

Performance and Error Tolerance of Stochastic
Computing-based Digital Filter Design

Roshwin Sengupta and Ilia Polian

John P. Hayes

 Institute of Computer Architecture and Computer Engineering Computer Engineering Laboratory
University of Stuttgart University of Michigan

Stuttgart, Germany Ann Arbor, Michigan, USA
{roshwin.sengupta, ilia.polian}@iti.uni-stuttgart.de jhayes@umich.edu

Abstract— Recent advances in near-sensor computing have

prompted the need to design low-cost digital filters for edge

devices. Stochastic computing (SC), leveraging its probabilistic

bit-streams, has emerged as a compelling alternative to

traditional deterministic computing for filter design. This paper

examines error tolerance, area and power efficiency, and

accuracy loss in SC-based digital filters. Specifically, we

investigate the impact of various stochastic number generators

and increased filter complexity on both FIR and IIR filters. Our

results indicate that in an error-free environment, SC exhibits a

49% area advantage and a 64% power efficiency improvement,

albeit with a slight loss of accuracy, compared to traditional

binary implementations. Furthermore, when the input bit-

streams are subject to a 2% bit-flip error rate, SC FIR and SC

IIR filters have a much smaller performance degradation (1.3X

and 1.9X, respectively) than comparable binary filters. In

summary, this work provides useful insights into the advantages

of stochastic computing in digital filter design, showcasing its

robust error resilience, significant area and power efficiency

gains, and trade-offs in accuracy compared to traditional binary

approaches.

Keywords— FIR filter, IIR filter, stochastic computing

I. INTRODUCTION

Digital filters, including both finite impulse response (FIR)
and infinite impulse response (IIR) filters, play a vital role in
various applications, like signal processing, communication,
and biomedical signal analysis [1]. Notably, these systems can
often tolerate approximate results but have stringent
implementation constraints that demand low power
consumption and compact size to cater to evolving
computational needs across application domains. By utilizing
random bitstreams, stochastic computing (SC) offers a
promising way to address these design characteristics.

SC finds applications in diverse fields like image
processing [3], neural networks [4][5], low-density parity-
check (LDPC) decoding [6], and digital filters [7]-[11] due to
its ability to perform fundamental arithmetic operations using
simple logic circuits. For example, multiplexer (mux) based
weighted adders are commonly employed in SC circuits for
addition operations, although they pose accuracy challenges
due to the inherent random fluctuation errors associated with
SC's use of random bitstreams. While longer bitstreams can
alleviate many errors, they come at the cost of increased
latency and energy consumption. Addressing this concern, the
CeMux addition method [12] takes advantage of correlation to
reduce randomness in mux operations and significantly
improve accuracy.

The drawbacks of accuracy loss and increased latency of
SC are related to the stochastic numbers (SNs) generated by
the stochastic number generators (SNGs), which typically
consist of a random number source (RNS) and a comparator.

The SC operations become faster and more energy efficient
when the SNs rapidly converge to the target input numbers
[13], while for accurate results, the generated SNs should
closely match the input numbers. Furthermore, since the
arithmetic operations are implemented by a small number of
logic gates, the relatively large SNGs play a pivotal role in
determining the overall circuit area. Most SC-related works
utilize linear feedback shift registers (LFSRs) as the RNS in
their SNGs [5]–[8]. Recent innovations [14] include low-
discrepancy (LD) sequences, such as Sobol-based SNGs [15],
that show improved accuracy over LFSR-based ones but may
require additional hardware. Consequently, carefully selecting
efficient SNGs is paramount for optimizing SC performance.

Hardware implementations of digital filters on resource-
constrained edge devices should also perform efficiently in
error-prone environments. Even though the probabilistic
nature of SC makes it inherently resistant to transient or soft
errors, there's a crucial gap in understanding the impact of SC
on the error resilience of digital filters, compared to traditional
binary computing. In this paper, we aim to bridge this gap by
studying the impact of error tolerance by injecting bit-flips
into the filter input stream. Our study considers several SNG
types, such as LFSR-based and Sobol-based, and the use of
correlation-enhanced multiplexer (CeMux)-based adders, and
their impact on the error-tolerance, hardware area, and power
consumption of SC FIR and IIR filters intended for
electrocardiogram (ECG) filtering applications. Additionally,
we assess the accuracy of various SC filters using the root
mean square error (RMSE) metric.

 The remainder of the paper is organized as follows:
Section II provides the necessary background for stochastic
computing, and FIR and IIR filters. Section III introduces our
proposed stochastic filter designs. Section IV presents
performance results and Section V concludes the paper

II. BACKGROUND

A. Stochastic Computing

SC [1] has garnered attention for offering compact, error-
tolerant, and low-power implementations of complex
arithmetic functions. An SN is a sequence of k pseudo-random
bits; an SN’s value is determined by its 1s count. SNs come in
two common formats: unipolar, representing values in the
range [0, 1], and bipolar, extending the range to [–1, 1]. A
unipolar SN’s value is  ∕ , where  represents the number
of 1s present, and a bipolar SN’s value is  −  ∕ , where
 is the number of 0s present. To illustrate, the SN  =
10111011 has a unipolar value of 6/8, whereas, in bipolar SN
representation, its value becomes 1/2.

One distinctive feature of SC is its inherent error tolerance
as the order of 1s and 0s in an SN doesn't impact its numerical
value. For instance, a single-bit error in X1, changing its value
from 6/8, may result in the closest representable numbers of
either 5/8 or 7/8. In contrast, the conventional binary format

This work was supported in part by Deutsche Forschungsgemeinschaft
(DFG), project number PO 1220/12-1. John P. Hayes was supported by the

U.S. National Science Foundation under Grant CCF-2006704.

979-8-3503-5934-3/24/$31.00 ©2024 IEEE

2024 27th International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS)

7

7

20
24

 2
7t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

De
sig

n
&

am
p;

 D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

Ci
rc

ui
ts

 &
am

p;
 S

ys
te

m
s (

DD
EC

S)
 |

 9
79

-8
-3

50
3-

59
34

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DD

EC
S6

09
19

.2
02

4.
10

50
89

03

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

represents 6/8 as 0.110, and a single-bit flip can lead to a
substantial error, especially if a high-order bit is flipped. For
example, changing from 0.110 to 0.010 causes the value to
shift from 6/8 to 2/8. Another important property of SC is
correlation, which refers to dependency between SNs’ bit
patterns. Correlation can either benefit or hinder applications:
unintended correlation often leads to biased operations and
erroneous results, while correlation can be sometimes be
deliberately exploited to enhance SC behavior [16]. The
stochastic cross-correlation (SCC) metric proposed by [16],
assesses the correlation between the bits of two SNs, by
quantifying the expected overlap of occurrences of 1s. This
can then be exploited for designing efficient SC circuits.

In SC, basic operations can be implemented with simple
logic gates. Unipolar multiplication uses AND gates and
bipolar multiplication uses XNOR gates. Scaled additions,
performed by a mux, keep the sum within the desired range
for both unipolar and bipolar SNs. SNs are generated using
SNGs, often built around pseudo-random number generators
like LFSRs. For a binary number  ∈ 0, 1, the SNG will
produce an -bit unipolar SN with an expected value of .
For a bipolar SN with a value  , the input binary number is
set to  =   1/2 . Converting SNs back to binary is
achieved through a stochastic-to-binary (S2B) module,
typically composed of a counter that tallies the number of 1s
in the SN. Fig. 1 depicts these SC operations.

Despite its numerous advantages, SC has downsides, with
longer computation times being a notable example. The
exponential increase in bit-stream length, coupled with a
marginal increase in precision, contributes to these longer
computation times. Hence, when considering SC for a specific
application, a careful evaluation of its advantages and
disadvantages is crucial.

B. FIR Filters

The finite impulse response (FIR) filter, as illustrated in Fig.
2(a), is used in audio, picture processing, communications
systems, and biomedical engineering, and processes a limited
number of input and output samples. In discrete-time FIR
filters of order M, the impulse response spans M + 1 samples,
settling to zero. The output sequence in a typical (causal) FIR
filter is a weighted sum of the M most recent input samples.
The equation for an M–th order discrete-time FIR filter is:

 y[n] = b[0] ⋅ x[n] + b[1] ⋅ x[n–1] + ⋅⋅⋅ + b[M] ⋅ x[n−M] (1)

Here y[n] is the output sequence, x[n] represents the input
sequence, and b[i] are the filter coefficients for i = 0, 1, ..., M.
The hardware implementation of (1) involves adders,
multipliers, and delay units often realized by D flip-flops.

C. IIR Filters

Infinite impulse response (IIR) filters, depicted in Fig. 2(b),
play a key role in some digital signal processing applications.
Unlike FIR filters, IIR filters exhibit a recursive (feedback)
structure, allowing them to achieve a desired frequency
response with fewer coefficients. The general equation of an
IIR filter is given by:

y[n] = b[0] ⋅ x[n] + b[1] ⋅ x[n–1] + ⋅⋅⋅ + b[M] ⋅ x[n–M] –

 a[1] ⋅ y[n–1] – a[2] ⋅ y[n–2] – ⋅⋅⋅ – a[N] ⋅ y[n–N] (2)

Here y[n] is the output sequence, x[n] represents the input
sequence, M is the order of the feedforward coefficients b[i]
and N is the order of the feedback coefficients a[j], where i =
0, 1, ..., M and j = 1, 2, …, N. The implementation of IIR filters
in hardware uses adders, multipliers, and D flip-flops. Adders
perform summations of input samples and weighted
coefficients, multipliers handle coefficient multiplication, and
D flip-flops introduce delays in the signal path to achieve the
recursive behavior. This hardware configuration allows the
IIR filter to efficiently process input signals in real-time,
making it suitable for various applications with constrained
resources. The key advantage of IIR filters over FIR filters
lies in their feedback property, which enables similar
responses with fewer coefficients. This makes them suitable
for memory-constrained devices and real-time applications.
However, the feedback introduces stability problems not
found in FIR filters, requiring careful analysis during design.
Errors in one output can propagate and impact subsequent
samples, posing a major design challenge for approximate
methods like SC.

III. PROPOSED STOCHASTIC FILTERS

In this section, we present detailed descriptions of our
proposed stochastic-based FIR and IIR filters. We employ a
careful selection of SNGs, including LFSR- and Sobol-based
variants, and leverage the correlation impact of CeMux-based
adders [12]. This results in creating three distinct architectures
for both FIR and IIR filters. Our design strategically combines
different SNGs and adder structures to investigate diverse
aspects of performance and efficiency in stochastic-based
filter implementations.

A. SC FIR Filter

The proposed implementation approach for SC FIR digital
filters is outlined in Fig. 3, featuring two key stages,
multiplication, and a mux adder tree for scaled addition of
partial products. The design adheres to the structure described
in (1), where one input vector b[i] corresponds to the filter

Figure 1: Unipolar multiplication (a), bipolar multiplication (b),
and scaled addition using a multiplexer (mux) (c).

Figure 2: A traditional binary FIR filter (a) and IIR filter (b).

8

8

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

coefficients, and the other x[n] represents the input signal in
2’s complement format with x[n – i] are the delayed inputs that
are derived from the delay line. The workflow of an M–th
order SC FIR filter begins with input sampling, followed by
processing through delay units. Once the samples are
acquired, the SC calculation unit operates, computing one bit
per cycle until the desired output sequence length is reached.
This process continues, collecting additional data for
subsequent rounds of calculation.

 SNs for delayed inputs can be generated by two methods.
The first involves delaying the binary version of [] and
converting the delayed inputs to SNs via SNGs. The second
method delays the SN version of [] and directly feeds the
delayed bit streams to the next module without using extra
SNGs. In our work, we selected the first method to avoid
having several registers of width equal to the stochastic bit-
stream, which can consume excessive area. The first method
requires registers of smaller widths (tens of bits) for binary
numbers. The resulting stochastic bits and coefficients are
subsequently processed serially to generate the final output.

The coefficients b[i] are first converted to absolute values.
To implement the absolute values of coefficients, unbiased
stochastic sequences are assigned to the mux's select inputs. In
an unbiased sequence, there is an equal chance of selecting
each input. Additionally, XOR gates at the data inputs handle
coefficient signs, inverting inputs for negative coefficients and
acting as buffers for positive coefficients. Thus, the
coefficients can be weighted by repeating the inputs
appropriately. The output of the XOR gate is mi, which is then
fed to the mux tree adder. An input can be connected to
multiple mux inputs to assign more weight to it. For instance,
in the case of a weighted mux tree adder, as shown in Fig. 4,
m2 is connected to five mux inputs. Following Fig. 3, m2 is
associated with the same input x[n – 1], which means the
probability of selecting x[n – 1] is 5/8; b[1] is either 5/8 or
–5/8. The output of the mux tree is then converted from SN to
binary using a counter.

The SNG plays a key role in the efficient design of the SC
FIR filter for improving the accuracy of the SNs and reducing
the area of the overall circuit. In our work, we experiment with
two different SNGs and compare their performance.

1) LFSR-based SC FIR (LFSR-SF)

Our LFSR-SF filter design has an LFSR-based SNG, as
illustrated in Fig. 5(a). An LFSR is a shift register with
feedback, generating pseudo-random bit sequences. The
length of the sequence depends on the register's stages. This
generated bit sequence is determined by the LFSR's feedback
and initial state. For SN generation, specific weights are
associated with LFSR outputs, enabling the conversion of
binary numbers to stochastic representations. For instance, a
4-bit LFSR can generate a 16-bit SN from a 4-bit unsigned
binary number. Extra combinational logic is added to insert
the all-zero state into the maximum-length nonzero state
sequence of the LFSR. The SNG employs weight generation,
converting binary number b to an SN bit-by-bit with the
assigned weights. To enhance accuracy, seeds (initial values)
of different SNGs are set to distinct values, avoiding the
correlation issues associated with the reuse of the same seed.

While LFSR-based SNGs are prevalent in SC, studies have
shown that these SNGs and the associated S2B circuits can
account for over 80% of the overall circuit cost [17]. This
partially mitigates the benefit of low resource utilization in SC,
necessitating the exploration of various RNS types for SC
applications.

2) Sobol-based SC FIR (Sobol-SF)

Originally used to expedite Monte-Carlo (MC) integration
convergence [18], low discrepancy (LD) sequences like the
Halton and Sobol have gained attention due to their reduced
errors. This feature extends to SC because of the similarity
between SN generation and MC sampling [15]. Sobol
sequences exhibit smaller discrepancies than Halton since they
eliminate the base-conversion overhead associated with
Halton sequences. Sobol sequences also improve the accuracy
of stochastic circuits and use shorter sequences than
conventional LFSR-based SNGs. In this paper, we use the
Sobol design shown in Fig. 5(b) for an energy-efficient SNG
implementation.

 Sobol sequence generation is a meticulous process
involving the selection of direction numbers to determine the
progression of the sequence in each dimension. These
direction numbers are intermediate variables that are required
for generating a Sobol sequence. They are constructed using
carefully chosen primitive polynomials, adding a layer of
precision to the entire sequence generation. The initial set of
direction numbers (cs) is derived from the binary
representations of odd numbers smaller than 2s. Through a
series of bit-wise operations on these initial vectors,
subsequent direction vectors are computed, ensuring a
structured and high-quality Sobol sequence. Once all the

Figure 3: Proposed SC FIR filter, where the SNG and mux tree blocks are
modified to generate the different SC FIR filters proposed in this work.

x[n] SNG

D SNG

D SNG

SNG

.

.

.

Mux

tree

D

sign(b[0])

sign(b[1])

sign(b[2])

sign(b[M])

Counter
Sy y

Select SNG

x[n-1]

x[n-2]

x[n-M]

m1

m2

m3

mM

Figure 4: 3-input weighted hardwired mux tree [6] used as an adder.

9

9

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

necessary direction vectors have been computed the n-th term
xn of a Sobol sequence is derived as:

 xn = b1 c1 ⊕ b2 c2 ⊕ … ⊕ bN–1 cN–1 ⊕ bN cN (3)

where bN bN−1 . . . b2b1 is the Gray code representation of n.

3) CeMux-based SC FIR (CeMux-SF)

Our LFSR-SF and Sobol-SF filter designs use a mux tree for
the addition operation, thereby encountering accuracy
challenges due to random fluctuation errors. An alternative to
a mux-based adder is the approximate parallel counter (APC)-
based adder [19]. However, [12] shows that its proposed
CeMux-based adder outperforms both mux and APC-based
adders.

 The CeMux structure, illustrated in Fig. 5(c), implements
weighted addition using an XNOR multiplier array and a mux
tree. In general, correlation among mux tree data inputs
reduces errors caused by the mux selection process. When the
SCC is +1 between all mux data inputs, it achieves full
correlation, enhancing the mux computation’s accuracy [12].
CeMux optimizes this by using a single RNS for data input
SNs, which is connected to the probability conversion (PCC)
array. The PCC array consists of k-bit comparators comparing
data inputs with positive weights to the RNS value and
comparing inputs with negative weights to the inverted RNS
value. The array's output is a set of Z SNs, where Z is the
number of inputs. A k-bit counter is assembled, with the i-th
MSB connected to the select line of all muxes on the i-th level

of the mux tree. The output of this tree is CeMux’s output SN
S(y). This is then converted back to the binary output y using
a counter. Our CeMux-SF filter design employs an LFSR-
based SNG along with the CeMux adder proposed in [12] with
minor modifications. While CeMux-based adders have
demonstrated superior performance [12], relying on positive
input correlation, some applications experience soft errors,
that affect the proper correlation of mux inputs. We also
analyze the performance of CeMux-SF in the presence of such
errors.

B. SC IIR

In [8], the authors proposed lattice-based SC IIR filters for
better performance. However, their architecture relies on
multiple binary multipliers, leading to increased hardware
complexity and resource utilization. Hence, for an efficient
stochastic implementation of IIR filters, we follow the direct-
form structure, which can then be implemented as the
cascaded form by decomposing the high-order transfer
function into a product of first- and second-order sections.
This leads to efficient and more accurate SC IIR designs [20].

 The SC IIR filter system, as illustrated in Fig. 6, is
composed of two main parts: the feedback and feedforward
modules responsible for performing the mathematical
operation described by (2). The feedforward module computes
the scaled product between the input vector x[n] and the
feedforward coefficients b[i]. The feedback module computes
the operation between the feedback coefficients a[i] and the
output y[n]. In the SC IIR filter, the delayed inputs x[n − i], as

Figure 6: Proposed SC IIR filter where the SNG and mux tree blocks are modified to generate the different SC IIR filters introduced in this work.

Figure 5: LFSR-based SNG, where x denotes the binary input number and S(x) is the corresponding SN (a), Sobol-based SNG based on
Gray code [15] (b), CeMux design that achieves full positive correlation [12] (c).

10

10

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

well as the delayed outputs y[n − j], can be obtained by either
converting the input x[n] and the output y[n] and then passing
through the delay element or first passing them through delay
elements and then using SNGs for conversion. As mentioned
in Sec. III.A, the second method introduces severe latency and
storage concerns. These are even more pronounced for SC IIR
filters as now apart from the input data, the output data also
needs to be stored. Hence, instead of directly converting the
input and the output signals into stochastic bit-streams before
passing them through the delay line, the binary input signal
first traverses the delay line. Each signal from the delay line is
then individually converted into a stochastic bitstream, thus
reducing latency and storage costs.

 Both SC IIR modules comprise delay elements, SNGs,
XOR gates, and mux trees. The outputs of these modules are
combined by a two-way mux to obtain output SN which is
converted to a binary number by a counter to obtain the final
filter output y[n]. This result is then fed back to process a new
sample. The inputs and selection lines to the modules are
converted from binary to SN via SNGs. Like our FIR filter
design, we have three different SC IIR filters: LFSR-based SC
IIR (LFSR-SI), Sobol-based SC IIR (Sobol-SI), and CeMux-
based SC IIR (CeMux-SI). The design for each is similar to
the corresponding FIR filter explained in Sec. III.A.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our SC FIR and SC IIR filter
designs LFSR-SF, Sobol-SF, CeMux-SF, LFSR-SI, Sobol-SI,
and CeMux-SI filters, we present the case study of
electrocardiogram (ECG) filtering. We incorporate random
noise into a benchmark ECG signal for testing [21].
Traditional digital filters, while effective, pose significant
computational demands on ECG monitors. We use MATLAB
to determine the coefficients of a lowpass filter with a cutoff
frequency of 0.1 rad/sample. The purpose of this lowpass
filter is to effectively eliminate high-frequency noise from the
ECG signal.

A. Error Tolerance

The precision of an SN is defined by the bit stream [1].
Quantization errors, similar to those in traditional binary
filters, occur due to this limited sequence length. SC also
suffers from fluctuation errors, as the RNS in the SNG adds
uncertainty to SNs. There are also correlation errors that arise
from systematic non-zero cross-correlation among two or
more SNs and non-zero autocorrelation of SNs in sequential
circuits. In contrast, SC is known to be intrinsically tolerant to
soft errors. In this section, we explore the extent of soft error
tolerance in SC digital filters compared to conventional binary
filters. We introduce errors into our filter design by inserting
bit flips at the filter’s input. The resulting errors can manifest
themselves as single-bit, multi-bit, or burst errors. In SC,

single-bit errors are considered negligible as their impact on
SN errors is very low. As a result, single-bit errors are not
addressed in this analysis. However, both multi-bit and burst
errors are of significant concern for both binary and SC digital
filters. Multi-bit errors involving simultaneous alterations of
multiple bits, generally pose a greater threat than burst errors
as they are not localized and can corrupt a number in a wider
variety of ways. In the binary case, burst errors can have a
more pronounced impact on circuit performance if they are
concentrated in the MSB region. To ensure a balanced analysis
of error tolerance, we consider a multi-bit error scheme. XOR
gates are used to inject the errors into the target circuit. Each
SC filter design from Sec. III is simulated using the derived
filter coefficients and a noisy ECG signal as input. Table 1
provides insights into the effect of increasing percentages of
bit flips on the RMSE (root mean square error) for different
FIR and IIR filters. We highlight in bold the best RMSE for
each error rate. The RMSE is calculated by 10,000 simulation
runs and varying the error rate percentage. We use an 8-bit
binary filter as our reference with the SC filters having an SN
length of 1024 bits. We use 24th-order FIR and 6th-order IIR
filters for analyzing the error tolerance of our filter designs, as
they have the best performance in an error-free environment,
as seen in Table II.

 From Table 1, it can be observed that, at zero error rate,
binary FIR and IIR filters deliver better performance than their
stochastic counterparts, and the CeMux-based versions, with
SCC of +1, outperform the LFSR and Sobol-based filters. At
a 0.5% error rate, the CeMux-SF and CeMux-SI have SCC of
+0.88 and +0.92 respectively, and either outperform or are
comparable to Sobol-SF and Sobol-SI. This demonstrates that
the correlation has a positive impact on the error resilience of
SC filters at lower error rates. However, when the error rate
reaches 1%, the SCC of CeMux-SF and CeMux-SI drop to
+0.25 and +0.21 respectively, and they lose the advantage of
full correlation, resulting in a significant degradation of their
performance. The SCC further drops to -0.13 and -0.19 at an
error rate of 2% for CeMux-SF and CeMux-SI respectively,
worsening their performance. Sobol-based filters emerge as
the most error-tolerant with higher error rates. They
consistently outperform the LFSR-based filters, as the SNs
generated by the Sobol sequence, and their multiplication
results are more accurate than those by LFSR. Thus, in an
error-prone environment, Sobol-based SC filters perform best.
It is also worth noting, that at higher error rates, SC FIR filters
have better performance than SC IIR filters, due to the impact
of the feedback nature of the IIR filters.

A. Performance Analysis

We use the Synopsys Design Compiler with the Nangate
45nm open cell library to synthesize the different filters and
estimate their respective area and power consumption. Table

Error rate
(%)

FIR filter (RMSE) IIR Filter (RMSE)

Binary LSFR-SF Sobol-SF CeMux-SF Binary LSFR-SI Sobol-SI CeMux-SI

0 0.0269 0.0683 0.0504 0.0386 0.0153 0.0562 0.0439 0.0295

0.1 0.0407 0.0702 0.0528 0.0408 0.0376 0.0589 0.0452 0.0314

0.25 0.0946 0.0725 0.0531 0.0412 0.0904 0.0605 0.0461 0.0338

0.5 0.1274 0.0734 0.0559 0.0456 0.1485 0.0681 0.0508 0.0574

1 0.5645 0.0816 0.0608 0.0746 0.5738 0.0891 0.0626 0.0982

1.5 0.9702 0.0979 0.0643 0.0850 0.8987 0.0964 0.0801 0.1003

2 1.3281 0.1182 0.0701 0.1226 1.5182 0.1193 0.0868 0.1397

TABLE 1. THE ERROR TOLERANCE OF ALL THE PROPOSED FILTERS.

11

11

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

II illustrates the performance of the binary and stochastic FIR
and IIR filters through their RMSE, power consumption, and
area in an error-free environment. CeMux-based SC filters
are the smallest FIR and IIR filters respectively, because they
use a single SNG for all the mux inputs and SNGs take up
around 80% of the SC filter circuit. They achieve an average
of 57% area reduction compared to their respective binary
filters. The Sobol- and LFSR-based filters achieve around
50% and 40% area reduction, respectively. CeMux-SF and
CeMux-SI also exhibit the lowest power consumption,
achieving a 70% reduction. Sobol-SF and Sobol-SI reduce
power consumption by 62% and LFSR-SF and LFSR-SI
reduce it by 58%.

V. CONCLUSION

In this work, we have analyzed the impact of two different
SNG types, LFSR-based and Sobol-based, as well as that of
the correlation-enhanced stochastic mux adder CeMux on
error tolerance, area, and power consumption of SC-based FIR
and IIR filters. Our study highlights the remarkable error
resilience of SC FIR and SC IIR filters, which experience only
1.3X and 1.9X performance degradation, respectively, in a 2%
bit-flip scenario, in contrast to 49X and 66X decline in their
respective binary counterparts. SC demonstrates a significant
49% area advantage and an impressive 64% improvement in
power efficiency in an error-free environment, albeit at the
cost of accuracy reduction compared to traditional binary
implementations. Our analysis reveals that at higher error
rates, Sobol-based filters exhibit significantly better error
tolerance (40% on average) owing to their accurate SN
generation. In terms of area and power, CeMux-based filters
outperform Sobol-based filters by 15% and 9%, respectively.

 In conclusion, our research suggests that CeMux-based
filters are preferable for resource-constrained applications,
while Sobol-based SC filters are better suited for error-tolerant
applications. The study underscores the trade-offs that exist
among area, power efficiency, and fault tolerance in different
SC filters, and highlights the impact of correlation and SNG
choice. Additionally, it demonstrates key potential advantages
of SC over traditional binary computing.

VI. REFERENCES

[1] J. G. Proakis, and D. G. Manolakis, Digital Signal Processing:
Principles, Algorithms and Applications, USA: Prentice-Hall, 1996.

[2] A. Alaghi, W. Qian and J. P. Hayes, "The promise and challenge of
stochastic computing," in IEEE Trans. Comput.-Aided Des. Integr.
Circuits Sys., vol. 37, pp. 1515-1531, 2018.

[3] P. Li, and D. J. Lilja, “Using stochastic computing to implement digital
image processing algorithms,” ICCD, 2011.

[4] A. Ren, J. Li, Z. Li, C. Ding, X. Qian, Q. Qiu, et al, “SC-DCNN:
Highly-scalable deep convolutional neural network using stochastic
computing,” ACM SIGOPS Oper. Syst. Rev., 2017.

[5] R. Sengupta, I. Polian and J. P. Hayes, "Stochastic computing
architectures for lightweight LSTM neural networks," DDECS, 2022.

[6] W. J. Gross, V. C. Gaudet, and A. Milner, “Stochastic implementation
of LDPC decoders,” ACSSC, 2005.

[7] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Design, evaluation
and fault-tolerance analysis of stochastic FIR filters,” Microelectronics
Reliability, vol. 57, pp. 111-127, 2016.

[8] Y. Liu, and K. K. Parhi, "Architectures for recursive digital filters using
stochastic computing," IEEE Trans. Sig. Proc., vol. 64, pp. 3705-3718,
2016.

[9] K. J. Ahmed, B. Yuan, and M. J. Lee, "High-accuracy stochastic
computing-based FIR filter design," ICASSP, pp. 1140-1144, 2018.

[10] Z. Wang, and T. Ban, “Design, implementation, and evaluation of
stochastic FIR filters based on FPGA,” Circuits Syst. Signal Process,
vol. 42, pp. 1142–1162, 2023.

[11] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, "Compact
and accurate digital filters based on stochastic computing," IEEE Trans.
Emerg. Topics Comput., vol. 7, pp. 31-43, 2019.

[12] T. J. Baker, and J. P. Hayes, “CeMux: Maximizing the accuracy of
stochastic Mux adders and an application to filter design,” ACM Trans.
Des. Autom. Electron. Syst., vol. 27, pp. 1-26, 2022.

[13] S. Liu, and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. VLSI Sys., vol. 26, pp. 1326-
1339, 2018.

[14] I. L. Dalal, D. Stefan, and J. Harwayne-Gidansky, “Low discrepancy
sequences for Monte Carlo simulations on reconfigurable platforms,”
ASAP, pp. 108–113, 2008.

[15] S. Liu, and J. Han, “Energy efficient stochastic computing with Sobol
sequences,” DATE, pp. 650–653, 2017.

[16] A. Alaghi, and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” ICCD, 2013.

[17] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Trans. Computers, vol. 60, pp. 93-105, 2011.

[18] H. Niederreiter, Random Number Generation and quasi-Monte Carlo
Methods, USA: Society for Industrial and Applied Mathematics, 1992.

[19] B. Parhami, and C. Yeh, “Accumulative parallel counters,” ACSSC,
1995.

[20] N. Onizawa, S. Koshita, S. Sakamoto, M. Kawamata and T. Hanyu,
"Evaluation of stochastic cascaded IIR filters," ISMVL, pp. 224-229,
2017

[21] G. B. Moody, W. E. Muldrow, and R. G. Mark, “A noise stress test for
arrhythmia detectors,” Computers in Cardiology, vol. 1, pp. 381-384,
1984.

FIR filter IIR Filter

Order Performance Binary LSFR-
SF

Sobol-
SF

CeMux-
SF

Order Performance Binary LSFR-
SI

Sobol-
SI

CeMux-
SI

10

RMSE 0.0415 0.0981 0.0722 0.0571

2

RMSE 0.0407 0.0870 0.0591 0.0428

Area (µm2) 1032 571 508 451 Area (µm2) 513 322 195 108

Power (µW) 30.47 13.67 12.70 11.01 Power (µW) 19.82 7.53 6.14 4.37

16

RMSE 0.0369 0.0783 0.0614 0.0406

4

RMSE 0.0287 0.0751 0.0512 0.0347

Area (µm2) 1276 764 635 549 Area (µm2) 648 505 232 275

Power (µW) 39.45 15.81 14.92 13.55 Power (µW) 21.56 8.96 6.99 7.31

24

RMSE 0.0269 0.0683 0.0504 0.0386

6

RMSE 0.0153 0.0562 0.0439 0.0295

Area (µm2) 1652 982 851 729 Area (µm2) 953 641 458 394

Power (µW) 47.33 19.58 18.04 16.38 Power (µW) 23.45 10.48 7.45 8.04

TABLE II. THE ROOT MEAN SQUARE ERROR, AREA, AND POWER CONSUMPTION OF ALL THE FILTERS.

12

12

Authorized licensed use limited to: University of Michigan Library. Downloaded on May 17,2024 at 19:25:38 UTC from IEEE Xplore. Restrictions apply.

