
Wolfgang Haken, 1928–2022
Patrick Callahan, Ilya Kapovich, Marc Lackenby,
Peter Shalen, and Robin Wilson

Introduction

Figure 1.

In the fall of 1947, when
Wolfgang Haken was a 19-
year-old undergraduate at
the University of Kiel, he
took an introductory topol-
ogy course from Karl-Hein-
rich Weise. In this course,
Weise mentioned a num-
ber of famous open prob-
lems in topology, includ-
ing the Unknotting Prob-
lem, the Four Color Prob-
lem, and the Poincaré Con-
jecture. Haken spent his en-
tire career working on these
three problems and their

ramifications; he solved the first two, and, in the case of
the first, showed that the techniques he had developed for
the solution could be applied far beyond the original prob-
lem.

The section by Marc Lackenby and Peter Shalen de-
scribes Haken’s approach to the Unknotting Problem
through his theory of normal surfaces, and the far more
general results which he obtained using this theory and his
closely related theory of hierarchies. This section also gives
an indication of the very diverse ways in which other re-
searchers have exploited these theories, both in 3-manifold
theory and in geometric group theory. The section by
Robin Wilson recounts the fascinating saga of the success-
ful attack on the Four Color Problem by Kenneth Appel
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and Wolfgang Haken, which was groundbreaking in its ex-
tensive involvement of computers.

In contrast to his spectacular successes with the Unknot-
ting Problem and the Four Color Problem, Haken’s huge
efforts in connection with the Poincaré Conjecture did not
yield a proof. However, as Lackenby and Shalen point
out, in the years following Grigori Perelman’s proof of
William Thurston’s Geometrization Conjecture—of which
the Poincaré Conjecture is a special case—a number of the
most striking consequences of Perelman’s work involved
normal surfaces and hierarchies. This is a further illustra-
tion of the enormous influence that Haken’s ideas have
had on 3-manifold theory.

Haken’s distinctive approach to mathematical research
was described by one of his colleagues at the University of
Illinois Urbana-Champaign:

Mathematicians usually knowwhen they have got-
ten too deep into the forest to proceed any further.
That is the time Haken takes out his penknife and
cuts down the trees one at a time.

Given Haken’s magnificent output, it appears that this
could be a very effective approach. Of course, in order
to succeed with this approach, one had to be Wolfgang
Haken.

Those of us who knew Haken remember him as a won-
derfully kind and generous person with a delightful low-
key sense of humor. These traits come through in Patrick
Callahan’s section about his days as a PhD student under
Haken’s direction. Ilya Kapovich’s biographical section
gives insight into the obstacles that Haken had to over-
come on the way to his phenomenal mathematical suc-
cesses, and into a family legacy that is as impressive as his
mathematical legacy.

1452 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 70, NUMBER 9



Wolfgang Haken’s Life

Ilya Kapovich
Wolfgang1 Haken2 was born in Berlin on June 21, 1928.
His father was a physicist working for the German Patent
Office and his mother stayed home to take care of the fam-
ily and household. His two older brothers died of scarlet
fever in 1927, andWolfgang grew up as an only child. Dur-
ing his childhood in Berlin, Wolfgang developed an early
interest in mathematics. At the age of 4, he made what
he thought was his first important mathematical discovery:
that counting should start with 0 rather than with 1, and
that 0 is the first natural number. He tried to convince his
father to patent this fact but did not succeed at the time.
Wolfgang’s mother died in August 1939, several days be-
fore the start of World War II, and the family remained in
Berlin for most of the war. In 1944, at the age of 15, Wolf-
gang was drafted to serve in an anti-aircraft battery. He was
soon transferred from Berlin to Dessau and from there to
Soest, where he remained until the end of the war. After
the war, Wolfgang first worked as a farmhand, and passed
a high school GED exam in 1946.

In the summer of 1946, he started his undergraduate
studies at the University of Kiel. At the age of 17, Haken
was the youngest student at Kiel, as the universities in Ger-
many then had a rule not to admit anyone under the age
of 23. Initially, Haken wanted to become a physicist but
his interests gradually changed to mathematics. At the
time, Kiel had only two mathematics faculty members:
a professor of mathematics and a professor of geometry,
which were regarded as different subjects when the uni-
versity was founded in the 17th century. The professor
of mathematics at Kiel was Karl-Heinrich Weise; most of
Haken’s mathematics classes were taught by Weise. In the
Fall of 1947, while Haken was still an undergraduate, he
attended a topology course by Weise. In this course, Weise
stated several famous open problems in topology, includ-
ing the Poincaré Conjecture, the Four Color Problem, and
the Unknotting Problem. This experience marked the start
of Haken’s interest in topology. Remarkably, as was men-
tioned in the Introduction, of the three major mathemati-
cal problems that motivated Haken’s interest in topology,
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1With gracious permission from the University of Illinois, this section incorpo-
rates substantial portions of the article by Ilya Kapovich, “Wolfgang Haken: a
biographical sketch,” Illinois J. Math. 60 (2016), no. 1, iii–ix.
2Born Wolfgang Rudolf Günther Haken. He dropped his middle names and
changed his legal name to just “Wolfgang Haken” in 1976, when he became a
US citizen.

Haken eventually solved two—the Unknotting Problem
and the Four Color Problem.

Haken received a pre-diploma (roughly equivalent to
the Bachelor of Science degree) in physics and mathemat-
ics at Kiel in 1948. He then started his doctoral studies
in mathematics at Kiel, with Weise as his thesis advisor.
Haken obtained his doctorate from Kiel in 1953, with
the dissertation entitled “Ein topologischer Satz über die
Einbettung (𝑑−1)-dimensionaler Mannigfaltigkeiten in 𝑑-
dimensionale Mannigfaltigkeiten.”

Hakenmet his future wife, Anna-Irmgard Freiin von Bre-
dow, at Kiel in 1950 where she was also studying mathe-
matics as an undergraduate. They were married in 1953.
In 1959, Anna-Irmgard also received a doctorate in math-
ematics with Weise as her advisor.

After getting his doctorate, Haken obtained a job at
Siemens in Munich as an electrical engineer, where he
worked on designing microwave devices until 1962. The
first three of Wolfgang and Anna-Irmgard’s six children
were born during this period: Armin in 1957, Dorothea
in 1959, and Lippold in 1961.

In 1956, Haken sustained a near-fatal accident while
mountain climbing in the German Alps. He fell more than
30 feet and remained in a coma for several days. The ac-
cident significantly damaged Wolfgang’s foot but did not
dampen his enthusiasm for the outdoors.

While at Munich, Haken continued doing mathemat-
ical research in combinatorial topology. He solved the
long-standing Unknotting Problem by producing an algo-
rithm for deciding whether a knot diagram represents the
trivial knot. The solution of the Unknotting Problem got
Haken’s work noticed by several mathematicians in the
United States. Ralph Fox, a topologist at Princeton, had
his graduate students go over Haken’s proof in detail, and,
somewhat to Fox’s surprise, they found the proof to be cor-
rect.

Bill Boone, a group theorist at the University of Illinois
at Urbana-Champaign (UIUC), also became intrigued by
Haken’s paper. At the time, Boone was working on
topics related to the unsolvability of the word problem
for finitely presented groups, and he understood that
there were close connections between algorithmic prob-
lems in group theory and algorithmic problems in low-
dimensional topology. Since by then it was known that the
word problem for finitely presented groups is, in general,
undecidable, Boone expected the Unknotting Problem to
be undecidable as well. Therefore Haken’s proof came as a
considerable surprise to him. Just six weeks after the pub-
lication of Haken’s 1961 paper [Hak61b] on the Unknot-
ting Problem in Acta Mathematica, Boone invited Haken to
come to UIUC for a year.
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Haken came to Urbana-Champaign with his family in
1962 and spent the 1962–1963 academic year at UIUC
as a visiting professor. When preparing for his year at
UIUC, Mahlon Day, who was the Mathematics Depart-
ment Head, suggested that Haken obtain a US immigrant
visa (which was relatively simple to do at the time). Haken
followed this advice, which made it easier for him to even-
tually settle permanently in the US. During his year at Illi-
nois, Haken applied for and obtained a temporary mem-
bership at the Institute for Advanced Study at Princeton.
He spent two years, 1963–1965, at Princeton. In 1965,
Haken joined the faculty at the Department of Mathemat-
ics at UIUC as a tenured professor. The last three children
ofWolfgang and Anna-Irmgard were born in the US: Agnes
in 1964, Rudolf in 1965, and Armgard in 1968.

In Haken’s paper [Hak61b] and his later papers
[Hak61a,Hak62,Hak68] he went far beyond the Unknot-
ting Problem, making huge inroads into the more general
Equivalence Problem for knots, and the essentially still more
generalHomeomorphism Problem for 3-manifolds. In doing
so he introduced the concepts of normal surface, incompress-
ible surface, and hierarchy. All these terms will be explained
in the next section, on knots and 3-manifolds, where an
account of the enormous influence of these concepts—
extending even far beyond Haken’s original applications
of them—will be given. It will be seen that these concepts,
and Haken’s work in this area, are still bearing fruit today.

In the late 1960s, Haken began to work on the Four
Color Problem, which had fascinated him ever since the
1947 topology course by Weise and a subsequent 1948
lecture at Kiel by Heinrich Heesch. In 1976, Haken and
Kenneth Appel (who was also a professor at UIUC then)
proved the Four Color Theorem. Their proof included a
substantial computer-aided component and marked the
first time that a major mathematical result of this level of
importance was solved with the help of a computer.

After an announcement in the Bulletin of the AMS in
1976 [AH76a], the proof was published in 1977 in the Illi-
nois Journal of Mathematics [AH77,AHK77].

Inevitably, the proof generated much discussion and
controversy in the mathematical community. In retro-
spect, the proof was to a large extent responsible for the
birth of computational and experimental mathematics as
significant directions in modern mathematical research.

Shortly after Appel and Haken announced their proof
in 1976, the UIUC Department of Mathematics put the
phrase “Four Colors Suffice” on its official postmark,
which remained in use until the mid-1990s: see Figure 2.

Wolfgang Haken delivered an invited address at the
International Congress of Mathematicians in Helsinki in
1978. In 1979, Haken and Appel shared the Fulkerson
Prize from the American Mathematical Society for their so-
lution of the Four Color Problem.

Figure 2. The “Four Colors Suffice” postmark used by the
UIUC Department of Mathematics after the Appel–Haken
proof.

Haken remained a professor in the UIUC Department
of Mathematics until his retirement in 1998. He was
also a member of the University of Illinois Center for Ad-
vanced Study from 1993 to 1998. While at UIUC, Haken
was a thesis advisor for seven PhD students: Richard
Rempel (1973), Thomas Osgood (1973), Mark Dugopol-
ski (1977), Howard Burkom (1978), Robert Fry (1979),
Patrick Callahan (1994), and Scott Brown (1995).

The “Saturday hike” is a delightful UIUC tradition go-
ing back to 1909 and having a long association with the
mathematics department; the hike was for many years led
by the late Joseph Leo Doob. From the 1960s through
the rest of his life, Wolfgang Haken was a constant partic-
ipant in the Saturday hike, as were many other members
of the Haken clan. Wolfgang’s wife Anna-Irmgard was an
informal leader of the hike from 1993 to 2005, and con-
tinued to come to the hike in subsequent years, while her
health allowed. Anna-Irmgard, the beloved matriarch of
the Haken clan, passed away on April 4, 2017.

In retirement, much of Wolfgang’s scientific interests
concerned thinking about fundamental problems in cos-
mology. He also remained keenly interested in low-
dimensional topology and was extremely pleased to see
the tremendous progress in the field, including Grigori
Perelman’s proof of the Poincaré Conjecture and the proof
of the Virtual Haken Conjecture by Ian Agol and Daniel
Wise. In 2016, the Illinois Journal of Mathematics pub-
lished a special Haken volume honoring Haken’s mathe-
matical contributions and influence. In November 2017,
the UIUC Mathematics Department hosted a Four Color
Fest to celebrate the 40th anniversary of the proof of the
Four Color Theorem by Appel and Haken.

Three of Wolfgang Haken’s six children live in the
Urbana-Champaign area. Rudolf Haken, a renowned mu-
sician and a composer, is a professor of viola in the UIUC
School of Music. Lippold Haken designs electronic musi-
cal instruments and equipment and owns a companyman-
ufacturing a unique “Continuum Fingerboard.” He is also
retired from the position of teaching professor in the De-
partment of Electrical and Computer Engineering at UIUC,
where he conducted research related to sound. Armgard
Haken received BS and MS degrees in biology from UIUC,
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and is currently a research coordinator at the Midwest Big
Data Innovation Hub, housed within the National Center
for Supercomputing Applications at UIUC.

Haken’s eldest son, Armin, obtained a PhD degree in
mathematics fromUIUC in 1984, specializing in complex-
ity theory and problems related to theoretical computer
science. He is now a retired software engineer in San Fran-
cisco. Dorothea Blostein, née Haken, received a PhD de-
gree in computer science from UIUC in 1987 and is cur-
rently a professor in the School of Computing at Queen’s
University in Kingston, Ontario. Agnes Debrunner, née
Haken, received a BS degree in animal science from UIUC.
She is a leader in the US underwater hockey community
and lives near Denver, Colorado. In addition to their six
children, Wolfgang and Anna-Irmgard had 13 grandchil-
dren, and the Haken clan continues to grow.

Wolfgang Haken passed away on October 2, 2022, at
the age of 94, in Champaign, Illinois, surrounded by his
family.

Ilya Kapovich

Knots and 3-Manifolds

Marc Lackenby and Peter Shalen
Haken’s first major mathematical achievement was the so-
lution to the Unknotting Problem, which appeared in his
1961 paper [Hak61b]. The problem had first been raised
by Dehn in 1910, and was one of the most fundamental
questions in knot theory.

Knots are just simple closed curves smoothly embed-
ded in 3-dimensional space. A knot is usually represented
by means of a diagram, which is a generic projection to a
plane, with over/under information given at each crossing.
In the Unknotting Problem, one is given a diagram of a
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knot, and the challenge is to determine whether it is the
trivial knot, in other words whether it can be deformed,
without crossing through itself, into a round circle. What
is required is an algorithm that can provide a completely
reliable answer.

Since the work of Alan Turing in the 1930s, it had been
known that there are some problems that admit no algo-
rithmic solution. Indeed, in his final published paper in
1954, Turing wrote “No systematic method is yet known
by which one can tell whether two knots are the same.” Al-
though Turing did not explicitly say this, it was clear that
he was raising the possibility that this problem might not
be solvable. After some experimentation, it quickly be-
comes clear that the Unknotting Problem is certainly not
straightforward, as it is possible to produce diagrams of the
trivial knot that admit no immediate simplification. An ex-
ample, due to Haken (with a small correction due to Ian
Agol), is given in Figure 3.

Figure 3. A trivial(!) knot.

A round circle in 3-space is the boundary of a disk. In-
deed, this is a characterization of the trivial knot. For if one
were to deform the round circle without passing through
itself forming a knot 𝐾, then one could at the same time
deform the disk. Thus any trivial knot forms the bound-
ary of a smoothly embedded disk in 3-space. Conversely,
if a knot 𝐾 bounds a smoothly embedded disk, then one
can deform the knot within this disk until it is a nearly-
round curve that is visibly unknotted. The challenge, there-
fore, is to decide whether a given knot in 3-space bounds
a smoothly embedded disk. This is called a spanning disk.
Normal surfaces. It is technically convenient to consider
the given knot 𝐾 not as lying in ℝ3, but in its one-point
compactification, the 3-sphere 𝑆3. The reason why this is
helpful is that if we thicken 𝐾 to form an open solid torus
𝑁(𝐾), then the space 𝑆3 ⧵𝑁(𝐾), which is called the exterior
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of the knot 𝐾, is compact. The exterior is a 3-manifold
with boundary3, which means that it is locally modeled
on the closed upper-half space ℝ3

+. If 𝐾 is a trivial knot,
a spanning disk for 𝐾 can be chosen so that it intersects
the exterior 𝑀 of 𝐾 in an “essential” disk 𝐷. To say that 𝐷
is essential means that it is properly embedded in the sense
that 𝐷 ∩ 𝜕𝑀 = 𝜕𝐷, and is not boundary-parallel—i.e., is not
obtained from a disk in 𝜕𝑀 by pushing the interior of the
disk into the interior of 𝑀. The Unknotting Problem is
then reduced to determining whether the exterior of a knot
contains an essential disk.

Haken’s approach to this problem used the notion of a
“normal surface.” Normal surfaces had already appeared
in the work of Kneser in the 1930s to prove results about
spheres in 3-manifolds, but Haken developed a systematic
theory of such surfaces and recognized their huge power
as a tool for addressing algorithmic questions.

The context for normal surface theory is a triangulation
of a given 3-manifold 𝑀 (with boundary), which is just a
description of𝑀 as a collection of tetrahedra with some of
their faces glued in pairs. A triangulation of the exterior of
a knot 𝐾 can easily be built from a given diagram of 𝐾. If a
compact 3-manifold with boundary contains an essential
disk, one can consider how such a disk intersects the tetra-
hedra of the triangulation. By suitably modifying the disk,
one can always arrange that it intersects each tetrahedron
in a collection of triangles and quadrilaterals, as shown in
Figure 4. A properly embedded surface which meets the
tetrahedra in this way is said to be normal. (In fact, Haken
used an alternative formulation of normal surface theory,
using handle structures rather than triangulations, but we
will focus on the triangulated version here.)

Triangle Quadrilateral

Figure 4. Components of intersection of a normal surface
with a tetrahedron.

Thus, the Unknotting Problem reduces to the question
of whether the exterior of 𝐾 contains an essential disk

3The manifolds we consider will in fact be smooth or piecewise linear, as will
their submanifolds. In three dimensions, the transition between smooth and
piecewise linear structures on a manifold is well-understood and elementary,
and contains no surprises.

which is a normal surface. This does not immediately
solve the problem, as there may well be infinitely many
normal surfaces in a given triangulation. However, Haken
was able to show that one only needs to check a finite list of
possible normal surfaces. Hismethodwas to encode a nor-
mal surface by combinatorial data in the following way. In
each tetrahedron, there are four possible types of normal
triangles and three types of normal quadrilaterals. Thus, if
there are 𝑡 tetrahedra, then a normal surface 𝑆 determines a
vector (𝑆)whose entries are 7𝑡 non-negative integers, called
coordinates, that count the number of triangles and quadri-
laterals of each type; the vector (𝑆) determines the surface
𝑆 up to a harmless equivalence relation. Haken observed
that (𝑆) satisfies some simple restrictions. One restriction
is that, within each tetrahedron, there can be at most one
type of quadrilateral, as otherwise the surface could not
be embedded. Thus there are 3𝑡 possibilities for the set
of types of quadrilaterals that appear in a given surface.
When one has fixed such a set, 2𝑡 of the coordinates are
constrained to equal 0. The other restriction is that when
two tetrahedra are glued along a face 𝐹, then the require-
ment that the triangles and quadrilaterals in the adjacent
tetrahedra patch together correctly along 𝐹 imposes three
linear constraints on (𝑆). It turns out that these two sets
of constraints are sufficient as well as necessary for an ele-
ment of ℕ7𝑡 to be the vector of a normal surface. Thus the
set 𝔛 consisting of all vectors of normal surfaces is a union
of 3𝑡 “cones” in ℕ7𝑡, each of which is defined by a system
of linear equations with integer coefficients. In particular,
if 𝑆1 and 𝑆2 are normal surfaces such that (𝑆1) and (𝑆2) lie
in the same cone, we may define the sum 𝑆 of 𝑆1 and 𝑆2 by
(𝑆) = (𝑆1) + (𝑆2).

From the description of 𝔛 as a finite union of cones,
Haken deduced, by very general arguments about solu-
tions to systems of integer linear equations, that𝔛 contains
a finite set of “fundamental” vectors such that every vector
in 𝔛 is a non-negative integer linear combination of fun-
damental vectors. Furthermore, the fundamental vectors
can be found algorithmically from the equations; the sur-
faces corresponding to fundamental vectors are also said
to be fundamental. Using a topological interpretation of
the sum of two surfaces, Haken was able to show that if
some surface is an essential disk, then some fundamental
surface is an essential disk. Thus, one can decide whether
a knot is the trivial knot, by going through each of the fun-
damental surfaces and checking whether any of them is an
essential disk.

This was a brilliant and elegant solution to the Unknot-
ting Problem.
Incompressible surfaces, hierarchies, and the Homeo-
morphism Problem. After solving the Unknotting Prob-
lem in [Hak61b], Haken went on to the more general
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problem, highlighted by Turing, of deciding whether two
knots are equivalent, in the sense that one can be de-
formed into the other without crossing through itself. This
Knot Equivalence Problem was a much greater challenge.

Just as a trivial knot bounds a spanning disk in 𝑆3, a
general knot 𝐾 always bounds a compact, connected, ori-
entable surface in 𝑆3, called a Seifert surface. Compact ori-
entable surfaces are classified up to homeomorphism by
two numerical invariants: their number of boundary com-
ponents (which in this case is 1) and their genus (which
is their number of “handles”). Necessarily, when a knot is
non-trivial, the genus of any of its Seifert surfaces is greater
than zero.

Not all Seifert surfaces are interesting. For example, one
can modify a given Seifert surface by adding a large num-
ber of handles in a tiny neighborhood of a point. In order
to focus on surfaces that really reflect the topological struc-
ture of a given 3-manifold (such as a knot exterior), Haken
introduced the notion of an “incompressible surface.” A
compressing disk for a properly embedded surface 𝑆 in a 3-
manifold𝑀 is defined to be a disk 𝐷 contained in the inte-
rior of𝑀 with 𝐷 ∩ 𝑆 = 𝜕𝐷, such that the boundary of 𝐷 is
not “trivial” in the sense that it already bounds a disk in 𝑆.
The significance of this notion is that a compressing disk
for 𝑆 can be used to modify 𝑆 by the operation shown in
Figure 5 below, called a compression, which will produce a
surface that is “simpler” than 𝑆 in a useful sense.

S

D

Figure 5. A compression.

For example, if 𝑆 is connected and has connected
boundary, like the surfaces in a knot exterior arising from
Seifert surfaces, a surface obtained from 𝑆 by a compres-
sion will have a component having the same boundary as
𝑆 but having smaller genus.

We may define an incompressible surface in a compact,
orientable 3-manifold 𝑀 to be a properly embedded ori-
entable 2-manifold 𝑆 in𝑀 which is not boundary-parallel,
is not a 2-sphere bounding a ball, and has no compress-
ing disks. For example, if for a given knot 𝐾 we choose
a Seifert surface 𝐹 whose genus is minimal among all
Seifert surfaces for𝐾, the properly embedded surface in the

exterior of 𝐾 that arises from 𝐹 will be incompressible.
This minimal genus is classically called the genus of 𝐾.

Any incompressible surface can be isotoped (i.e., de-
formed through a continuous family of embedded sur-
faces) to a normal surface. Using this fact, it is possible
to use Haken’s method of fundamental normal surfaces to
find the genus of a knot algorithmically. However, this
does not solve the Knot Equivalence Problem, because
there are infinitely many inequivalent knots of any given
positive genus.

Haken dealt with this issue by introducing a completely
new idea in [Hak62]: the notion of a “hierarchy.” Sup-
pose that one starts with a 3-manifold with boundary 𝑀1,
for example the exterior of a given knot. One provides
an incompressible surface 𝑆1 in𝑀1. Then one removes an
open regular neighborhood of 𝑆1 from𝑀1, forming a new
3-manifold with boundary, called𝑀2 say. Then in𝑀2, one
finds a new properly embedded incompressible surface 𝑆2,
one removes an open regular neighborhood of that, and
so on. If the process terminates, in the sense that for some
𝑛 the 3-manifold 𝑀𝑛 is a disjoint union of 3-balls, then
the manifolds 𝑀1, … ,𝑀𝑛 are said to constitute a hierarchy
for𝑀1.

Haken proved, making strong use of normal surface the-
ory, that every knot exterior has a hierarchy; one can take
the surface 𝑆1 to be the incompressible surface that arises
from a minimal-genus Seifert surface. But what he proved
is far more general: a compact, orientable 3-manifold 𝑀
with non-empty boundary always admits a hierarchy, pro-
vided that𝑀 is irreducible, in the sense that it is connected
and that every 2-sphere in 𝑀 bounds a 3-ball. Every knot
exterior is irreducible. What is even more important is
that, thanks to a result known as the prime decomposi-
tion theorem [Hem04]4, most questions about arbitrary
compact, orientable 3-manifolds can be reduced to the spe-
cial case of irreducible manifolds, so that irreducibility is
not a serious restriction. (The prime decomposition theo-
rem is often attributed to Kneser and Milnor, but Milnor’s
part had been done independently by Haken in his paper
[Hak61a].)

The version of Haken’s theorem on the existence of hi-
erarchies that we have mentioned includes the hypothe-
sis that the manifold 𝑀 has non-empty boundary. But if
an irreducible, orientable 3-manifold 𝑀 is closed, i.e., is
compact and has no boundary, and if 𝑀 contains some
(necessarily closed) incompressible surface, the theorem
immediately implies that𝑀 has a hierarchy.

The great thing about hierarchies is that they permit
the use of inductive methods. One can view the manifolds

4To keep the number of references under control, and to benefit non-expert read-
ers who want to learn more, we will often cite texts and survey articles that con-
tain references to the original papers.
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further down the hierarchy as “simpler” than the original
one, and one can often use our knowledge of the sim-
pler manifolds to establish information about the origi-
nal manifold. Haken’s theorem on the existence of hier-
archies has turned out to be a tremendously powerful tool
in 3-manifold theory, as we shall explain in more detail
later. For this reason, a compact, orientable, irreducible 3-
manifold 𝑀 that satisfies the hypothesis of the theorem—
that either 𝜕𝑀 ≠ ∅, or 𝑀 is closed and contains an incom-
pressible surface— is now called a Haken manifold, a term
introduced by William Jaco. A sufficient condition for a
closed irreducible manifold 𝑀 to be a Haken manifold is
that its first betti number dim𝐻1(𝑀;ℚ) be strictly positive.

Haken used hierarchies in [Hak62] and [Hak68] to
provide a solution to the Homeomorphism Problem for
Hakenmanifolds, and the very closely related Equivalence
Problem for knots, with some exceptions. He was able to
show that a Haken manifold can be recovered from infor-
mation about the surfaces in a hierarchy and the way that
they glue together. Thus, one can reformulate the Home-
omorphism Problem, by asking whether the two given
Haken manifolds admit hierarchies that use the same sur-
faces glued together in the same way. This is useful, since
the translation into a question about surfaces permitted
Haken to use the theory of normal surfaces that he devel-
oped for the Unknotting Problem.

By 1968, the only case of these problems with which
Haken could not deal was the case of “fibered 3-manifolds”
or “fibered knots.” A 3-manifold is said to be fibered if
it can be obtained from a product 𝐹 × [0, 1], where 𝐹
is a 2-manifold, by gluing 𝐹 × {0} to 𝐹 × {1} by some
homeomorphism. Fibered manifolds can be thought of
as Haken manifolds with particularly simple hierarchies;
from a slightly fancier point of view, they are 3-manifolds
that admit locally trivial fibrations over a circle. A knot is
fibered if its exterior is fibered. In the late 1970s, Geoffrey
Hemion (see [Lac22]) succeeded in solving the Homeo-
morphism Problem for fibered manifolds, using quite dif-
ferent methods from Haken’s. This is a neat example of
how two different approaches to a problem can perfectly
complement each other.

Haken’s proof was both lengthy and delicate, and in
many places, his argument was sketchy. Indeed, it was
not until 2003 that Sergei Matveev gave a full account of
Haken’s proof, filling in many of the details and dealing
with some of the cases that Haken had omitted. (See
[Lac22].) While this was an important contribution, it
confirmed the essential correctness of Haken’s work in this
area, which constitutes a stunning achievement.

In the decades following Haken and Hemion’s solu-
tion to the Homeomorphism Problem for Haken mani-
folds, William Jaco, Hyam Rubinstein and others further

illustrated the power of Haken’s methods by extending
them to other kinds of 3-manifolds. A particularly strik-
ing example, developed through the combined efforts of
Rubinstein and Abigail Thompson, is an algorithm to de-
termine whether a triangulated 3-manifold is homeomor-
phic to the 3-sphere. This is a long way from the theory
of hierarchies that was developed by Haken, since the 3-
sphere is known not to contain any closed embedded ori-
entable incompressible surfaces. Thus, there is no obvious
surface to place into normal form. Instead, Rubinstein and
Thompson used “almost normal” surfaces, which are em-
bedded surfaces that intersect each tetrahedron of the tri-
angulation in a collection of triangles and quadrilaterals,
except in exactly one tetrahedron, where exactly one piece
is not a triangle or quadrilateral, but is an “octagon” in a
suitable sense. They were able to show that the 3-sphere
could be detected by searching for normal and almost nor-
mal spheres, and using Haken’s method of encoding nor-
mal surfaces by vectors satisfying linear constraints. For
an account of these developments, with further references,
see [Lac22].
Normal surfaces and the fundamental group. Remark-
ably, while Haken was developing his ideas about incom-
pressible and normal surfaces in the early and middle
1960s, other researchers, notably David Epstein and John
Stallings, were working with incompressible surfaces from
a radically different point of view. Rather than thinking
about algorithms, which were the focus of Haken’s work,
these researchers were concerned with the very classical
question of the extent to which the algebraic invariants of
a 3-manifold determine its topological type. Their results
depended strongly on work by Christos Papakyriakopou-
los from the 1950s, which implies that a connected ori-
entable incompressible surface 𝐹 in a connected orientable
3-manifold𝑀 is 𝜋1-injective in the sense that the inclusion
homomorphism from 𝜋1(𝐹) to 𝜋1(𝑀) is injective. This is
a powerful tool for studying the way that the fundamen-
tal group of a 3-manifold controls its topological struc-
ture. Perhaps the most celebrated result from this period
is Stallings’s fibration theorem, which implies that a com-
pact, orientable, irreducible 3-manifold is fibered if and
only if its fundamental group admits a homomorphism
onto ℤ with a finitely generated kernel.

It was apparently Friedhelm Waldhausen who recog-
nized the connection between these two very different
strains of research involving incompressible surfaces. He
exploited the connection to prove a series of extraordinary
theorems, one of which implies—among other things—
that two closed Haken manifolds are homeomorphic if
their fundamental groups are isomorphic. Needless to say,
his proofs involved a great many ingenious ideas, but it
seems fair to say that the main tools that he used are the
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ingredients in the proof of the Stallings fibration theorem
on the one hand, and Haken’s result on the existence of
hierarchies on the other.

A good reference for these developments is [Hem04].
The interaction between the existence of hierarchies and

the 𝜋1-injectivity of incompressible surfaces led to an ex-
plosion of work on the topological structure of Haken
manifolds. The so-called characteristic submanifold the-
ory was developed by Klaus Johannson [Joh79] and, inde-
pendently, by William Jaco and Peter Shalen [JS79]; the
two approaches were quite different, but the use of hierar-
chies, and of the 𝜋1-injectivity of incompressible surfaces,
was ubiquitous in each. Rather than attempting to explain
the characteristic submanifold theory here, we shall em-
phasize one by-product of the theory: if 𝑀 is a Haken
manifold, which for simplicity we will take to be closed,
then there is a canonical (possibly empty) system of in-
compressible tori in 𝑀, and the components of the sub-
manifold obtained by splitting 𝑀 along these tori have
nice properties.

Just how nice these “pieces” of𝑀 are was later revealed
by William Thurston’s geometrization theorem [Mor84]:
the interior of each piece admits a geometric structure, lo-
cally modeled on a 3-dimensional homogeneous space.
There are several different homogeneous spaces that arise
in this context; one is Euclidean 3-space, and another is
hyperbolic 3-space, the non-Euclidean space discovered by
Gauss, Bolyai and Lobachevski. Of the various classes of
locally homogeneous manifolds, those modeled on hy-
perbolic spaces are by far the richest. Indeed, the deep
part of Thurston’s result was a characterization of those
Haken manifolds that admit a hyperbolic structure. And
his proof of this revolutionary result, whose influence on 3-
manifold theory is still being felt, was an induction on the
length of a hierarchy, in which the induction step makes
crucial use of 𝜋1-injectivity.

Whereas the use of hierarchies in the work that we have
been describing followed the same basic pattern as their
use in Waldhausen’s work, other developments in the late
20th century involved unexpected twists in the application
of Haken’s ideas. David Gabai discovered a very surpris-
ing refinement of the notion of a hierarchy, called a su-
tured manifold hierarchy, which turned out to be the key
to solving a number of previously intractable problems
in 3-manifold theory (see [Sch90]). William Floyd and
Ulrich Oertel showed that much of normal surface the-
ory can be reinterpreted in terms of geometric objects in
a 3-manifold called branched surfaces; their work eluci-
dated the geometric meaning of normal surfaces. Oertel
and Allen Hatcher, working in the context of branched
surfaces, initiated the study of 2-dimensional measured
laminations in 3-manifolds; these are generalizations of

normal surfaces given by solutions of the normal sur-
face equations in which the coordinates are real numbers
rather than integers. John Morgan and Peter Shalen used
incompressible measured laminations in their work on
actions of 3-manifold groups on real trees, which gave a
new perspective on one of the main steps in Thurston’s
geometrization theorem. (The expository article [MS85]
gives references for both the Floyd–Oertel paper and the
Morgan–Shalen papers.)

Before Waldhausen’s work, it is unclear to what extent
people whose work used incompressible surfaces from the
perspective of algebraic topology were aware of the con-
nection with Haken’s work. Haken himself seems to have
been quite unaware of the connection. One of the au-
thors of this section, Peter Shalen, was astonished when
Haken told him that, before seeing Waldhausen’s paper,
it had never occurred to him that incompressible surfaces
might have anything to do with fundamental groups. Hav-
ing first encountered Haken’s work through Waldhausen’s
papers, Shalen’s own perspective was that incompressible
surfaces were important precisely because of their connec-
tion with fundamental groups. After thinking it over, he
realized that this difference in perspective is itself a reflec-
tion of the power and versatility of normal surface theory.
Its role in the algorithmic side of 3-manifold topology is
very different from its role in the side of the subject involv-
ing algebraic invariants and geometric structures, and yet
it is central to both.
Recent developments. Both aspects of the theory of nor-
mal surfaces and hierarchies have continued to flourish,
although not in the way that might have been predicted.
Three-manifold theory has taken quite unexpected direc-
tions because of a huge development in 2002–2003.

We have mentioned that Thurston’s proof of his ge-
ometrization theorem for Haken manifolds was based on
an induction on the length of a hierarchy. Thurston con-
jectured an extension of his theorem to arbitrary compact
3-manifolds, which includes the Poincaré Conjecture as
a special case. (The Poincaré Conjecture, which asserts
that every compact, simply connected 3-manifold without
boundary is homeomorphic to 𝑆3, was one of the three
problems that Haken was introduced to in Weise’s lecture.
It remained one of the most significant unsolved prob-
lems in topology throughout the twentieth century, and
in particular, it resisted Haken’s considerable efforts to
prove it.) Grigori Perelman’s proof of this conjecture of
Thurston’s was perhaps the most important breakthrough
in the history of the subject. Perelman used radically differ-
ent techniques from Thurston’s, based on work by Richard
Hamilton (see [Mor09]), and his proof did not involve hi-
erarchies or normal surfaces. However, far from render-
ing the ideas of hierarchies or normal surfaces obsolete,
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Perelman’s work opened vast new opportunities for ex-
ploiting these ideas of Haken’s.

A spectacular example of how the use of hierarchies in-
teracts with geometrization was provided by the so-called
virtual Haken conjecture and virtual fibering conjecture.
These were established by Ian Agol as the culmination of
a program developed by Daniel Wise, and building on
work by Jeremy Kahn and Vladimir Markovic. (Agol’s pa-
per [Ago13] provides references to the relevant papers by
Wise and Kahn-Markovic.) The virtual Haken conjecture,
first hinted at by Waldhausen, asserts that every closed ir-
reducible 3-manifold with infinite fundamental group is
finitely covered by a Haken manifold. The virtual fiber-
ing conjecture, first speculated about by Thurston (and so
strong that it was once widely considered implausible),
asserts that every hyperbolic 3-manifold which is closed
(or even has finite volume) is finitely covered by a fibered
manifold. Wise’s program is very largely group-theoretical,
and his and Agol’s results have major group-theoretical
implications beyond 3-manifold theory. The point to be
stressed here is that a group-theoretical counterpart of the
notion of a hierarchy is central to the program. Thus we
see the ideas that Haken developed to study knots and 3-
manifolds bearing fruit in a wider context, as well as being
central to the most remarkable recent developments in 3-
manifold theory.

Another remarkable interaction between Haken’s work
and geometrization involves the Homeomorphism Prob-
lem. Gregory Kuperberg, using Perelman’s theorem as a
starting point, has written down a completely general so-
lution to the Homeomorphism Problem for 3-manifolds,
which he says is essentially due to Thurston and Robert
Riley (both of whom assumed the geometrization conjec-
ture). This solution does not involve normal surface the-
ory. However, by combining geometrization with normal
surface theory, Kuperberg has established a much stronger
result: that the Homeomorphism Problem is solvable by
an algorithm with execution time bounded by a tower of
exponentials. (See [Lac22] for an account of this work.)
Thus we see Haken’s ideas being applied in ever stronger
ways to the problems for which he first designed them.

Marc Lackenby Peter Shalen

The Four Color Theorem

Robin Wilson
The Four Color Theorem states:

The regions of every plane map can be colored with just
four colors so that neighboring regions receive different
colors.

First posed as a problem by Francis Guthrie in 1852, it was
not until 1976 that the theorem was proved, by Wolfgang
Haken and Kenneth Appel of UIUC. Their proof was one
of the earliest to make substantial use of a computer.

In 1879, it was shown that it is sufficient to consider
cubic maps, where exactly three regions meet at each inter-
section. In the same year, Alfred Kempe claimed a proof
that was widely accepted until a fatal flaw was exposed in
1890. Kempe’s paper, although incorrect, contained sev-
eral ideas that would resurface in the eventual proof.

Over the next 50 years, it gradually became clear that
the problem splits into two parts. In the following, a con-
figuration of ring-size 𝑘 is a collection of regions surrounded
by an external ring of 𝑘 regions: see Figure 6.

Figure 6. A configuration with ring-size 14.

Unavoidable sets of configurations: Kempe proved that ev-
ery cubic map must contain at least one region bounded
by at most five edges: a digon, triangle, quadrilateral, or
pentagon. Any set of configurations (such as these four) is
unavoidable if every cubic map must contain at least one of
them.

Reducible configurations: A configuration is reducible if
any coloring of the surrounding ring can be extended to
the interior regions, either directly or after interchanging
pairs of colors (known as Kempe-interchanges). Note that
no reducible configuration can appear in a minimal coun-
terexample to the Four Color Theorem.

Robin Wilson is a professor emeritus in the Department of Mathematics at The
Open University. His email address is robin.wilson@open.ac.uk.
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Kempe proved that digons, triangles, and quadrilater-
als are reducible, but failed to do so for pentagons. In
1904, Paul Wernicke replaced the pentagon by two adja-
cent pentagons and a pentagon adjacent to a hexagon, giv-
ing a new unavoidable set, and this result was further ex-
tended by Philip Franklin in 1922, and by Henri Lebesgue
(of Lebesgue integral fame) in 1940.

In 1913, George Birkhoff gave a systematic treatment of
reducible configurations, showing that every set of config-
urations with ring-size up to 5 (other than the pentagon) is
reducible, and proving the reducibility of a particular con-
figuration of four pentagons with ring-size 6, known as the
Birkhoff diamond: see Figure 7.

Figure 7. The Birkhoff diamond.

Several mathematicians then built on these ideas, ob-
taining many reducible configurations. In particular,
Franklin introduced new ones in a counting argument
which proved that every cubic map with up to 25 regions
can be 4-colored. By 1940, this number had increased to
35.

Further details on, and references for, these early devel-
opments and those described below can be found in the
author’s book Four Colors Suffice [Wil14]; the quotations
by Haken and others are taken from an article by Donald
MacKenzie [Mac99] much of which was based on unpub-
lished interviews that were conducted in 1994.
Enter Heesch and Haken. Much of this work was piece-
meal, with attempts to find unavoidable sets and reducible
configurations being largely independent of each other. It
was not until the 1940s that Heinrich Heesch entered the
fray. Heesch had contributed to the solution of the 18th of
Hilbert’s celebrated problems, and around 1935 became
interested in map coloring. He realized that to prove the
Four Color Theorem, it was enough to find an unavoidable
set of reducible configurations: every map must include at
least one of them, but none can appear in a minimal coun-
terexample.

In the late 1940s, Heesch lectured on his findings at the
University of Kiel, and in 1948 one student who attended
wasWolfgang Haken, who was studying mathematics, phi-
losophy, and physics, and who had been aware of the Four
Color Problem since hearing about it in Weise’s topology

course. Haken later recalled Heesch’s lecture, much of
which he did not understand at the time, and remembered
Heesch’s claim that theremight be some 10,000 cases to be
investigated.

Over the next 20 years, Haken solved the Unknotting
Problem, and moved to the University of Illinois Urbana-
Champaign, where he did much of his fundamental work
on the Equivalence Problem for knots and the Homeo-
morphism Problem for 3-manifolds. During this period
he also spent much time on the Poincaré Conjecture. In
1966, unable to complete a proof of this conjecture, he be-
gan thinking about the Four Color Problem. He contacted
Heesch, who was still working on the problem and had
discovered thousands of reducible configurations.

Unavoidable sets were still rather scarce, and in order
to produce them, Heesch invented his method of discharg-
ing (as it was later named by Haken). Here, to investigate
whether certain configurations form an unavoidable set,
he assumed the contrary. He then assigned a “charge” of
6 − 𝑘 to each 𝑘-sided region; it then follows from Euler’s
polyhedron formula that the total charge over the whole
map is positive. He next attempted to move these charges
around the map in such a way that no charge was created
or destroyed; this is called discharging the map. In many
cases this could be done so that every region received a
non-positive charge. This contradiction confirmed that the
given configurations did indeed form an unavoidable set.

Heesch also contributed to the theory of reducible con-
figurations, and defined a configuration to be 𝐷-reducible
if every coloring of the surrounding ring can be extended
to the interior regions (either directly or after Kempe-
interchanges of colors), and to be 𝐶-reducible if this can be
carried out after the configuration had been simplified in
some appropriate way. His aim was to develop systematic
methods for generating reducible configurations, looking
at both 𝐷-reducible and 𝐶-reducible cases. If a configura-
tion was not 𝐷-reducible, he frequently saw how to mod-
ify it so as to determine its 𝐶-reducibility, and in this way
he could restrict his attention to a smaller number of pos-
sible colorings. Over the years he developed an uncanny
knack of recognizing reducible configurations with at least
80 percent accuracy: as Haken remarked:

What fascinated me most was that Heesch looked
at the configuration, and he said either “No, there
is no chance: that cannot be reducible” or “But
this one: that is certainly reducible.”

Haken invited Heesch to lecture at UIUC, and asked
whether computers might help in the examination of
large numbers of configurations. Heesch had already ob-
tained the help of a mathematics graduate who developed
a method for testing 𝐷-reducibility that was sufficiently
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routine to be implemented on a computer, even though
this might take a long time.

The complexity of a configuration can be measured by
its ring-size; for example, the Birkhoff diamond has ring-
size 6 and there are 31 essentially different colorings of
the surrounding regions to consider, but for configurations
with ring-size 14 there are nearly 200,000 colorings. Larger
ring-sizes were way beyond the capacity of computers of
the time.

Haken bid to the University of Illinois for time on a new
supercomputer whose construction was nearing comple-
tion, but it was not yet ready for use. Eventually, they were
referred to the Atomic Energy Commission’s Brookhaven
laboratory in Long Island, where there was a Cray Control
Data 6600 machine, the most powerful machine of its day,
which could test configurations of up to ring-size 14.

In 1970, Heesch sent Haken the results of a new dis-
charging experiment which, if applied to a general map,
would yield about 8900 “bad” configurations extending up
to ring-size 18, in which some regions would still have pos-
itive charge. Haken, however, was pessimistic about deal-
ing with so many configurations, especially since several
were fairly large. For some time, he had felt that the com-
plexity of the problem would be substantially simplified
by better discharging methods. By restricting his attention
to maps without hexagons or heptagons, he obtained a
much simpler procedure and communicated his findings
to Heesch; it is at this stage that Haken began to contribute
to the eventual solution of the problem.

Impressed by Haken’s findings, Heesch invited Haken
to collaborate with him, and in 1971 sent him three “ob-
stacles” whose presence seemed to prevent configurations
from being reducible—a 4-legger region adjoining four con-
secutive regions of the surrounding ring, a 3-legger articula-
tion region adjoining three surrounding regions that are not
all adjacent, and a hanging 5-5 pair of adjacent pentagons
that adjoin a single region inside the surrounding ring: see
Figure 8.

Figure 8. Heesch’s obstacles to reducibility.

But by now, Haken was changing his approach. Un-
like everyone else whose objective seemed to be to
collect reducible configurations by the hundreds before

packaging them into an unavoidable set, Haken’s primary
motivation was to aim directly for an unavoidable set. In
order to avoid wasting expensive computer time checking
configurations that would eventually be of no interest, this
set was to contain only configurations that were likely to be
reducible—in particular, they should contain none of the
obstacles. Any configuration that subsequently proved not
to be reducible could then be dealt with individually. As
he later commented:

If you want to improve something, you should not
improve that part which is already in good shape.
The weakest point is always the one you should
improve. This is a very simple answer to why we
got it and not the others.

By this time, most workers on the Four Color Problem
were using the “dual formulation” of coloring the vertices
of the corresponding graph. In particular, Heesch devised
a useful notation for representing regions by appropriate
symbols so that they can be easily distinguished, such as •
for pentagons, ⋅ for hexagons, ∘ for heptagons, and ∇ for
nonagons.
Enter Appel. With little knowledge of computing, Wolf-
gang Haken considered giving up the problem until more
powerful machines had become available to deal with the
massive calculations that would clearly be necessary. In-
formed that his ideas could not be programmed, he an-
nounced:

The computer experts have told me that it is not
possible to go on like that. But right now I’m quit-
ting. I consider this to be the point to which and
not beyond one can go without a computer.

Attending this lecture was his colleague Kenneth Appel,
a computer programmer with much practical experience.
Afterward, Appel told Haken that he considered the ex-
perts’ view to be nonsense, and offered to work on im-
plementing the discharging procedures. Haken was de-
lighted to accept Appel’s offer, and they decided to concen-
trate their search on unavoidable sets, without taking time
to check the configurations for reducibility; in particular,
they focused on “geographically good configurations” that
contain neither of Heesch’s first two obstacles, and would
check for reducibility when an entire unavoidable set had
been constructed.

Their first exploratory computer runs provided much
useful information, but the computer output was enor-
mous, with some configurations appearing many times;
they would clearly need to keep such duplications under
control if the eventual list were to be manageable. Fortu-
nately, the computer program had run in just a few hours,
and so they could experiment as often as necessary. Any
changes to the program were easily implemented and the
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Figure 9. Wolfgang Haken and Kenneth Appel.

paper stacks of outputs of later runs were much reduced in
thickness; eventually they would come down to a fraction
of an inch.

From then on, they continually modified the discharg-
ing algorithm or the computer program so that the pro-
gram grew while the output shrank. This two-way dialog
with the computer continued, as problems were sorted out
and new ones arose. Within six months of experimenting
and improving their procedures, they realized that their
method for producing a finite unavoidable set of geograph-
ically good configurations in reasonable time was feasible.

In early 1975, they introduced the third of Heesch’s ob-
stacles; this inevitably involved changes in procedure, but
was carried out successfully with only a doubling in the
size of the unavoidable set.

As soon as it seemed that they could probably find an
obstacle-free unavoidable set of configurations which were
likely to be reducible, they started the massive detailed
check for reducibility. Inevitably, a few “rogue” reducible
configurations would appear in the list, but their hope was
that these would be relatively few in number.

In mid-1974, realizing that they needed help with the
reducibility programs, they had enlisted the help of John
Koch, a graduate student, to work on the 𝐶-reducibility of
configurations. Appel and Haken were particularly inter-
ested in two types of modification that were relatively easy
to implement, and Koch discovered that most of his con-
figurations were fortunately of these types.

By early 1976, Haken and Appel could work on the
final details of the discharging procedure. To do this,
they sought “problem configurations” and immediately

Figure 10. Some of Haken and Appel’s configurations.

tested them for reducibility—this could usually be done
fairly quickly. In the event, the final process involved
487 discharging rules, requiring the investigation by hand
of about 10,000 neighborhoods of regions with positive
charge and the reducibility testing by computer of some
2000 configurations. All configurations were of ring-size
14 or less.

The last fewmonths were extremely heavy on computer
time, but Appel, Haken, and Koch were fortunate. Few in-
stitutions would have given them 1200 hours on the com-
puter, but the university’s computer center was very sup-
portive, and in March 1976 a powerful new machine was
bought by the university’s administrators. This proved to
be so powerful that everything proceeded far more quickly
than they had expected, saving them much time on the re-
ducibility testing. Meanwhile, with the help of Haken’s
daughter Dorothea, they spent months of exhausting and
stressful effort working through the 2000 or so configura-
tions that would eventually form the unavoidable set.

Suddenly by late June, almost before they realized what
was happening, the entire job was finished: the Hakens
had completed the construction of the unavoidable set.
Within two days Appel tested the final configurations for
reducibility, and celebrated their achievement by announc-
ing on the department’s blackboard:

Modulo careful checking it appears that four col-
ors suffice.

By this time, Haken and Appel knew that they were safe:
even if a few configurations proved to be irreducible, there
was more than enough self-correction in the system for
them to be quickly replaced: no single faulty configura-
tion could destroy the entire edifice. In fact, their system
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included so much self-correction that they effectively had
many thousands of proofs of the Four Color Theorem, in-
stead of just one!

Armed with this confidence, they went public. On July
22, 1976, they formally informed their colleagues and sent
complete preprints to everyone in the field. One recipi-
ent was Bill Tutte, who waxed eloquent, comparing their
achievement with the slaying of a fabled Norwegian sea
monster:

Wolfgang Haken
Smote the Kraken
One! Two! Three! Four!
Quoth he: “The monster is no more.”

They quickly wrote short reports for the Bulletin of the
American Mathematical Society [AH76a] and Discrete Math-
ematics [AH76b], but decided to submit their full solution
to the Illinois Journal of Mathematics, partly because they
wanted it to appear locally, but mainly so that they could
suggest suitable referees. By December they were able to
refine the proof and prepare it for publication. The result
substantially improved on the rough-and-ready preprint
they had sent out in July: in particular, their preprint
had contained duplications and configurations contained
within others, and by eliminating these they reduced their
original list of 1936 reducible configurations to 1482.

Their solution appeared in two parts in the December
1977 issue of the Illinois Journal. Part I [AH77] onDischarg-
ing outlined the overall strategy of their proof, while Part
II [AHK77] on Reducibility, written with John Koch, listed
the entire set and described the computer implementation.
These were supplemented by microfiche containing 450
pages of further diagrams and detailed explanations.

Wolfgang Haken and Kenneth Appel had achieved their
goal: the Four Color Theorem was proved.
Aftermath. The Appel–Haken proof was greeted with
enthusiasm—a longstanding problem had at last been
solved—but also with skepticism, great disappointment,
or outright rejection. Their extensive use of computers was
widely criticized, and raised philosophical questions as to
whether a proof is valid if it cannot be checked by hand.
At a Joint AMS-MAA Summer meeting in Toronto a lecture
by Haken to a capacity audience received only polite ap-
plause, and when explaining their proof to mathematics
departments, its authors were often made to feel unwel-
come; in one case, they were even barred from meeting
graduate students for having introduced totally inappropri-
ate methods into mathematics. Since then, with the pas-
sage of time, the use of computers in mathematical proof
has become more widespread.

Inevitably, there were typos in their paper, and also ami-
nor error that needed two weeks for Haken to correct, but

the proof emerged largely unscathed. Haken and Appel
wrote several further papers on the subject, including one
in 1986 in The Mathematical Intelligencer discussing such
purported errors. In 1989, they followed this with a hefty
tome [AH89], published by the AMS, which was entitled
Every Planar Map is Four Colorable. This gave further details
and included a printed version of their earlier microfiche.

In 1994, Neil Robertson, Daniel Sanders, Paul Seymour,
and Robin Thomas took amore systematic approach to the
problem. Using essentially Appel and Haken’s method,
they produced an unavoidable set of 633 configurations,
reducing the number of discharging rules from 487 to just
32. Interestingly, they chose to use computers in both the
unavoidability and reducibility parts of their proof, believ-
ing that such an approach was more reliable than hand
calculation. Their proof could be externally verified on
a home computer in just a few hours. Shortly after this,
Robin Thomas wrote an article in the AMS Notices linking
the Four Color Theorem to the divisibility of integers, the
algebra of 3-dimensional vectors, and results on matrices
and tensors.

Two further events are worthy of mention. Because 𝐷-
reducible configurations are simpler to deal with than 𝐶-
reducible ones, John P. Steinberger gave a proof in 2008
that was based on only the former; it involved 2832 con-
figurations with ring-size up to 16 and used 42 discharging
rules. Meanwhile, in 2004, the French computer scientist
Georges Gonthier had provided a fully machine-checked
proof of the theorem, which was a formal language im-
plementation and machine verification of the approach of
Robertson and his coworkers.

But for graph theorists this was by no means the end of
the line, as the Four Color Theorem is just one special in-
stance of some much harder problems; these include find-
ing proofs for Hadwiger’s conjecture and the five-flow con-
jecture, and on these problems good progress has already
been made. With these in mind, we leave our final poetic
musings to Bill Tutte:

The Four Color Theorem is the tip of the iceberg,
the thin end of the wedge, and the first cuckoo of
Spring.

Robin Wilson
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Haken as Thesis Advisor

Patrick Callahan
I was one of Haken’s last PhD students, completing my
degree in 1994, a few years before his retirement.

When I started graduate school inmathematics in 1989,
theUniversity of Illinois Urbana-Champaignwas (and still
is) one of the largest graduatemath programs in theUnited
States. There were almost 300 graduate students in the
mathematics department and almost one hundred of us
were first-year students. With over 70 faculty members,
finding a good advisor was an important step for all grad-
uate students and UIUC offered many choices. I decided
to meet one on one with every mathematics faculty who
was involved in topology, algebra, or number theory. Two
rules of thumb that were shared among students seeking
advisors were: look for recent, successful graduates com-
pleting and finding positions and learn who their advisor
was, and look for faculty that were currently active and
well-networked in their field. Despite this, I ended up
choosing Wolfgang Haken who had not had a graduate
student in almost 20 years and had not published or par-
ticipated in conferences in quite some time. Many people
thought working with Haken would be a risky choice.

When I met with Haken he told me that he was very
excited about the new developments in 3-manifolds and
knot theory but that he was not currently active in the
field. However, he made me an interesting offer. He had
recently been nominated as a member of the University of
Illinois Center for Advanced Study, which included an an-
nual travel stipend. He was not up for much travel, so he
said he would be my advisor if he could send me to inter-
esting topology meetings about which I would report back
to him. This was an incredible arrangement that I gladly
accepted. I was fortunate as a first-year graduate student
to be able to travel and meet all the amazing researchers
in the field. I was sent to meetings in Israel, France, and
across the United States.

It was an exciting time for low-dimensional topology.
Three-manifolds and knot theory had spawned a large ac-
tive research community, which was often surprised when
I introduced myself as Haken’s student since there had not
been any such students in a good many years. But Haken’s
work was foundational, and Haken manifolds were a criti-
cal player in the Geometrization Conjecture. I would re-
turn from these conferences and report to Haken what
current progress was happening in the field. He would

Patrick Callahan is the CEO of Math ANEX and Callahan Consulting. His
email address is callahan.web@gmail.com.

always pause for a long time and then say something like
“Ja ja. . . that is most interesting,” then go silent again for
another long pause and then tell me to continue recount-
ing what I learned at the conference.

Haken was an atypical advisor. Although he had an of-
fice, we would rarely meet there. Rather, there were two
somewhat unusual places he liked to work, and when I
wanted to meet with him, I would go searching for him in
those places. The first unusual location was in an empty
classroom in the basement of Altgeld Hall, usually with
the lights off. Many times he would not have any paper
or anything with him. He would just be sitting in a dark
basement in deep thought. The other unique location I
would look for him was almost the opposite. He would
often sit in the loud and crowded student union and be
deep in thought surrounded by hordes of noisy students.

Although often taciturn, Haken would sometimes share
anecdotes about his life and work. I recall him telling
me that during World War II there was a paper shortage
so he would take down propaganda posters and write on
the back of them to do his research. He would talk about
the controversies around the solution to the Four Color
Theorem. Some mathematicians thought that the use of a
computer could not be trusted or considered a valid proof.
Even though 20 years had elapsed, Haken continuedmany
correspondences regarding the Four Color Theorem. He
would regularly get letters sent by professionals and ama-
teurs alike claiming to have found some new clever proof.
Haken would take the time to read all of them and send
back careful and encouraging feedback. I remember him
reading a handwritten letter claiming a new proof, around
fifty pages long, for which he found an “unrepairable” er-
ror on the 48th page. I asked himwhy he still read all these
letters and he replied, “If this person had made it a little
further without an error they might have really discovered
something. You never know.” Haken said that the field
had a responsibility to read plausible claims carefully and
not dismiss them just because the authors lacked the pro-
fessional academic credentials.

Conversations with Haken had a slow pace. He would
talk slowly and carefully and there were often long pauses.
I once thought that this was because English was not his
native language, but a German graduate student informed
me that Haken was the same way when conversing in Ger-
man. Haken was one of the most careful thinkers I have
ever met. He paid prodigious attention to details. One
of my fond memories regarding details was when I sub-
mitted my dissertation. I, perhaps pretentiously, thought
it seemed like a good idea to start Chapter 1 with an epi-
graph in the original Greek from Aeschylus’ Agamemnon. I
do not know classical Greek and had made an error when
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copying it. When Haken returned my draft, he had cor-
rected the quote, in classical Greek.

I recently pulled out a copy of my dissertation. I found
the acknowledgement:

I would like to thank my advisor, Professor Wolf-
gang Haken, for being the exact type of advisor I
needed, and for his support and confidence in me.

I cannot speak to what it was like having Haken as an advi-
sor in the 1970s in the heyday of the Four Color Theorem,
but in the 1990s, Haken was indeed the exact type of advi-
sor I needed. He was endlessly curious, and provided the
means for me to see the world and be part of a vibrant
community of researchers in low-dimensional topology.
In some small sense I was his eyes and ears at this stage in
his career. Haken was also very hands off in that he never
gave me a specific problem to do nor did he tell me what
I should work on. He didn’t even discourage me when I
spent a year working on the Lens Space Conjecture, a spe-
cial case of the Geometrization Conjecture which was then
still open and was notorious for its difficulty. He always
had an appetite for big unsolved problems. Haken was
very patient and carefully critiqued my many unsuccessful
attempts. He was in no hurry. He told me that being a
mathematician is mostly about having ideas that fail over
and over again, only rarely having one actually work. He
encouraged me not to shy away from big problems and to
keep looking at and thinking about things differently: to
keep having ideas. That was just the advisor I needed.

Patrick Callahan
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