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Abstract—Stochastic computing is a low-cost non-standard
computer architecture that processes pseudo-random bitstreams.
Its effectiveness, and that of other probabilistic methods, requires
maintaining desired levels of correlation among interacting input
bitstreams, for example, SCC = 0 or SCC = +1, where SCC is the
stochastic cross-correlation metric. Correlation errors are
systematic (bias-causing) errors that cannot be corrected by
increasing bitstream length. A typical stochastic design Ci only
controls correlation at its primary input lines. This is a fairly
straightforward task, however it limits the scope of SC to “single
layer,” usually combinational, designs. In situations where a
second processing layer C: follows Ci, the output correlation of C1
must satisfy the input correlation needs of C>. This can be done by
inserting a (sequential) correlation control layer Si2 between Ci
and C2, which incurs high area and delay overhead. S12 transforms
intralayer bitstreams Z with unknown or undesired SCC values
into numerically equivalent ones Z* with desired correlation. The
fundamental problem of designing C1 to produce Z* directly,
thereby dispensing with S12, which apparently has not been
considered before, is addressed in this paper. We focus on two-
layer designs C1Cz requiring SCC = +1 between layers, and present
a method called COMAX for (re)designing Ciso that it outputs
bitstreams with correlation that is as close as possible to +1. We
demonstrate on a representative image processing application
that, compared to alternative correlation control techniques,
COMAX reduces area by about 50% without reducing output
image quality.

Keywords—stochastic computing, approximate computing,
correlation control, logic synthesis, image processing, edge detection

I. INTRODUCTION

Stochastic computing (SC) is a probabilistic and approximate
design paradigm that computes with sequences of randomized
bitstreams known as stochastic numbers (SNs), instead of
conventional “binary” or base-2 numbers [1][2]. SC systems
typically have much lower hardware area requirements than
binary, i.e., non-stochastic, systems, at the cost of lower
accuracy. Although originally proposed in the 1960s [1], SC has
only recently gained research traction due to the growing need
for hardware-intensive “smart” applications. SC’s area-accuracy
trade-offs offer considerable advantages over binary systems for
computing tasks that tolerate small inaccuracies such as digital
filtering [3] [4], image processing [5] [6], and neural networks
[71[8][9]. However, SC’s randomness also entails new behavior
issues such as correlation, which is very hard to manage and is
addressed in this paper.

A typical SC system must interface with a conventional
binary system. It therefore begins with a binary-to-stochastic

B, X Zy B
=% Binary-to- > *| Stochastic [~ >
. | stochastic SC core -to-binary | :

converter cireuit C converter -
— BSC > o SBC —
B, Xa Z By

Fig. 1. Basic structure of an SC system: n binary inputs are converted into
SNs by a BSC, processed by a stochastic circuit C into k output SNs, then
converted back to binary by an SBC.

converter (BSC) that maps the input binary data values B =
B;,B,, ..., B, into SNs of the form X; = 101110011, where
X;’s expected numerical value Py, is proportional to B;, and can
be interpreted in terms of a probability. For example, with
unipolar encoding, Py, is the probability that an arbitrary bit of
X; is 1. The BSC is the primary source of randomness. The SNs
X it generates are fed to a stochastic circuit C for processing,
and the resulting output SNs Z are converted back to binary
using a stochastic-to-binary converter (SBC). Fig. 1 illustrates
this basic SC architecture. Note that C’s hardware is a
conventional Boolean logic circuit designed to process SNs, so
it can be constructed from any standard CMOS technology.

The stochastic circuit C has both a logic function and an
arithmetic (stochastic) function associated with it. For example,
if C is an XOR logic gate, it performs a type of arithmetic
subtraction on its input SNs. Thus, subtraction is a stochastic
function associated with the XOR logic function. In general, the
type and accuracy of C’s stochastic function depend on both the
length N of its SNs and the correlations between them. A
consequence of these dependencies is that stochastic functions
are approximate, and controlling accuracy is a challenging and
application-dependent problem in SC.

Correlation among C’s input SNs greatly influences the
stochastic function it computes. For example, consider the
circuit shown in Fig. 2a where N = 8. If the input SNs X and Y
are uncorrelated, it implements a probabilistic subtract-and-
multiply operation:

PZZPX(]-_PY) (1)

The AND gate in Fig. 2a serves as a stochastic multiplier, and
the inverter performs negation. Using the standard stochastic
cross-correlation metric SCC [10], complete independence or
lack of correlation between SNs X and Y, as in Fig. 2a, is
indicated by SCC = 0. In Fig. 2b, on the other hand, the SNs
have maximum correlation SCC = +1 since X = 1 whenever Y =
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1. If all input SN pairs are maximally correlated in this way, the
same circuit computes an entirely different stochastic function,
namely, saturating subtraction:

PZ=max(0,PX_Py) (2)

Most SC operations considered in the literature require
SCC =~ 0 between all pairs of inputs for acceptable accuracy,
and assume, often implicitly, that the BSC is a source of
suitably uncorrelated SNs. Correlation-based operations like
Eq. (2) which requires SCC = +1 are also useful in many
applications [4][6][8-10], but operations using most other
possible values of SCC (which must lie between +1 and —1) are
not. If the input SCC is not properly controlled to the required
value, the design may implement a function that is entirely
different than that intended. Note that the range of achievable
SCC values depends on the BSC design, including the length N
of the SN it produces and their target probability values. Note
too that an approximation to a target SCC value may be useful,
reflecting the probabilistic nature of SC, but little is known
about this.

SCC is most easily controlled at the primary inputs X; of a
stochastic circuit C when the SNs come immediately from a
suitably designed BSC. The authors of [10] give a general BSC
design method to accomplish this task for specified values of
SCC among the input lines X of C. However, it’s much more
challenging to control the SCC values among the output lines Z
of C, without repeatedly re-generating the required SCC using
SBC and BSC blocks [11]. We call the general task of designing
C with specific SCC output values the correlation control
problem (CCP).

To illustrate the CCP, consider Fig. 3a, where the core SC
computation block C from Fig. 1 is broken into two subcircuits,
C; and C,, such that the input SNs for C, come from the output
SNs of C;. Circuits composed in this layered way are found
throughout digital design for both the SC and conventional
binary domains. For example, an SC image processing circuit
might start with a smoothing filter for C;, followed by an edge
detector for C,, as in [12]. If, however, the outputs of C; are not
properly correlated to satisfy the input SCC requirements of C,,
(SCC = +1 in the edge detection case) then the C, layer can be
expected to have a significant functional error. Correlation
errors are systematic or bias-causing errors that cannot be
mitigated by increasing the length of the SN bitstreams. Unlike
other forms of SC error [4], therefore, they must be anticipated
and corrected during the circuit design phase.

The standard approach to solving the CCP in the SC
literature has been to introduce some type of sequential
correlation correction block S;, between layers C; and C,, as
shown in Fig. 3b. A brute-force approach is to completely re-
generate the bitstreams by inserting an extra SBC followed by
a BSC [11]. This method does not require knowing the output
SCC values produced by C;, and can generate the exact SCC
required by C,, but at a very high area and latency cost [23].
Some previous work has proposed smaller and/or faster
sequential correlation correction designs by approximating the
target SCC instead of guaranteeing it [11-14].

(a) : SCC(X,Y) =0
X = 10111101 (6/8)

Y = 10101010 (4/8)[:

(b) : SCC(X,Y) =1

Z = 00010101 (3/8)
Px(1— Py)

X = 11111100 (6/8)

Y = 11110000 (4/8)|:

Fig. 2. (a): AND gate circuit Z = XY 'computing subtract-and-multiply Pz= Px(1
- Py) when SCC = 0. (b): Saturating subtraction function Pz= max(0,Px—- Py)
computed when SCC = 1.

Z = 00001100 (2/8)
maz(0, Px — Py)
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Fig. 3. (a): Stochastic circuit broken into two sub-circuit layers C1and Cz. (b):
Sequential correlation correction circuit S;, inserted to improve SCC between
internal signals, in this case increasing SCC toward SCC = +1. COMAX designs
C1 in a way that eliminates the need for the correlation correction circuit.
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For example, [12] uses a finite-state machine called a
“synchronizer” to increase SCC between two SNs X and Y
without changing their probability values by saving and later
pairing up unpaired 1s. However, these types of designs usually
have a very large area footprint relative to C; and C,, owing
mainly to their sequential nature. For instance, the design in
[12] increases the area cost of its image processing application
by a factor of 1.49x. There appears to be no prior work on
designing C; directly to achieve both a desired stochastic
function and a desired output SCC.

This paper presents a systematic way to directly improve the
output correlation of C;, eliminating the need for sequential
correlation correction by S;,. We focus on the case where C,
requires maximally correlated inputs, indicated by SCC = +1.
The SCC = +1 case is unique because it is the only SCC value
that can always be achieved between any number of SNs, no
matter their length N or their values Px. This property allows
circuit optimizations not possible at other SCC values. While
traditional SC circuits like an AND-gate multiplier require
uncorrelated inputs (SCC = 0) [2], some recent SC research has
utilized circuits with maximally correlated inputs (SCC = +1)
to great advantage due to their RNS area savings and ability to
implement new, useful functions such as saturating
addition/subtraction, minimum, and maximum [10]. Large
examples include SC image processing circuits [6][24], neural
networks [8] [9], and digital filters [4].
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We present a method called COMAX for reforming the
input layer C; into one that outputs the desired function with the
highest possible SCC. We refer to this type of CCP as the
correlation maximization problem (CMP). COMAX does not
rely on ad-hoc searching or simulation, rather it employs the
theory of stochastic equivalence [15] to modify the target
circuit.

The main contributions of this paper are:

1. Introduction and investigation of the combinational
correlation maximization problem (CMP) in SC.

2. An algorithm, COMAX, for solving the CMP that, given
a circuit C1, finds the functionally equivalent design that
best maximizes C1’s output SCC.

3. A case study applying COMAX to a representative SC-
based image processing application, with area and
performance comparisons between COMAX and existing
sequential re-correlation designs.

II. BACKGROUND

First, we review some basics of SC relating to data conver-
sion and correlation.

A. Conversion Between SC and Binary

A binary number By is converted to a numerically
equivalent SN Xusing a BSC, such as the one shown in Fig. 4a.
This common type of BSC compares By with a pseudo-random
value R produced by a random number source (RNS) to produce
a (pseudo) random sequence of bits X. Commonly, the RNS is
implemented with a linear feedback shift register (LFSR) [2].
Sharing one RNS among two or more binary comparators
produces correlated output SNs and lowers the RNS area cost
[16], whereas having a separate RNS for each BSC produces
uncorrelated SNs but requires much greater area. The binary
counter in Fig. 4b samples the number of Is in an SN,
effectively converting it back to binary. These two data
conversion methods enable SC hardware to interface with
traditional binary (base-2) components.

(a)
RNS R Stochastic b
(LFSR) Numbers ( )
Bx Bx > R X Stochastic Binary
Clock Number i Number
X— Binary By
. SCC(X,Y)=1 Counter
Binary
Numbers L | T
By > R Y Clock
By
Pt

Fig. 4. (a): Binary-to-stochastic converter (BSC) employing a shared random
number source (RNS) to produce two correlated SNs X and Y. (b): Binary
counter acting as an SBC, the inverse of a BSC.

B. Correlation in SC

Next, to motivate COMAX, we review existing theory on
measuring correlation in SC and quantifying its impact on
stochastic circuit behavior. Intuitively, the correlation between

TABLE I
SELECTED SCC VALUES FOR Px= 6/10 AND Py=5/10.

X Y SCC(XY) Pxay
1111110000 | 1111100000 | 1 5/10
1011110100 | 1010000111 | O 3/10
1111110000 | 0000011111 | -1 1/10

two SNs with values Py and Py relates to the probability of
encountering a 1 in both bitstreams at the same time, denoted
Py vy - Table I shows three ways of aligning the 1s and Os in two
example SNs. Each distinct alignment differs only in the value
of Px,y. An AND gate, such as that in Fig. 2, performs
multiplication without correlation error when Pxay = PxPy, in
which case the covariance A = Pxay — PxPyis zero.

The dominant correlation measure in the SC literature is the
stochastic cross correlation (SCC) [10], which takes on values
in the interval [-1,+1], where —1 indicates maximum anti-
correlation, O indicates no correlation, and +1 indicates
maximum correlation. It is convenient here to slightly restate
SCC in terms of covariance. SCC compares the covariance A of
the two bitstreams with the minimum and maximum covariance
values possible, A, 4, and A,,;,,, Where:

Apax= min(Px, Py)- PxPy 3)
Amin= max(PX + Py - 1,0)_PXpy (4)
The definition of SCC is then given by Eq. (5).
AN VAN if A>0
scox,y) =8/ i A=
—A/Ain  otherwise )

In general, non-integer SCC values are avoided because
such values are less commonly achievable in practice (a fact we
explore more later), so few applications for circuits that use
these values are known. Instead, non-integer SCC values nearly
always represent a deviation from a target integer value like
SCC = +1, and are therefore a major source of error. To see
this, suppose c is the actual measured input SCC value for a
two-input circuit. Let Fy, F,,, and F_; be the ideal stochastic
functions implemented by the circuit at c = 0, ¢ = +1, and

¢ = —1. Then F_is given as a piece-wise linear combination
[10]:
Fo— (1—|—C)FQ—CF_1 ZfC<O
V(A —c)Fy +cFyy  otherwise ©6)

Eq. (6) implies that the correlation error for a circuit
requiring SCC = +1 can be computed directly as a function of
c via €(1,¢) = |F,; — F.|. It also follows from [10] that
€(1,—1) = €(1,0) = €(1,1) and consequently that e(1,c) is a
non-increasing function of ¢. Thus, increasing the input SCC
will always reduce correlation error (or keep it the same) for
designs requiring SCC = +1, even when the new SCC is still
less than 1.
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Stochastic function computed by Z = XY’ when Py, =0.5
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Fig. 5. Stochastic function Z = XY’ when Py, = 0.5 under various SCC values.

For example, consider Fig. 5, which shows the stochastic
function computed by the AND-gate circuit from Fig. 2. The
green (solid) trace shows how the circuit operates as a
saturating subtractor when SCC = +1, whereas the straight
purple (dotted) trace shows that it operates as a multiplier when
SCC = 0. As the SCC value approaches SCC = +1, the
corresponding curve also more closely approximates the
SCC = +1 curve, indicating less correlation error (bias). Most
existing sequential re-correlation designs, as well as the
COMAX method proposed in this paper do not guarantee that
the output has SCC = +1 exactly. Instead, they try to
approximate SCC = +1 as closely as possible to achieve
sufficiently low correlation error.

III. PROPOSED METHOD

A. Correlation Maximization Problem (CMP)

First, the correlation maximization problem (CMP) is
formally defined and justified. This paper focuses on
maximizing the output SCC towards SCC = +1 because
SCC = +1 is used in most of the known non-zero SCC
applications [4][6][8-10][24], and has seen growing research
interest recently. Furthermore, unlike SCC = 0 or other SCC
values, pairwise SCC = +1 is always achievable between any
number of circuit outputs, regardless of the SNs’ lengths and
values. For example, Fig. 6 presents a few 3D scatterplots
showing the Py, Py, P, values at which three SNs of length
N = 16 can all be exactly correlated with the given SCC value.
Fig. 6a demonstrates how SCC = +1 is always possible for all
Py, Py, P,, however the plots are sparser for the other SCC
values like SCC =0 (Fig. 6b), as these are not always
achievable. In general, only the integer SCC values are possible
often enough to base SC computation on, as non-integer values
like SCC = 0.5 are very rarely possible, as shown in Fig. 6d.

To see why bitstreams can always be made to have SCC =
+1, consider the following three SNs: X1 = 10100110, Xz =
11101101, and X3 = 01000100. Now suppose that the Is in
these bitstreams are aligned on the left-hand side such they all
come first, followed by all the Os thus:

(a) scc=+1

o ?
- 0 o
0 o 0 o8 04

PX

PX 08

Fig. 6. 3D scatterplots showing the values of Py, P, and P, at which three N =
16 bit SNs can be correlated with each other at SCC(X,Y) = SCC(Y,Z) =
SCC(X,Z).

X, = 11110000
X, = 11111100 (7)
X; = 11000000

It can readily be verified with Eq. (5) that the pairwise SCC is
1 between all pairs of bitstreams in Eq. (7). It can be easily seen
that left alignment like this always induces SCC = +1. Since
+1 is the only SCC value that can always be achieved, the CMP
is the only directly solvable type of CCP.

To formalize the CMP, let Z = f(X) be a Boolean function
defining the logic (non-stochastic) behavior of a stochastic
circuit C1that takes a random vector X of n SNs as input, and
outputs a random vector Z of k SNs. A Boolean function Z* =
f*(X) is said to be stochastically equivalent (SE) to f if the two
circuits compute the same stochastic function. In other words,
Pz, = Py, Pz, = Py3, .., Py = Py forall X.

The set of all such f* functions constitutes a stochastic
equivalence class (SEC) [15]. This type of equivalence only
guarantees that the marginal output probabilities match;
Generally, Z # Z* because the correlations between the
random variables in Z may be different than those between the
ones in Z*. An example is the stochastic scaled addition

function P, = %(PX .t PXz)’ which can be implemented using
either a MUX gate or a SE majority (MAJ) gate [15], as shown
in Figs. 7a and 7b, respectively.

(@) MUX Gate (d) MAJ Gate

X, X1
A S Z
X
2 X,
S Ps=0.5

Fig. 7. Two SE circuits computing P, = %(le + PXZ): (a) The multiplexer

(MUX) gate. (b) The majority (MAJ) gate, which outputs 1 if any two inputs
are 1.
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Despite being SE, circuits employing MAJ-based adders
have been shown to output higher SCC than MUX-based ones
[17]1[18]. For example, in [17] replacing MUX with MAJ gates
within a stochastic image processing circuit raises the average
output SCC from SCC = 0.32 to SCC = 0.48. Thus, using
MAJ instead of MUX can reduce correlation error for
subsequent C, layers requiring SCC = +1. The goal of the
CMP is to generalize this observation to find a correlation-
maximizing replacement for any combinational stochastic
circuit. This should be an SE Boolean function f* that causes
Z" to have the highest possible expected output SCC among all
pairs of outputs. This improves the output correlation while
leaving the circuit’s stochastic function unchanged.

Formally, the CMP is defined as finding

.f()pt = arg II}?}X(SCC(fZ (X)* f,;iz (X))) (8)
where (¢4, ;) € [1..k]?such that Eq. (8) requires the SCC to
be as close to 1 as possible between all pairs of outputs. Any
Boolean function that solves the CMP maximizes the output
correlation(s) of f* under any distribution of the inputs X. It’s
important to note that solving the CMP does not necessarily
guarantee SCC = +1, but it does ensure f,, has the highest
output SCC among all (combinational) SE designs imple-
menting the same stochastic function.

B. COMAX: Solving the CMP

Next, an algorithm COMAX for directly solving the CMP
is proposed. A pseudo-code description of COMAX appears in
Alg. 1 and this section explains the theory behind it. The goal
of COMAX is to manipulate a Boolean function f to yield a
function f,,, that is stochastically equivalent to f'and achieves
the maximum possible correlation between all pairs of outputs.
f is defined by a 2™ X k Boolean matrix or truth table
comprising k vectors f = [f,,f,, ..., f;], where f, represents
the truth-table for the £th output. These are supplied as input to
Alg. 1, whereas the outputs are a new truth-table representing
the SE function fo,,, = [f1,f3,...,fz].

To understand the operation of COMAX, first assume that
the n input bitstreams X are organized into a set of n, constant
SN inputs X and a set of n,, variable SN inputs X, such that
X = [X¢, X,/]". The constant bitstreams in X are uncorrelated
and have the same fixed probability value 0.5. Generally, any
SC circuit can be modeled in this way [15]'. For example, the
MUX/MAIJ circuits in Fig. 7 have a constant input of S = 0.5.
This distinction is useful because the 0.5-valued constant inputs
are all interchangeable; they can be swapped and/or inverted
anywhere they are used in the circuit to produce a new Boolean
function f* that is SE to f but may have different output
correlation behavior. If C; is a layer of a multi-layer circuit, then
inputs from prior layers C;_; are treated as variable inputs,
while additional inputs can be either variable or constant.

!'As discussed in [15], this assumption is general because constants other
than 0.5 can be derived from multiple uncorrelated 0.5 sources using relatively
simple combinational circuits. By design, nearly all SC random sources used in

Alg. 1: COMAX to solve the CMP given in Eq. (8)
Input: f = [f1, fa, ..., f&], ne, 7y
Output: f,,; = [£7.£5..... ]
1 for / =1to k do
2 Let Fy =0, F;" = 0 be 2" x 2" binary matrices
3 Fy = reshape(fy, 2™ x 27<)

// Reshape fp into Fy via column-major

ordering
4 for : =1 to n, do
5 Let w = sum/(Fy,)
// Sum of ith row
6 for j = 1to w do
7 L F;,=1
// Set first w values of ith row to 1

8 £} = reshape(Fj, 2™ x 1)

// Reshape Fg* into f; via column-major

ordering

9 return fo, = [, £5, ... £]]

The first step of COMAX is to reshape each of the k truth-
table vectors fz from a 2™ X 1 vector into a matrix F¢ with shape
2™ x 2™ via column-major ordering, noting that n = n, +
n,. This is done in lines 2 and 3 of the pseudo-code. The
reshaping process is illustrated for a truth-table vector
representing a MUX-based stochastic adder in Eq. (9). The
circuit has two variable inputs X and Y (data) and one constant
input S (select), so Fu has shape 4 x 2:

SXY Z
00007
0010 XY §=0 S=
010 1 00 o 0
PR Y B S oLl o 1
M 100|0 M 10 1 0
1011 1| 1 1
110| 0
111 (1] ©)

This reshaping is done because all entries in X, have the
value 0.5, so every column of F¢ has the same probability of
being sampled, namely, 1/2"¢. It therefore follows that re-
ordering the 1s and Os in one or more rows of F¢ results in a
new matrix F; representing a Boolean function f~ that is SE to
f, since the relative probability of sampling a 1 versus a 0 for a
given assignment of variable input values X;, does not change.
For this reason, F,and F; are called stochastically equivalent
matrices (SEMs).

Formally, SEMs are defined such that if fand f~ are SE,
then Eq. (10) holds true for all their SEM rows i € [1..2™] and
outputs ¢ € [1..k]:

the SC literature, such as the LFSR, produce uncorrelated 0.5-valued SNs to a
high degree of approximation.
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Z{Fﬁ)ij = Z(Fz)z‘j =Wy
= = (10)

Here W is a weight matrix that corresponds to a unique
stochastic function. For example, the weight matrix for both the
MUX and MAJ gates is Wy = [0 1 1 2]7. It corresponds to the

stochastic addition function P, = % (PX .t PXz)'

COMAX uses SEMs to optimize the circuit’s correlation
without changing the stochastic function. The next step after
reshaping the input truth-table vector fr into the SEM Fe is to
compute the weight of each row according to Eq. (10), as
shown in line 5 of Alg. 1. This yields a w = W;,. The following
lines, 6 and 7, construct the new, optimized SEM by placing the
w required 1s such that they are aligned to the left side of F;.
This step is illustrated with an example in Fig. 8, where Figs.
8c and 8d are the SEMs before and after optimization,
respectively. It can be shown that left-aligning the 1s in this
way maximizes the number of possible locations where a 1 in
F; overlaps with a 1 at the same location in F;. In other words,
the new matrices have the highest possible number of locations
where F; A F; = 1. Since F; and F; are SEMs, this maximizes
Py nz, without changing Py, or Py, individually, therefore
maximizing SCC. Based on these insights, the solution to the
CMP is given in the following theorem (a proof is in Appendix
A).

Theorem 1: Let F;,...,F; be the SEMs for a k-output
Boolean function f*. Then f* is a solution to the CMP if Eq.
(11) holds true for all output pairs (¢4, %,) € [1..k]? and SEM
rows i € [1...2™].

SCC((F},)i, (Fy,):) =1 (11)

In other words, each row i of the SEMs should be reordered so
that the SCC measured between the row vectors is 1. Crucially,
it is always possible to satisfy Eq. (11) for any set of SEMs via
left-alignment, as done in Eq. (7), so this is the solution used by
COMAX.

After generating the optimized SEMs Fy, the final step of
COMAX is to reshape these SEMs back into truth-table vectors
f;. This is done in line 8 of Alg. 1 and is the reverse process of
line 3. An example is given in Eq. (12), which continues the
MUX example from Eq. (9), showing how the left-alignment
and final reshaping steps of COMAX are applied.

SXY Z

000 [0]

XY S=0 S§=1 001
0o 0 0 010
01 1l «<——0 N 011
10| 1 0 M 100
11 1 1 101
110

111
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Fig. 8. Example of COMAX using SEMs. (a) Original circuit, computing P, =
0.5Py, +0.25 and Pz, = 0.5Px, +0.25, when Py, = Py, =Py, =05.
(b) SE AND-gate circuit solving the CMP. (c) Original SEMs. (d) Optimized
SEMs, with 1s aligned on the left so that SCC ((F}l)i, (F}z)i) =1.

The Boolean sum-of-minterms expression for Eq. (12) is

It = S'X'Y + S'XY 4 SXY 4+ 5XY (3

Eq. (13) can be simplified to f, = SX +SY + XY. This
op

result (which is generalized in Appendix B) defines a MAJ gate
with an inverted select input. Consequently, this example
application of COMAX proves that the MAJ gate
implementation of stochastic addition solves the CMP. It’s
important to observe that COMAX can yield optimizations
beyond simple MUX-MAJ substitution. For example, in Fig. 8
it produces a circuit implementation with one less constant
input, and an entirely different gate structure.

Overall, the runtime complexity of the entire COMAX
algorithm is O(k2"), which is consistent with the fact that it is a
truth-table based method. Here, we remark that SC designs,
which are inherently bit-serial, usually have a small number of
input lines. This makes truth-table and other exponential-time
algorithms much more viable in the SC context than for bit-
parallel paradigms like binary computing. For example,
probability transfer matrices (PTMs) are a well-established
method of representing stochastic circuits using matrices of
shape 2™ x 2% [22]. In [17], the relationship between PTMs
and truth-tables is explored.

IV. IMAGE PROCESSING CASE STUDY

Next, as a case study we evaluate the effectiveness of
COMAX at reducing correlation error for a two-layer image
processing pipeline consisting of a Gaussian blur (GB)
operation followed by edge detection. This task is similar to
those in [12], [19], and [23], all of which are used for evaluating
SC re-correlation performance, thus it is useful for evaluating
COMAX. The GB operation consists of a 3x3 matrix which acts
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as a sliding window filter that averages local pixels to produce
a blurring effect. The filter computes an operation of the form:

4" [Xv, Xv, Xu,] [1/4
Zu= 172 | X, Xu, Xl |1/2
4] [ Xy, Xig, Xig| [1/4

(14)

The stochastic implementation of Eq. (14) employs a tree of
MUXes, as shown in Fig. 9b. For edge detection, a 2x2 Roberts
cross edge detector (RCED) implementing Eq. (15) is used:

1 1
Z= E|le _Zzz| +§|Z12 + Zz1|
(15)

Both Egs. (14) and (15) are examples of non-trivial SC
functions. RCEDs have an area-efficient SC implementation
relying on SCC = +1 [6] and consisting of two XOR gates and
one MUX, as depicted in Fig. 9d. Each of the four RCED inputs
Z1, Zn, Z12, Z>1 1s generated by a separate instance of the 3x3
GB circuit, such that the overall input image tile is 4x4 pixels,
as shown in Fig. 9a. The full circuit receives 16 variable inputs
(pixel intensities) from the image tile, 4 constant inputs shared
among the GB kernels, and | constant input for the RCED.
Henceforth, this combined Gaussian-blur and edge detection
architecture is referred to as GBED.

To measure COMAX’s impact on the edge detection
performance of the GBED circuit, the algorithm is applied to
the GB layer and the entire circuit is simulated on a dataset of
ten grey-scale test images (0 to 1 range) from the MATLAB
image processing toolbox. Since GB is intended to filter out
Gaussian noise, each test image is made noisy by adding
Gaussian noise with 4 = 0 and ¢ = 0.1. The images are broken
up into many 4x4 pixel windows, which are then processed by
the GBED circuit by converting the pixel intensities into SN
bitstreams of length N =256 or N = 16 using simulated
LFSRs.

First, the SCC at the output of the GB layer is calculated
over all possible 4x4 pixel windows in the dataset. For SCC
calculation, a bitstream length of N = 256 is used. The
frequency histogram in Fig. 10 shows the resulting distribution
of SCC values both before and after applying COMAX (higher
SCC is better). It directly demonstrates the SCC benefits of
COMAX, showing that the output SCC is greater than 0.92
about 45% more often, and there are far fewer instances of SCC
< 0.75. The unmodified 3x3 GB circuit only outputs SCC =
0.72 on average, while the GB circuit optimized by COMAX
outputs SCC = 0.97. To visualize the effect this improvement
in SCC has on the circuit’s edge detection performance, Fig. 11
shows the GBED results on one of the noisy test images before
and after applying COMAX, with Figs. 11c and 11f showing
the case where N = 256. Observe that COMAX results in
much improved edge detection, with far fewer erroneous edges
being produced. This result is visually similar to that produced
by a 32-bit floating-point GBED implementation (Fig. 11d).

(b) Four Instances of 3x3
Gaussian Blur

r
_— GBLayerC; ||| 777 (d)
T I Roberts Cross
(a,) :: | | Edge Detector
4x4 Image T|Ie/ T Zy [ |RCED Layer:C,
v XVu|Xv]¥ il \L Zy |
Xv Xy Xvp— 41 — H P L 7
el : T
__i I Zy
{_~ ] .‘”: Y
__._// XCA
| S— ,_ [
I Px¢, = Pxe, =...,= Px, = 0.5

T
2 Xcs
Fig. 9. GBED circuit. (a) 4x4 input pixel tile. (b) Four instances of the 3x3
Gaussian blur circuit. (c) Optional recorrelator to increase correlation (d) 2x2
Roberts cross edge detection circuit, requiring correlated inputs.
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Fig. 10: Frequency histogram of SCC values from GB for all possible 4x4 pixel
windows in the dataset. It shows that COMAX substantially increases SCC.

To contextualize COMAX with existing correlation
correction techniques, we compare our design against three
sequential techniques that have been used to achieve re-
correlation: full bitstream re-generation [11], the synchronizer
circuit from [12] with a save depth of D = 1, and the correlator
circuit from [13]. The synchronizer works to increase SCC
between two SNs X and Y by remembering up to D unpaired
Is, such as XY = 10, and attempting to pair them with unpaired
Is on the other bitstream, such as XY = 01, leading to XY =
11, thus increasing Py,y and SCC. In contrast, the correlator
uses a counter to dynamically estimate which SN has the
min/max value, then relocates unpaired 1s on the lower-valued
bitstream to align with those on the higher-valued one. Each re-
correlation design is inserted into the circuit as shown in Fig.
9c. For completeness, we also include cases where both
COMAX and sequential re-correlation are used together.
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(a) Before GB+ED

(b) sC at N=16 (c) sC at N=256

S

B (e) COMAX+[12] at N=16

Ideal FP32

(f) COMAX at N=256

Fig. 11. (a) Original test image with added Gaussian noise. (b) Un-optimized
GBED with N = 16. (¢) Un-optimized GBED with N = 256. (d) Ideal 32-bit
software-based GBED (e) COMAX with N = 16 in combination with the design
from [12] with D = 1. (f) COMAX alone with N = 256.

For example, Fig. 11e shows the result of combining [12] with
COMAX, which achieves edge detection of comparable quality
to floating-point even with short bitstreams of length N = 16.

Next, the area cost of COMAX and existing methods is
evaluated using Synopsys Design Compiler with the
FreePDK45 45nm cell library [20]. Each design is implemented
in SystemVerilog and synthesized with a S00MHz clock and
Design Compiler’s default optimization parameters. Table II
summarizes these area results (lower is better).

TABLE II
GBED AREA RESULTS
Method of Correlation Control Area (um?)
None (GBED only) 253
COMAX 224
[11] Full bitstream regeneration 664
[12] Synchronizer 459
[12] Synchronizer and COMAX 433
[13] Correlator 575
[13] Correlator and COMAX 540

Table II indicates that applying COMAX to the GBED
circuit does not increase its area footprint; in fact, the area
decreases slightly. These results imply that COMAX can be
applied to the GBED circuit to improve its edge detection
performance without sacrificing any area to do so. The area cost
of [12] is 2x higher than COMAX, and for [13] it is 2.5x higher.

Lastly, output image quality is measured using the mean
structural similarity index measure (MSSIM) [21]. MSSIM can
quantify the human-perceptible differences between images
more effectively than traditional measures such as mean
squared error (MSE) or the related PSNR [21]. Fig. 12 plots the
MSSIM before and after applying COMAX to each design
(higher is better).

Observe from the data in Fig. 12 that applying COMAX to
any of the circuit cases strictly increases MSSIM, except the
very costly full regeneration case which already outputs the
maximum SCC = +1. For example, when N = 256, applying
COMAX only to the original circuit improves the MSSIM from

(a) N=16 MSSIM (b) N=256 MSSIM
0.60 0.60
0.50 0.50
0.40 0.40
2 2
2 030 2 030
= =
0.20 0.20
0.10 rI 0.10
0.00 0.00
None [12], D=1 [13]  Full Regen None  [12], D=1 [13]  Full Regen

Re-Correlation Method Re-Correlation Method

ONo COMAX ®COMAX ONo COMAX mCOMAX

Fig. 12. MSSIM image quality results sorted by MSSIM performance for (a)
bitstream length N =16, and (b) N =256. Light and dark-colored bars represent
MSSIM before and after applying COMAX, respectively; higher is better.

0.17 to 0.43, a 2.5x increase. The best existing method that
achieves a MSSIM close to this is the synchronizer from [12],
but according to Table II this comes at the additional cost of 2x
higher area, demonstrating COMAX’s big area-cost advantage.
COMAX also excels when used in combination with
synchronizers. This configuration works especially well when
N = 16, as it produces a MSSIM of 0.48, which is better than
that produced when synchronizers are used on their own even
at N = 256, despite the bitstream length being 16x shorter. The
general trend of Fig. 12 indicates that COMAX achieves higher
relative MSSIM gains when the initial MSSIM is low.

V. CONCLUSION

In this work, we formally defined the problem of
combinational correlation maximization (CMP) in multi-layer
stochastic circuit design and presented a novel method,
COMAX, to solve it. This problem is central to developing
efficient multi-layer stochastic circuits C;C, for use in the
common practical SC design setting where C, requires an input
SCC of +1. Unlike existing re-correlation techniques, which
rely on expensive sequential hardware, COMAX directly
produces a combinational SC circuit that achieves the highest
possible output correlation without any ad-hoc design space
searching or simulation. In an image-processing case study
consisting of a Gaussian blur filter followed by a correlation-
dependent edge detector, we demonstrated that COMAX
increases average output SCC from 0.72 to 0.97 and output
image quality, measured by MSSIM, by a factor of 2.5x, at no
additional area cost. Achieving this same performance gain via
conventional re-correlation circuits requires twice the area
footprint of the COMAX implementation.

APPENDIX A
PROOF OF THEOREM 1

Suppose we are given the k Boolean functions for a k-output
stochastic circuit, where the ¢th output is Z, = f,(X). The goal
is to find the SE functions f; (X) and f;, (X) that make

Scc (Z;i, Z;Z) to as close to 1 as possible for all pairs of outputs

(£1,%,) € [1..k]? and distributions of X, thus solving the
CMP. For notational brevity, let PZh =Py, PZ{,2 = Pg, and

PZelf\Zez = P45p- Then, using the definition of SCC given in Eq.
(5) we obtain:
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SCC(Z{H ) Zfz) -

Parp—PaPp .
min(Pa,Pg)—PaPg "'f Papp > PalPp
Parp—Palp e s
PaPg—max(Pa+Pr—1,0) otherwise (16)

Recall that the Boolean function Z; = f; (X) is SE to
Z, = f,(X) if P,; = Pz,. To define SCC(Z;,,Z;,), the only
term from Eq. (16) that changes is the output overlap
probability, which goes from lel,\zt,z to Pz;l £Z;,5 the others
remain the same because of stochastic equivalence. Observe
that in both piecewise cases, increasing PZZ;lAZZ;Z linearly

increases SCC. Therefore, the optimization problem can be
restated as:

fopt = argmax(Pzs az+ )

fse £y £o ( 1 7)
The output overlap probability of a stochastic circuit is related
to its truth-table vectors and the input distribution of X via

o * * N\
P2;1 /\ZEZ — (fgl A fg2) Vx (18)
where f; A f; is the element-wise logical AND between truth-
table vectors f} ,andf ;Z, and vy is a probability transfer vector

(PTV) [17] that defines the distribution of X. If vy is separated
into its independent variable and constant components: vy =
Vx, ® Vx,, then Eq. (18) can be rewritten using SEMs as:

T
Pyy nz;, = vx, (Fy, AF7)vxe (19)
Now note that vy, = [277¢, 27", ... 17 because it describes

a distribution of n. independent bitstreams with probability 0.5.

Therefore:
2'”1; 2"(:
— — T * *
Pyy nz; =2 E (vxy )i E (Fp, AFL,)i
i=1 =1

(20)
where i is the row index corresponding to value assignments of
the variable inputs, and j is the column index corresponding to
value assignments of the constant inputs. Since f* must be
optimal for all possible vy, , the optimization problem can be
rewritten as:

2mne
f{)'pt = arg H},{l“x(Z(Fjl A F;Z)U) Vt
J=1

21)

Eq. (21) is maximized if, for each row i, the 1s between the
£1th and #2th SEM have the highest possible number of
overlaps. This is exactly equivalent to the condition of having
maximum SCC between these SEM rOws:

Scc ((F}l)i, (F}z)i) = 1. This concludes the proof.

APPENDIX B
SUM-OF-PRODUCTS FORM FOR COMAX

The result returned by COMAX can be expressed rather
elegantly as a Boolean sum-of-products (SOP) involving the
weight matrix W. For the ¢th output, this is:

9mw W“’

Jopte = \/ \/ My _y Me;

i=1 j5=1 (22)

where m,, and mc; are the ith and jth minterms for the sets of
variable and constant inputs, respectively. For instance, m,, =
Xy, X0, Xv,, me, = X¢, Xe, Xe, , etc.

Eq. (22) is an alternative way of representing COMAX and
provides insight into the gate-level implementation of circuits
optimized with COMAX. Following the previous MUX

example, Eq. (22) yields the following sum-of-products
expression for a stochastic scaled-adder that solves the CMP:

= My, Mgy + My Mgy + My ey =+ My Mgy

=XY'S"+ X'YS + XYS' + XYS (23)

far,,.

The first two terms of Eq. (23) come from the two 1’s in the
MUX weight matrix Wy, = [0 1 1 2]7, where the minterms
m,, = XY’ and m,, = X'Y for the variable inputs are each
weighted by 1 and therefore each share the minterm, m, = S".
Conversely, the last two terms of Eq. (23) weight the minterm
m,, = XY by 2, so the first utilizes m,, = S’ while the second
utilizes m, = S. Observe that the result from Eq. (23) is equal
to Eq. (13), derived previously using Alg. 1.
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