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Abstract—Stochastic computing is a low-cost non-standard 
computer architecture that processes pseudo-random bitstreams. 
Its effectiveness, and that of other probabilistic methods, requires 
maintaining desired levels of correlation among interacting input 
bitstreams, for example, SCC = 0 or SCC = +1, where SCC is the 
stochastic cross-correlation metric. Correlation errors are 
systematic (bias-causing) errors that cannot be corrected by 
increasing bitstream length. A typical stochastic design C1 only 
controls correlation at its primary input lines. This is a fairly 
straightforward task, however it limits the scope of SC to “single 
layer,” usually combinational, designs. In situations where a 
second processing layer C2 follows C1, the output correlation of C1 
must satisfy the input correlation needs of C2. This can be done by 
inserting a (sequential) correlation control layer S12 between C1 
and C2, which incurs high area and delay overhead. S12 transforms 
intralayer bitstreams Z with unknown or undesired SCC values 
into numerically equivalent ones Z* with desired correlation. The 
fundamental problem of designing C1 to produce Z* directly, 
thereby dispensing with S12, which apparently has not been 
considered before, is addressed in this paper. We focus on two-
layer designs C1C2 requiring SCC = +1 between layers, and present 
a method called COMAX for (re)designing C1 so that it outputs 
bitstreams with correlation that is as close as possible to +1. We 
demonstrate on a representative image processing application 
that, compared to alternative correlation control techniques, 
COMAX reduces area by about 50% without reducing output 
image quality.  

Keywords—stochastic computing, approximate computing, 
correlation control, logic synthesis, image processing, edge detection 

I. INTRODUCTION 
Stochastic computing (SC) is a probabilistic and approximate 
design paradigm that computes with sequences of randomized 
bitstreams known as stochastic numbers (SNs), instead of 
conventional “binary” or base-2 numbers [1][2]. SC systems 
typically have much lower hardware area requirements than 
binary, i.e., non-stochastic, systems, at the cost of lower 
accuracy. Although originally proposed in the 1960s [1], SC has 
only recently gained research traction due to the growing need 
for hardware-intensive “smart” applications. SC’s area-accuracy 
trade-offs offer considerable advantages over binary systems for 
computing tasks that tolerate small inaccuracies such as digital 
filtering [3] [4], image processing [5] [6], and neural networks 
[7] [8] [9]. However, SC’s randomness also entails new behavior 
issues such as correlation, which is very hard to manage and is 
addressed in this paper. 

A typical SC system must interface with a conventional 
binary system. It therefore begins with a binary-to-stochastic 

 
Fig. 1. Basic structure of an SC system: n binary inputs are converted into 
SNs by a BSC, processed by a stochastic circuit C into k output SNs, then 
converted back to binary by an SBC. 

converter (BSC) that maps the input binary data values =, , … ,  into SNs of the form = 101110011 , where 
’s  expected numerical value  is proportional to , and can 

be interpreted in terms of a probability. For example, with 
unipolar encoding,  is the probability that an arbitrary bit of 

  is 1. The BSC is the primary source of randomness. The SNs 
X it generates are fed to a stochastic circuit  for processing, 
and the resulting output SNs  are converted back to binary 
using a stochastic-to-binary converter (SBC). Fig. 1 illustrates 
this basic SC architecture. Note that C’s hardware is a 
conventional Boolean logic circuit designed to process SNs, so 
it can be constructed from any standard CMOS technology.  
 The stochastic circuit  has both a logic function and an 
arithmetic (stochastic) function associated with it. For example, 
if  is an XOR logic gate, it performs a type of arithmetic 
subtraction on its input SNs. Thus, subtraction is a stochastic 
function associated with the XOR logic function. In general, the 
type and accuracy of C’s stochastic function depend on both the 
length  of its SNs and the correlations between them. A 
consequence of these dependencies is that stochastic functions 
are approximate, and controlling accuracy is a challenging and 
application-dependent problem in SC.  

Correlation among ’s input SNs greatly influences the 
stochastic function it computes. For example, consider the 
circuit shown in Fig. 2a where N = 8. If the input SNs  and  
are uncorrelated, it implements a probabilistic subtract-and-
multiply operation:  

 = (1 ) (1) 

The AND gate in Fig. 2a serves as a stochastic multiplier, and 
the inverter performs negation. Using the standard stochastic 
cross-correlation metric SCC [10], complete independence or 
lack of correlation between SNs X and Y, as in Fig. 2a, is 
indicated by SCC = 0. In Fig. 2b, on the other hand, the SNs 
have maximum correlation SCC = +1 since X = 1 whenever Y = 
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1. If all input SN pairs are maximally correlated in this way, the 
same circuit computes an entirely different stochastic function, 
namely, saturating subtraction:= (0, ) (2)

Most SC operations considered in the literature require 0 between all pairs of inputs for acceptable accuracy, 
and assume, often implicitly, that the BSC is a source of 
suitably uncorrelated SNs. Correlation-based operations like 
Eq. (2) which requires = +1 are also useful in many
applications [4][6][8-10], but operations using most other 
possible values of SCC (which must lie between +1 and 1) are 
not. If the input SCC is not properly controlled to the required 
value, the design may implement a function that is entirely 
different than that intended. Note that the range of achievable 
SCC values depends on the BSC design, including the length N 
of the SNs it produces and their target probability values. Note 
too that an approximation to a target SCC value may be useful, 
reflecting the probabilistic nature of SC, but little is known 
about this.

SCC is most easily controlled at the primary inputs of a 
stochastic circuit when the SNs come immediately from a 
suitably designed BSC. The authors of [10] give a general BSC 
design method to accomplish this task for specified values of 
SCC among the input lines of . However, it’s much more 
challenging to control the SCC values among the output lines Z
of C, without repeatedly re-generating the required SCC using 
SBC and BSC blocks [11]. We call the general task of designing 
C with specific SCC output values the correlation control 
problem (CCP).

To illustrate the CCP, consider Fig. 3a, where the core SC 
computation block C from Fig. 1 is broken into two subcircuits, 

and , such that the input SNs for come from the output 
SNs of . Circuits composed in this layered way are found 
throughout digital design for both the SC and conventional 
binary domains. For example, an SC image processing circuit 
might start with a smoothing filter for , followed by an edge 
detector for , as in [12]. If, however, the outputs of are not 
properly correlated to satisfy the input SCC requirements of , 
( = +1 in the edge detection case) then the layer can be 
expected to have a significant functional error. Correlation 
errors are systematic or bias-causing errors that cannot be 
mitigated by increasing the length of the SN bitstreams. Unlike 
other forms of SC error [4], therefore, they must be anticipated 
and corrected during the circuit design phase.

The standard approach to solving the CCP in the SC 
literature has been to introduce some type of sequential 
correlation correction block between layers and , as 
shown in Fig. 3b. A brute-force approach is to completely re-
generate the bitstreams by inserting an extra SBC followed by 
a BSC [11]. This method does not require knowing the output 
SCC values produced by , and can generate the exact SCC 
required by , but at a very high area and latency cost [23]. 
Some previous work has proposed smaller and/or faster 
sequential correlation correction designs by approximating the 
target SCC instead of guaranteeing it [11-14].

Fig. 2. (a): AND gate circuit Z = XY computing subtract-and-multiply PZ = PX(1 
PY ) when SCC = 0. (b): Saturating subtraction function PZ = max(0,PX PY ) 

computed when SCC = 1.

Fig. 3. (a): Stochastic circuit broken into two sub-circuit layers C1 and C2. (b): 
Sequential correlation correction circuit inserted to improve SCC between 
internal signals, in this case increasing SCC toward SCC = +1. COMAX designs 
C1 in a way that eliminates the need for the correlation correction circuit.

For example, [12] uses a finite-state machine called a 
“synchronizer” to increase SCC between two SNs and 
without changing their probability values by saving and later 
pairing up unpaired 1s. However, these types of designs usually 
have a very large area footprint relative to and , owing 
mainly to their sequential nature. For instance, the design in 
[12] increases the area cost of its image processing application 
by a factor of 1.49x. There appears to be no prior work on 
designing directly to achieve both a desired stochastic 
function and a desired output SCC. 

This paper presents a systematic way to directly improve the 
output correlation of , eliminating the need for sequential 
correlation correction by . We focus on the case where 
requires maximally correlated inputs, indicated by = +1.
The = +1 case is unique because it is the only SCC value 
that can always be achieved between any number of SNs, no 
matter their length or their values . This property allows 
circuit optimizations not possible at other SCC values. While 
traditional SC circuits like an AND-gate multiplier require 
uncorrelated inputs ( = 0) [2], some recent SC research has 
utilized circuits with maximally correlated inputs ( = +1) 
to great advantage due to their RNS area savings and ability to 
implement new, useful functions such as saturating 
addition/subtraction, minimum, and maximum [10]. Large 
examples include SC image processing circuits [6][24], neural 
networks [8] [9], and digital filters [4]. 

S12



We present a method called COMAX for reforming the 
input layer into one that outputs the desired function with the 
highest possible SCC. We refer to this type of CCP as the 
correlation maximization problem (CMP). COMAX does not 
rely on ad-hoc searching or simulation, rather it employs the 
theory of stochastic equivalence [15] to modify the target 
circuit.  

The main contributions of this paper are:
1. Introduction and investigation of the combinational 

correlation maximization problem (CMP) in SC.
2. An algorithm, COMAX, for solving the CMP that, given 

a circuit C1, finds the functionally equivalent design that 
best maximizes C1’s output SCC.

3. A case study applying COMAX to a representative SC-
based image processing application, with area and 
performance comparisons between COMAX and existing 
sequential re-correlation designs.

II. BACKGROUND

First, we review some basics of SC relating to data conver-
sion and correlation.

A. Conversion Between SC and Binary
A binary number is converted to a numerically 

equivalent SN X using a BSC, such as the one shown in Fig. 4a. 
This common type of BSC compares with a pseudo-random 
value R produced by a random number source (RNS) to produce 
a (pseudo) random sequence of bits X. Commonly, the RNS is 
implemented with a linear feedback shift register (LFSR) [2]. 
Sharing one RNS among two or more binary comparators 
produces correlated output SNs and lowers the RNS area cost 
[16], whereas having a separate RNS for each BSC produces 
uncorrelated SNs but requires much greater area. The binary 
counter in Fig. 4b samples the number of 1s in an SN, 
effectively converting it back to binary. These two data 
conversion methods enable SC hardware to interface with 
traditional binary (base-2) components.

Fig. 4. (a): Binary-to-stochastic converter (BSC) employing a shared random 
number source (RNS) to produce two correlated SNs X and Y. (b): Binary 
counter acting as an SBC, the inverse of a BSC.

B. Correlation in SC
Next, to motivate COMAX, we review existing theory on 

measuring correlation in SC and quantifying its impact on 
stochastic circuit behavior. Intuitively, the correlation between 

TABLE I
SELECTED SCC VALUES FOR PX = 6/10 AND PY = 5/10.

X Y SCC(X,Y ) PX Y

1111110000 1111100000 1 5/10
1011110100 1010000111 0 3/10
1111110000 0000011111 1 1/10

two SNs with values and relates to the probability of 
encountering a 1 in both bitstreams at the same time, denoted 

. Table I shows three ways of aligning the 1s and 0s in two 
example SNs. Each distinct alignment differs only in the value 
of . An AND gate, such as that in Fig. 2, performs 
multiplication without correlation error when PX Y = PXPY, in 
which case the covariance = PX Y PXPY is zero.

The dominant correlation measure in the SC literature is the 
stochastic cross correlation (SCC) [10], which takes on values 
in the interval [ 1, +1], where 1 indicates maximum anti-
correlation, 0 indicates no correlation, and +1 indicates 
maximum correlation. It is convenient here to slightly restate 
SCC in terms of covariance. SCC compares the covariance of 
the two bitstreams with the minimum and maximum covariance 
values possible, and , where:= ( , )– (3)= ( + 1,0)–

The definition of SCC is then given by Eq. (5).

(4)

(5)

In general, non-integer SCC values are avoided because 
such values are less commonly achievable in practice (a fact we 
explore more later), so few applications for circuits that use 
these values are known. Instead, non-integer SCC values nearly 
always represent a deviation from a target integer value like = +1, and are therefore a major source of error. To see 
this, suppose c is the actual measured input SCC value for a 
two-input circuit. Let , , and be the ideal stochastic 
functions implemented by the circuit at = 0, = +1 , and = 1. Then is given as a piece-wise linear combination 
[10]:

(6)

Eq. (6) implies that the correlation error for a circuit 
requiring = +1 can be computed directly as a function of 

via (1, ) = | | . It also follows from [10] that (1, 1) (1,0) (1,1) and consequently that (1, ) is a 
non-increasing function of . Thus, increasing the input SCC 
will always reduce correlation error (or keep it the same) for 
designs requiring = +1, even when the new SCC is still 
less than 1.

RNS
(LFSR)

Binary
Numbers

Stochastic
Numbers

Clock

Clock

Binary
Number

Stochastic
Number N

Binary
Counter



Fig. 5. Stochastic function = when = 0.5 under various SCC values.

For example, consider Fig. 5, which shows the stochastic 
function computed by the AND-gate circuit from Fig. 2. The 
green (solid) trace shows how the circuit operates as a 
saturating subtractor when = +1 , whereas the straight 
purple (dotted) trace shows that it operates as a multiplier when = 0. As the SCC value approaches = +1 , the 
corresponding curve also more closely approximates the = +1 curve, indicating less correlation error (bias). Most 
existing sequential re-correlation designs, as well as the 
COMAX method proposed in this paper do not guarantee that 
the output has = +1 exactly. Instead, they try to 
approximate = +1 as closely as possible to achieve 
sufficiently low correlation error.

III. PROPOSED METHOD

A. Correlation Maximization Problem (CMP)
First, the correlation maximization problem (CMP) is 

formally defined and justified. This paper focuses on 
maximizing the output SCC towards = +1 because= +1 is used in most of the known non-zero SCC 
applications [4][6][8-10][24], and has seen growing research 
interest recently. Furthermore, unlike = 0 or other SCC 
values, pairwise = +1 is always achievable between any 
number of circuit outputs, regardless of the SNs’ lengths and 
values. For example, Fig. 6 presents a few 3D scatterplots 
showing the , , values at which three SNs of length = 16 can all be exactly correlated with the given SCC value. 
Fig. 6a demonstrates how = +1 is always possible for all 

, , , however the plots are sparser for the other SCC 
values like = 0 (Fig. 6b), as these are not always 
achievable. In general, only the integer SCC values are possible 
often enough to base SC computation on, as non-integer values 
like = 0.5 are very rarely possible, as shown in Fig. 6d. 

To see why bitstreams can always be made to have =+1, consider the following three SNs: X1 = 10100110, X2 = 11101101, and X3 = 01000100. Now suppose that the 1s in 
these bitstreams are aligned on the left-hand side such they all 
come first, followed by all the 0s thus: 

Fig. 6. 3D scatterplots showing the values of , and at which three =16 bit SNs can be correlated with each other at ( , ) = ( , ) =( , ).  = 11110000= 11111100 (7)= 11000000
It can readily be verified with Eq. (5) that the pairwise SCC is 
1 between all pairs of bitstreams in Eq. (7). It can be easily seen
that left alignment like this always induces = +1. Since 
+1 is the only SCC value that can always be achieved, the CMP 
is the only directly solvable type of CCP. 

To formalize the CMP, let = ( ) be a Boolean function 
defining the logic (non-stochastic) behavior of a stochastic 
circuit C1 that takes a random vector of SNs as input, and 
outputs a random vector of SNs. A Boolean function =( ) is said to be stochastically equivalent (SE) to f  if the two 
circuits compute the same stochastic function. In other words,= , = , … , = for all . 

The set of all such functions constitutes a stochastic 
equivalence class (SEC) [15]. This type of equivalence only 
guarantees that the marginal output probabilities match; 
Generally, because the correlations between the 
random variables in may be different than those between the 
ones in . An example is the stochastic scaled addition 
function = + , which can be implemented using 
either a MUX gate or a SE majority (MAJ) gate [15], as shown 
in Figs. 7a and 7b, respectively.

Fig. 7. Two SE circuits computing = + : (a) The multiplexer 
(MUX) gate. (b) The majority (MAJ) gate, which outputs 1 if any two inputs 
are 1.



Despite being SE, circuits employing MAJ-based adders 
have been shown to output higher SCC than MUX-based ones 
[17] [18]. For example, in [17] replacing MUX with MAJ gates 
within a stochastic image processing circuit raises the average 
output SCC from = 0.32 to = 0.48. Thus, using
MAJ instead of MUX can reduce correlation error for 
subsequent layers requiring = +1 . The goal of the 
CMP is to generalize this observation to find a correlation-
maximizing replacement for any combinational stochastic 
circuit. This should be an SE Boolean function that causes 

to have the highest possible expected output SCC among all 
pairs of outputs. This improves the output correlation while 
leaving the circuit’s stochastic function unchanged.

Formally, the CMP is defined as finding

        (8)

where ( , ) [1. . ] such that Eq. (8) requires the SCC to 
be as close to 1 as possible between all pairs of outputs. Any 
Boolean function that solves the CMP maximizes the output 
correlation(s) of under any distribution of the inputs . It’s 
important to note that solving the CMP does not necessarily 
guarantee = +1, but it does ensure has the highest 
output SCC among all (combinational) SE designs imple-
menting the same stochastic function.

B. COMAX: Solving the CMP
Next, an algorithm COMAX for directly solving the CMP 

is proposed. A pseudo-code description of COMAX appears in 
Alg. 1 and this section explains the theory behind it. The goal 
of COMAX is to manipulate a Boolean function to yield a 
function that is stochastically equivalent to f and achieves 
the maximum possible correlation between all pairs of outputs. 

is defined by a 2 × Boolean matrix or truth table
comprising vectors = [ , , … , ] , where represents 
the truth-table for the th output. These are supplied as input to 
Alg. 1, whereas the outputs are a new truth-table representing 
the SE function = [ , , . . . , ]. 

To understand the operation of COMAX, first assume that 
the input bitstreams are organized into a set of constant 
SN inputs   and a set of variable SN inputs , such that = [ , ] . The constant bitstreams in   are uncorrelated 
and have the same fixed probability value 0.5. Generally, any 
SC circuit can be modeled in this way [15]1. For example, the 
MUX/MAJ circuits in Fig. 7 have a constant input of = 0.5. 
This distinction is useful because the 0.5-valued constant inputs 
are all interchangeable; they can be swapped and/or inverted 
anywhere they are used in the circuit to produce a new Boolean 
function that is SE to but may have different output 
correlation behavior. If is a layer of a multi-layer circuit, then 
inputs from prior layers are treated as variable inputs, 
while additional inputs can be either variable or constant. 

1  As discussed in [15], this assumption is general because constants other 
than 0.5 can be derived from multiple uncorrelated 0.5 sources using relatively 
simple combinational circuits. By design, nearly all SC random sources used in 

The first step of COMAX is to reshape each of the truth-
table vectors f  from a 2 × 1 vector into a matrix F  with shape 2 × 2 via column-major ordering, noting that = +

. This is done in lines 2 and 3 of the pseudo-code. The
reshaping process is illustrated for a truth-table vector 
representing a MUX-based stochastic adder in Eq. (9). The 
circuit has two variable inputs X and Y (data) and one constant 
input S (select), so FM has shape 4 × 2: 

     (9) 
This reshaping is done because all entries in have the 

value 0.5, so every column of F  has the same probability of 
being sampled, namely, 1/2 . It therefore follows that re-
ordering the 1s and 0s in one or more rows of F  results in a 
new matrix representing a Boolean function that is SE to 

, since the relative probability of sampling a 1 versus a 0 for a 
given assignment of variable input values   does not change. 
For this reason, and   are called stochastically equivalent 
matrices (SEMs).  

Formally, SEMs are defined such that if f and are SE, 
then Eq. (10) holds true for all their SEM rows [1. . 2 ] and 
outputs [1. . ]: 
the SC literature, such as the LFSR, produce uncorrelated 0.5-valued SNs to a 
high degree of approximation.



              (10) 

Here W is a weight matrix that corresponds to a unique
stochastic function. For example, the weight matrix for both the 
MUX and MAJ gates is WM = [0 1 1 2]T. It corresponds to the 
stochastic addition function = + . 

COMAX uses SEMs to optimize the circuit’s correlation 
without changing the stochastic function. The next step after 
reshaping the input truth-table vector f into the SEM F is to
compute the weight of each row according to Eq. (10), as 
shown in line 5 of Alg. 1. This yields a = . The following 
lines, 6 and 7, construct the new, optimized SEM by placing the 

required 1s such that they are aligned to the left side of . 
This step is illustrated with an example in Fig. 8, where Figs. 
8c and 8d are the SEMs before and after optimization, 
respectively. It can be shown that left-aligning the 1s in this 
way maximizes the number of possible locations where a 1 in 

overlaps with a 1 at the same location in . In other words, 
the new matrices have the highest possible number of locations 
where = 1. Since and are SEMs, this maximizes 

without changing or individually, therefore 
maximizing SCC. Based on these insights, the solution to the 
CMP is given in the following theorem (a proof is in Appendix 
A). 

Theorem 1: Let , . . . , be the SEMs for a k-output 
Boolean function . Then  is a solution to the CMP if Eq. 
(11) holds true for all output pairs ( , ) [1. . ]  and SEM 
rows [1 … 2 ].

(11)

In other words, each row i of the SEMs should be reordered so 
that the SCC measured between the row vectors is 1. Crucially, 
it is always possible to satisfy Eq. (11) for any set of SEMs via 
left-alignment, as done in Eq. (7), so this is the solution used by 
COMAX. 

After generating the optimized SEMs , the final step of 
COMAX is to reshape these SEMs back into truth-table vectors

. This is done in line 8 of Alg. 1 and is the reverse process of 
line 3. An example is given in Eq. (12), which continues the 
MUX example from Eq. (9), showing how the left-alignment 
and final reshaping steps of COMAX are applied.

            (12) 

Fig. 8. Example of COMAX using SEMs. (a) Original circuit, computing =0.5 + 0.25 and = 0.5 + 0.25 , when = = = 0.5 . 
(b) SE AND-gate circuit solving the CMP. (c) Original SEMs. (d) Optimized 
SEMs, with 1s aligned on the left so that , = 1.

The Boolean sum-of-minterms expression for Eq. (12) is

     (13)

Eq. (13) can be simplified to = + + . This 
result (which is generalized in Appendix B) defines a MAJ gate
with an inverted select input. Consequently, this example
application of COMAX proves that the MAJ gate 
implementation of stochastic addition solves the CMP. It’s 
important to observe that COMAX can yield optimizations 
beyond simple MUX-MAJ substitution. For example, in Fig. 8 
it produces a circuit implementation with one less constant 
input, and an entirely different gate structure.  

Overall, the runtime complexity of the entire COMAX 
algorithm is O(k2n), which is consistent with the fact that it is a 
truth-table based method. Here, we remark that SC designs, 
which are inherently bit-serial, usually have a small number of 
input lines. This makes truth-table and other exponential-time 
algorithms much more viable in the SC context than for bit-
parallel paradigms like binary computing. For example, 
probability transfer matrices (PTMs) are a well-established 
method of representing stochastic circuits using matrices of 
shape 2 × 2 [22]. In [17], the relationship between PTMs 
and truth-tables is explored.

IV. IMAGE PROCESSING CASE STUDY

Next, as a case study we evaluate the effectiveness of 
COMAX at reducing correlation error for a two-layer image 
processing pipeline consisting of a Gaussian blur (GB) 
operation followed by edge detection. This task is similar to 
those in [12], [19], and [23], all of which are used for evaluating
SC re-correlation performance, thus it is useful for evaluating 
COMAX. The GB operation consists of a 3x3 matrix which acts 



as a sliding window filter that averages local pixels to produce 
a blurring effect. The filter computes an operation of the form: 

(14)

The stochastic implementation of Eq. (14) employs a tree of 
MUXes, as shown in Fig. 9b. For edge detection, a 2x2 Roberts 
cross edge detector (RCED) implementing Eq. (15) is used: = 12 | | + 12 | + | (15)

Both Eqs. (14) and (15) are examples of non-trivial SC
functions. RCEDs have an area-efficient SC implementation 
relying on = +1 [6] and consisting of two XOR gates and 
one MUX, as depicted in Fig. 9d. Each of the four RCED inputs 
Z11, Z22, Z12, Z21 is generated by a separate instance of the 3x3 
GB circuit, such that the overall input image tile is 4x4 pixels, 
as shown in Fig. 9a. The full circuit receives 16 variable inputs 
(pixel intensities) from the image tile, 4 constant inputs shared 
among the GB kernels, and 1 constant input for the RCED. 
Henceforth, this combined Gaussian-blur and edge detection 
architecture is referred to as GBED. 

To measure COMAX’s impact on the edge detection 
performance of the GBED circuit, the algorithm is applied to 
the GB layer and the entire circuit is simulated on a dataset of 
ten grey-scale test images (0 to 1 range) from the MATLAB 
image processing toolbox. Since GB is intended to filter out 
Gaussian noise, each test image is made noisy by adding 
Gaussian noise with μ = 0 and = 0.1. The images are broken 
up into many 4x4 pixel windows, which are then processed by 
the GBED circuit by converting the pixel intensities into SN 
bitstreams of length = 256 or = 16 using simulated 
LFSRs. 

First, the SCC at the output of the GB layer is calculated 
over all possible 4x4 pixel windows in the dataset. For SCC 
calculation, a bitstream length of = 256 is used. The 
frequency histogram in Fig. 10 shows the resulting distribution 
of SCC values both before and after applying COMAX (higher 
SCC is better). It directly demonstrates the SCC benefits of 
COMAX, showing that the output SCC is greater than 0.92 
about 45% more often, and there are far fewer instances of SCC 
< 0.75. The unmodified 3x3 GB circuit only outputs  = 0.72 on average, while the GB circuit optimized by COMAX 
outputs = 0.97. To visualize the effect this improvement 
in SCC has on the circuit’s edge detection performance, Fig. 11 
shows the GBED results on one of the noisy test images before 
and after applying COMAX, with Figs. 11c and 11f showing 
the case where = 256 . Observe that COMAX results in 
much improved edge detection, with far fewer erroneous edges 
being produced. This result is visually similar to that produced 
by a 32-bit floating-point GBED implementation (Fig. 11d).

Fig. 9. GBED circuit. (a) 4x4 input pixel tile. (b) Four instances of the 3x3 
Gaussian blur circuit. (c) Optional recorrelator to increase correlation (d) 2x2 
Roberts cross edge detection circuit, requiring correlated inputs.

Fig. 10: Frequency histogram of SCC values from GB for all possible 4x4 pixel 
windows in the dataset. It shows that COMAX substantially increases SCC.

To contextualize COMAX with existing correlation 
correction techniques, we compare our design against three 
sequential techniques that have been used to achieve re-
correlation: full bitstream re-generation [11], the synchronizer 
circuit from [12] with a save depth of D = 1, and the correlator 
circuit from [13]. The synchronizer works to increase SCC 
between two SNs and by remembering up to unpaired 
1s, such as = 10, and attempting to pair them with unpaired 
1s on the other bitstream, such as = 01, leading to =11, thus increasing and SCC. In contrast, the correlator 
uses a counter to dynamically estimate which SN has the 
min/max value, then relocates unpaired 1s on the lower-valued 
bitstream to align with those on the higher-valued one. Each re-
correlation design is inserted into the circuit as shown in Fig. 
9c. For completeness, we also include cases where both 
COMAX and sequential re-correlation are used together.



Fig. 11. (a) Original test image with added Gaussian noise. (b) Un-optimized 
GBED with N = 16. (c) Un-optimized GBED with N = 256. (d) Ideal 32-bit 
software-based GBED (e) COMAX with N = 16 in combination with the design 
from [12] with D = 1. (f) COMAX alone with N = 256.

For example, Fig. 11e shows the result of combining [12] with 
COMAX, which achieves edge detection of comparable quality 
to floating-point even with short bitstreams of length = 16. 

Next, the area cost of COMAX and existing methods is 
evaluated using Synopsys Design Compiler with the 
FreePDK45 45nm cell library [20]. Each design is implemented 
in SystemVerilog and synthesized with a 500MHz clock and 
Design Compiler’s default optimization parameters. Table II 
summarizes these area results (lower is better). 

TABLE II
GBED AREA RESULTS 

Method of Correlation Control Area (μm2)
None (GBED only) 253
COMAX 224
[11] Full bitstream regeneration 664
[12] Synchronizer 459
[12] Synchronizer and COMAX 433
[13] Correlator 575
[13] Correlator and COMAX 540

Table II indicates that applying COMAX to the GBED 
circuit does not increase its area footprint; in fact, the area 
decreases slightly. These results imply that COMAX can be 
applied to the GBED circuit to improve its edge detection 
performance without sacrificing any area to do so. The area cost 
of [12] is 2x higher than COMAX, and for [13] it is 2.5x higher. 

Lastly, output image quality is measured using the mean 
structural similarity index measure (MSSIM) [21]. MSSIM can 
quantify the human-perceptible differences between images 
more effectively than traditional measures such as mean 
squared error (MSE) or the related PSNR [21]. Fig. 12 plots the 
MSSIM before and after applying COMAX to each design 
(higher is better).

Observe from the data in Fig. 12 that applying COMAX to 
any of the circuit cases strictly increases MSSIM, except the 
very costly full regeneration case which already outputs the 
maximum = +1. For example, when N = 256, applying 
COMAX only to the original circuit improves the MSSIM from 

Fig. 12. MSSIM image quality results sorted by MSSIM performance for (a) 
bitstream length N = 16, and (b) N = 256. Light and dark-colored bars represent 
MSSIM before and after applying COMAX, respectively; higher is better.

0.17 to 0.43, a 2.5x increase. The best existing method that 
achieves a MSSIM close to this is the synchronizer from [12], 
but according to Table II this comes at the additional cost of 2x 
higher area, demonstrating COMAX’s big area-cost advantage. 
COMAX also excels when used in combination with
synchronizers. This configuration works especially well when = 16, as it produces a MSSIM of 0.48, which is better than 
that produced when synchronizers are used on their own even 
at = 256, despite the bitstream length being 16x shorter. The 
general trend of Fig. 12 indicates that COMAX achieves higher
relative MSSIM gains when the initial MSSIM is low.

V. CONCLUSION

In this work, we formally defined the problem of 
combinational correlation maximization (CMP) in multi-layer 
stochastic circuit design and presented a novel method, 
COMAX, to solve it. This problem is central to developing 
efficient multi-layer stochastic circuits for use in the 
common practical SC design setting where requires an input 
SCC of +1. Unlike existing re-correlation techniques, which 
rely on expensive sequential hardware, COMAX directly 
produces a combinational SC circuit that achieves the highest 
possible output correlation without any ad-hoc design space 
searching or simulation. In an image-processing case study 
consisting of a Gaussian blur filter followed by a correlation-
dependent edge detector, we demonstrated that COMAX 
increases average output SCC from 0.72 to 0.97 and output 
image quality, measured by MSSIM, by a factor of 2.5x, at no 
additional area cost. Achieving this same performance gain via 
conventional re-correlation circuits requires twice the area 
footprint of the COMAX implementation.

APPENDIX A 
PROOF OF THEOREM  1

Suppose we are given the k Boolean functions for a k-output 
stochastic circuit, where the th output is = ( ). The goal 
is to find the SE functions ( ) and ( ) that make, to as close to 1 as possible for all pairs of outputs ( , ) [1. . ] and distributions of , thus solving the 
CMP. For notational brevity, let = , = , and= . Then, using the definition of SCC given in Eq. 
(5) we obtain:



(16) 

Recall that the Boolean function = ( ) is SE to= ( ) if = . To define , , the only 
term from Eq. (16) that changes is the output overlap 
probability, which goes from to ; the others 
remain the same because of stochastic equivalence. Observe 
that in both piecewise cases, increasing linearly 
increases SCC. Therefore, the optimization problem can be 
restated as:

  (17) 
The output overlap probability of a stochastic circuit is related 
to its truth-table vectors and the input distribution of via

                                                 (18) 
where is the element-wise logical AND between truth-
table vectors and , and is a probability transfer vector 
(PTV) [17] that defines the distribution of . If is separated 
into its independent variable and constant components: =

, then Eq. (18) can be rewritten using SEMs as:

                                        (19) 
Now note that = [2 , 2 , … ] because it describes 

a distribution of independent bitstreams with probability 0.5. 
Therefore:

(20) 
where is the row index corresponding to value assignments of 
the variable inputs, and is the column index corresponding to 
value assignments of the constant inputs. Since must be 
optimal for all possible , the optimization problem can be 
rewritten as:

(21) 

Eq. (21) is maximized if, for each row i, the 1s between the 1th and 2th SEM have the highest possible number of 
overlaps. This is exactly equivalent to the condition of having 
maximum SCC between these SEM rows:, = 1. This concludes the proof.

APPENDIX B
SUM-OF-PRODUCTS FORM FOR COMAX

The result returned by COMAX can be expressed rather 
elegantly as a Boolean sum-of-products (SOP) involving the 
weight matrix W. For the th output, this is:

                                           (22) 

where and are the ith and jth minterms for the sets of 
variable and constant inputs, respectively. For instance, =

, = , etc.

Eq. (22) is an alternative way of representing COMAX and 
provides insight into the gate-level implementation of circuits 
optimized with COMAX. Following the previous MUX 
example, Eq. (22) yields the following sum-of-products 
expression for a stochastic scaled-adder that solves the CMP:

(23) 

The first two terms of Eq. (23) come from the two 1’s in the 
MUX weight matrix WM  = [0 1 1 2]T, where the minterms= and = for the variable inputs are each 
weighted by 1 and therefore each share the minterm, = . 
Conversely, the last two terms of Eq. (23) weight the minterm = by 2, so the first utilizes = while the second 
utilizes = . Observe that the result from Eq. (23) is equal 
to Eq. (13), derived previously using Alg. 1. 
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