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Abstract—Can deep convolutional neural networks (CNNs) for
image classification be interpreted as utility maximizers with
information costs? By performing set-valued system identifica-
tion for Bayesian decision systems, we demonstrate that deep
CNNs behave equivalently (in terms of necessary and sufficient
conditions) to rationally inattentive Bayesian utility maximizers,
a generative model used extensively in economics for human
decision-making. Our claim is based on approximately 500
numerical experiments on 5 widely used neural network archi-
tectures. The parameters of the resulting interpretable model
are computed efficiently via convex feasibility algorithms. As a
practical application, we also illustrate how the reconstructed
interpretable model can predict the classification performance
of deep CNNs with high accuracy. The theoretical foundation
of our approach lies in Bayesian revealed preference studied in
micro-economics. All our results are on GitHub and completely
reproducible.

Index Terms—Interpretable Machine Learning, Bayesian Re-
vealed preference, Rational Inattention, Deep Neural Networks,
Image Classification

I. INTRODUCTION

This paper studies interpretable models for deep image
classification. We propose a set-valued system identification
approach to explain deep image classification. We show that
image classification using deep Convolutional Neural Networks
(CNNs) can be interpreted as a constrained Bayesian utility
maximization problem where the observation likelihood is
optimized, namely, maximize the expected utility subject to
a cost constraint on the chosen observation likelihood. Such
rationally inattentive Bayesian utility maximization models
have recently been used to explain human decision-making in
microeconomics.

In micro- and behavioral economics1 a fundamental question
relating to human decision-making is: How to model attention
spans in humans (agents)? The area of rational inattention [1],
[2], pioneered by Nobel laureate Christopher Sims, models
human attention in information-theoretic terms. The key hypoth-
esis is that agents are “boundedly rational”- their perception
of the environment is modeled as a Shannon capacity limited
channel. In simple terms, rational inattention assigns a mutual
information cost for human attention spans.

Building on the rational inattention model, the next key
concept is that of a Bayesian agent with rational inattention
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1Micro-economics models the interaction of individual agents pursuing their
private interests. Behavioral economics models human decision-making in
terms of subjective probabilities via prospect theory and framing. In the rest of
this paper, we will use the term ‘agent’ to denote a Bayesian decision-maker.

that maximizes its expected utility. Such models are studied
extensively in micro-economics [3]–[5]. The intuition is this:
more attentive decisions yield a higher expected utility at the
expense of a larger attention cost. Hence, the Bayesian agent
optimally trades off between minimizing its sensing cost and
maximizing its expected utility. An important question is: How
to test for rationally inattentive utility maximization given the
decisions of a Bayesian agent? In the last decade, necessary
and sufficient conditions have been developed in the area of
Bayesian revealed preference [6], [7] to test if the decisions
of a Bayesian agent are consistent with rationally inattentive
utility maximization. In this paper, we use the necessary and
sufficient conditions of [6], [7] to construct interpretable models
for deep classification.

This non-parametric data-driven approach embeds the image
classification task as a Bayesian utility maximization problem
constrained by an information acquisition cost. We construct set-
valued estimates of utility functions and information acquisition
costs that rationalize deep image classification. In a signal
processing context, the information cost, often referred to as
the rational inattention cost in the literature, is analogous to
the sensing cost incurred by a radar in controlled sensing [8],
[9]. This approach to deep image classification can be viewed
as an inverse optimization problem. Recently, neural networks
have been used successfully to solve inverse problems in
imaging [10]–[13]. However, to the best of our knowledge, an
economics-based inverse optimization analysis of deep neural
networks has not been explored in the literature.

Intuition. Rationally Inattentive Interpretable Deep Image
Classification. From a deep learning perspective, a supervised
classification model is optimized to minimize the misclassi-
fication loss between the true image labels (state) and the
predicted image labels. The actions (predicted labels) of a
trained neural network can be viewed as a black-box function
evaluation of a perceived (noisy) version of the true state of
the image. In this paper, we approximate the trained neural
network’s prediction model by a constrained Bayesian utility
maximization model; see Fig. 1 for an illustration. In other
words, the interpretable deep image classification approach
in this paper can be interpreted as the system identification
of the trained neural network assumed to be a rationally
inattentive agent. The goal is to reconstruct feasible utilities
and costs from the prediction behavior of the trained neural
network, aggregated over several training parameters. The set-
valued solutions for the convex feasibility tests outlined in
Algorithms 1 and 4 yield utility functions and sensing costs
that explain the trained neural networks’ prediction behavior.
Theorem 2 yields the sparsest estimate of the feasible variables
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Fig. 1: Schematic for this paper’s interpretable deep image classification approach. The neural network (top) is a black box that
takes as input an image (for example, a cat image) and produces as output a predicted image label (for example, cat, dog,
ship, etc. ). This paper approximates the black box with a constrained Bayesian utility maximizer, with a constraint on the
sensing/perception cost. The aim is to reconstruct parameters of the constrained Bayesian utility maximization model that best
explain the prediction behavior of the trained neural network.

computed from Algorithms 1 and 4, while Definition 2 adopts a
‘max-margin’ approach to compute (a) goodness-of-fit of, and
(b) robust utility and cost estimate for the rational inattention
model that rationalizes the neural networks’ behavior. The
utility values computed from this interpretability approach to
understand neural networks’ decision-making process provide
insights into how they prioritize classifying different classes
under varying training parameters.

This paper uses a data-driven micro-economics based system
identification approach for interpretable deep classification.
The key ideas stem from Bayesian revealed preference [6],
[7]. Bayesian revealed preference is a set-valued system
identification algorithm for argmax non-linearity (in signal
processing terms) that describes a Bayesian decision maker.
Bayesian revealed preference is a post-hoc analysis of agent
decisions. It constructs a generative2 explanatory model for
the agent decisions, parameterized by utility functions and an
information acquisition cost. As a practical application, the
interpretable model can also be used to predict the classification
accuracy of the neural network trained on arbitrary training
parameters; we discuss this in more detail in Sec. III-B. Our
approach draws important parallels between human decision

2A generative model is image-independent, and hence provides a global
explanation for deep image classification. In contrast, local approximation
models for deep image classification are image-specific; they approximate
model decisions via tractable functionals in a δ-neighborhood of every input.

making and deep neural networks; namely that deep neural
networks satisfy economics based rationality.

Why set-valued estimates of utility?: The aim of interpretable
deep image classification is to construct feasible utility func-
tions and information costs that rationalize neural network
image label predictions over a finite set of training parameters.
Estimating a utility function is an ill-posed problem (in the
sense of Hadamard) since any non-negative increasing function
of the utility is also a valid utility. From a statistical signal-
processing perspective, a point-valued estimate is not useful
for rationalizing a Bayesian decision maker’s actions: (i) every
point in the reconstructed set of feasible utilities and costs
explains the actions equally well; hence, the problem is ill-
posed, and (ii) a least squares estimate of the decision maker’s
utility function and information cost does not rationalize its
actions. Bayesian revealed preference reconstructs a set of
feasible utility functions and information acquisition costs that
rationalize a Bayesian decision maker’s actions in a finite
number of environments. Every element in the feasible set
explains the deep CNN decisions equally well. In Bayesian
revealed preference, the utility functions are indexed by the
environment; the information cost is invariant across environ-
ments. The computed utility function induces a preference
ordering on the set of image classes. That is, how much a
deep CNN prioritizes accurate classification over an inaccurate
classification. The information acquisition cost abstracts the
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penalty incurred by the deep CNN to ‘learn’ an accurate latent
feature representation and can be interpreted as the training
cost to achieve a desired accuracy of image classification.

A. Related Works

Since we study interpretable deep learning using behavioral
and micro-economics, we briefly discuss related works in these
areas.

Bayesian revealed preference and Rational inattention. Esti-
mating utility functions given a finite sequence of decisions and
budget constraints is the central theme of revealed preference
in micro-economics. The seminal work of [14], [15] (see
also [16]) give necessary and sufficient conditions for the
existence of a utility function that rationalizes a finite time
series of consumption bundles of a decision-maker. Rationally
inattentive models for Bayesian decision making have been
studied extensively in [3]–[5]. In the last decade, the area of
Bayesian revealed preference [6], [7] develops necessary and
sufficient conditions to test for rationally inattentive Bayesian
utility maximization.

Interpretable ML. Providing transparent models for de-
obfuscating ‘black-box’ ML algorithms under the area of
interpretable machine learning is a subject of extensive re-
search [17]–[19]. Interpretable machine learning is defined in
[20] as “the use of machine-learning models for the extraction
of relevant knowledge about domain relationships contained
in data”.

Since the literature is enormous, we only discuss a subset
of works pertaining to interpretability of deep neural networks
for image classification [21], [22]. One prominent approach,
namely, saliency maps, reconstructs the most preferred or
typical image pertaining to each image class the deep neural
network has learned [23], [24]. Related work includes creating
hierarchical models for determining the importance of image
features that determine its label [25]. This feature importance is
encoded in this paper into the utility function that parametrizes
our interpretable model. Another approach seeks to provide
local approximations to the trained model, local w.r.t the input
image [26], [27]. In contrast, our generative interpretable model
provides a global black-box approximation for deep image
classification. A third approach approximates the decisions of
the deep neural networks by a linear function of simplified in-
dividual image features [27]–[30]. In contrast, our interpretable
model fits a stochastic non-linear map that relates the true
and predicted image labels. The parameters of the map are
obtained by solving a convex feasibility problem parameterized
by the deep CNN decisions. Finally, deep neural networks have
also been modeled by Bayesian inference frameworks using
probabilistic graphical methods [31].

To the best of our knowledge, an economics based approach
for the post-hoc analysis of deep neural networks has not
been explored in literature. However, we note that behavioral
economics based interpretable models have been applied to
domains outside interpretable machine learning, for example,
in online finance platforms for efficient advertising [32], [33],
training neural networks [34] and more recently in YouTube
to rationalize user commenting behavior [35]. Finally, due to

Deep Convolutional
Neural Network

CNN
Input
Image

Predicted
Image
Class

Rationally Inattentive
Utility Maximizer

Equivalent
via Theorem 1

Fig. 2: Schematic illustration of rationally inattentive Bayesian
utility maximization based interpretable image classification by
deep CNNs. Theorem 1 establishes equivalence between the
image classification behavior of a deep CNN and the decisions
of a rationally inattentive maximizer. Hence, the deep CNN’s
image classification behavior can be parsimoniously represented
by a utility function and an information acquisition cost.

our recent equivalence result [36], our behavioral economics
approach to interpretable deep image classification can be
related to classical revealed preference methods [14], [15] in
microeconomics.

B. Summary of Results.
The question we address is: Can the decisions of deep CNNs

in image classification be explained by a rationally inattentive
Bayesian utility maximizer?

The key results in this paper are:
1. We show that the image classification decisions of deep

CNNs satisfy the necessary and sufficient conditions for
rationally inattentive utility maximization by a large mar-
gin, as displayed in Table I. Our findings are based on
approximately 500 experiments on 5 widely used neural
network architectures for image classification. This result
establishes that the rationally inattentive utility maximization
widely used to explain human decisions explains deep image
classification remarkably well. This result is schematically
shown in Fig. 2.

2. To aid visualization of our interpretable model, we provide
a sparsity-enhanced decision test that computes the sparsest
utility function and information acquisition cost which ra-
tionalizes deep CNN decisions. The sparsest solution yields
a parsimonious representation of hundreds of thousands of
layer weights of the deep CNNs in terms of a few hundred
parameters. The utility function of the sparsest interpretable
model also induces a useful preference ordering amongst
the set of hypotheses (image labels) considered by the CNN;
for example, how much additional priority is allocated to
the classification of a cat as a cat compared to a cat as
a dog. In classical deep learning, this preference ordering
is not explicitly generated. The sparsity results for various
deep CNN architectures are displayed in Table II and Fig. 3.

3. Our final result demonstrates the usefulness of our in-
terpretable model. We show that, via interpolation, the
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interpretable model computed from CNN decisions can
predict the classification accuracy of a CNN trained with
arbitrary parameters with high accuracy. The prediction
results are displayed in Table III. Finally, we propose
Algorithm 3 that uses the reconstructed utility functions
and costs to predict the label of an image (and mimicing
a constrained Bayesian utility maximizer in action) hence
providing a complete economics-based interpretable model
for deep image classification.

The above results are backed by approximately 500 experiments
performed on several deep CNN architectures on the CIFAR-
10 [37] image dataset over 3 learning rates, 200 training
epochs, and 20 values of noise variance for corrupting the
original images. The first two results use deep CNN decisions
aggregated over varying training epochs. The third (prediction)
result uses deep CNN decisions trained on noisy image datasets
parameterized by the noise variance.3 Also, Appendix D
contains numerical experiments for interpretable deep image
classification using Vision Transformer (ViT) architecture on
large image datasets, namely, Tiny-Imagenet and CIFAR-100.
We conduct our experiments for 80 image classes and 5 trained
neural networks, where the neural networks differ only with
respect to 1 training parameter. Experiment 1 varies the variance
of the noise added to the training images, and experiment 2
varies the training epochs.4

II. BAYESIAN REVEALED PREFERENCE WITH RATIONAL
INATTENTION

This section describes the key ideas behind Bayesian revealed
preference. Despite the abstract formulation below, the reader
should keep in mind the deep learning context. In Sec. III, we
will use Bayesian revealed preference theory to construct an
interpretable deep learning representation by showing that deep
CNNs are equivalent to rationally inattentive Bayesian utility
maximizers.

A. Utility Maximization with Rational Inattention (UMRI)

Bayesian revealed preference aims to determine if the
decisions of a Bayesian agent are consistent with expected
utility maximization subject to a rational inattention sensing
cost. We start by describing the utility maximization model with
rational inattention (henceforth called UMRI) for a collection
of Bayesian decision makers/agents.

Abstractly, the UMRI model is parameterized by the tuple

Θ = (K,X ,Y,A, π0, C, {αk, uk, k ∈ K}). (1)

With respect to the abstract parametrization of the UMRI model
for a collection of Bayesian agents, the following elements
constitute the tuple Θ defined in (1).
Agents: K = {1, 2, . . . ,K} (K ≥ 2) indexes the finite set of
Bayesian agents.
State: X is the finite set of ground truths with prior probability
distribution π0. With respect to our image classification context,

3The neural network classification accuracy as learning rates and training
epochs are varied can be downloaded from zerenzhang2022.github.io

4All numerical results are completely reproducible and can be accessed
from our public repo github.com/aditj/extrasimulationsdlri.

X = {1, 2, . . . 10} is the set of image classes in the CIFAR-10
dataset and π0 is the empirical probability distribution of the
image classes in the test dataset of CIFAR-10.
Observation and attention strategy: Agent k ∈ K chooses
attention strategy αk : X → ∆(Y), a stochastic mapping
from X to a finite set of observations Y . Given state x and
attention strategy αk, the agent samples observation y with
probability αk(y|x). The agent then computes the posterior
probability distribution p(x|y) via Bayes formula as

p(x|y) =
π0(x)αk(y|x)∑

x′∈X π0(x′)αk(y|x′)
. (2)

The observation and attention strategy are latent variables that
abstractly represent the learned feature representations in the
deep image classification context. Bayesian revealed preference
theory tests their existence via the convex feasibility test in
Theorem 1 below.
Action: Agent k ∈ K chooses action a from a finite set of
actions A after computing the posterior probability distribution
p(x|y). In the image classification context, a is the image class
predicted by the neural network, hence A = X .
Utility function: Agent k ∈ K has a utility function5 uk(x, a) ∈
R+, x ∈ X , a ∈ A and aims to maximize its expected value,
with the expectation taken wrt the random state x and random
observation y. A key feature in our approach is to show that
the utility function rationalizes the decisions of the deep CNNs
(made precise in Definition 1).
Information Acquisition Cost: The information acquisition cost
C(α, π0) ∈ R+ depends on attention strategy α and prior pmf
π0. It is the sensing cost the agent incurs to estimate the underly-
ing state (2). In the context of machine learning, C(·) abstractly
captures the ‘learning’ cost incurred during the training of
the deep neural networks. In rational inattention theory from
behavioral economics, a higher information acquisition cost is
incurred for more accurate attention strategies (equivalently,
more accurate state estimates (2) given observation y). We
refer the reader to the influential work of [1], [2].

Each Bayesian agent k ∈ K, aims to maximize its expected
utility while minimizing its cost of information acquisition.
Hence, the action a given observation y, and attention strategy
αk are chosen as follows:

Definition 1 (Rationally Inattentive Utility Maximization).
Consider a collection of Bayesian agents K parameterized
by Θ in (1) under the UMRI model. Then,
(a) Expected Utility Maximization: Given posterior proba-
bility distribution p(x|y), every agent k ∈ K chooses action
a that maximizes its expected utility. That is, with E denoting
mathematical expectation, the action a satisfies:

a ∈ argmax
a′∈A

Ex{uk(x, a′)|y} =
∑
x∈X

p(x|y)uk(x, a′). (3)

(b) Attention Strategy Rationality: For agent k, the attention
strategy αk optimally trades off between maximizing the

5Strictly speaking, uk ∈ R|X|×|A|+ is a matrix with non-negative entries,
with uk(x, a) denoting the entry in the xth row and ath column. The term
‘utility function’ is prevalent in micro-economics literature and refers to a
matrix. In this paper, we borrow the micro-economics terminology and refer
to the matrix uk as the utility function.
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expected utility and minimizing the information acquisition
cost.

αk ∈ argmax
α′

Ey{max
a∈A

Ex{uk(x, a)|y}} − C(α′, π0). (4)

Eq. 3,4 in Definition 1 constitute a nested optimization
problem. The lower-level optimization task is to choose the
the ‘best’ action for any observation y based on the computed
posterior belief of the state. The upper-level optimization task
is to sample the observations optimally by choosing the ‘best’
attention strategy.

Remark. The multiple Bayesian agents in Θ have the same
state space X , observation space Y , action space A, prior π0
and cost of information acquisition C, but only differ in their
utility functions. Bayesian revealed preference theory relies on
this crucial constraint on the optimization variables in (3), (4)
for detecting optimal behavior in a finite number of agents.

B. Bayesian Revealed Preference (BRP) Test for Rationally
Inattentive Utility Maximization

Having described the UMRI model (collection of rationally
inattentive utility maximizers), we are now ready to state our
key result. Theorem 1 below says that the decisions of a
collection of Bayesian agents is rationalized by a UMRI tuple Θ
if and only if a set of convex inequalities have a feasible solution.
These inequalities comprise our Bayesian Revealed Preference
(henceforth called BRP) test for rationally inattentive utility
maximization.

For notational convenience, the decisions of the Bayesian
agents in the UMRI model are compacted into the dataset D
defined as:

D = {π0, pk(a|x), x ∈ X , a ∈ A, k ∈ K}. (5)

In (5), π0 ∈ ∆|X |−1 denotes the prior pmf over the set of states
X in Θ (1). The variable pk(a|x) is the conditional probability
that agent k ∈ K = {1, 2, . . . ,K} takes action a given state
x. D characterizes the input-output behavior of the collection
of Bayesian agents and serves as the input for BRP feasibility
test described below.

Theorem 1 (BRP Test for Rationally Inattentive Utility
Maximization [7]). Given the dataset D (5) obtained from
a collection of Bayesian agents K. Then,
1. Existence: There exists a UMRI tuple Θ(D) (1) that
rationalizes dataset D if and only if there exists a feasible
solution that satisfies the set of convex inequalities

BRP(D, {uk, ck}Kk=1) ≤ 0, uk ∈ R|X |×|A|+ , ck > 0. (6)

In (6), BRP(·) corresponds to a set of convex (in the variables
{uk, ck}Kk=1) inequalities, stated in Algorithm 1.
2. Reconstruction: Given a feasible solution {uk, ck}Kk=1 to
BRP (D, ·), uk is the kth Bayesian agent’s utility function in
the feasible model tuple Θ(D). The feasible cost of information
acquisition C in Θ(D) is defined in terms of ck as:

C(α) = max
k∈K

ck +
∑
a

max
b∈A

∑
x

p(x, a)uk(x, b)

−
∑
x,a

pk(x, a)uk(x, a), (7)

where α = {p(a|x), a ∈ A, x ∈ X} ∈ ∆(A)|X |.

The proof of Theorem 1 is in Appendix A. Before launching
into a detailed discussion, we stress the “iff” in Theorem 1.
Put simply: if the inequalities in (6) are not feasible, then the
Bayesian agents that generate the dataset D are not rationally
inattentive utility maximizers. If (6) has a feasible solution6,
then there exists a reconstructable family of viable utility
functions and information acquisition costs that rationalize D7.
A key feature of Theorem 1 is that the estimated utilities (and
information costs) are set-valued; every utility and cost function
in the feasible set explains D equally well. The estimated UMRI
model parameters are set-valued due to the finite number of
Bayesian agents whose decisions constitute the dataset D. The
estimated parameter set converges to a point if and only if the
inequality (6) holds as |K| → ∞.

Computational Aspects of BRP Test. Suppose the dataset D
is obtained from K Bayesian agents. Then, BRP(D) comprises
a feasibility test with K (|X ||A|+ 1) free variables and K2 +
K (|A|2 − |A| − 1) convex inequalities. Thus, the number of
free variables and inequalities in the BRP feasibility test scale
linearly and quadratically, respectively, with the number of
observed Bayesian agents.

Single Utility BRP (S-BRP ). In Algorithm 4 in the appendix,
we define a second set of inequalities S-BRP . The only
difference between BRP and S-BRP is the number of variables.
While BRP reconstructs a set of distinct utility functions
indexed by the agent that rationalizes dataset D, S-BRP assumes
a single utility function but distinct Lagrange multipliers for
the expected utility for all agents. Hence, S-BRP can be viewed
as a more restrictive version of BRP .

Algorithm 1 BRP Convex Feasibility Test of Theorem 1
Require: Dataset D = {π0, pk(a|x), x ∈ X , a ∈ A, k ∈ K}

from a collection of Bayesian agents K.
Find: Positive reals ck, uk(x, a) ∈ (0, 1] for all x ∈ X ,
a ∈ A, k ∈ K that satisfy the following inequalities:

NIAS :
∑
x

pk(x|a) (uk(x, b)− uk(x, a)) ≤ 0, (8)

∀a, b ∈ A, k ∈ K,

NIAC :
∑
a

(
max
b

∑
x

pj(x, a)uk(x, b)

)
− cj (9)

−
∑
x,a

pk(x, a)uk(x, a) + ck ≤ 0, ∀j, k ∈ K,

where pk(x, a) = π0(x)pk(a|x), pk(x|a) = pk(x,a)∑
x′ pk(x′,a) .

Return: Set of feasible utility functions uk and information
acquisition costs ck incurred by agents k ∈ K.

6Although expressed differently, the NIAC condition (9) in Algorithm 1 is
equivalent to that in the original work of [7, Theorem 1]. In [7], the NIAC
condition does not involve the information cost terms as feasible variables.

7In terms of interpretable deep learning, of all parameters in the UMRI
tuple, we are only interested in the utility functions of the agents and the cost
of information acquisition, since the remaining parameters can be inferred
from the decision dataset D.
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C. BRP test and Interpretable Deep Image Classification

We now discuss how the above BRP test relates to in-
terpretable image classification using deep CNNs. The BRP
convex feasibility test in Theorem 1 comprises two sets of
inequalities, namely, the NIAS (No-Improving-Action-Switches)
(8) and NIAC (No-Improving-Action-Cycles) (9) inequalities
(Algorithm 1). NIAS ensures that the agent takes the best
action given a posterior pmf. NIAC ensures that every agent
chooses the best attention strategy. BRP test checks if there
exist K utility functions and K positive reals that, together
with D, satisfy the NIAS and NIAC inequalities.

Toy Example with 2 CNNs: The following discussion gives
additional insight into our approach. Consider the simplest case
involving two trained deep CNNs N1 and N2; so K = {1, 2}
in the above notation. Assume N1 and N2 have the same
network architecture. Suppose an analyst observes that N1

makes accurate decisions on a rich input image dataset while
N2 makes less accurate decisions on the same dataset.

Our UMRI model first abstracts the accuracy of the feature
representations of the input image data learned by N1 and
N2 via attention strategies α1 and α2 in (4). Second, the
information acquisition cost function C(·) abstracts the com-
putational resources expended for learning the representations.
The rationale is that learning an accurate latent feature
representation is costly, and this is abstracted by the information
acquisition cost.

Let the training cost incurred by N1 and N2 be C(α1) and
C(α2) respectively. If the decisions of N1 and N2 can be
explained by the UMRI model (and Theorem 1 above will give
necessary and sufficient conditions for this), then there exist
utility functions u1 and u2 for N1 and N2, that satisfy:

Eαi
{ui} − C(αi) ≥ Eαj

{ui} − C(αj), i, j ∈ {1, 2} (10)

The above inequality says that CNNs N1 and N2 would be
worse off (in an expected utility sense) if they make decisions
based on swapping each other’s learned representations. That
is, both N1 and N2 learn the ‘best’ feature representation of
the input images given their training parameters.

Discussion: (i) Parsimonious Interpretable Representation
of deep CNNs. In the deep image classification context, due to
the UMRI model’s parsimonious parametrization in (1), the
decisions of K CNNs can be rationalized by just K utility
functions and an information acquisition cost function, thus
bypassing the need of several million parameters to describe
the deep CNNs.
(ii) Identifiability. The BRP feasibility test requires the dataset
D to be generated from K > 2 Bayesian agents. If K = 1,
then (6) holds trivially since any information acquisition cost
satisfies the convex inequalities of BRP. Another intuitive
way of motivating a collection of agents for the BRP is as
follows. Reconstructing a feasible UMRI model tuple Θ that
rationalizes the decisions of the deep CNNs is analogous
to fitting a line to a finite number of points. One can fit
infinitely many lines through a single point. The task becomes
non-trivial if the number of points exceeds 2. In the Bayesian
revealed preference context, the points correspond to the
decisions from each Bayesian agent. The slope and intercept of

the fitted line, in our case, corresponds to the utility function
and cost of information acquisition that rationalize the agent
decisions.
(iii) Relative Optimality implies Global Optimality. In the
setting involving K > 2 deep CNNs (agents), the NIAS and
NIAC inequalities of BRP test check for relative optimality
- given utility function uk, does deep CNN k performs at
least as well as any other observed deep CNN in K\{k}?
Clearly, testing for relative optimality is weaker than testing
for global optimality (4) which ideally requires access to
decisions from an infinite number of deep CNNs. Setting the
cost of information acquisition as a free variable bridges this
gap. The proof of Theorem 1 shows that if the deep CNN
decisions satisfy relative optimality, then there exists a cost of
information acquisition such that the decisions are globally
optimal. That is, Theorem 1 ensures relative optimality is
sufficient for global optimality.
(iii) Generalization of [7]. Theorem 1 generalizes [7, Theorem
1] in two ways. (1) In [7], the utilities uk in UMRI model tuple
Θ are assumed known, and only the information acquisition
costs ck are estimated, whereas Theorem 1 estimates both
parameters. (2) The expression for the reconstructed model
tuple Θ(D) is novel; the discussion in [7] is only confined to
the existence of such a tuple.
(vi) Single Utility UMRI (S-UMRI ). In Appendix B, we
propose a sparse version of UMRI , namely, the S-UMRI model
in (23). The key distinction of this model is that all agents
have the same utility function u and thus can be represented
with substantially fewer parameters. In complete analogy to
Theorem 1, we outline a decision test in Theorem 3 that states
necessary and sufficient conditions for agent decisions to be
consistent with the S-UMRI model of rationally inattentive
utility maximization. We discuss this sparse parametrization in
the appendix so as not to interrupt the flow of the main text.
(vii) Degenerate solution to BRP test. The degenerate utility
function of all zeros and cost of information acquisition C = 0
trivially satisfies the BRP tests and lie at the boundary of the
feasible set of parameters.

Summary: This section formulated an economics-based
decision-making model. Since this model may not be familiar
to a machine learning reader, we summarize the main ideas.
We introduced the rationally inattentive utility maximization
model, namely, the UMRI model for a collection of Bayesian
agents (decision makers). Our main result Theorem 1 outlines a
decision test BRP for rationally inattentive utility maximization
given decisions from a collection of agents. This BRP test
comprises a set of convex inequalities that have a feasible
solution if and only if the collection of agents are rationally
inattentive utility maximizers. Theorem 1 also provides an
explicit reconstruction of the feasible UMRI model parameters
that rationalize input agent decisions. The set of feasible utility
functions and information acquisition costs thus parsimoniously
explain the decisions generated by the Bayesian agents. In
Appendix B, we propose a single utility version of the UMRI
model with fewer parameters. Due to fewer parameters, the
decision test for this sparse model, given in Theorem 3, is
computationally less expensive yet more restrictive than the
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BRP test for rationality in Theorem 1.
The rest of the paper focuses on computing interpretable

UMRI models that rationalize deep CNN decisions. We will
investigate through extensive experiments how well the UMRI
fits the deep CNN decisions via robustness tests. We will
also investigate how well the computed interpretable models,
namely, UMRI and S-UMRI , predict the deep CNNs’ decisions
when the training parameters are varied.

III. BAYESIAN REVEALED PREFERENCE EXPLAINS
CIFAR-10 IMAGE CLASSIFICATION BY DEEP CNNS

The experimental results in this section are divided into two
parts: First, we show that the deep CNNs decisions pass the
BRP and S-BRP tests formulated in Theorems 1 and 3 by a
large margin. This implies that the rationally inattentive utility
maximization model is a robust fit to the deep CNN decisions.

Our second result demonstrates an application of the re-
constructed interpretable model. Training datasets are often
noisy. We show that in such a noisy setting, the reconstructed
interpretable model from Theorem 1 can accurately predict
(with accuracy exceeding 94%) the image classification perfor-
mance of the deep CNNs. This bypasses the need to train the
deep CNN for various noise variances that corrupt the training
dataset.

Experimental Setup: Deep CNN Architectures, Training Param-
eters and Construction of Dataset

Image Dataset. For our numerical experiments, we trained
and validated the deep CNNs using the CIFAR-10 benchmark
image dataset [37]. This public dataset consists of 60000 32x32
color images in 10 distinct classes (for example, airplane,
automobile, ship, cat, dog, etc.), with 6000 images per class.
There are 50000 training images and 10000 test images. We will
use the terms image classes and image labels interchangeably.8

Network Architecture and Training Parameters. In this
paper, we use 5 well-known deep CNN architectures for our
experiments. 1. LeNet [38], 2. AlexNet [39] 3. VGG16 [40]
4. ResNet-50 [22] 5. Network-in-Network (NiN) [41] The
deep CNNs are trained and validated on the CIFAR-10 image
dataset, using 3 learning rate schedules, namely, L.R. 1, L.R.
2 and L.R. 3. All 3 schedules use the RMSprop optimizer [42]
with the decay parameter and maximum training epochs (full
passes of the training dataset) set to 10−6 and 200, respectively,
and initial step size set to 0.01. The step size is halved every
20, 30, 40 epochs, respectively, for L.R. 1, 2 and 3.

Relation to Bayesian revealed preference. We now relate the
deep CNN setup to the Bayesian revealed preference framework
in Sec. II. For each CNN architecture, we use the decisions of
K = 20 CNNs, i.e. , 20 Bayesian agents in the terminology
of Sec. II, for our BRP and S-BRP decision tests. The CNN
decisions from K CNNs on the test image dataset of CIFAR-10
are aggregated into dataset D (5). The results of the decision

8Our experiments are confined to the CIFAR-10 dataset in the main text for
clarity of exposition. Our approach to interpretable deep learning can be easily
extended to richer benchmark image datasets like ImageNet and CIFAR-100
(that comprise over 100 image labels); see Appendix D for numerical results
from additional experiments on larger image datasets.

tests are discussed below. In the deep image classification
context, the parameter pk(a|x) in (5) is the probability that
the kth deep CNN classifies an image from category x into
category a in the CIFAR-10 test image dataset. The prior π0
in D (5) is the empirical pmf over the set of image categories
in the CIFAR-10 test dataset. Constructing D from raw CNN
decisions is discussed in Appendix C.

A. BRP and S-BRP Tests for deep CNN datasets. Results and
Insights

Network Architecture Learning
Rate

RBRP
(×10−4)

RS-BRP
(×10−4)

LeNet
L. R. 1 30.34 4.72
L. R. 2 35.14 4.65
L. R. 3 37.97 5.11

AlexNet
L. R. 1 32.10 3.21
L. R. 2 34.98 3.91
L. R. 3 40.60 4.62

VGG16
L. R. 1 96.36 4.09
L. R. 2 107.4 4.02
L. R. 3 119.8 4.44

ResNet-50
L. R. 1 126.2 2.82
L. R. 2 129.2 3.45
L. R. 3 132.3 3.83

Network-In-Network (NiN)
L. R. 1 108.3 3.59
L. R. 2 132.1 3.36
L. R. 3 149.1 5.57

TABLE I: How does increasing the number of degrees of
freedom of the interpretable model improve robustness of fit
to the CNN decisions? We see that RBRP (11) is substantially
higher (by an order of magnitude) than RS-BRP (12) for
all CNN architectures. We conclude that the UMRI model
fits CNN decisions substantially better than the S-UMRI
model, but with larger computing cost for evaluating the
parameters of the interpretable model. Thus, if there are no
computational constraints, we recommend using the UMRI
model for interpreting CNN decisions.

A. Robustness Results on Deep CNN datasets: Our first
key result is that image classifications of all 5 deep CNN
architectures listed in Sec. III pass the BRP and S-BRP tests
by a large margin. The results are tabulated in Table I. The
robustness values RBRP and RS-BRP in Table I are defined in
Definition 2 below which formalizes the notion of margin for
the decision tests.

Definition 2 (Robustness (Goodness-of-fit) of BRP and S-BRP
Tests.). Given dataset D (5) aggregated from a collection of
Bayesian agents, RBRP(D) and RS-BRP(D) measure the largest
perturbation so that D passes the BRP and S-BRP decision
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Network
Architecture

Learning
Rate
(L.R.)

airplane auto bird cat deer dog frog horse ship truck

LeNet
L.R. 1 17.61 3.55 20.06 1.88 17.19 21.42 42.00 27.79 1.91 9.55
L.R. 2 4.13 5.20 7.82 1.90 13.18 18.66 23.84 8.16 2.48 2.47
L.R. 3 10.79 8.27 18.62 22.67 19.91 25.01 47.71 73.52 2.65 1.01

AlexNet
L.R. 1 210.78 41.84 49.77 59.71 51.24 68.31 83.94 211.61 60.43 125.73
L.R. 2 85.51 47.89 17.38 1.00 25.34 202.78 21.30 35.01 533.62 248.57
L.R. 3 18.00 49.55 58.25 28.31 135.54 29.24 224.91 214.51 8.29 264.20

VGG16
L.R. 1 164.48 154.77 15.42 33.67 6.28 123.89 62.83 26.21 1.43 170.69
L.R. 2 88.73 154.10 45.63 297.61 131.08 136.52 57.34 229.80 145.99 11.90
L.R. 3 24.33 10.78 93.90 11.11 91.96 56.64 77.30 110.60 20.28 17.09

ResNet-50
L.R. 1 50.83 17.55 16.09 4.66 17.92 3.67 4.92 3.95 15.46 4.88
L.R. 2 7.51 8.40 72.70 30.72 32.43 83.65 221.27 74.59 99.04 20.51
L.R. 3 14.61 367.59 31.61 9.20 16.35 11.58 41.44 243.95 222.67 483.91

Network-in-Network
L.R. 1 5.02 30.95 9.91 71.38 63.69 45.88 31.39 67.86 17.03 21.41
L.R. 2 40.17 60.32 4.40 55.67 95.02 88.72 91.15 15.98 176.75 10.27
L.R. 3 10.47 75.32 55.97 24.17 17.41 8.94 23.02 71.27 29.94 80.91

TABLE II: The utility function of the sparsest interpretable model is a diagonal matrix. The diagonal elements yield a natural
preference ordering amongst the set of image classes (classification hypotheses). For example, consider the VGG16 architecture
trained using learning rate 1 (third row, first sub-row of table). The maximum utility is for trucks (170.69, last column) and the
minimum is for ships (1.43, second last column). This shows the sparsest interpretable model induces the following preference
ordering for the VGG16 architecture: classifying trucks correctly is prioritized 100 times more than classifying ships. Such a
preference ordering is not explicitly generated by a CNN.

tests:

RBRP(D) = max
ε>0

ε K∑K
k=1 ‖uk‖22

, BRP(D, {uk, ck}Kk=1) ≤ −ε.

(11)

RS-BRP(D) = max
ε>0

ε

‖u‖22
, S-BRP(D, u, {ck, λk}Kk=1) ≤ −ε.

(12)

In Definition 2, robustness values RBRP and RS-BRP measure,
respectively, the smallest perturbation needed for D to fail the
BRP and S-BRP decisions tests. Put differently, the variable
ε measures how well the BRP and S-BRP inequalities are
satisfied given dataset D. The higher the value of feasible
ε that satisfies the constraint in the optimization problems
(11) and (12), the better the corresponding utilities and costs
explain the dataset D, hence indicating a better fit of the UMRI
and S-UMRI model to neural networks’ performance. This
‘max-margin’ philosophy is prevalent in both IRL [43] and
revealed preference [44] literature. Both RBRP and RS-BRP are
normalized wrt the row-wise L2 norm of the feasible utility
functions. Higher robustness values imply a better fit of the
UMRI , S-UMRI models to the decision dataset 9.

Discussion and Insights. Robustness Results of Table I:
(i) Deep CNN dataset: The deep CNN datasets used for the
robustness tests (11), (12) comprise decisions of K = 20
deep CNNs for every network architecture, where CNN k was
trained for 10 k training epochs, k = 1, 2, . . . ,K.
(ii) Comparison between RBRP and RS-BRP values for deep

9The robustness value for the non-informative dataset of uniformly dis-
tributed pmfs is 0. Hence, the robustness value measures the informativeness
of the attention strategies in D relative to the uniform probability distribution.

CNN datasets: The average value of RS-BRP (12) over all 3
learning rate schedules and 5 network architectures was found
to be 4.09× 10−4. In contrast, the average value of RBRP (11)
was found to be 87.45 × 10−4, almost 20 times the average
value of RS-BRP. This result shows that the UMRI model fits
deep CNN decisions substantially better than the S-UMRI
model. This result is expected since S-UMRI is parameterized
using much fewer variables compared to the UMRI and hence,
S-BRP test is more restrictive than BRP .
(iii) Sensitivity of RBRP,RS-BRP to Network Architecture: The
average value of RBRP is 122.29 × 10−4 for the LeNet and
AlexNet architectures, which is approximately 3.5 times the
the average value of RBRP for the VGG16, ResNet-50 and
NiN architectures which is 35.18 × 10−4. The variation of
RS-BRP with network architecture is negligible compared to
RS-BRP. This shows the robustness test for UMRI model is
more sensitive to network architecture compared to that for
the S-UMRI model.
(iv) Computational aspects of RBRP and RS-BRP. The computa-
tion time for RBRP is almost 30 times that for RS-BRP. This is
expected since the UMRI model is parameterized by K utility
functions compared to a single utility function in S-UMRI .

B. Sparsity-enhanced Interpretable Model: Our next task
is to determine the sparsest possible interpretable model that
satisfies the decision tests BRP and S-BRP. The motivation is
three fold:

1) The sparsest interpretable model explains the deep CNN
decisions using the fewest number of parameters.

2) The sparsest interpretable model induces a useful pref-
erence ordering amongst the set of hypotheses (image
labels) considered by the CNN; for example, how much
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additional priority is allocated to the classification of a
cat as a cat compared to a cat as a dog. In classical
deep learning, this preference ordering is not explicitly
generated.

3) Third, the sparsest solution is a point valued estimate.
Recall the BRP and S-BRP decision tests yield a set-
valued estimate of feasible utility functions and cost of
information acquisition that explain the deep CNN datasets.
While every element in the set explains the dataset equally
well, it is useful to have a single representative point.

Theorem 2 below computes the sparsest utility function out
of all feasible utility functions.

Theorem 2 (Sparsity Enhanced BRP and S-BRP Tests for
Deep CNN datasets). Given dataset D (5) from a collection
of K Bayesian agents. The sparsest solutions to the BRP and
S-BRP tests minimize the sum of row-wise L1 norm of the
feasible utility functions of the K agents that generate D.

(u1:K)∗ = argmin
u1:K

K∑
k=1

‖uk‖1,BRP(D, ·) ≤ 0,

K∑
k=1

‖uk‖22 = K.

u∗ = argmin
u
‖u‖1, S-BRP(D, ·) ≤ 0, ‖u‖22 = 1. (13)

where ‖·‖1 denotes the row-wise L1 norm.

Results and Discussion. Sparsity Test for deep CNN datasets:
The sparsest utility function from the S-BRP test are tabulated
in Table II for all 5 deep CNN architectures. The corresponding
information acquisition cost for all 5 architectures averaged
over learning rates 1, 2, 3 are shown in Fig. 3. Together, the
sparsest utility and information cost constitute the sparsest
S-UMRI interpretable model10 for the deep CNN decisions.
(i) Preference ordering induced from sparsest utility. The
sparsest utility function for the S-UMRI model induces a useful
preference ordering among the predicted image classes. That
is, they measure how the deep CNN’s priority for accurate
classification varies across image classes. For instance, consider
the VGG16 architecture trained using learning rate schedule 1.
Of all image categories, the maximum utility is observed for
trucks (170.69) and the minimum for ships (1.43). This shows
the VGG16 architecture prioritizes classifying trucks correctly
about 100 times more than classifying ships.
(ii) Penalty for learning image features accurately. The com-
puted information acquisition costs in Fig. 3 can be understood
as the training cost the CNN incurs to learn latent image
features accurately. The interpretable model cannot explain the
variation in CNN classification accuracy versus variation in
training parameters without an information acquisition cost.
From Fig. 3, we can conclude that learning accurate image
features is the most and least costly, respectively, for the
AlexNet and ResNet architectures, respectively.

10For brevity, we have only included the sparsity results for the S-UMRI
model. The sparsest utility functions of the UMRI model that explains deep
CNN decisions are included in our public GitHub repository that contains all
test results and codes.

Fig. 3: The figure illustrates an important property of our
approach to interpretable deep learning: in addition to the
utility function (Table II), we also need a rational inattention
term (cost of learning latent image features) to explain CNN
decisions. Put differently, we cannot explain the variation
in CNN classification accuracy versus variation in training
parameters without an information acquisition cost. The figure
displays the information acquisition cost C (7) evaluated for
the sparsest interpretable model. We also observe that learning
accurate image features is most expensive for AlexNet, and
least expensive for ResNet architectures.

B. Predicting deep CNN classification accuracy using our
Interpretable Models

Training datasets are often noisy; for example, [45] considers
noisy datasets for hand-written character recognition. We now
exploit the proposed interpretable model to predict how the
deep CNN will perform with a noisy training dataset without
actually implementing the deep CNN.

Our predictive procedure is as follows. We first train the
CNNs on noisy datasets that are generated by adding simulated
Gaussian noise with noise variances chosen from a finite set. 11

Then given the CNN decisions, we compute our interpretable
model over this finite set of noise variances. Finally, to predict
how the CNN will perform for a noise variance not in the
set, we interpolate the utility function of the interpretable
model at this noise variance. Then given the interpolated utility
function and information acquisition cost from our interpretable
model, the predicted classification performance is computed by
solving convex optimization problem (4). The above procedure
is formalized in Algorithm 2. Hence, our interpretable model
serves as a computationally efficient method for predicting
the performance of a CNN without implementing the CNN.
The interpretable model can be viewed as a low-dimension
projection of the high-dimension CNN with predictive accuracy
exceeding 94%.

Remark. An alternative procedure is to directly interpolate
the performance over the space of CNN weights (several
hundreds of thousands). Due to the high dimensionality, this is

11Injecting artificial noise in training datasets is also used in variational
auto-encoders for robust feature learning [46], [47].
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Network Architecture airplane auto bird cat deer dog frog horse ship truck
LeNet 0.042 0.042 0.041 0.027 0.046 0.025 0.049 0.034 0.040 0.042

AlexNet 0.025 0.031 0.034 0.021 0.046 0.032 0.049 0.039 0.045 0.036
VGG16 0.033 0.035 0.043 0.041 0.048 0.048 0.035 0.046 0.037 0.048

ResNet-50 0.030 0.031 0.027 0.031 0.020 0.027 0.040 0.015 0.023 0.024
Network-in-Network 0.051 0.029 0.025 0.028 0.056 0.059 0.030 0.058 0.045 0.036

TABLE III: How well does our interpretable model predict CNN classification accuracy? The table displays the prediction error
δη(x) defined in (14). Recall δη(x) is the error between the true CNN performance and the predicted performance using the
interpretable model with Algorithm 2. The maximum error across all image classes and architectures was found to be 5.9%.
Hence, our interpretable model predicts CNN classification performance with accuracy exceeding 94%.

an intractable interpolation. In comparison, interpolation over
the utility functions in our interpretable model is over a few
hundred variables.

Prediction Results of Algorithm 2 on Deep CNN Perfor-
mance: Table III displays the prediction errors (difference
between the true and predicted classification accuracy) for the
deep CNNs for all 5 architectures and all image classes in
CIFAR-10. For a fixed CNN architecture and noise variance
η > 0, the prediction error δη(x) for image class x is defined
as:

δη(x) = |p̂(x|x)− pCNN(x|x)|. (14)

In (14), p̂(·|·) is the predicted CNN performance generated
from Algorithm 2 and pCNN(·|·) is the true CNN performance
obtained by implementing the CNN. Recall that p(x|x) is the
probability that the CNN correctly classifies an image belonging
to class x.

Algorithm 2 Predicting Deep CNN Classification Accuracy
via the S-UMRI model using Theorem 2.
Require: Dataset D (28) from K deep CNNs from a fixed

network architecture. The kth CNN is trained on a noisy
dataset intentionally perturbed by additive zero mean
Gaussian noise on each pixel, with noise variance set to
ηk = 1 + 0.1× (k − 1).

Step 1: Constructing Interpretable Model. The most robust util-
ity functions {u∗k}Kk=1 and information acquisition cost C∗

are computed by solving the following convex optimization
problem.

{u∗k, c∗k}Kk=1 = argmax
u1:K

ε K∑K
k=1 ‖uk‖22

, BRP(D, ·) ≤ −ε.

C∗(p(a|x)) = max
k=1

c∗k +
∑
x,a

π0(x)(p(a|x)− pk(a|x))u∗(x, a).

(15)

Step 2: Predicting Classification Accuracy. For an arbitrary
noise variance η ∈ [η1, ηK ], obtain index g ∈ Z+, g ≤ K
such that η ∈ [ηg, ηg+1]. Then, the predicted classification
accuracy p̂(a|x) for noise variance η is computed as follows:

p̂(a|x) = argmax
p(a|x)

∑
a

max
b

∑
x

π0(x)p(a|x)û(x, a)− C∗(p),

û = 10× {(ηg+1 − η)u∗g + (η − ηg)u∗g+1}. (16)

Return: Predicted performance p̂(a|x) for noise variance η.

Discussion and Insights: (i) Our interpretable model can
predict CNN classification performance at the image label level
with high accuracy (see below).
(ii) The interpretable model (utility functions and information
acquisition cost) for our predictive procedure (Algorithm 2) is
evaluated on the set of noise variances G1 = {1 + 0.1× (k −
1), k = 1, 2, . . . , 11}. The predictive procedure of Algorithm 2
is applied on the set of noise variances given by G2 = {1.05 +
0.1×(k−1), k = 1, 2, . . . , 10}. Table III displays the prediction
errors δη(x) averaged over all η ∈ G2.
(iii) From Table III, the prediction error δη(x) averaged over
all image classes x for the 5 CNN architectures are:

1) LeNet - 0.038
2) AlexNet - 0.036
3) VGG16 - 0.041

4) ResNet-50 - 0.027
5) NiN- 0.035

So the least accuracy is 95.9%, and highest accuracy is 97.3%.
(iv) The prediction error averaged over the network archi-
tectures was observed to be minimum for image class ‘cat’
(98.1%) and maximum for image class ‘deer’ (95.7%) overall
image classes.
(iv) Statistical Similarity between Deep CNNs and Interpretable
Model. We computed the Kullback-Leibler (KL) divergence
between the true and predicted classification performances
pimp(a|x) and p̂(a|x). Recall p̂(a|x) is computed from the
interpretable model via Algorithm 2 and pCNN(a|x) is obtained
from the CNN. The KL divergence values for the 5 CNN
architectures are:

1) LeNet - 0.015
2) AlexNet - 0.012
3) VGG16 - 0.016

4) Resnet-50 - 0.006
5) NiN - 0.018.

Thus, the decisions made by the deep CNNs are statistically
similar to decisions generated by our interpretable model.

Remarks.
1) Although our numerical experiments only consider the

CIFAR-10 image dataset, our results are straightforward
to extend to larger and more granular datasets like
CIFAR-100 [37] and ImageNet [48] at the cost of greater
computational resources. In Appendix D, we describe
additional experiments performed using the state-of-the-
art vision transformer (ViT) [49] on larger image datasets
like CIFAR-100 and Tiny-ImageNet. We construct two sets
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of utility functions and associated information acquisition
costs corresponding to the UMRI model. We also compute
the goodness-of-fit of the UMRI model to the neural
network dataset D (5).

2) Predicting neural network behavior. Performance vs.
Classification. The rational inattention-based interpretable
model (UMRI) takes as input a prior distribution over
image labels and the confusion matrix generated from the
trained neural network. Then, it yields a set of feasible
utility functions and costs that rationalize the model
inputs. In other words, the UMRI model explains the
neural network’s performance; see Fig. 1 for an illustration.
Sec. III-B shows how an interpolation-based scheme can
be used to predict the performance, or equivalently, the
confusion matrix for neural networks trained wrt unknown
learning parameters.
However, it is straightforward to formulate a classification
scheme using the utility functions and costs generated
by the interpretability test. Simply put, one only needs
to execute the lower block diagram in Fig. 1 using the
parameters computed from our interpretability algorithm12

This is an interesting area of future research; we provide
a brief outline in Algorithm 3.13

IV. CONCLUSIONS AND EXTENSIONS

This paper proposed a data-driven micro-economics based
system identification approach for interpretable deep classifica-
tion. The key results stem from Bayesian revealed preference.
By embedding deep image classification in a constrained
Bayesian utility maximization framework, interpretable deep
image classification is equivalent to set-valued system identifi-
cation of an argmax non-linearity (in signal processing terms).
Based on approximately 500 experiments on 5 popular CNN
architectures, we showed that deep CNNs can be explained
remarkably well by Bayesian utility maximization constrained
by an information cost.

Our main results were the following:
1. Using the theory of Bayesian revealed preference, Theorem 1
gave a necessary and sufficient condition for the actions of a
collection of decision makers to be consistent with rationally
inattentive Bayesian utility maximization. We showed that
deep CNNs operating on the CIFAR-10 dataset satisfy these
necessary and sufficient conditions.
2. Next, we studied the robustness margin by which the deep
CNNs satisfy Theorem 1; we found that the margins were
sufficiently large, implying the robustness of the results. Our
robustness results are summarized in Table I.
3. In Theorem 2, we constructed the sparsest interpretable
model from the feasible set generated using Theorem 1. The
sparsest interpretable model explains deep CNN decisions using
the least number of parameters. The sparsest interpretable
model introduces a useful preference ordering amongst the set

12Abstractly, our interpretability algorithm performs a system identification
of the neural network assumed to be a rationally inattentive agent. The proposed
classification protocol in Algorithm 3 simply performs a function evaluation of
the rational inattention model parameterized by the interpretability test outputs,
namely, utility functions and sensing costs.

13We thank an anonymous reviewer for suggesting this idea.

Algorithm 3 UMRI -based Image Classification Protocol
Require: Image Dataset DImage = {imgi, xi}Ii=1 (xi denotes

the true image label of the ith image), Trained neural
networks indexed by k, k ∈ {1, 2, . . . ,K}.

Do:
(i) Data Pre-processing.

– Using any feature extraction method on the im-
age dataset DImage, construct enriched dataset
DImage,Features = {imgi, xi, x̃i}Ii=1, where x̃i ∈ X̃
denotes the feature vector of image i.

– Compute feature priors π̃0 and generate confusion
matrices {pk(a|x̃)} of the features, where x̃ ∈
X̃ , a ∈ A and A denotes the set of predicted
image labels.

(ii) System Identification using Interpretability Test.
Compute the optimized robust point estimate of utility
functions and sensing costs {uk(x̃, a), Ck}Kk=1 that
rationalize the feature confusion matrices via (15).

(iii) Function Evaluation of Rational Inattention Model.
Fix index i in the image dataset and trained neural
network index k. Then:

– Sample action a ∼ pk(·|x̃i), where pk(·|x̃) is the
feature confusion matrix for feature x̃ ∈ X̃ .

– Compute posterior belief pk(·|a) corresponding to
sampled action a using Bayes rule:

pk(x̃|a) =
π̃0(x̃) pk(a|x̃)∑

a′∈A π̃0(x̃) pk(a′|x̃)
.

– Compute predicted image label a∗i,k:

a∗i,k = argmax
a′∈A

∑
x̃∈X̃

pk(x̃|a) u(x̃, a′). (17)

Return: Predicted image labels {a∗i,k}
I,K
i,k=1.

of hypotheses (image labels) considered by the deep neural
network; for example, how much additional priority is allocated
to the classification of a cat as a cat compared to a cat as a
dog. In classical deep learning, this preference ordering is not
explicitly generated
4. Finally, we showed that our interpretable model can predict
CNN performance with an accuracy exceeding 94%, and the
decisions generated by our interpretable model are statistically
similar to that of a deep CNN. At a more conceptual level,
our results suggest that deep CNNs for image classification
are equivalent to an economics-based constrained Bayesian
decision system (used in micro-economics to model human
decision-making).
5. We also conduct numerical experiments, namely, sparse
utility estimation and robustness analysis, on larger image
datasets using the state-of-the-art Vision Transform (ViT) neural
network and display the reconstructed large dimensional utility
values in the Appendix. To illustrate how the reconstructed
interpretable model parameters, namely, utility function and
costs, can be used to predict the label when provided an image,
we also outline a pseudo-algorithm in Algorithm 3.

Extensions. An immediate extension of this work is to
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design an auto-encoder for feature extraction, and replace
the image class label with the image features as the state in
the rational inattention model. This would result in a richer
descriptive model of the CNN due to more degrees of freedom
in the utility function. Such a framework facilitates us to
study the performance of Algorithm 3. Also, by setting the
loss function to be a combination of the prediction error (17)
and reconstruction error (from the decoded image), one can
train an auto-encoder to yield the optimal feature map that
maximizes the prediction accuracy for the classification scheme
of Algorithm 3.

Our proposed interpretable model generates a concave utility
function by design. This is an important feature of the revealed
preference framework; even though the actual deep learner’s
utility may not be convex. To quote Varian [16]: “If data can
be rationalized by any non-trivial utility function, then it can be
rationalized by a nice utility function. Violations of concavity
cannot be detected with only a finite number of observations.”
A more speculative extension is to investigate the asymptotic
behavior of the BRP and S-BRP decision tests for rationally
inattentive utility maximization-do the tests pass when the
number of deep CNNs tend to infinity? Recent results [50]
show that an infinite dataset can at best be rationalized by a
quasi-concave utility function.
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APPENDIX

A. Proof of Theorem 1

Proof of necessity of NIAS and NIAC:
1) NIAS (8): For agent k ∈ K, define the subset Ya ⊆ Y

so that for any observation y ∈ Ya, given posterior pmf
pk(x|y), the optimal choice of action is a (3). We define
the revealed posterior pmf given action a as pk(x|a). The
revealed posterior pmf is a stochastically garbled version
of the actual posterior pmf pk(x|y), that is,

pk(x|a) =
∑
y∈Y

pk(x, y, a)

pk(a)
=
∑
y∈Y

pk(y|a)pk(x|y) (18)

Since the optimal action is a for all y ∈ Ya, (3) implies:∑
x∈X

pk(x|y)(uk(x, b)− uk(x, a)) ≤ 0

=⇒
∑
y∈Ya

pk(y|a)
∑
x∈X

pk(x|y)(uk(x, b)− uk(x, a)) ≤ 0

=⇒
∑
y∈Y

pk(y|a)
∑
x∈X

pk(x|y)(uk(x, b)− uk(x, a)) ≤ 0

(since pk(y|a) = 0, ∀y ∈ Y\Ya)

=⇒
∑
x∈X

∑
y∈Y

pk(y|a)pk(x|y)(uk(x, b)− uk(x, a)) ≤ 0

=⇒
∑
x∈X

pk(x|a)(uk(x, b)− uk(x, a)) ≤ 0 (from (18))

This is precisely the NIAS inequality (8).
2) NIAC (9): Let ck = C(αk) > 0, where C(·) denotes the

information acquisition cost of the collection of agents
K. Also, let J(αk, uk) denote the expected utility of the
kth agent given attention strategy αk (first term in RHS
of (4)). Here, the expectation is taken wrt both the state
x and observation y. It can be verified that J(·, uk) is
convex in the first argument. Finally, for the kth agent,
we define the revealed attention strategy α′k over the set
of actions A as α′k(a|x) = pk(a|x), ∀a ∈ A, where the
variable pk(a|x) is obtained from the dataset D. Clearly,
the revealed attention strategy is a stochastically garbled
version of the true attention strategy since

α′k(a|x) = pk(a|x) =
∑
y∈Y

pk(a|y)αk(y|x) (19)

From Blackwell dominance [51] and the convexity of the
expected utility functional J(·, uk), it follows that:

J(α′k, uj) ≤ J(αk, uj), (20)

when αk Blackwell dominates α′k. The above relationship
holds with equality if k = j (this is due to NIAS (8)).
We now turn to condition (4) for optimality of attention
strategy. The following inequalities hold for any pair of
agents j 6= k:

J(α′k, uk)− ck
(20)
= J(αk, uk)− ck

(4)
≥ J(αj , uk)− cj

(20)
≥ J(α′j , uk)− cj . (21)

This is precisely the NIAC inequality (9).
Proof for sufficiency of NIAS and NIAC: Let {uk, ck}Kk=1 denote
a feasible solution to the NIAS and NIAC inequalities of
Theorem 1. To prove sufficiency, we construct an UMRI tuple
as a function of dataset D and the feasible solution that satisfies
the optimality conditions (3),(4) of Definition 1.

Consider the following UMRI model tuple:

Θ = (K,X ,Y = A,A, π0, C, {pk(a|x), uk, k ∈ K}), where
C(p(a|x)) = max

k∈K
ck + J(p(a|x), uk)− J(pk(a|x), uk).

(22)

In (22), C(·) is a convex cost since it is a point-wise maximum
of monotone convex functions. Further, since NIAC is satisfied,
(22) implies C(αk) = ck. It only remains to show that
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inequalities (3) and (4) in Definition 1 are satisfied for all
agents in K.

1) NIAS implies (3) holds. This is straightforward to show
since the observation and action sets are identical.

2) Information Acquisition Cost (22) implies (4) holds. Fix
agent j ∈ K. Then, for any attention strategy p(a|x), the
following inequalities hold.

C(p(a|x)) = max
k∈K

ck + J(p(a|x), uk)− J(pk(a|x), uk)

=⇒ J(pj(a|x))− cj ≥ J(p(a|x))− C(p(a|x)), ∀ p(a|x)

=⇒ pk(a|x) ∈ argmax
p(a|x)

J(p(a|x), uk)− C(p(a|x)) = (4).

B. S-UMRI (Sparse UMRI ) Model for Rationally Inattentive
Bayesian Utility Maximization

In Sec. II-A, we outlined the UMRI model for rationally
inattentive utility maximization of K Bayesian agents pa-
rameterized by K utility functions and a cost of information
acquisition. This section proposes a sparse version of the UMRI
model, namely, the S-UMRI model that is parameterized by
a single utility function that rationalizes the decisions of K
Bayesian agents. Abstractly, the S-UMRI model is described
by the tuple

Θ = (K,X ,Y,A, π0, C, u, {αk, λk, k ∈ K}). (23)

All parameters in (23) are identical to that in (1) except for
the additional parameter λk ∈ R+. λk can be interpreted as
the sensitivity to information acquisition of the kth agent. We
discuss the significance of λk in more detail below. In complete
analogy to Definition 1, Definition 3 below specifies the optimal
action and attention strategy policy of the Bayesian agents K.

Definition 3 (Rationally Inattentive Utility Maximization
for S-UMRI ). Consider a collection of Bayesian agents K
parameterized by Θ in (23) under the S-UMRI model. Then,
(a) Expected Utility Maximization: Given posterior pmf
p(x|y), agent k ∈ K chooses action a that maximizes its
expected utility:

a ∈ argmax
a′∈A

Ex{uk(x, a′)|y} =
∑
x∈X

p(x|y)u(x, a′) (24)

(b) Attention Strategy Rationality: Agent k chooses attention
strategy αk that optimally trades off between utility maximiza-
tion and cost minimization.

αk ∈ argmax
α′

Ey{max
a∈A

Ex{u(x, a)|y}} − λkC(α′, π0) (25)

Remarks. 1. Role of λk. In (25), λk is the differentiating
parameter across agents. Even though all agents have the same
utility function, different values of λk result in different optimal
strategies αk (25).
2. Sparsity of S-UMRI . The UMRI and S-UMRI model tuples
for K Bayesian agents are parameterized using K(|X ||A| +
1) and |X ||A|+K variables, respectively. The difference in
variables for parametrization is linear in K.

Finally, in complete analogy to Theorem 1, we now state
Theorem 3 that states necessary and sufficient conditions for the
decisions of a collection of Bayesian agents to be rationalized
by the S-UMRI model.

Theorem 3 (S-BRP Test for Rationally Inattentive Utility
Maximization). Given the dataset D (5) obtained from a
collection of Bayesian agents K. Then,
1. Existence: There exists a S-UMRI tuple Θ(D) (1) that
rationalizes dataset D if and only if there exists a feasible
solution that satisfies the set of inequalities

S-BRP(D) ≤ 0. (26)

In (6), S-BRP(·) corresponds to a set of inequalities stated
in Algorithm 4 below. The set-valued estimate of Θ that
rationalizes D is the set of all feasible solutions to (6).
2. Reconstruction: Given a feasible solution {u, λk, ck}Kk=1 to
S −BRP (D, ·), u is the kth Bayesian agent’s utility function,
for all k = 1, 2, . . . ,K. The feasible cost of information
acquisition C in Θ(D) is defined in terms of the feasible
variables ck, λk as:

C(α) = max
k∈K

ck + λk
∑
x,a

(p(x, a)− pk(x, a))u(x, a) (27)

The proof of Theorem 3 closely follows the proof of Theo-
rem 1 and hence, omitted. In comparison to the BRP test
of Theorem 1, the S-BRP test has the same number of
inequalities but fewer decision variables. Hence, the set of
feasible parameters generated from Algorithm 4 is smaller
compared to Algorithm 1.

Algorithm 4 S-BRP Convex Feasibility Test of Theorem 3
Require: Dataset D = {π0, pk(a|x), x, a ∈ X , k ∈ K} from

a collection of Bayesian agents K.
Find: Positive reals ck, λk, u ∈ (0, 1] for all x ∈ X , a ∈
A, k ∈ K that satisfy the following inequalities:

1.
∑
x

pk(x|a) (u(x, b)− u(x, a)) ≤ 0,∀a, b, k,

2.
∑
x,a

(pj(x, a)− pk(x, a))u(x, a) + λk(ck − cj) ≤ 0,∀j, k,

where pk(x, a) = π0(x)pk(a|x), pk(x|a) = pk(x,a)∑
x′ pk(x′,a) .

Return: Set of feasible utility function u, scalars λk and
information acquisition costs ck incurred by agents k ∈ K.

C. Construction of Deep CNN Dataset

We now explain how the decisions of the deep CNNs
are incorporated into our main theorems Theorems 1 and 3.
Suppose K deep CNNs indexed by k = 1, . . . ,K with different
training parameters are trained on the CIFAR-10 dataset. For
every trained deep CNN k, given test image i from CIFAR-10
test dataset with image class si, let the vector fi,k ∈ ∆9 denote
the corresponding softmax output of the deep CNN. The vector
fi,k is a 10-dimensional probability vector where fi,k(j) is the
probability that deep CNN k classifies test image i as class j.
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The decisions of all K deep CNNs on the CIFAR-10 test
dataset are aggregated into dataset D for compatibility with
Theorems 1 and 3 as follows:

D = {π0, pk(a|x), x, a ∈ X , k ∈ {1, 2, . . . ,K}}, where

π0(x) =

N∑
i=1

1{si = x}
N

, pk(a|x) =

∑N
i=1 1{si = x}fi,k(a)∑N

i=1 1{si = x}
,

N = 104, X = A = {1, 2, . . . 10}. (28)

Here π0(x) is the empirical probability that the image class of a
test image in the CIFAR-10 test dataset is x. Since the output of
the CNN is a probability vector, we compute pk(a|x) for the kth

CNN by averaging the ath component of the output over all test
images in image class x. Finally, N is the number of test images
in the CIFAR-10 test dataset, and the set of true and predicted
image classes are the same, i.e., X = A. Although implicit
in the above description, our Bayesian revealed preference
approach to interpretable deep image classification assumes
the deep CNN’s (agent’s) ground truth is the true image label,
and its decision a is the predicted image label.

D. Interpretable Deep Image Classification using Vision Trans-
former (ViT) Neural Network Trained on Large Image Datasets

In this appendix, we report two additional experiments to
further illustrate the applicability of our approach to inter-
pretable deep image classification in Sec. III. The experiments
use the state-of-the-art neural network architecture, the vision
transformer (ViT) [49], and are demonstrated on Tiny-Imagenet
and CIFAR-100 datasets. The ViT is considered state-of-the-art
in the field of computer vision due to its powerful self-attention
mechanism. ViT models are reported to outperform CNNs in
terms of computational efficiency and accuracy [52].

Dataset Construction: We consider the two datasets to
demonstrate the applicability of our methodology on larger
state spaces and show our result using |X | = 80 states and
|A| = 80 actions. The datasets for the two experiments are
constructed using:
(a) different noise levels in the training data, and (b) different
training epochs. We describe the general training procedure
used and then explain each experiment in detail. We perform
a fine-training classification task on the respective datasets
using the embeddings of a vision transformer pre-trained on
the Imagenet-21k dataset [53]–[55].

Architecture: The vision transformer (ViT) is a neural
network used for image classification and other computer vision
tasks, representing images as a sequence of patches fed into
a transformer encoder. It has shown promising results over
convolutional neural networks in fundamental computer vision
tasks. A fully connected linear layer is attached to the last
layer of the ViT, which outputs the logit probabilities for
classification. Like in Sec. III, the state and action denote the
true and predicted label of an image, respectively. For both
experiments, the feasible utilities are reconstructed using (a) the
sparsity-enhanced UMRI model via (13), and (b) maximizing
the margin of the BRP inequalities (15).

Experiment 1. ViT trained on Tiny ImageNet: In the
first experiment, we run a classification task on 80 classes of
the Tiny Imagenet dataset, which contains 100000 centered
and cropped training images of 200 different classes [56]. We
artificially add zero-mean Gaussian noise of 5 different values
of noise variance (σ2 ∈ {0.001, 0.004, 0.01, 0.04, 0.1}). We
report the reconstructed utilities for the experiment using the
sparsity enhanced UMRI model in Fig. 6 and by optimizing
the robustness measure in Fig. 4. The cost of information
acquisition is also reported against different epochs in Fig. 8(a).
The robustness value for the inequalities (15) is computed as
0.01. In Table IV, we show the reconstructed robust utility
functions computed via (15) for |X | = 25 states and |A| = 25
actions (total 3125 variables). Although (15) yields 5 utility
functions, each of dimension 25x25, we only display the utility
values for 1 trained neural network.

Experiment 2. ViT trained on CIFAR-100: In the second
experiment, we run a classification task on 80 classes of
the CIFAR-100 dataset, which contains 60000 centered and
cropped images of 100 different artifacts [57]. We create the
dataset by considering different training rounds as a decision
problem. We run the fine-training task for 10 epochs and capture
the confusion matrix at {2, 4, 6, 8, 10} epochs to construct the
interpretability dataset. We report the reconstructed utilities
for the experiment using the sparsity enhanced UMRI model
in Fig. 7 and by optimizing the robustness measure in Fig. 5.
The cost of information acquisition is also reported against
different variances in Fig 8(b). The robustness value for the
inequalities (Def. 2) is computed as 0.02. Table V reports the
max-margin utilities for both experiments computed via (15).

Computational Cost: The number of NIAS (8) and NIAC
(9) inequalities combined are of the order O(|K|2|A|2). The
number of variables (utility values and cost of information
acquisition) to be optimized for obtaining the robust utility
and cost estimate (Definition 2) is of the order O(|K||A|2)
(for the case when |X | = |A|). In the results shown below,
we set the off-diagonal elements of the utility functions to 0
when computing sparse and robust point estimates of utility
functions and costs for the trained neural networks to make
the reconstruction computationally tractable. For completeness,
we reconstruct the robust point estimate for ViT for |X | = 25
and |K| = 5 without assuming the utility function is a diagonal
matrix; the results are displayed in Table IV.

Supplementary Document

This paper has supplementary downloadable material avail-
able at http://ieeexplore.ieee.org., provided by the author. The
material includes Figures 4, 5, 6, 7, 8(a), and 8(b) and Tables V
and IV. Contact Kunal Pattanayak and Adit Jain for further
questions about this work.
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Fig. 4: Interpretable robust diagonal utility values ({uk(x, x), x ∈ X , k ∈ K}) for UMRI for K = 5 and |X | = 80 states, which
maximize the robustness value in the UMRI model (Def. 2). The dataset is constructed using confusion matrices aggregated by
training the vision transformer on Tiny-Imagenet dataset with additive Gaussian noise, with varying values of noise variance
(Experiment 1 in Appendix D). The utility values are normalized and lie in the interval [0,1].

Fig. 5: Interpretable robust diagonal utility values ({uk(x, x), x ∈ X , k ∈ K}) for UMRI for |K| = 5 and X| = 80 states, which
maximize the robustness value in the UMRI model (Def. 2). The dataset is constructed using confusion matrices aggregated at
different epochs while training the vision transformer on the CIFAR-100 dataset (Experiment 2 in Appendix D). The utility
values are normalized and lie in the interval [0,1].
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Fig. 6: Interpretable diagonal utility values ({uk(x, x), x ∈ X , k ∈ K}) for UMRI for |K| = 5 and |X | = 80 states, computed
using sparsity enhanced UMRI model (Theorem 2). The dataset is constructed using confusion matrices aggregated by training
the vision transformer on Tiny-Imagenet dataset with additive Gaussian noise, with varying noise variances (Experiment 1 in
Appendix D).

Fig. 7: Interpretable diagonal utility values ({uk(x, x), x ∈ X , k ∈ K}) for UMRI for K = 5 and |X | = 80 states, computed
using sparsity enhanced UMRI model (Theorem 2). The dataset is constructed using confusion matrices aggregated at different
epochs while training the vision transformer on the CIFAR-100 dataset (Experiment 2 in Appendix D).
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(a) Reconstructed cost for Experiment 1 (b) Reconstructed cost for Experiment 2

Fig. 8: Cost of information acquisition C reconstructed in Experiment-1 and Experiment-2 (Appendix D) corresponding to the
robustness value RBRP(D) for the UMRIṪhe utility values in the table above are normalized and lie in the interval [0,1].

Action Space

State Space 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0 0.99 0.49 0.52 0.49 0.49 0.49 0.48 0.49 0.49 0.48 0.43 0.46 0.49 0.49 0.48 0.48 0.48 0.49 0.49 0.47 0.47 0.48 0.48 0.49 0.48
1 0.48 0.93 0.49 0.49 0.48 0.49 0.48 0.49 0.49 0.48 0.43 0.48 0.43 0.49 0.48 0.48 0.48 0.49 0.48 0.48 0.47 0.48 0.47 0.49 0.49
2 0.42 0.49 1.0 0.49 0.4 0.48 0.48 0.48 0.47 0.48 0.45 0.42 0.49 0.42 0.48 0.48 0.48 0.49 0.49 0.49 0.48 0.48 0.48 0.41 0.49
3 0.48 0.49 0.49 1.0 0.46 0.49 0.48 0.49 0.47 0.48 0.43 0.48 0.49 0.41 0.48 0.48 0.48 0.49 0.49 0.49 0.45 0.49 0.49 0.47 0.48
4 0.48 0.46 0.49 0.46 1.0 0.42 0.48 0.49 0.46 0.48 0.37 0.47 0.49 0.49 0.48 0.48 0.48 0.49 0.49 0.49 0.48 0.49 0.48 0.49 0.48
5 0.48 0.49 0.49 0.42 0.49 0.96 0.48 0.49 0.49 0.48 0.43 0.48 0.49 0.49 0.48 0.47 0.48 0.49 0.41 0.49 0.47 0.48 0.48 0.49 0.48
6 0.48 0.49 0.49 0.47 0.49 0.49 0.94 0.49 0.49 0.48 0.43 0.48 0.49 0.49 0.48 0.48 0.48 0.49 0.49 0.48 0.47 0.48 0.48 0.49 0.48
7 0.48 0.49 0.49 0.49 0.49 0.49 0.48 0.96 0.49 0.48 0.44 0.44 0.49 0.49 0.48 0.48 0.48 0.49 0.49 0.48 0.47 0.49 0.48 0.49 0.47
8 0.48 0.49 0.49 0.49 0.49 0.49 0.48 0.49 0.95 0.48 0.43 0.48 0.49 0.49 0.49 0.48 0.48 0.44 0.49 0.48 0.47 0.48 0.48 0.49 0.48
9 0.48 0.49 0.5 0.49 0.49 0.49 0.48 0.49 0.49 0.93 0.47 0.3 0.49 0.49 0.48 0.49 0.48 0.43 0.49 0.48 0.47 0.48 0.48 0.49 0.48

10 0.49 0.49 0.35 0.48 0.55 0.49 0.48 0.4 0.49 0.48 1.0 0.51 0.46 0.49 0.48 0.48 0.49 0.49 0.49 0.48 0.41 0.48 0.5 0.49 0.48
11 0.46 0.49 0.49 0.49 0.48 0.48 0.48 0.53 0.49 0.48 0.29 1.0 0.49 0.49 0.48 0.48 0.48 0.43 0.49 0.49 0.49 0.48 0.48 0.49 0.48
12 0.48 0.47 0.49 0.49 0.45 0.49 0.48 0.49 0.49 0.48 0.43 0.48 0.95 0.49 0.48 0.48 0.48 0.49 0.49 0.48 0.47 0.48 0.48 0.49 0.48
13 0.48 0.49 0.49 0.49 0.48 0.49 0.48 0.49 0.49 0.48 0.43 0.48 0.49 0.94 0.48 0.48 0.48 0.49 0.41 0.49 0.47 0.48 0.48 0.49 0.48
14 0.48 0.49 0.49 0.42 0.49 0.49 0.48 0.49 0.46 0.48 0.43 0.48 0.49 0.49 0.92 0.48 0.48 0.49 0.48 0.47 0.47 0.48 0.48 0.49 0.48
15 0.48 0.49 0.49 0.48 0.49 0.5 0.48 0.49 0.49 0.48 0.43 0.48 0.49 0.49 0.48 0.98 0.48 0.5 0.49 0.48 0.47 0.48 0.48 0.49 0.48
16 0.48 0.49 0.5 0.49 0.39 0.48 0.48 0.49 0.49 0.48 0.47 0.34 0.49 0.47 0.48 0.48 0.93 0.49 0.49 0.48 0.47 0.48 0.48 0.49 0.48
17 0.48 0.49 0.5 0.49 0.49 0.49 0.48 0.49 0.49 0.48 0.33 0.33 0.49 0.49 0.48 0.46 0.49 0.95 0.49 0.48 0.49 0.48 0.48 0.48 0.48
18 0.48 0.49 0.49 0.49 0.49 0.49 0.48 0.48 0.49 0.48 0.35 0.48 0.49 0.52 0.49 0.48 0.49 0.49 1.0 0.44 0.48 0.48 0.48 0.49 0.48
19 0.49 0.48 0.46 0.48 0.48 0.49 0.48 0.46 0.49 0.48 0.43 0.48 0.49 0.45 0.49 0.47 0.48 0.49 0.5 0.96 0.47 0.48 0.48 0.49 0.48
20 0.48 0.49 0.5 0.49 0.45 0.47 0.48 0.49 0.49 0.48 0.46 0.37 0.49 0.49 0.48 0.48 0.46 0.47 0.43 0.49 1.0 0.48 0.48 0.52 0.48
21 0.49 0.48 0.42 0.46 0.48 0.43 0.48 0.48 0.49 0.48 0.43 0.48 0.49 0.49 0.48 0.48 0.49 0.49 0.49 0.48 0.47 0.92 0.48 0.49 0.48
22 0.48 0.49 0.49 0.48 0.49 0.49 0.48 0.49 0.48 0.48 0.34 0.48 0.49 0.49 0.48 0.48 0.49 0.49 0.49 0.48 0.48 0.48 0.93 0.41 0.48
23 0.48 0.49 0.49 0.5 0.49 0.49 0.48 0.47 0.49 0.48 0.43 0.48 0.49 0.43 0.48 0.48 0.48 0.49 0.5 0.48 0.41 0.48 0.48 0.96 0.48
24 0.49 0.49 0.43 0.49 0.48 0.49 0.48 0.47 0.49 0.48 0.43 0.48 0.45 0.49 0.48 0.49 0.48 0.49 0.48 0.48 0.47 0.48 0.48 0.49 0.94

TABLE IV: Interpretable utility values for a neural network trained on 0.001 noise variance ({u0(x, a), x ∈ X , a ∈ A}) for
UMRI for K = 5 and X = 25, for experiments 1 described in Appendix D. Although the robust utility estimates comprise
3125 variables, we only display the utilities for the first trained neural network. The utility values are normalized and lie in the
interval [0,1]. Recall that the dataset D used to compute the above utility values are obtained from the vision transformer (ViT)
by varying values of training image dataset (Tiny-Imagenet) noise variance in experiment 1. We observe that the utility values
are largest along the diagonal. This is expected since the classification accuracy is close to 100%, hence the reconstructed
UMRI is expected to have the largest incentive to choose the action a = x, where x denotes the true label of an image.
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State Action Space Trained NNs (1-5) for Experiment 1 Trained NNs (1-5) for Experiment 2

0 0.46 0.47 0.5 0.47 0.5 0.5 0.5 0.5 0.5 0.5
1 0.49 0.53 0.5 0.46 0.5 0.5 0.5 0.5 0.5 0.5
2 0.47 0.53 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
3 0.49 0.48 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
4 0.43 0.52 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
5 0.53 0.44 0.5 0.42 0.5 0.5 0.5 0.5 0.5 0.5
6 0.47 0.49 0.5 0.53 0.5 0.5 0.5 0.5 0.5 0.5
7 0.49 0.5 0.5 0.44 0.5 0.5 0.5 0.5 0.5 0.5
8 0.47 0.5 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
9 0.48 0.53 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5

10 0.44 0.54 0.5 0.5 0.5 0.51 0.49 0.5 0.5 0.5
11 0.53 0.53 0.5 0.52 0.5 0.51 0.49 0.5 0.5 0.5
12 0.42 0.52 0.5 0.44 0.5 0.5 0.5 0.5 0.5 0.5
13 0.48 0.57 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
14 0.52 0.54 0.5 0.42 0.5 0.5 0.5 0.5 0.5 0.5
15 0.54 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
16 0.56 0.48 0.5 0.59 0.5 0.5 0.5 0.5 0.5 0.5
17 0.56 0.49 0.5 0.47 0.5 0.5 0.5 0.5 0.5 0.5
18 0.45 0.5 0.5 0.47 0.5 0.5 0.5 0.5 0.5 0.5
19 0.47 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
20 0.53 0.54 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
21 0.56 0.55 0.5 0.38 0.5 0.5 0.5 0.5 0.5 0.5
22 0.52 0.52 0.5 0.6 0.5 0.5 0.5 0.5 0.5 0.5
23 0.46 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
24 0.51 0.5 0.5 0.53 0.5 0.5 0.5 0.5 0.5 0.5
25 0.52 0.5 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.5
26 0.51 0.44 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
27 0.45 0.49 0.5 0.53 0.5 0.5 0.5 0.5 0.5 0.5
28 0.46 0.48 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
29 0.48 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
30 0.46 0.47 0.5 0.46 0.5 0.5 0.5 0.5 0.5 0.5
31 0.5 0.57 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.5
32 0.51 0.55 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
33 0.5 0.46 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
34 0.51 0.52 0.5 0.58 0.5 0.5 0.5 0.5 0.5 0.5
35 0.5 0.54 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
36 0.48 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
37 0.5 0.53 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
38 0.46 0.53 0.5 0.44 0.5 0.5 0.5 0.5 0.5 0.5
39 0.48 0.49 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
40 0.49 0.52 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
41 0.45 0.48 0.5 0.47 0.5 0.5 0.5 0.5 0.5 0.5
42 0.51 0.52 0.5 0.48 0.5 0.5 0.5 0.5 0.5 0.5
43 0.5 0.53 0.5 0.48 0.5 0.5 0.5 0.5 0.5 0.5
44 0.56 0.54 0.51 0.58 0.52 0.5 0.5 0.5 0.51 0.5
45 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
46 0.52 0.53 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
47 0.48 0.48 0.5 0.53 0.5 0.44 0.49 0.5 0.5 0.5
48 0.5 0.5 0.5 0.56 0.5 0.5 0.5 0.5 0.5 0.5
49 0.51 0.46 0.5 0.55 0.5 0.5 0.5 0.5 0.5 0.5
50 0.5 0.52 0.5 0.49 0.5 0.52 0.5 0.5 0.5 0.5
51 0.48 0.49 0.5 0.55 0.5 0.5 0.5 0.5 0.5 0.5
52 0.57 0.51 0.5 0.55 0.5 0.62 0.5 0.5 0.5 0.5
53 0.51 0.53 0.5 0.54 0.5 0.5 0.5 0.5 0.5 0.5
54 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
55 0.61 0.44 0.5 0.49 0.5 0.55 0.5 0.5 0.5 0.5
56 0.44 0.43 0.5 0.52 0.5 0.5 0.5 0.5 0.5 0.5
57 0.54 0.57 0.5 0.52 0.5 0.5 0.5 0.5 0.5 0.5
58 0.5 0.49 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.5
59 0.51 0.59 0.5 0.53 0.5 0.51 0.49 0.5 0.5 0.5
60 0.54 0.55 0.5 0.54 0.5 0.5 0.5 0.49 0.5 0.5
61 0.5 0.57 0.5 0.54 0.5 0.5 0.5 0.5 0.51 0.49
62 0.5 0.55 0.5 0.55 0.5 0.5 0.5 0.5 0.5 0.5
63 0.49 0.49 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
64 0.49 0.51 0.5 0.45 0.49 0.5 0.5 0.5 0.5 0.5
65 0.51 0.45 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
66 0.5 0.56 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
67 0.48 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
68 0.51 0.53 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
69 0.49 0.49 0.5 0.49 0.51 0.5 0.5 0.5 0.5 0.5
70 0.43 0.58 0.5 0.55 0.5 0.5 0.5 0.5 0.5 0.5
71 0.54 0.55 0.5 0.43 0.5 0.5 0.5 0.5 0.5 0.5
72 0.49 0.52 0.5 0.5 0.5 0.48 0.49 0.5 0.5 0.5
73 0.55 0.55 0.5 0.49 0.5 0.5 0.5 0.5 0.5 0.5
74 0.47 0.52 0.5 0.47 0.5 0.5 0.49 0.5 0.5 0.5
75 0.5 0.52 0.5 0.44 0.5 0.5 0.5 0.5 0.5 0.5
76 0.5 0.43 0.5 0.63 0.5 0.5 0.5 0.5 0.5 0.5
77 0.5 0.5 0.5 0.48 0.5 0.5 0.5 0.5 0.5 0.5
78 0.55 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
79 0.49 0.51 0.5 0.51 0.5 0.5 0.5 0.5 0.5 0.5

TABLE V: Interpretable robust diagonal utility values ({uk(x, x), x ∈ X , k ∈ K}) for UMRI for |K| = 5 and |X | = 80, for
experiments 1 and 2 described in Appendix D. Recall that the dataset D used to compute above utility values are obtained
from vision transformer (ViT) network trained on varying values of training image dataset noise variance in experiment 1, and
varying epochs in experiment 2, respectively. The utility values are normalized and lie in the interval [0,1].
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