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Abstract— Neural networks (NNs) are increasingly often
employed in safety critical systems. It is therefore necessary to
ensure that these NNs are robust against malicious interference
in the form of adversarial attacks, which cause an NN to
misclassify inputs. Many proposed defenses against such attacks
incorporate randomness in order to make it harder for an
attacker to find small input modifications that result in
misclassification. Stochastic computing (SC) is a type of
approximate computing based on pseudo-random bit-streams
that has been successfully used to implement convolutional
neural networks (CNNs). Some results have previously
suggested that such stochastic CNNs (SCNNs) are partially
robust against adversarial attacks. In this work, we will
demonstrate that SCNNs do indeed possess inherent protection
against some powerful adversarial attacks. Our results show
that the white-box C&W attack is up to 16x less successful
compared to an equivalent binary NN, and Boundary Attack
even fails to generate adversarial inputs in many cases.

Keywords—stochastic computing, neural network, adversarial
attack

1. INTRODUCTION

Since the discovery of adversarial attacks on neural networks
[10] there has been a contest between increasingly strong and
successful attack algorithms and corresponding defensive
measures. A wide range of different attacks under varying
attack scenarios has since been developed, from attacks that
assume knowledge about the NN structure and parameters
(also called white-box attacks) to attacks that are applied to
NNs of unknown structure (black-box attacks). On the other
hand, defensive mechanisms have been proposed to
counteract these attacks. Among them are input
transformations such as rescaling and compression [6], and
randomness based defences such as random dropout of
neurons [5] and extra randomization layers [13]. However,
such defensive measures lead to increased complexity and
hardware cost. An architecture that incorporates defensive
mechanisms naturally would therefore be highly beneficial.

Stochastic Computing (SC) is a promising candidate for
this task. SC employs a number format based on randomized
bit streams that encode probabilities. SC provides highly area
and power efficient implementations of basic arithmetic
functions, most prominently multiplication, which can be
implemented with a single AND gate. As a type of
approximate computing, SC has been shown to be a viable
architecture for diverse applications including digital signal
filters [12] and image processing [1]. In recent years, it has
further been shown that SC offers efficient hardware
implementations for CNNs for both ASIC [7] and FPGA [§]
designs. For instance, [8] shows that real-time classification
by a small SCNN is possible with an accuracy almost on par
with a conventional binary CNN.
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Moreover, experiments have shown that implementing
parts of a conventional CNN in SC decreases the success rate
of adversarial attacks on the network without sacrificing much
of the overall classification accuracy [11]. These initial
findings suggest that leveraging SC’s inherent randomness
enables the implementation of small, efficient CNNs that are
naturally robust against adversarial attacks. SCNNs are
commonly proposed for use in heavily resource constrained
environments where implementing additional defensive
measures can be too expensive for conventional binary
networks.

In this work, we show that an CNN with a first layer
implemented in SC severely reduces the effectiveness of
C&W attack [4], a powerful white-box attack, by 16x for the
fashion MNIST and by more than 10x for the CIFARI10
dataset. Moreover, Boundary Attack [2], a black-box attack
that is closest to most real-life attack scenarios for SCNNs in
our opinion, even fails to find adversarial inputs in many cases
due to the approximate operations in SCNNs. The remainder
of this work is structured as follows: Section II presents
background information on SC and adversarial attacks.
Specifics on our SCNN architecture are given in section III.
Simulation setup and results are discussed in section IV,
before section V concludes this work.

II. BACKGROUND

A. Stochastic computing

SC computes arithmetic functions using a stream-based,
probabilistic number format, the so-called stochastic numbers
(SNs). In unipolar format, the value a of an SN A is defined
as a = ny /n with n; being the number of bits with value 1 in
A. In other words, the value of a unipolar SN is equal to the
probability P({4; = 1}) of any bit i in A being 1. Bipolar
format defines the value of 4 as a = (n; — ny)/n where n,
is the number of Os in A. It follows that unipolar SN values lie
in the range [0, 1] and have precision 1/n, while bipolar SNs
have values in the range [—1,1] and precision 2/n. The
position of 1s in an SN has no influence on its value—all 1s
have identical weight. Therefore, most values have multiple
possible representations.

The common method of creating an SN of a desired value
is to use a small pseudo random number generator, e.g. a linear
feedback shift register (LFSR). In each clock cycle, the LFSR
generates a random number r € [0, 1] that is compared to the
desired value d (in conventional binary format). After n clock
cycles, this stochastic number generator (SNG) will have
generated a unipolar SN of length n and expected value d.
Changing the LFSR’s starting state or its characteristic
polynomial will generate an SN with the same approximate
value, but different randomized position of 1s and Os.
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Due to the identical significance of each bit in an SN, bit-
parallel operations in conventional number formats can be
computed in a bit-serial manner in SC, significantly reducing
the hardware cost. For example, unipolar multiplication of two
SNs X and X' can be performed via a single AND gate over n
clock cycles, as the value of the output SN Y is y =
P((Y; =1}) = P((X; = 1)) P((X{ =1}) = x'x' . For
bipolar multiplication, an XNOR gate is used. Scaled addition
can likewise be performed efficiently by a multiplexer. Fig. 1
shows examples for these operations.

Several properties of SC are demonstrated in fig. 1. Fig.
la shows how a bit flip (marked in red) in input b’ changes
the value of the output only by 1/n, while in fig 1c the
change in the input value does not change the output value at
all, due to the randomized position of 1s. A source of
inaccuracy in SC is shown in fig. 1b. The expected result of
this bipolar multiplication is —1/8, however the SN length of
8 is not sufficient to represent this value. The result of —1/4
is the closest possible approximation in this case. While this
inaccuracy is usually considered a downside of SC, it can be
beneficial with regard to adversarial attacks. These attacks try
to make small modifications to an NN’s input data that lead
to a misclassification. However, when the inputs of the
network are SNs, small changes in the inputs generally lead
to inconsequential and unpredictable changes in the output
and sometimes even to no change at all (see fig. lc).
Especially the latter property should be noted, as it means that
even in cases where an adversarial example has been found,
it may not lead to a consistent misclassification. This reduces
the efficiency of those attacks and makes it harder to find
adversarial examples in the first place, without the need for
specific defensive operations in the NN.

B. Adversarial attack scenarios

The goal of an adversarial attack is to cause the target NN to
misclassify a given input. Attacks achieve this goal by
applying small (commonly measured in a distance metric such
as L,) changes, called perturbations, to this input. These
perturbations are specifically crafted for each input and attack.
For example, an attack might use a backpropagation
algorithm, similar to the one used for training an NN, to
compute the input perturbations required to cause a
misclassification, as opposed to the changes in the weights
that are computed during training. If the goal of an attack is a
specific output class, it is called “targeted”, if any output other
than the original class is accepted, it is called “untargeted”.
Both cases are considered in this work.

Many different types of adversarial attacks with access to
varying degrees of information about the target network exist.
In general, attacks can be classified according to what is
known by the attacker about the target NN. In this work, we
use the following attack classification:
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White-box attacks have complete or nearly complete
information about the NN architecture, its
implementation, and parameters such as weights.
This information is used in gradient-based attacks,
for example the C&W attack.

Black-box attacks have no information about
network architecture and parameters and can only
use the NN as an oracle. Some attacks in this class
assume information about the exact output values,
while others only use the label of the final output
class.

A direct white-box attack on an SCNN is infeasible, as
some SC components do not provide exact implementations
of their target functions. For example, the commonly used
stanh activation function [3] and its variants are based on a
finite state machine (FSM) that provides a very close
approximation to the hyperbolic tangent function, but they are
not mathematically identical. In this work, we therefore
consider white-box attacks according to the definition above
with nearly complete knowledge about the NN model. They
use the underlying arithmetic binary model instead of the
hardware-specific, cycle wise SC model in order to find
adversarial examples.

In black-box attacks, the target NN is used as a so-called
oracle, i.e., the attacker can query the NN by providing inputs
and receives an answer from the NN. This answer can be in
the form of a class label or the output vector of the final NN
layer. We consider this model to be more realistic than white-
box attacks for SCNNSs, as it does not depend on the specific
hardware design. Furthermore, SCNNs are intended for
specialized, low-cost hardware implementations with limited
communication capabilities, for example in sensor nodes.
Consequentially, we focus our simulations on attacks that we
consider to be powerful and/or close to likely real life
scenarios for SCNNs, namely C&W [4] (white-box, targeted)
and Boundary Attack [2] (black-box, untargeted).

III. SCNN ARCHITECTURE

A. SCNN Implementation

In recent years, a de facto standard architecture for SCNNs
and SC neurons has established itself, with varying circuit
specifics. In convolutional layers, SC implements the main
operations of multiply-accumulate (MAC), activation
function and max-pooling in one combined hardware
component as shown in fig. 2. Each XNOR gate multiplies a
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HTA |
PCC Array :
N — 1 >
Input Data [
LFSR Set A *jD, I
PCC Array :
n=DS
PCC Array g
F
7 7
LFSR SetB - \f
PCC A 7j>} <
rray 1| + —<Bann>—
LIS
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Figure 2: Basic SC MAC-activation-pooling component with
LFSR and probability conversion circuit (PCC), e.g. comparator.
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weight with an activation value. All products of a single kernel
(the set of weights used in a specific convolution operation)
are then added, whereby the particular implementation of the
adder can vary. Some SC designers opt for an exact parallel
counter, which results in a stream of integers equal to the sum
of products. We employ an approximate version of such a
counter, producing a slightly inaccurate sum, but reducing
hardware cost in the process.

The subsequent activation function commonly computes
either a hyperbolic tangent (tanh) or clipped ReLU function.
Clipping is necessary to stay within the representable range of
SNs, which cannot exceed 1. The tanh function provides an
inherent clipping, as its image is [—1, 1]. It is therefore the
most widely used activation function in SCNNS. In either case,
the function is implemented with an FSM based on the design
in [3]. As the output format of the addition circuit can vary
slightly depending on the implementation details, the FSM has
to be adjusted accordingly. MAC and activation functions are
often combined into a single hardware component in SC.
Finally, a stochastic maximum circuit implements max-
pooling. Like the stochastic adder, its implementation details
can differ between designs, we employ the design from [9].

B. Effects of randomness in SCNNs

The core concepts behind SC as a defence against adversarial
attacks are its probabilistic data format and operations. In our
implementation, SNs are generated according to the method
described in section IL.4, i.e., using an LFSR with specific
sequence length as a random number source, leading to SNs
with exact values except for rounding errors. Randomness is
therefore introduced into the SCNN only through arithmetic
operations, specifically MAC operations and the activation
function. The main benefit of this approach is that the
randomization is entirely invisible from the outside. No
additional operations or layers are needed and the NN model
does not need to be modified.

If an SCNN receives the same input twice, its
computations and output values will be identical only if the
LFSR starting states are identical. If the LFSR starting states
are changed however, computations and output values will
differ even for identical inputs. We illustrate this effect by
generating the same feature map three times with identical
input data but different LFSR starting states. Fig. 3 shows
these feature maps using the fashion MNIST dataset. In all
cases, the object is clearly recognizable and looks the same.
However, individual pixel values vary slightly, as is best seen
in the background pixels. Since the object itself is accurately
preserved, the network is still able to classify the images
correctly in all cases. Smaller perturbations caused by an
attacker may however not be transmitted consistently through
layers as intended.

IV. SIMULATION SETUP AND RESULTS

A. Network and simulation setup

The structure of our simulated NN is a slightly modified
version of the model used by Carlini and Wagner in the
analysis of their attack [4]; details are given in table 1. The
number of kernels in each layer varies with the type of input
image (RGB or greyscale). Hyperbolic tangent is used as
activation function in the first layer, as it lends itself better for
implementation in SCNNs. The networks were implemented
in python using the tensorflow framework, attacks were
performed using the code provided by their respective authors
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" — R
Figure 3: Feature map from the first layer of an SCNN using
identical inputs and weights but different LFSR starting states.

[14][15]. We restrict the use of SC to the first NN layer to
preserve as much classification accuracy as possible.

The only necessary adaptation from conventional to SCNN
is to scale the weighs of the layers that are implemented in
SC to the interval [—1, 1] during training. This can be easily
achieved by scaling all weights w' in an affected layer [ by
the maximum absolute weight value in layer [ after the
regular weight update step Aw':

. wh+ Aw!
W= 1

- mlaxlwl + Awl|

B. C&W attack results

C&W attack was used to generate adversarial examples in a
white-box scenario for both datasets. In the case of fashion
MNIST, 900 adversarial examples, and in the case of
CIFAR10, 450 adversarial examples were generated.
Targeted attacks using L, norm were performed in both cases
and only images that were initially correctly classified by the
network were considered for the attack. Classes are
represented equally in attacks with 10% of all initial images
and targets per class. We consider an attack to be successful if
the network classifies the adversarial input as the target class
and unsuccessful otherwise. Unsuccessful attacks are further
split into adversarial inputs that were classified wrongly as
some class other than the target or initial class, and correctly
classified inputs.

Table 2 shows the success rates of the attack on the binary
reference network and the SCNN. In case of the binary
network, the C&W attack on fashion MNIST has a success
rate of 81.6%; for CIFAR10 the success rate is 98%. The
SCNN on the other hand shows a remarkable resilience
against the attack. For fashion MNIST, only 5.1% of attacks
are successful, while 55.2% of adversarial inputs are still
classified correctly. Many inputs end up being classified
incorrectly. We consider these cases a partially successful

Table 1: Network structure with layer ID (from input to output)
used in simulations. Kernel sizes vary with input type (greyscale or
RGB).

ID | Layer type Kernel size AF

1 | 2DConvolution | 3x3x32/3x3x3x64 | tanh

2 | 2D Convolution | 3x3x32/3x3x3x64 | ReLU
3 | Max-pooling 2x2 -
4 | 2D Convolution | 3x3x64/3x3x92 | ReLU
5 | 2D Convolution 3x3x64/3x3x92 | ReLU
6 | Max-pooling 2x2 -
7 | 2D Convolution 3x3x128 ReLU
& | 2D Convolution 3x3x128 ReLU
9 | Max-pooling 2x2 —
10 | Dense 20/100 - —
11 | Dense 10 — softmax

Restrictions apply.



Table 2: Classification results of C&W attack on fashion MNIST
and CIFAR10 datasets.

Binary NN SCNN

#Inputs | Ratio #Inputs | Ratio
Fashion MNIST output classes
Target 734 | 81.6% 46 | 5.1%
Correct 42 4.7% 497 | 55.2%
Other 124 | 13.8% 357 | 39.7%
CIFARI10 output classes
Target 441 | 98.0% 41 9.1%
Correct 1 0.2% 94 | 20.9%
Other 8 1.8% 315 | 70.0%

defence, as even though the network’s output is wrong, the
attack does also not achieve its goal. Similar results can be
observed for CIFAR10, where only 9.1% of attacks on the
SCNN are successful. While most adversarial examples are
not classified correctly, the SCNN still provides a very good
defence against the attack. In summary, SC reduces the
success rate of the C&W attack by a factor of 16 for the
fashion MNIST dataset and a factor of 10.8 for CIFAR10.

C. Boundary attack results

The execution of Boundary Attack takes significantly longer
than C&W attack, as it is performed on the SCNN directly and
thus has to simulate all bitwise operations for every one of its
iterations. We therefore initially only tried to create
adversarial examples for 100 images of fashion MNIST. After
10,000 iterations for each image however, adversarial
examples had only been created successfully for 22 of them.
In the other 78 cases, no adversarial examples within the
specified L, limit had been found. A look at the development
of L, distances over the course of the attack‘s iterations
showed that for most images this distance did not decrease at
all, as should be the case according to [2]. In an example given
by the authors, the distance decreases by more than one order
of magnitude between iterations 1,053 and 1,828: from 8.0 -
1072 t0 5.6 - 10~*. In our attack on the SCNN however, the
average L, distance stayed almost constant between
iterations. For instance, iteration 1,053 had an average L,
distance of 2.90; in iteration 1,828 the average distance was
2.86. Only a few samples reached distances in the order of
1073 and led eventually to the creation of successful
adversarial examples. Further iterations showed that the
distances for other samples fluctuated, but did not show a
gradual decrease.

The low success rate of Boundary Attack is due to the
fuzziness of decision boundaries in an SCNN illustrated in

Attack on
SCNN

Stochastic boundary
space

Attack on
binary NN

Binary decision
boundary
Figure 4: Illustration of binary decision boundary vs. stochastic
boundary space and Boundary Attack iterations.
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fig. 4. A conventional binary network has a clearly defined,
sharp decision boundary between classes, which Boundary
Attack uses as a guideline to generate adversarial examples.
However, an SCNN does not have such a sharp boundary. It
instead has something more akin to a “boundary space”.
Within this space, the SCNN does not always place the same
input in the same class, but only classifies it with a certain
probability. Boundary Attack can therefore not orient itself
along a decision boundary and fails to converge.

V. CONCLUSION

We have investigated the defensive capabilities of SCNNs
regarding selected adversarial attacks. Our simulations show
that SCNNs possess inherent robustness without the need for
additional NN layers or defensive operations that are required
in conventional binary NNs. The inherent randomness of SC
prevents even powerful targeted attacks such as the C&W
attack  from  reliably  achieving  their  desired
misclassifications. Additionally, we showed that not only is
Boundary Attack similarly well defended against, but an
SCNN also makes it very difficult for this specific black-box
attack to find adversarial examples in the first place. In future
work, our goal is to investigate if SC’s robustness is attack-
dependent, and to analyze the trade-off between classification
accuracy and maximizing defensive capabilities.
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