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Abstract— Recent advances in near-sensor computing have 

prompted the need to design low-cost digital filters for edge 

devices. Stochastic computing (SC), leveraging its probabilistic 

bit-streams, has emerged as a compelling alternative to 

traditional deterministic computing for filter design. This paper 

examines error tolerance, area and power efficiency, and 

accuracy loss in SC-based digital filters. Specifically, we 

investigate the impact of various stochastic number generators 

and increased filter complexity on both FIR and IIR filters. Our 

results indicate that in an error-free environment, SC exhibits a 

49% area advantage and a 64% power efficiency improvement, 

albeit with a slight loss of accuracy, compared to traditional 

binary implementations. Furthermore, when the input bit-

streams are subject to a 2% bit-flip error rate, SC FIR and SC 

IIR filters have a much smaller performance degradation  (1.3X 

and 1.9X, respectively) than comparable binary filters. In 

summary, this work provides useful insights into the advantages 

of stochastic computing in digital filter design, showcasing its 

robust error resilience, significant area and power efficiency 

gains, and trade-offs in accuracy compared to traditional binary 

approaches. 
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I. INTRODUCTION 

Digital filters, including both finite impulse response (FIR) 
and infinite impulse response (IIR) filters, play a vital role in 
various applications, like signal processing, communication, 
and biomedical signal analysis [1]. Notably, these systems can 
often tolerate approximate results but have stringent 
implementation constraints that demand low power 
consumption and compact size to cater to evolving 
computational needs across application domains. By utilizing 
random bitstreams, stochastic computing (SC) offers a 
promising way to address these design characteristics. 

SC finds applications in diverse fields like image 
processing  [3], neural networks [4][5], low-density parity-
check (LDPC) decoding [6], and digital filters [7]-[11] due to 
its ability to perform fundamental arithmetic operations using 
simple logic circuits. For example, multiplexer (mux)  based 
weighted adders are commonly employed in SC circuits for 
addition operations, although they pose accuracy challenges 
due to the inherent random fluctuation errors associated with 
SC's use of random bitstreams. While longer bitstreams can 
alleviate many errors, they come at the cost of increased 
latency and energy consumption. Addressing this concern, the 
CeMux addition method [12] takes advantage of correlation to 
reduce randomness in mux operations and significantly 
improve accuracy. 

The drawbacks of accuracy loss and increased latency of 
SC are related to the stochastic numbers (SNs) generated by 
the stochastic number generators (SNGs), which typically 
consist of a random number source (RNS) and a comparator.  

The SC operations become faster and more energy efficient 
when the SNs rapidly converge to the target input numbers 
[13], while for accurate results, the generated SNs should 
closely match the input numbers.  Furthermore, since the 
arithmetic operations are implemented by a small number of 
logic gates, the relatively large SNGs play a pivotal role in 
determining the overall circuit area. Most SC-related works 
utilize linear feedback shift registers (LFSRs) as the RNS in 
their SNGs [5]–[8]. Recent innovations [14] include low-
discrepancy (LD) sequences, such as Sobol-based SNGs [15], 
that show improved accuracy over LFSR-based ones but may 
require additional hardware. Consequently, carefully selecting 
efficient SNGs is paramount for optimizing SC performance.  

Hardware implementations of digital filters on resource-
constrained edge devices should also perform efficiently in 
error-prone environments. Even though the probabilistic 
nature of SC makes it inherently resistant to transient or soft 
errors, there's a crucial gap in understanding the impact of SC 
on the error resilience of digital filters, compared to traditional 
binary computing. In this paper, we aim to bridge this gap by 
studying the impact of error tolerance by injecting bit-flips 
into the filter input stream. Our study considers several SNG 
types, such as LFSR-based and Sobol-based, and the use of 
correlation-enhanced multiplexer (CeMux)-based adders, and 
their impact on the error-tolerance, hardware area, and power 
consumption of SC FIR and IIR filters intended for 
electrocardiogram (ECG) filtering applications. Additionally, 
we assess the accuracy of various SC filters using the root 
mean square error (RMSE) metric. 

 The remainder of the paper is organized as follows: 
Section II provides the necessary background for stochastic 
computing, and FIR and IIR filters. Section III introduces our 
proposed stochastic filter designs. Section IV presents 
performance results and Section V concludes the paper  

II. BACKGROUND 

A. Stochastic Computing 

SC [1] has garnered attention for offering compact, error-
tolerant, and low-power implementations of complex 
arithmetic functions. An SN is a sequence of k pseudo-random 
bits; an SN’s value is determined by its 1s count. SNs come in 
two common formats: unipolar, representing values in the 
range [0, 1], and bipolar, extending the range to [–1, 1]. A 
unipolar SN’s value is  ∕ , where  represents the number 
of 1s present, and a bipolar SN’s value is  −  ∕ , where 
  is the number of 0s present. To illustrate, the SN  =
10111011 has a unipolar value of 6/8, whereas, in bipolar SN 
representation, its value becomes 1/2.  

One distinctive feature of SC is its inherent error tolerance 
as the order of 1s and 0s in an SN doesn't impact its numerical 
value. For instance, a single-bit error in X1, changing its value 
from 6/8, may result in the closest representable numbers of 
either 5/8 or 7/8. In contrast, the conventional binary format 
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represents 6/8 as 0.110, and a single-bit flip can lead to a 
substantial error, especially if a high-order bit is flipped. For 
example, changing from 0.110 to 0.010 causes the value to 
shift from 6/8 to 2/8. Another important property of SC is 
correlation, which refers to dependency between SNs’ bit 
patterns. Correlation can either benefit or hinder applications: 
unintended correlation often leads to biased operations and 
erroneous results, while correlation can be sometimes be 
deliberately exploited to enhance SC behavior [16]. The 
stochastic cross-correlation (SCC) metric proposed by [16], 
assesses the correlation between the bits of two SNs, by 
quantifying the expected overlap of occurrences of 1s. This 
can then be exploited for designing efficient SC circuits. 

In SC, basic operations can be implemented with simple 
logic gates. Unipolar multiplication uses AND gates and 
bipolar multiplication uses XNOR gates. Scaled additions, 
performed by a mux, keep the sum within the desired range 
for both unipolar and bipolar SNs. SNs are generated using 
SNGs, often built around pseudo-random number generators 
like LFSRs. For a binary number  ∈ 0, 1, the SNG will 
produce an -bit unipolar SN with an expected value of . 
For a bipolar SN with a value  , the input binary number is 
set to  =   1/2 . Converting SNs back to binary is 
achieved through a stochastic-to-binary (S2B) module, 
typically composed of a counter that tallies the number of 1s 
in the SN. Fig. 1 depicts these SC operations. 

Despite its numerous advantages, SC has downsides, with 
longer computation times being a notable example. The 
exponential increase in bit-stream length, coupled with a 
marginal increase in precision, contributes to these longer 
computation times. Hence, when considering SC for a specific 
application, a careful evaluation of its advantages and 
disadvantages is crucial. 

B. FIR Filters 

The finite impulse response (FIR) filter, as illustrated in Fig. 
2(a), is used in audio, picture processing, communications 
systems, and biomedical engineering, and processes a limited 
number of input and output samples. In discrete-time FIR 
filters of order M, the impulse response spans M + 1 samples, 
settling to zero. The output sequence in a typical (causal) FIR 
filter is a weighted sum of the M most recent input samples. 
The equation for an M–th order discrete-time FIR filter is: 

 y[n]  = b[0] ⋅ x[n] + b[1] ⋅ x[n–1] + ⋅⋅⋅ + b[M] ⋅ x[n−M]   (1) 

Here y[n] is the output sequence, x[n] represents the input 
sequence, and b[i] are the filter coefficients for i = 0, 1, ..., M. 
The hardware implementation of (1) involves adders, 
multipliers, and delay units often realized by D flip-flops. 

C.  IIR Filters 

Infinite impulse response (IIR) filters, depicted in Fig. 2(b), 
play a key role in some digital signal processing applications. 
Unlike FIR filters, IIR filters exhibit a recursive (feedback) 
structure, allowing them to achieve a desired frequency 
response with fewer coefficients. The general equation of an 
IIR filter is given by: 

y[n] = b[0] ⋅ x[n] + b[1] ⋅ x[n–1] + ⋅⋅⋅ + b[M] ⋅ x[n–M] –  

      a[1] ⋅ y[n–1] – a[2] ⋅ y[n–2] – ⋅⋅⋅  –  a[N] ⋅ y[n–N]        (2) 

Here y[n] is the output sequence, x[n] represents the input 
sequence, M is the order of the feedforward coefficients b[i] 
and N is the order of the feedback coefficients a[j], where i = 
0, 1, ..., M and j = 1, 2, …, N.  The implementation of IIR filters 
in hardware uses adders, multipliers, and D flip-flops. Adders 
perform summations of input samples and weighted 
coefficients, multipliers handle coefficient multiplication, and 
D flip-flops introduce delays in the signal path to achieve the 
recursive behavior. This hardware configuration allows the 
IIR filter to efficiently process input signals in real-time, 
making it suitable for various applications with constrained 
resources. The key advantage of IIR filters over  FIR filters 
lies in their feedback property, which enables similar 
responses with fewer coefficients. This makes them suitable 
for memory-constrained devices and real-time applications. 
However, the feedback introduces stability problems not 
found in FIR filters, requiring careful analysis during design. 
Errors in one output can propagate and impact subsequent 
samples, posing a major design challenge for approximate 
methods like SC. 

III. PROPOSED STOCHASTIC FILTERS 

In this section, we present detailed descriptions of our 
proposed stochastic-based FIR and IIR filters. We employ a 
careful selection of SNGs, including LFSR- and Sobol-based 
variants, and leverage the correlation impact of CeMux-based 
adders [12]. This results in creating three distinct architectures 
for both FIR and IIR filters. Our design strategically combines 
different SNGs and adder structures to investigate diverse 
aspects of performance and efficiency in stochastic-based 
filter implementations. 

A. SC FIR Filter  

The proposed implementation approach for SC FIR digital 
filters is outlined in Fig. 3, featuring two key stages, 
multiplication, and a mux adder tree for scaled addition of 
partial products. The design adheres to the structure described 
in (1), where one input vector b[i] corresponds to the filter 

 
Figure 1: Unipolar multiplication (a), bipolar multiplication (b), 
and scaled addition using a multiplexer (mux) (c). 

 

Figure 2: A traditional binary FIR filter (a) and IIR filter (b). 
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coefficients, and the other x[n] represents the input signal in  
2’s complement format with x[n – i] are the delayed inputs that 
are derived from the delay line. The workflow of an M–th 
order SC FIR filter begins with input sampling, followed by 
processing through delay units. Once the samples are 
acquired, the SC calculation unit operates, computing one bit 
per cycle until the desired output sequence length is reached. 
This process continues, collecting additional data for 
subsequent rounds of calculation. 

 SNs for delayed inputs can be generated by two methods. 
The first involves delaying the binary version of [] and 
converting the delayed inputs to SNs via SNGs. The second 
method delays the SN version of [] and directly feeds the 
delayed bit streams to the next module without using extra 
SNGs. In our work, we selected the first method to avoid 
having several registers of width equal to the stochastic bit-
stream, which can consume excessive area. The first method 
requires registers of smaller widths (tens of bits) for binary 
numbers. The resulting stochastic bits and coefficients are 
subsequently processed serially to generate the final output.  

The coefficients b[i] are first converted to absolute values. 
To implement the absolute values of coefficients, unbiased 
stochastic sequences are assigned to the mux's select inputs. In 
an unbiased sequence, there is an equal chance of selecting 
each input. Additionally, XOR gates at the data inputs handle 
coefficient signs, inverting inputs for negative coefficients and 
acting as buffers for positive coefficients. Thus, the 
coefficients can be weighted by repeating the inputs 
appropriately. The output of the XOR gate is mi, which is then 
fed to the mux tree adder. An input can be connected to 
multiple mux inputs to assign more weight to it. For instance, 
in the case of a weighted mux tree adder, as shown in Fig. 4, 
m2 is connected to five mux inputs.  Following Fig. 3, m2 is 
associated with the same input x[n – 1], which means the 
probability of selecting x[n – 1]  is 5/8; b[1] is either 5/8 or       
–5/8. The output of the mux tree is then converted from SN to 
binary using a counter.  

The SNG plays a key role in the efficient design of the SC 
FIR filter for improving the accuracy of the SNs and reducing 
the area of the overall circuit. In our work, we experiment with 
two different SNGs and compare their performance. 

1)  LFSR-based SC FIR (LFSR-SF) 

Our LFSR-SF filter design has an LFSR-based SNG, as  
illustrated in Fig. 5(a). An LFSR is a shift register with 
feedback, generating pseudo-random bit sequences. The 
length of the sequence depends on the register's stages. This 
generated bit sequence is determined by the LFSR's feedback 
and initial state. For SN generation, specific weights are 
associated with LFSR outputs, enabling the conversion of 
binary numbers to stochastic representations. For instance, a 
4-bit LFSR can generate a 16-bit SN from a 4-bit unsigned 
binary number. Extra combinational logic is added to insert 
the all-zero state into the maximum-length nonzero state 
sequence of the LFSR. The SNG employs weight generation, 
converting binary number b to an SN bit-by-bit with the 
assigned weights. To enhance accuracy, seeds (initial values) 
of different SNGs are set to distinct values, avoiding the 
correlation issues associated with the reuse of the same seed. 

While LFSR-based SNGs are prevalent in SC, studies have 
shown that these SNGs and the associated S2B circuits can 
account for over 80% of the overall circuit cost [17]. This 
partially mitigates the benefit of low resource utilization in SC, 
necessitating the exploration of various RNS types for SC 
applications. 

2) Sobol-based SC FIR (Sobol-SF) 

Originally used to expedite Monte-Carlo (MC) integration 
convergence [18], low discrepancy (LD) sequences like the 
Halton and Sobol have gained attention due to their reduced 
errors. This feature extends to SC because of the similarity 
between SN generation and MC sampling [15]. Sobol 
sequences exhibit smaller discrepancies than Halton since they 
eliminate the base-conversion overhead associated with 
Halton sequences. Sobol sequences also improve the accuracy 
of stochastic circuits and use shorter sequences than 
conventional LFSR-based SNGs. In this paper, we use the 
Sobol design shown in Fig. 5(b) for an energy-efficient SNG 
implementation. 

 Sobol sequence generation is a meticulous process 
involving the selection of direction numbers to determine the 
progression of the sequence in each dimension. These 
direction numbers are intermediate variables that are required 
for generating a Sobol sequence. They are constructed using 
carefully chosen primitive polynomials, adding a layer of 
precision to the entire sequence generation. The initial set of 
direction numbers (cs) is derived from the binary 
representations of odd numbers smaller than 2s. Through a 
series of bit-wise operations on these initial vectors, 
subsequent direction vectors are computed, ensuring a 
structured and high-quality Sobol sequence. Once all the 

 

Figure 3: Proposed SC FIR filter, where the SNG and mux tree blocks are 
modified to generate the different SC FIR filters proposed in this work. 
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Figure 4: 3-input weighted hardwired mux tree [6] used as an adder. 
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necessary direction vectors have been computed the n-th term  
xn of a Sobol sequence is derived as: 

  xn = b1 c1 ⊕ b2 c2 ⊕ … ⊕ bN–1 cN–1 ⊕ bN cN            (3) 

where bN bN−1 . . . b2b1 is the Gray code representation of n.  

3) CeMux-based SC FIR (CeMux-SF) 

Our LFSR-SF and Sobol-SF filter designs use a mux tree for 
the addition operation, thereby encountering accuracy 
challenges due to random fluctuation errors. An alternative to 
a mux-based adder  is the approximate parallel counter (APC)-
based adder [19]. However, [12] shows that its proposed 
CeMux-based adder outperforms both mux and APC-based 
adders. 

 The CeMux structure, illustrated in Fig. 5(c), implements 
weighted addition using an XNOR multiplier array and a mux 
tree. In general, correlation among mux tree data inputs 
reduces errors caused by the mux selection process. When the 
SCC is +1 between all mux data inputs, it achieves full 
correlation, enhancing the mux computation’s accuracy [12]. 
CeMux optimizes this by using a single RNS for data input 
SNs, which is connected to the probability conversion (PCC) 
array. The PCC array consists of k-bit comparators comparing 
data inputs with positive weights to the RNS value and 
comparing inputs with negative weights to the inverted RNS 
value. The array's output is a set of Z SNs, where Z is the 
number of inputs. A k-bit counter is assembled, with the i-th 
MSB connected to the select line of all muxes on the i-th level 

of the mux tree. The output of this tree is CeMux’s output SN 
S(y). This is then converted back to the binary output y using 
a counter. Our CeMux-SF filter design employs an LFSR-
based SNG along with the CeMux adder proposed in [12] with 
minor modifications. While CeMux-based adders have 
demonstrated superior performance [12], relying on positive 
input correlation, some applications experience soft errors, 
that affect the proper correlation of mux inputs. We also 
analyze the performance of CeMux-SF in the presence of such 
errors. 

B. SC IIR 

In [8], the authors proposed lattice-based SC IIR filters for 
better performance. However, their architecture relies on 
multiple binary multipliers, leading to increased hardware 
complexity and resource utilization. Hence, for an efficient 
stochastic implementation of IIR filters, we follow the direct-
form structure, which can then be implemented as the 
cascaded form by decomposing the high-order transfer 
function into a product of first- and second-order sections. 
This leads to efficient and more accurate SC IIR designs [20]. 

 The SC IIR filter system, as illustrated in Fig. 6, is 
composed of two main parts: the feedback and feedforward 
modules responsible for performing the mathematical 
operation described by (2). The feedforward module computes 
the scaled product between the input vector x[n] and the 
feedforward coefficients b[i]. The feedback module computes 
the operation between the feedback coefficients a[i] and the 
output y[n]. In the SC IIR filter, the delayed inputs x[n − i], as 

 

Figure 6: Proposed SC IIR filter where the SNG and mux tree blocks are modified to generate the different SC IIR filters introduced in this work. 

 
Figure 5: LFSR-based SNG, where x denotes the binary input number and S(x) is the corresponding SN (a), Sobol-based SNG based on 
Gray code [15] (b), CeMux design that achieves full positive correlation [12] (c). 
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well as the delayed outputs y[n − j], can be obtained by either 
converting the input x[n] and the output y[n] and then passing 
through the delay element or first passing them through delay 
elements and then using SNGs for conversion. As mentioned 
in Sec.  III.A, the second method introduces severe latency and 
storage concerns. These are even more pronounced for SC IIR 
filters as now apart from the input data, the output data also 
needs to be stored. Hence, instead of directly converting the 
input and the output signals into stochastic bit-streams before 
passing them through the delay line, the binary input signal 
first traverses the delay line. Each signal from the delay line is 
then individually converted into a stochastic bitstream, thus 
reducing latency and storage costs. 

 Both SC IIR modules comprise delay elements, SNGs, 
XOR gates, and mux trees. The outputs of these modules are 
combined by a two-way mux to obtain output SN which is 
converted to a binary number by a counter to obtain the final 
filter output y[n]. This result is then fed back to process a new 
sample. The inputs and selection lines to the modules are 
converted from binary to SN via SNGs. Like our FIR filter 
design, we have three different SC IIR filters: LFSR-based SC 
IIR (LFSR-SI), Sobol-based SC IIR (Sobol-SI), and CeMux-
based SC IIR (CeMux-SI). The design for each is similar to 
the corresponding FIR filter explained in Sec. III.A. 

IV. EXPERIMENTAL RESULTS 

To evaluate the performance of our SC FIR and SC IIR filter 
designs LFSR-SF, Sobol-SF, CeMux-SF, LFSR-SI, Sobol-SI, 
and CeMux-SI filters, we present the case study of 
electrocardiogram (ECG) filtering. We incorporate random 
noise into a benchmark ECG signal for testing [21]. 
Traditional digital filters, while effective, pose significant 
computational demands on ECG monitors. We use MATLAB 
to determine the coefficients of a lowpass filter with a cutoff 
frequency of 0.1 rad/sample. The purpose of this lowpass 
filter is to effectively eliminate high-frequency noise from the 
ECG signal.  

A. Error Tolerance 

The precision of an SN is defined by the bit stream [1]. 
Quantization errors, similar to those in traditional binary 
filters, occur due to this limited sequence length. SC also 
suffers from fluctuation errors, as the RNS in the SNG adds 
uncertainty to SNs. There are also correlation errors that arise 
from systematic non-zero cross-correlation among two or 
more SNs and non-zero autocorrelation of SNs in sequential 
circuits. In contrast, SC is known to be intrinsically tolerant to 
soft errors. In this section, we explore the extent of soft error 
tolerance in SC digital filters compared to conventional binary 
filters. We introduce errors into our filter design by inserting 
bit flips at the filter’s input. The resulting errors can manifest 
themselves as single-bit, multi-bit, or burst errors. In SC, 

single-bit errors are considered negligible as their impact on 
SN errors is very low. As a result, single-bit errors are not 
addressed in this analysis. However, both multi-bit and burst 
errors are of significant concern for both binary and SC digital 
filters. Multi-bit errors involving simultaneous alterations of 
multiple bits, generally pose a greater threat than burst errors 
as they are not localized and can corrupt a number in a wider 
variety of ways. In the binary case, burst errors can have a 
more pronounced impact on circuit performance if they are 
concentrated in the MSB region. To ensure a balanced analysis 
of error tolerance, we consider a multi-bit error scheme. XOR 
gates are used to inject the errors into the target circuit. Each 
SC filter design from Sec. III is simulated using the derived 
filter coefficients and a noisy ECG signal as input. Table 1 
provides insights into the effect of increasing percentages of 
bit flips on the RMSE (root mean square error) for different 
FIR and IIR filters. We highlight in bold the best RMSE for 
each error rate. The RMSE is calculated by 10,000 simulation 
runs and varying the error rate percentage. We use an 8-bit 
binary filter as our reference with the SC filters having an SN 
length of 1024 bits. We use 24th-order FIR and 6th-order IIR 
filters for analyzing the error tolerance of our filter designs, as 
they have the best performance in an error-free environment, 
as seen in Table II.  

 From Table 1, it can be observed that, at zero error rate, 
binary FIR and IIR filters deliver better performance than their 
stochastic counterparts, and the CeMux-based versions, with 
SCC of +1, outperform the LFSR and Sobol-based filters. At 
a 0.5% error rate, the CeMux-SF and CeMux-SI have SCC of 
+0.88 and +0.92 respectively, and either outperform or are 
comparable to Sobol-SF and Sobol-SI. This demonstrates that 
the correlation has a positive impact on the error resilience of 
SC filters at lower error rates. However, when the error rate 
reaches 1%, the SCC of CeMux-SF and CeMux-SI drop to 
+0.25 and +0.21 respectively, and they lose the advantage of 
full correlation, resulting in a significant degradation of their 
performance. The SCC further drops to -0.13 and -0.19 at an 
error rate of 2% for CeMux-SF and CeMux-SI respectively, 
worsening their performance. Sobol-based filters emerge as 
the most error-tolerant with higher error rates. They 
consistently outperform the LFSR-based filters, as the SNs 
generated by the Sobol sequence, and their multiplication 
results are more accurate than those by LFSR. Thus, in an 
error-prone environment, Sobol-based SC filters perform best. 
It is also worth noting, that at higher error rates, SC FIR filters 
have better performance than SC IIR filters, due to the impact 
of the feedback nature of the IIR filters. 

A. Performance Analysis 

We use the Synopsys Design Compiler with the Nangate 
45nm open cell library to synthesize the different filters and 
estimate their respective area and power consumption. Table  

Error rate 
(%) 

FIR filter (RMSE) IIR Filter (RMSE) 

Binary   LSFR-SF  Sobol-SF  CeMux-SF  Binary LSFR-SI  Sobol-SI  CeMux-SI  

0 0.0269 0.0683 0.0504 0.0386 0.0153 0.0562 0.0439 0.0295 

0.1 0.0407 0.0702 0.0528 0.0408 0.0376 0.0589 0.0452 0.0314 

0.25 0.0946 0.0725 0.0531 0.0412 0.0904 0.0605 0.0461 0.0338 

0.5 0.1274 0.0734 0.0559 0.0456 0.1485 0.0681 0.0508 0.0574 

1 0.5645 0.0816 0.0608 0.0746 0.5738 0.0891 0.0626 0.0982 

1.5 0.9702 0.0979 0.0643 0.0850 0.8987 0.0964 0.0801 0.1003 

2 1.3281 0.1182 0.0701 0.1226 1.5182 0.1193 0.0868 0.1397 

TABLE 1. THE ERROR TOLERANCE OF ALL THE PROPOSED FILTERS. 
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II illustrates the performance of the binary and stochastic FIR 
and IIR filters through their RMSE, power consumption, and 
area in an error-free environment. CeMux-based SC filters 
are the smallest FIR and IIR filters respectively, because they 
use a single SNG for all the mux inputs and SNGs take up 
around 80% of the SC filter circuit. They achieve an average 
of 57% area reduction compared to their respective binary 
filters. The Sobol- and LFSR-based filters achieve around 
50% and 40% area reduction, respectively. CeMux-SF and 
CeMux-SI also exhibit the lowest power consumption, 
achieving a 70% reduction. Sobol-SF and Sobol-SI reduce 
power consumption by 62% and LFSR-SF and LFSR-SI 
reduce it by 58%. 

V. CONCLUSION 

In this work, we have analyzed the impact of two different 
SNG types, LFSR-based and Sobol-based, as well as that of 
the correlation-enhanced stochastic mux adder CeMux on 
error tolerance, area, and power consumption of SC-based FIR 
and IIR filters. Our study highlights the remarkable error 
resilience of SC FIR and SC IIR filters, which experience only 
1.3X and 1.9X performance degradation, respectively, in a 2% 
bit-flip scenario, in contrast to 49X and 66X decline in their 
respective binary counterparts. SC demonstrates a significant 
49% area advantage and an impressive 64% improvement in 
power efficiency in an error-free environment, albeit at the 
cost of accuracy reduction compared to traditional binary 
implementations. Our analysis reveals that at higher error 
rates, Sobol-based filters exhibit significantly better error 
tolerance (40% on average) owing to their accurate SN 
generation. In terms of area and power, CeMux-based filters 
outperform Sobol-based filters by 15% and 9%, respectively.  

 In conclusion, our research suggests that CeMux-based 
filters are preferable for resource-constrained applications, 
while Sobol-based SC filters are better suited for error-tolerant 
applications. The study underscores the trade-offs that exist 
among area, power efficiency, and fault tolerance in different 
SC filters, and highlights the impact of correlation and SNG 
choice. Additionally, it demonstrates key potential advantages 
of SC over traditional binary computing. 
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FIR filter IIR Filter 

Order Performance Binary   LSFR-
SF  

Sobol- 
SF 

CeMux-
SF 

Order Performance Binary  LSFR-
SI 

Sobol-
SI 

CeMux-
SI 

 

10 

RMSE 0.0415 0.0981 0.0722 0.0571  

2 

RMSE 0.0407 0.0870 0.0591 0.0428 

Area (µm2) 1032 571 508 451 Area (µm2) 513 322 195 108 

Power (µW) 30.47 13.67 12.70 11.01 Power (µW) 19.82 7.53 6.14 4.37 

 

16 

RMSE 0.0369 0.0783 0.0614 0.0406  

4 

RMSE 0.0287 0.0751 0.0512 0.0347 

Area (µm2) 1276 764 635 549 Area (µm2) 648 505 232 275 

Power (µW) 39.45 15.81 14.92 13.55 Power (µW) 21.56 8.96 6.99 7.31 

 

24 

RMSE 0.0269 0.0683 0.0504 0.0386  

6 

RMSE 0.0153 0.0562 0.0439 0.0295 

Area (µm2) 1652 982 851 729 Area (µm2) 953 641 458 394 

Power (µW) 47.33 19.58 18.04 16.38 Power (µW) 23.45 10.48 7.45 8.04 

TABLE II. THE ROOT MEAN SQUARE ERROR, AREA, AND POWER CONSUMPTION OF ALL THE FILTERS. 
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