses satisfy
utility maximization (3).

For our hypothesis tests below, let Hy and H; denote the
null and alternate hypotheses that the adversary’s noiseless
datasets defined in (5) and (10) pass, and not pass, respec-
tively, the IRL feasibility tests (6) and (50), respectively.

H, : Radar is a constrained utility maximizer (3)

H, : Radar is NOT a constrained utility maximizer (3).
(22)

The two types of error that arise in hypothesis testing are
Type-I and Type-II errors. In the radar context, the Type-I
and Type-II errors have the following interpretation:

Type—I: Classify a cognitive radar as noncognitive

10By Neyman—Pearson’s lemma [101], it is impossible to maximize the
Type-I and Type-II error of a detector simultaneously. In this article, we
focus on mitigating the detector by maximizing its conditional Type-1 error
probability.
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Type—II: Classify a noncognitive radar as cognitive.
(23)

In analogy to Theorems 1 and 5, our IRL detectors de-
fined below assume two scenarios, namely, Assumptions 3
and 4 that generalize Assumptions 1 and 2, respectively, to
the case where the adversary has noisy response measure-
ments.

ASSUMPTION 3 Consider the radar—adversary interaction
scenario of Assumption 1. The adversary has access to the
noisy dataset D, defined as follows:

’/D\g = {g(aks ')7 Bk}kK=11 Bk = ﬂk +a)k9 wg ~ fa)

where g(ay, -) is defined in (4), B is the radar’s response,
and wy is the adversary sensor’s measurement noise (1) with
pdf f,, known to the radar.

IRL objective: The adversary uses the IRL detector (27)
in Definition 4 to detect if the noise-free dataset D, (5)
passes the IRL test (6) of Theorem 1

(24)

ASSUMPTION 4 Consider the radar—adversary interaction
scenario of Assumption 2. The adversary has access to the
noisy dataset D, defined as follows:

Dy = {ulay, ), Bl ), Bu=Be+on, wg~f, (25)

where By is the radar’s response, and wy is the adversary
sensor’s measurement noise (1) with pdf f,, known to the
radar.

IRL objective: The adversary uses the IRL detector (27)
in Definition 4 to detect if the noise-free dataset D, (10)
passes the IRL test (50) of Theorem 5.

Our IRL hypothesis tests for detecting radar’s cognition
(feasible utilities and resource constraints) for noisy radar
response measurements are stated in Definition 4.

DEFINITION 4 (IRL DETECTORS FOR NOISY RESPONSE
MEASUREMENTS) Consider the cognitive radar (3) from
Definition 1 and the radar-adversary interaction from
Model 1.

1) IRL fordetecting feasible utilities: Suppose Assump-
tion 3 holds. Then, the statistical test below detects
if the radar’s responses satisfy utility maximization
behavior (3)

P(:(Dy) < L) <t y | (26)

2) IRL for detecting feasible resource constraints: Sup-
pose Assumption 4 holds. Then, the statistical test
below detects if the radar’s responses satisfy utility
maximization behavior (3)

P(¢5(D) <L) Spp v | 27)

In the statistical tests (26) and (27) y € [0, 1] is the
“significance level” of the test. L, and L, are the random
variables defined as follows:

(28)

L, = max o (W — wy)
s,
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Ly = max (u(ey, Br) — ula, By))

— (u(oe, B —

where wy ~ f,, is the measurement noise in the adversary’s
measurement of the radar’s response (1). The test statistics
¢*( ) and ¢;(-) are the minimum perturbations required for

wp)) — ule, By — wy))  (29)

the noisy datasets D and Du, respectively, to pass the IRL
feasibility tests (6) and (50)

o (Dg) = m1n €, A(Q e +€)<0 (30)

¢g(Du)= rr(lga%e, A6, D, —€)>0 (31

REMARKS

1) The random variable L, (28) bounds the perturbation
needed for D, to pass the IRL test (6), if Hy holds

Hy: 30>0s.t A®, D) <0=A®, Dy+Ly) <0

where Dg is the noise-free version of the noisy
dataset D Similarly, the random Vanable L, (29)

bounds the perturbation needed for D to pass the
IRL test (50), if Hy holds

Hy: 30>0s.t A®@,D,)>0= A0, D,+L,)>0

where D, is the noise-free version of the noisy
dataset D,,.

2) The IRL detectors (26) and (27) classify the radar
as a utility maximizer if the perturbation needed for
the feasibility of the IRL inequalities lies under a
particular threshold, and vice-versa. Consider the
statistical test of (26). Equation (26) can be expressed
differently as follows:

¢1(Dy) S F'(1—y) 32)
where the RHS term in (32) is the test threshold for
test statistic ¢ (-). Intuitively, the larger the perturba-
tion needed for the feasibility of the IRL inequalities,

the less confidence the adversary has to classify the
radar as a utility maximizer.

Computational Complexity of IRL Detectors: The con-
strained optimization problems (30) and (31) are nonconvex
since the RHS of the constraint is bilinear in the feasible
variable. However, since the objective function depends
only on a scalar, a 1-D line search algorithm can be used to
solve for ¢ (-) in (30) and ¢;(~) in (31). Thatis, for any fixed
value of €, the constraints in (30) and (31) specialize to a set
of linear inequalities for which feasibility is straightforward
to check.

We now discuss a key feature of the statistical tests (26)
and (27) in Theorem 3 that bounds the Type-I error proba-
bility P(H||H)) of the IRL detectors. Recall that the Type-I
error probability is the probability of incorrectly classifying
the radar as noncognitive, when the radar’s response is the
solution of a constrained utility maximization problem (3).

THEOREM 3 (PERFORMANCE OF IRL DETECTORS (DEFI-
NITION 4)) Consider the statistical tests (26) and (27) in
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Definition 4. The Type-I error probability of the tests is
bounded by the significance level of the tests y

P(H||Hy) <y for both detectors (26) and (27). (33)

The proof of Theorem 3 is in Appendix E. The key idea
in the proof is to show that, given that the null hypoth-
esis Hy holds, the random variables L, and L, dominate
the test statistics ¢;(§u) and d)j(ﬁg), respectively. Since
the IRL detectors have a bounded Type-I probability, our
cognition-masking rationale for the noisy case discussed in
the following text is to maximize their conditional Type-I
error probability.

B. Masking Cognition From IRL Detectors

In Section I'V-A, we generalize the IRL results of The-
orems | and 5 in Section II to the case where the adversary
has noisy measurements of the radar’s responses. The key
idea is that the IRL feasibility tests (6) and (50) generalize to
IRL detectors (26) and (27) in Definition 4, respectively, that
detect utility maximization behavior. This section addresses
cognition masking when the adversary uses the IRL detec-
tors of Definition 4: How to mitigate the statistical tests
of (26) and (27) and make utility maximization detection
difficult?

Intuition for hiding cognition from IRL detectors: Sup-
pose the radar follows the cognition-masking scheme of
Theorem 2 for the noisy case. Indeed, the radar’s strategy is
hidden from the IRL feasibility tests of Theorems 1 and 5
but does not affect the performance of the IRL detectors of
Definition 4. To do so, the radar maximizes the conditional
Type-I error probability'" of the IRL detectors by deliber-
ately deviating from its naive responses (3). The conditional
Type-I error probability can be viewed as the noisy analog
of the inverse of the feasibility margin in the noiseless case.

DEFINITION 5 (CONDITIONAL TYPE-I ERROR PROBABIL-
ITY FOR IRL DETECTORS (DEFINITION 4)) Consider the
datasets D, and D, defined in (5) and (10), and their
corresponding noisy versions D and D deﬁned in (24)
and (25), respectively. Let ¢M(Dg, u) and ¢g(Du, g) de-
note the minimum perturbations required for the tuples
(Dg, u) and (Du, g), respectively, to pass the IRL feasibility
tests (6), (50)

¢(D,u) m1ne A, Dy +¢€) <0
¢ (D g) = ren;ga Ag.D,—€) >0 (34)

where u and g are the radar’s utility and resource constraint,
respectively. Then:

1) For IRL detector (26), the conditional Type-I error
probability, conditioned on D, (24) and radar’s utility

ITRadar can at best maximize the conditional Type-I error probability to
mitigate the IRL detectors as the Type-I error probability is bounded by
the detectors’ significance level y due to Theorem 3.
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u, is given by P(H,|D,, u) and defined as follows:

P(H,|Dg, u) = P($;(Dg, w) > F'(1 =) ).
(35)

2) For IRL detector (27), the conditional Type-I er-
ror probability conditioned on D, (25) and radar’s
constraint g is given by P(H;|D,, g), and defined as
follows:

P(Hy|D,.g) = P($;(D,.g) > F_'(1—y))
(36)

In (35) and (36), the alternate hypothesis event H; is
expressed differently in the equivalent representation form
of (32), and the random variables L, and L, are defined in
(28) and (29)

REMARKS

1) The test statistics of the IRL detectors defined in
(35) and (36) are computed via an optimization over
Rff( +1 whereas the optimization in (36) is over R .
Hence, ¢:(§ ,u) and ¢;(5u, g) (36) are cheaper
to compute than the test statistics ¢;‘(ﬁg) (35) and
¢; (ﬁ,) (36), respectively.

2) The IRL detector performance is already constrained
due to Theorem 3 (bounded Type-I error probability).
Hence, to mitigate the IRL detector, the best the radar
can do is to maximize its conditional Type-I error
probability using the statistics defined in (34).

We are now ready to state our cognition-masking result,
Theorem 4, that mitigates IRL detectors (Definition 4). In
analogy to Theorem 2 for mitigating the IRL feasibility
tests of Theorems 1 and 5, the radar deliberately degrades
its performance to maximize the IRL detectors’ conditional
Type-I error probability defined in (35) and (36).

THEOREM 4 (MASKING COGNITION FROM ADVERSARIAL
IRL DETECTORS) Consider the cognitive radar (3) from
Definition 1. Let {,Blf}sz1 denote the naive response se-
quence (3) that maximizes the cognitive radar’s utility.
Then:

1) Masking Utility Function From Detector: Suppose
Assumption 3 holds. Then, the response sequence defined
below makes cognition detection difficult by ensuring that
the detector (26) has a sufficiently large conditional Type-I
error probability

K
{Bix)= argmin Y u(B))—u(B)— 1 P(H;|Dy, u).
(B0, ;e =<1} ;=4

(37

2) Masking Resource Constraint From Detector: Suppose
Assumption 4 holds. Then, the response sequence below
makes cognition detection difficult by ensuring that the
detector (27) has a sufficiently large conditional Type-I error

8838

probability

K

argmin ZU(,B:)—u(ﬂk)_)\ P(H|D,, g).
(Bi=0, g(B)=w} =

{BT:K} =
(38)

In (37) and (38), the positive scalar A parameterizes the
extent of mitigation of the IRL detector.

Theorem 4 is our second result for cognition masking;
see Algorithm 2 for a stepwise procedure for masking
cognition in noise (37) when the adversary knows the
radar’s constraints. Equations (37) and (38) compute the
optimal suboptimal radar response that sufficiently hides
the radar’s cognition from being detected by the IRL hy-
pothesis tests of Definition 4. The parameter A in The-
orem 4 is analogous to parameter 1 in Theorem 2. A
larger value of A (37) results in a larger conditional Type-I
error probability for the IRL detector (larger adversarial
confusion) while increasing the radar’s deviation from its
optimal response (greater performance degradation), and
vice-versa.

The optimization problems (37) and (38) can be solved
by stochastic gradient algorithms. Algorithm 2 outlines a
constrained simultaneous perturbation stochastic approxi-
mation (SPSA) [102], [103] implementation for computing
the cognition-masking scheme of Theorem 4. The objective
function is nonconvex in the radar’s responses; hence, SPSA
converges to a local optimum. SPSA is a generalization
of adaptive algorithms where the gradient computation in
(37) requires only two empirical estimates of the objec-
tive function per iteration, i.e., the number of evaluations
is independent of the dimension of the radar’s response.
For decreasing step size n = 1/i (42), the SPSA algo-
rithm converges with probability one to a local stationary
point. For constant step size n, it converges weakly (in
probability).

Summary: In this section, we generalized our cognition-
masking results of Theorem 2 to the case where the ad-
versary has noisy measurements of the radar’s responses.
We first generalized our adversarial IRL feasibility tests
of Theorems 1 and 5 to IRL hypothesis tests (26) and
(27) in Definition 4 to detect utility maximization behavior,
given noisy radar response measurements. We then present
Theorem 4 that masks the radar’s cognition by making
utility maximization detection erroneous by maximizing
the conditional Type-I error probability of the IRL detec-
tors via purposeful suboptimal responses. Our cognition-
masking results can be extended without loss of generality
(WLOG) to any suboptimal IRL algorithm, as discussed in
Appendix H.

V. NUMERICAL RESULTS FOR I-IRL

In this section, we illustrate how our cognition-masking
results of Theorems 2 and 4 successfully confuse adversarial
IRL via the two radar tracking functionalities, namely,
waveform adaptation and beam allocation, as discussed in
Section II.
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TABLE II
Parameters for Numerical Experiments

Masking smart waveform adaptation

Time horizon K =50

Probe/response dimension | m = 4

Probe g (4) " Unif (0.2, 2.5),
1=1,2,...,m

Utility function ui(8) =31, /B3)

wy(B) = 3272, B(i)?

Resource constraint glag,B)=a),p—1

Masking smart beam allocation

Time horizon K =50

Probe/response dimension | m = 4

Probe o (7) i Unif (0.1, 0.7),
i=1,2,....m

Utility function u(ag, f) = I B(i)xx @)

g(ow, B) = [1Bllx — Yk,
ve A Unif (0.5, 2).

Resource constraint

A. Cognition Masking Via Theorem 2 for Noiseless
Adversary Measurements

Consider the scenario where the adversary has accu-
rate measurements of the radar’s responses. Recall from
Section II-D that the adversary knows the radar’s constraints
for waveform adaptation and the radar’s utility function for
beam allocation. For waveform adaptation, the probe signal
parameterizes the state covariance matrix of the radar’s
Kalman filter due to the adversary’s maneuvers, and the
response signal parameterizes the sensory accuracy chosen
by the radar. Recall that the probe signal ¢, is the diagonal of
the state noise covariance matrix: Q; = diag[a (1), oz (2)].
For beam allocation, the ith component of the probe signal
ai (i) is the asymptotic predicted precision of the radar
tracker for target i. The probe oy parameterizes the radar’s
Cobb-Douglas utility for beam allocation. Our simulation
parameters for our numerical experiments are listed in
Table II.

Parameters for Numerical Experiments

In Table II, Unif (a, b) denotes the uniform pdf with sup-
port (a, b). The elements of the probes o (3) and intensity
thresholds y; (14) are generated randomly and indepen-
dently overtime k = 1, 2, ..., K. For waveform adaptation,
we conduct our numerical experiments for two distinct util-
ity functions u; and u,. Given the probe sequence {a}X_,
the cognitive radar chooses its smart response sequence
via (17) for masking optimal waveform adaptation and
via (19) for masking optimal beam allocation. Recall from
Section II that response Sy is the diagonal of the inverse of
radar’s observation noise covariance matrix for waveform
adaptation. For beam allocation, S (i) is the beam intensity
directed toward target i at time k.

Figs. 4 and 5 show the performance loss (minimum per-
turbation from optimal response computed via (17) and (19)
in Theorem 2) of the cognitive radar as a function of 5
(extent of cognition masking) when the cognitive radar
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Fig. 4. Masking waveform adaptation strategy from adversarial IRL:
Small deliberate performance loss (vertical axis) of the cognitive radar
results in large performance mitigation of the adversary (horizontal axis).
The figure illustrates a cognitive radar operating with two distinct utility
functions.

1) n = 1 corresponds to maximum cognition masking and, hence, results
in maximum performance loss. 2) For a fixed value of 1, the quadratic
utility (b) requires smaller perturbation (& 10 times) from the optimal
response compared with the sublinear utility of subfigure (a).

@uB) =", JBW. (b)uB) =Y, Bi).

*x1073

(Constraint Violation)
w L= ot [=2}
o

Radar’s Performance Degradation
V)

1 . . . . .
0 0.2 0.4 0.6 0.8 1
Extent of Cognition Masking 1

Fig. 5. Masking beam allocation strategy from adversarial IRL: Small
deliberate utility loss of the radar (vertical axis) results in large
performance loss (extent of strategy masking 1) of the adversarial IRL
algorithm (horizontal axis). 7 = 0 corresponds to zero strategy masking,
and n = 1 corresponds to complete strategy masking by the radar. As
expected, the deliberate utility loss of the radar increases with 7.

performs waveform adaptation and beam allocation, respec-
tively. We see that for both functionalities, both the radar’s
performance loss and adversarial IRL mitigation increase
with 5. This is expected since larger 1 implies a larger shift
of the set of feasible strategies computed via IRL to ensure
that the radar’s strategy is sufficiently close to the edge of the
feasible set at the cost of greater deviation from the radar’s
optimal strategy.
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Fig. 6. Masking cognition from IRL detectors: Performance of metacognitive radar for waveform adaptation (a) and beam allocation (b) when the
adversary deploys an IRL detector (26) and (27) for cognition detection. The key takeaway is that a small sacrifice in performance of the radar results
in a large performance loss of adversary’s IRL detector. The performance loss of both the radar and the adversary due to metacognition increases with

scaling factor A (37) and significance level y of the adversary’s IRL detectors (26) and (27).

B. Cognition Masking Via Theorem 4 for Noisy Adver-
sary Measurements

We now consider the scenario where the adversary has
noisy measurements of the radar’s response. Consider the
simulation parameters of Table II. For our second set of
numerical experiments for both waveform adaptation and
beam allocation, we set the noise pdf f,, (1) to A(0, 0.31),
where A/ (i, ¥)denotes the multivariate normal distribution
with mean p and covariance X, and / denotes the identity
matrix in Theorem 4.

For the noisy case, we consider only a single utility func-
tion for waveform adaption, namely, u(g) = Y ", /B ().
We performed our numerical experiments for three values
of y ={0.05,0.1, 0.2} for both waveform adaptation and
beam allocation. Recall from Section IV that y is the
significance level of the adversary’s IRL detectors (26) and
(27) in Definition 4.

Given the probe sequence {ak},’f:], we generated the
cognition-masking response sequence via (37) for wave-
form adaption and (38) for beam allocation by varying
the parameter A (37) over the interval [10°, 103]. Recall
from Theorem 4 that the radar minimizes the detectors’
conditional Type-I error probabilities (35) and (36) to mit-
igate adversarial IRL while deliberately compromising on
its performance (utility).
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Our SPSA algorithm [102], [103] (Algorithm 2) for
stochastic gradient descent was executed over 10* iterations
for all pairs of (1, y), A € {10°, 10", 102, 10°, 10*, 10°} and
y € {0.05,0.1,0.2}. Fig. 6 shows the conditional Type-I
error probability (adversarial IRL mitigation) of the detector
and performance loss of the radar as the parameter A is
varied for three different values of the significance level o
of the adversary’s detector. Recall from Theorem 4 that the
parameter A controls the extent of cognition masking for
noisy I-IRL. From Fig. 6, we see that both the conditional
Type-I error probability of the IRL detectors and radar’s
performance loss increase with A as well as y.

If & = 0, the radar simply transmits its naive response
that maximizes its utility (no performance loss) and also re-
sults in zero adversarial mitigation. For the limiting case of
A — 00, the radar’s cognition-masking response computed
via Theorem 4 degenerates to a constant for all time k, hence
maximizing the conditional Type-I error probability of the
detector at the cost of maximal performance loss for the
radar.

Let us briefly discuss the variation of the radar per-
formance and adversarial mitigation as the parameter y is
varied. y (26) can be viewed as the risk-aversion tendency
of the adversary’s IRL system since it bounds the detector’s
Type-I error probability. Recall from (22) that the Type-I
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error is the probability of detecting a cognitive radar as
noncognitive. Higher y implies that the detector is risk
seeking and alower y implies that the detector is risk averse.
Naturally, a larger deviation from the optimal strategy is
required to mitigate a risk-averse detector compared with a
risk-seeking detector to the same extent.

VI. CONCLUSION AND EXTENSIONS

This article investigated how a cognitive radar can
hide its cognition from an adversary when the adversary
performs IRL to estimate the radar’s utility function by
observing its actions. The adversary’s IRL estimate of the
radar’s strategy is a polytope of feasible solutions to a set
of convex inequalities. Our first cognition-masking result is
Theorem 2. When the adversary has accurate measurements
of the radar’s response, cognition masking via Theorem 2
ensures that the radar’s true strategy lies close to the edge of
the feasibility polytope computed via adversarial IRL (true
strategy poorly rationalizes adversary’s dataset). When the
adversary has noisy measurements of the radar’s response,
adversarial IRL generalizes to a cognition detector defined
in Definition 4. Our second cognition-masking result is
Theorem 4. The key idea is to maximize the probability
of the radar being classified as noncognitive by the detector
subject to a bound on the radar’s performance loss. Finally,
in Section V, we illustrate our cognition-masking results
on a cognitive radar that performs waveform adaptation
and beam allocation for target tracking. We show that small
purposeful deviations from the optimal strategy of the radar
suffice to significantly confuse the adversarial IRL system.

This article builds significantly on our previous
work [35] on ECM for identifying cognitive radars,
and [104], [105], and [106] on ECCM for masking radar
cognition. Theorem 6 extends IRL for cognitive radars [35]
when the radar faces multiple resource constraints. The
linear IRL feasibility test for a single constraint case gen-
eralizes to a mixed-integer feasibility test. Theorem 7 gen-
eralizes the cognition-masking result of [104] to multiple
constraints. Our previous works [104], [105], [106] assume
optimal adversarial IRL via Afriat’s theorem. This article
generalizes cognition masking to suboptimal adversarial
IRL algorithms. Algorithm 3 outlines a cognition scheme
when the adversary uses an arbitrary IRL algorithm to esti-
mate the radar’s strategy. Theorem 8 provides performance
bounds for our cognition-masking scheme when the adver-
sary has misspecified measurements of the radar’s response.
Although this article is radar-centric, we emphasize that the
problem formulation and algorithms developed also apply
to adversarial IRL in general machine learning applications.

Finally, a useful extension of this article would be to
study cognition masking in a dynamic radar—adversary
interaction environment in comparison with the batchwise
probe-response exchange considered in this article. Also,
how to mask cognition when the adversary knows of the
radar’s ECCM capability? Such an approach warrants a
game-theoretic discussion in terms of a Stackelberg game
where the adversary moves first and the radar responds
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Algorithm 2: SPSA for Mitigating Utility Maximiza-
tion Detection for Adversarial IRL Detector (26) [(37)
in Theorem 4].
Step 1. Set B, = {B; ], the naive response
sequence (13) that maximizes the radar’s utility (3).
Step 2. Choose A > 0 (extent of cognition masking).
Step 3. For iterations i = 0, 1, 2, ..., (i) Compute
IP’(H1|{ozk}k 1> Bi»w), the emplrlcal probability
estimate of the conditional Type-I error probability
of the detector (26) defined in (35) using R x K
fixed realizations {a),,k}f;fi , of adversary’s
measurement noise wy ~ f, (1)

—Z [t B+ oy w = BN =)

(39)
In (39)
e B. = {Bi1.x} = 0is a vector of responses.
e 1{-} denotes the indicator function.
e R controls the accuracy of the empirical probability
estimate.
e Fy (+) is the distribution function of the r.v. L, (26).
e The statistic ¢ (-, u) is defined in (34). Let J(B;)
denote the objective being maximized in (37)

K

J(B) =Y u(Bix) — u(Bii) — MP(H [{eu}_,, B w)
k=1 R 40)
Then: (ii) Compute empirical estimate J(f;)
—~~ K —~~
T(B) =D _u(Bp) —u(Bix) — A P(H|{ou}i, . B w)
- @1)

where P(H; [{ax}£_,, B;, ) is computed in (39).
(ii) Compute the estimate of the gradient Vg J(;)
as follows:

Vs (B)) =

J(,B +8A)—J(/3 -3 A))

||A 1%

where ¢ is the gradient step size, || - ||, denotes the
Frobenius norm, and A; € {—1, +1}"Kisa
random perturbation vector whose each element is
41 with probability 1/2. (iii) Update the radar’s
response as follows:

Bii1 = Projg, (ﬁi +n ﬁj(ﬁ, ) (42)

IA; |I

where 7 is the response update step size and Projg, is
the projection operator to the hyperplane
Sq = {,BI:K : Ol[/cﬂk =1, ,Bk > 0}

Step 4. Seti <— i+ 1 and go to Step 3.

to the adversary’s probes. It is also worthwhile exploring
state-of-the-art concepts in chance constrained optimiza-
tion [107] and robust optimization [108], [109] to achieve
cognition masking under uncertainty—when the radar has
noisy measurements of the adversary’s probes.
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