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Abstract—Successful training of data-intensive deep neural
networks critically rely on vast, clean, and high-quality datasets.
In practice however, their reliability diminishes, particularly
with noisy, outlier-corrupted data samples encountered in test-
ing. This challenge intensifies when dealing with anonymized,
heterogeneous data sets stored across geographically distinct
locations due to, e.g., privacy concerns. This present paper
introduces robust learning frameworks tailored for centralized
and federated learning scenarios. Our goal is to fortify model
resilience with a focus that lies in (i) addressing distribution
shifts from training to inference time; and, (ii) ensuring test-
time robustness, when a trained model may encounter outliers
or adversarially contaminated test data samples. To this aim, we
start with a centralized setting where the true data distribution
is considered unknown, but residing within a Wasserstein ball
centered at the empirical distribution. We obtain robust models
by minimizing the worst-case expected loss within this ball,
yielding an intractable infinite-dimensional optimization problem.
Upon leverage the strong duality condition, we arrive at a
tractable surrogate learning problem. We develop two stochastic
primal-dual algorithms to solve the resultant problem: one
for e-accurate convex sub-problems and another for a single
gradient ascent step. We further develop a distributionally
robust federated learning framework to learn robust model using
heterogeneous data sets stored at distinct locations by solving
per-learner’s sub-problems locally, offering robustness with mod-
est computational overhead and considering data distribution.
Numerical tests corroborate merits of our training algorithms
against distributional uncertainties and adversarially corrupted
test data samples.

Index Terms—Wasserstein distance, distributionally robust
optimization, minimax, primal-dual, federated learning.

1. INTRODUCTION

HE RELIABLE performance of contemporary machine

learning models largely hinges on their training algo-
rithms. In practice, their generalization is often compromised
during inference, especially when confronted with noisy data
tainted by outliers, as cited in previous research [1]. These
issues primarily stem from imperfect data acquisition and dis-
tribution shifts from training to inference phases. Furthermore,
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massive datasets are typically not confined to a single device,
instead they are generated and distributed across multiple
locations (referred to as workers) with limited computing
and storage capabilities. Distribution shifts among workers,
along with privacy and confidentiality concerns, pose addi-
tional challenges in training reliable models from distributed
datasets [2], [3].

Recent research efforts have been devoted to providing
reliable models with enhanced generalization guarantees,
particularly by addressing the susceptibility of models to
adversarial data samples. These strategies fall into two cat-
egories: detection approaches, which determine if the model
input is anomalous [4], [5], and robust training methods that
endow the model with resilience against attacks [6], [7].

While detection-based approaches have shown some success
in ensuring trustworthy inference [8], [9], [10], adversarial
training remains a promising approach for robust model
training [11], [12]. By carefully maximizing the model’s loss,
adversarial training methods introduce imperceptible noise to
clean input training data to enhance robustness [13]. This
approach typically involves solving an optimization problem
and relies on the trained model or a pre-trained one [14].
However, solving the resultant optimization problem is often
challenging, especially when tuning hyperparameters, which
can be cumbersome in certain cases [15], [16]. Moreover,
these methods often focus on per-datum processing to generate
adversarial noise, simply disregarding the underlying data-
generating process or distribution. Additionally, quantifying
the robustness gained through such training methods remains
a challenge [17], and is less explored in research.

Additional challenges arise from the prevalent assumption
in many methods that data is confined to a single device. In
reality, data is often generated and stored across distributed
locations, each having subsets of data with potentially different
distributions. While data localization is essential for privacy
among other reasons, the federated learning (FL) paradigm
aims to train a global model by coordinating multiple devices
through a central parameter server [2], [18]. Existing FL
approaches have primarily focused on the trade-offs between
communication and computation when aggregating model
updates from learners [19], [20], [21], with limited attention to
robust FL. methods. Among those addressing robust FL, some
focus on robust aggregation strategies [22], [23], or a blend
of periodic averaging with adaptive sampling [24], [25], while
others target robust models and assume affine distribution
shifts across workers’ data see, e.g., [26]. However, these
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methods have limited scopes and do not fully account for
underlying data distributions when designing training algo-
rithms. In a recent effort to deal with discrepancies in data
distributions across workers, [27] has extended standard results
of optimal transport theory to the multi-marginal optimal
transport problem and studied personalized federated learning.
Albeit interesting, the proposed method requires an additional
model per worker and does not target robustness at all. From a
theoretical perspective, the optimal transport theory has further
been investigated to quantify adversarial risk of classifiers on
adversarially perturbed data [28], [29].

Our work leverages the distributionally robust optimization
framework to develop procedures for training robust models
against distributional uncertainties and adversarial data. It
builds on the implicit assumption that training data samples
are clean or nominal, but obtained from an “unknown” data
distribution. The objective is to target distribution shifts of data
from training to inference, and ensure robustness to adversarial
inputs during the inference phase. Our algorithms enable
learning robust models from multiple heterogeneous datasets
with potentially different distributions stored at different loca-
tions. Unlike most existing works, our proposed algorithms
account for the data distribution when creating adversar-
ial perturbations. We obtain robust models by minimizing
the worst-case expected loss over all distributions residing
within a Wasserstein ball centered at the empirical data
distribution. The resulting formulation leads to a challenging
and intractable infinite-dimensional functional optimization
problem, which we address by exploiting the strong duality to
arrive at a tractable, and under certain conditions, an equivalent
unconstrained and affordable minimization problem. To solve
this robust surrogate problem, we develop a stochastic proxi-
mal gradient descent (SPGD) algorithm based on an e-accurate
oracle, along with its lightweight stochastic proximal gradient
descent-ascent (SPGDA) iterations. The former algorithm uses
an oracle to solve the involved convex sub-problems to e-
accuracy, while the latter approximates the solution through a
single gradient ascent step. To further accommodate learning
from distributed datasets, we develop a distributionally robust
federated learning (DRFL) framework. In summary, the main
contributions of this paper are as follows.

o« A generic distributionally robust learning framework,
designed to endow machine learning models with
resilience against distributional uncertainties and adver-
sarial input data encountered during inference.

« Two scalable distributionally robust learning algorithms,
with rigorous theoretical convergence guarantees.

« A DRFL framework, enabling the training of robust
models from multiple sources with potentially different
underlying data distributions.

The rest of this paper is structured as follows. Problem for-
mulation and its robust surrogate are the subjects of Section IL.
The proposed SPGD with e-accurate oracle and SPGDA
algorithms with their convergence analyses are presented in
Sections IIT and IV, respectively. The DRFL implementation is
discussed in Section V. Numerical tests are given in Section VI
with conclusions drawn in Section VII. Technical proofs are
deferred to the Appendix.
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II. PROBLEM STATEMENT
Consider the standard regularized statistical learning task

min Eepy[£(6: 2)] +r(8) (1

where £(0; z) denotes the loss of a model parameterized by the
unknown parameter vector # on a datum z = (x, y) ~ Pg, with
feature x and label y, drawn from some nominal distribution
Py. Here, ® denotes the feasible set for model parameters.
To prevent over fitting or incorporate prior information, regu-
larization term r(@) is oftentimes added to the expected loss.
Popular regularizers include r(@) = g||@ Iﬁ or ﬁi|9|[%, where
B = 0 is a hyper-parameter controlling the importance of the
regularization term relative to the expected loss.

In practice, the nominal distribution Py is typically
unknown. Instead, we are given with independently and
identically distributed training data samples {z,,,}f=i ~ Py.
I_,eve‘t"a%%mg these samples, we form the empirical data distribu-
tion Py ) to replace Pp in (1) in empirical loss minimization

Ll'élé)'l EZN?,‘(]M [2(9; Z)] + r(9)
where ]Ezwpém[ew; 1=N"YN_ £0;z,). Indeed, a variety
of machine learning tasks can be cast as (2), including, e.g.,
ridge and Lasso regression, logistic regression, and reinforce-
ment learning. The resultant models obtained by solving (2)
however, have been shown vulnerable to adversarially cor-
rupted data in ﬁéN). Further, the testing data distribution often
deviates from the available ﬁéN). For this reason, targeting an
adversarially robust model against a set of distributions corre-
sponding to perturbations of the underlying data distribution,
has led to the formulation

2

min sup E,p[£(0;2)] + r(8)

3
00 pcp )

where P represents a set of distributions centered around
the data generating distribution ﬁg\’)_ Compared with (1), the
worst-case formulation (3), yields models ensuring reasonable
performance across a continuum of distributions characterized
by P. In practice, different types of ambiguity sets P can be
considered, and they lead to different robustness guarantees
and computational requirements. Popular choices of P include
momentum [30], [31], KL divergence [32], statistical test [33],
and Wasserstein distance-based ambiguity sets [33], [34]; see,
e.g., [35] for a recent overview. Among all choices, it has
been shown that the Wasserstein ambiguity set P results in a
tractable realization of (3), thanks to the strong duality result
of [33] and [34], which also motivates this work.

To formalize this, consider two probability measures P and
Q supported on set Z, and let II(P, Q) be the set of all
joint measures supported on 22, with marginals P and Q. Let
c: Zx Z — [0, co) measure the cost of transporting a unit of
mass from z in P to another element 7’ in Q. The celebrated
optimal transport problem is given by [36, p. 111]

We(P.Q) = inf Ex[c(z.2)]. )

Remark 1: If c(-, -) satisfies the axioms of distance, then W,
defines a distance on the space of probability measures. For
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instance, if P and Q are defined over a Polish space equipped
with metric d, then choosmg c(z,7) = d’(z,7)) for some p ¢
[1, o0) asserts that W, l/p (P, Q) is the well-known Wasserstein
distance of order p between probability measures P and Q
[36, Definition 6.1].

For a given empirical distribution ﬁgv), define the uncer-
tainty set P = (P|W.(P,P") < p} to include all
probability distributions having at most p-distance from PE,N}.
Incorporating this ambiguity set into (3), yields the following
reformulation

;rgg sup E;~p[£(0;2)] + r(0) (5a)
s.t. WC(P ’13‘”)) <o (5b)

Observe that the inner supremum in (5a) runs over all joint
probability measures = on Z? implicitly characterized by (5b).
Intuitively, directly solving this optimization over the infinite-
dimensional space of distribution functions is challenging,
if not impossible. Fortunately, for a broad range of losses
as well as transport costs, it has been shown that the inner
maximization satisfies a strong duality condition [35]; that
is, the optimal objective of this inner maximization and its
Lagrangian dual optimal objective, are equal. In addition, the
dual problem involves optimization over a one-dimensional
dual variable. These two observations make it possible to
solve (3) in the dual domain. To formally obtain a tractable
surrogate to (5), we make the following assumptions.

Assumption 1: The transportation cost function ¢ : Z x
Z — [0,00), is a lower semi-continuous function that to
satisfy well-posedness of the transportation problem and the
existence of optimal transport maps it satisfies the following
conditions:

1) Non-Negativity of transportation ¢(z, Z

ZxZ' and c(z,7) =0,Vze€ Z x Z'.

2) Boundedness to ensuring there is a lower bound on the

transportation cost, i.e.,

Y>>0 Vz,7 €

0< inffc(z,z) < sup éz,8) <08, YERigAY
% b of
3) Measurability of transportation cost in the product mea-
sure P x @ on the product space Z x Z’, ensuring
involved integrals in (4) are well-defined.
4) Strong convexity: Transportation cost is strongly convex,
i.e., having a positive definite Hessian
3—27 3%
1.5 2L Bzdz
H =| 3 %
Bz'az H_z,'z

= 0. (6)

Remark 2: Unless otherwise noted, throughout this paper,
a generic transportation cost ¢(z,7’) : Z x 2’ — R™ satisfying
Assumption 1 is considered. Therefore, the Wasserstein dis-
tance (4) is for such generic cost accordingly. No additional
details are considered for this distance except having power

lAlthlmgh not necessary in general, ¢(-,-) is considered to be strongly
convex. Note that all relevant derivatives discussed in subsequent sections are
derived under the assumption that c(-, -) represents a generic transportation
cost, adhering to the specified Assumptions 1.

of the Wasserstein distance to be equal to 1 for the sake of
simplicity of derivatives.

Assumption 2: The loss function £ : ® x Z — [0, 00), is
upper semi-continuous, and integrable.

The following proposition provides a tractable surrogate
for (5), whose proof can be found in [35, Th. 1].

Proposition 1: Let€: @ xZ — [0,00),andc: Zx Z —
[0, o0) saﬂsf% Assumptions 1 and 2, respectively. Then, for
any given P ,and p > 0, it holds that

sup E,..p[£(8; 2)]
PP
= inf []E

e ﬁN;[SUP{E(f’ &) —

ye@ ) —pl]} @

where P := {P|W.(P, P)")) < p}.

Remark 3: Thanks to strong duality, the right-hand side
in (7) simply is a uni-variate dual reformulation of the primal
problem represented in the left-hand side. In sharp contrast
with the primal formulation, the expectation in the dual domain
is taken only over the empirical ‘ﬁéN) rather than any P € P.
In addition, since this reformulation circumvents the need for
finding the optimal = € I to form P, and characterizing the
primal objective VP € P, it is practically more convenient.

Upon relying on Proposition 1, the following distribution-
ally robust surrogate is obtained

P [ SHE{E(H; L) +y(p—c@ o)) +r®)]}
le
(8)

Remark 4: The robust surrogate in (3) is reminiscent of
minimax (saddle-point) optimization problems. Solvers for
such problems have been recently investigated in several
contributions see, e.g., [37] and references therein. While
such solvers address the standard minimax problems, our
formulated problem under (3), has its own specific challenges,
posed by the structure of (8) to promote robustness, as well as
taking into the account the data distribution when training the
model. It is important to note that [37] and references therein
offer valuable insights for conducting convergence analysis of
primal-dual type solvers, as has been leveraged in this work.

It is worth noting that a relaxed (hence suboptimal) version
of (8) with a fixed y value has recently been studied in [34].
Unfortunately, one has to select an appropriate y value using
cross validation over a grid search that is also application
dependent. Heuristically choosing a y does not guarantee
optimality in solving the distributionally robust surrogate (8).
Clearly, the effect of heuristically selecting y is more pro-
nounced when training deep neural networks. Instead, we
advocate algorithms that optimize y and @ simultaneously.

Our approach to addressing this, relies on the structure of (8)
to iteratively update parameters # = [19T yIT and ¢. To
end up with a differentiable function of 6 after maximizing
over £, Danskin’s theorem requires the sup-problem to have
a unique solution [38]. For this reason, we design the inner
maximization to involve a strongly concave objective function
through the selection of a strongly convex transportation cost,
such as ¢(z,7') = ||z —z’||§ for p > 1. For the maximization
over ¢ to rely on a strongly concave objective, we let

min inf {]E
0e0 y>0
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y € I' = {y|y > w). where yy is large enough. Since y is
the dual variable corresponding to the constraint in (5), having
y € I' is tantamount to tuning p, which in turn controls the
level of robustness. Replacing y > 0 in (8) with y € I', our
robust learning model is obtained as the solution of

min inf E_zol o w(ﬂ,«:;z)] +7(0) ©)
where
v(0.5:2) =L@ O +v(e—c@ o). (10)

Intuitively, input z in (9) is pre-processed by maximizing
¥ accounting for the adversarial perturbation. To iteratively
solve our objective in (9), the ensuing sections provide
efficient solvers under some mild conditions. Those include
cases, every inner maximization (supremum) can be solved to
e-optimality by an oracle.

Before developing our algorithms, we start by making
several standard assumptions.

Assumption 3: Function ¢(z,-) is L.-Lipschitz and
p-strongly convex for any given z € Z, with respect to the
norm || - .

Assumption 4: The loss function £€(8;z)
following Lipschitz smoothness conditions

satisfies the

IVo£(8;2) — Vol(0';2)ll. < Logll0 — 0’  (11a)
IVel(052) — Vol(0;2)ll« < Lozlz—2'l  (11b)
V.60 z) — V;£(0; 2 )ll+ < Lzllz — 21l (11c)
IV.€(0;2) — V.£(6":2) 1« < Lol — 0" (11d)

and it is continuously differentiable with respect to 6.
Assumption (4) guarantees that the supremum in (8) results
in a smooth function of #; thus, one can execute gradient
descent to update # upon solving the supremum. This will
further help to provide convergence analysis of our proposed
algorithms. To elaborate more on this, the following lemma
characterizes the smoothness and gradient Lipschitz properties
obtained upon solving the maximization problem in (9).
Lemma 1: For each z € Z, let us define &(ﬁ;z) =
sup, ¥ (6, ¢;z) with £,(0;z) == argmaxgcz ¥ (0, £:z). Then
¥(-) is differentiable, and its gradient is V¥ (0;2)
V@xb(é, ;*(é; 2): 2). Moreover, the following conditions hold

; _ I L,
[24(01:2) — £4(62:2)| < %I[ﬁ'z — 61l + 3 v —wll
(12a)
and
959 @1:2) — V39 (09| < et -
Ly
+ (Lfm 5 m) 102 — 641 (12b)

where y!'2 € T, and ¥ (@, -; z) is A-strongly concave.

Proof: See Appendix-A for the proof.

Lemma 1 paves the way for iteratively solving the surrogate
optimization (9), intuitively because it guarantees a differen-
tiable and smooth objective upon solving the inner supremum
to its optimum.
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Remark 5: Equation (12a) is appealing in practice. Indeed,
if ' [0, '] is updated with a small enough step
size, the corresponding g*(ﬂ”'l,z) is close enough to
),'*(9' ;Z). Building on this observation, instead of using an
oracle to find the optimum (;',,((BH'] ; Z), an e-accurate solution
¢, (0™+';z) suffices to obtain comparable performance. This
also circumvents the need to find the optimum for the inner
maximization per iteration, which could be computationally
demanding.

III. STOCHASTIC PROXIMAL GRADIENT DESCENT
WITH €-ACCURATE ORACLE

A standard solver of regularized optimization problems is
the proximal gradient algorithm. In this section, we develop a
variant of it to tackle the robust surrogate (9). For convenience,
let us define

f@.y)=E][ sup{£(9: £) +¥ (b —ctz ] a3
Le
and rewrite our objective as
min mf F@,y) =f@,y)+r@®) (14)

(=51

where f(0, y) is the smooth function in (13), and r(-) is a
non-smooth and convex regularizer, such as the £;-norm. With
a slight abuse of notation, upon introducing 6= [0 yl, we
define f{ﬂ) =f(0,y) and F(#) =F(, y).

The proximal gradient algorithm the updates 0 as

6" = argmin a,r(®) +aufp —0',g(8')) + 5 Lo —a'|?

where g(fjr} = Vf(@)iézﬂ-,, and o > 0 is some step size. The
last update is expressed in the compact form

e = proxar,[f}! - a:,g(f_lr)] (15)
where the proximal gradient operator is given by
1
ProXy,[v] = argmin ar(8) + 5116 — V)% (16)

The working assumption is that this optimization problem can
be solved efficiently using off-the-shelf solvers.

Starting from the guess 6, the proposed SPGD with
e-accurate oracle executes two steps per iterationf =1, 2, ...
First, it relies on an e-accurate maximum oracle to solve
the inner problem supcez{ﬁ(ﬂ‘ &) — yle(z, g‘:)} for randomly
drawn samples {z,}" ey to yield e- optlmal § (9 Zn) with the

corresponding objective values 1,!1(9 i;é(ﬂ Zn): Zn). Next, '
is updated using a stochastic proximal gradient step as

Zv v(0.6.020:2) .

nl

e

0 = proxm,[

For implementation, the proposed SPGD algorithm with
e-accurate oracle is summarized in Alg. 1. Convergence
performance of this algorithm is analyzed in the ensuing
subsection.
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Algorithm 1: SPGD With e-Accurate Oracle

Input : Initial guess 50, step size sequence {o; > O}LO,
¢-accurate oracle
1 fort=1,...,T do
2 Draw i.i.d samples {zﬁ}"’\;]
3 Find e-optimizer ¢, (6"; z,) via the oracle
4 Update:
§r+l -
mear[ $ S Vv (0, 6.0 20); ) |5 ]
5 end

A. Convergence of SPGD With e-Accurate Oracle

In general, the postulated model is nonlinear, and the robust
surrogate F' (5_3) is nonconvex. In this section, we character-
ize the convergence performance of Alg. 1 to a stationary
point. However, lack of convexity and smoothness implies
that stationary points must be understood in the sense of
the Fréchet subgradient. Specifically, the Fréchet subgradient
aF (é) for the composite optimization in (14), is the set [39]

F(6)—F(6)—»T(0—8
6) lv';m;lnf : () ( ))3

16— @l

Consequently, the distance between vector 0 and the set 3 F' (é)
is a measure characterizing whether a point is stationary or
not. To this end, define the distance between a vector v and
a set & as dist(v,S) = min,.g [[v — ||, and the notion of
d-stationary points as defined next.

Definition 1: Given a small § > 0, we call vector 0 a s-
stationary point if and only if dist(0, dF (9}) < 4.

Since f(-) in (13) is smooth, we have that 3F(9) Vf(é)—l—
ar(f) [39]. Hence, it suffices to prove that the algorithm
converges to a §-stationary point ] satisfying

dist(0, V7 (8) +or(d)) <.

We further adopt the following assumption that is standard in
stochastic optimization.
Assumption 5: Function f satisfies the next two conditions.
1) Gradient estimates are unblased and have a bounded
variance, 1e ]E[g"‘(ﬂ ) — Vf(l? )] =0, and there is a
constant o2 < 0o, so that ]E[||Vf(9 )—g (9 )||2] < g2
2) Function f(ﬂ) is smooth with Ls-Lipschitz continuous
gradient, i.e., |[Vf(6|) — Vf(Bg)ﬂ < Lr||l6 — 05
We are now ready to claim the convergence guarantees for
Alg. 1; see Appendix-B for the proof.
Theorem 1: Let Alg. 1 run for T iterations with constant
step sizes a, n > :O' Under Assumptions 1-5, Alg. 1 generates
a sequence of {# } that satisfies

E [dist({!, aF(é"})z] < (; H;)% i (% i 2)62
(B+2)L} €

+T (18)

a7

where Y is uruformly sampled from {1,...,T}; here, Ap =
F@H—F@ 'y L2 = I} + oL, and ,s, Ao > 0 are some
constants.

Theorem 1 asserts that {§'}], generated by Alg. 1 con-
verges to a stationary point on average. The upper bound here
is characterized by the initial error Ar, which decays at the
rate of O(1/7T); and, the constant bias terms induced by the
gradient estimate variance o2 as well as the oracle accuracy €.

Remark 6: . Note in Theorem 1 the established convergence
rate of O(1/T) to a stationary point is for the squared error
distance, which, upon taking the square root, yields a rate of
O(1/+/T), which relies on a constant stepsize. By carefully
designing the step size, it may be possible to obtain even a
tighter upper bound. In addition, it is important to note that
this Theorem demonstrates the attainment of a §—stationary
point, where parameter § depends on the accuracy of the oracle
captured via €, and the variance of the gradient estimates o 2.
Please observe that o2 depends on the batch size M, as is
evident from equation (22). While we have not explicitly stated
the dependency of o? on M in Assumption 5, yet it is evident
from equation (22), that a larger batch size should yield to a
decrease in gradient estimate variance. All in all, intuitively
having a larger batch size will yield a smaller variance for
gradient estimates, i.e., § o2 %, and it also holds that
8 oc e. Thus, having an accurate oracle with small € — 0 with
a larger batch size M — oo results in obtaining a stationary
point (i.e., § — 0). These details give an intuitive explanation
why the convergence guarantee comes with a bias term.

The computational complexity of Alg. 1 can grow pro-
hibitively when dealing with large-size datasets and complex
models. This motivates lightweight, scalable, yet efficient
methods. To this end, we introduce next a stochastic proximal
gradient descent-ascent (SPGDA) algorithm.

IV. STOCHASTIC PROXIMAL GRADIENT
DESCENT-ASCENT

Leveraging the strong concavity of the inner maximization
problem and Lemma 1, a lightweight variant of the SPGD
with e-accurate oracle is developed here. Instead of optimizing
the inner maximization problem to e-accuracy by an oracle,
we approximate its solution after only a s:'ng[e gradient ascent
step. Specifically, for a batch of data {z!, }M | per iteration f,
our SPGDA algorithm first perturbs each datum via a gradient
ascent step

S =+ Ve (0,652 )|y VM= 1,..., M (19)
and then forms
( ) Z Vi w m'! Zm)i —a" (20)

Using (20), an extra proxunal gradient step is taken to obtain

ot = proxmrlié" — g (@r)].

The SPGDA steps are summarized in Alg. 2. Besides its
simplicity and scalability, SPGDA enjoys convergence to a
stationary point as elaborated next.

21
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Algorithm 2: SPGDA

- ~0 !
Input : Initial guess 6 , step size sequence
{ar, e > O}, batch size M
1 fort=1,...,T do

2 Draw a batch of i.i.d samples {z,,,}"""=1

3 Find {;m} _ Vvia gradient ascent:
;iﬂ_—zfﬂ'_’—nfvcw(esé:?zm)lgzzj‘“! m:]-!"-sM
Up(%ate:

S+ = =t
0" = prox,,, [0 — % S, Vav @' hizh)]sg ]
4 end

A. Convergence of SPGDA
To prove convergence of Alg. 2, let us start by defining

¥ i 2L _
gt (9‘) = Z vyt (Br, ;;"n;zi").
m=1
Different from (20), the gradient here is obtained at the
optimum ¢% = £%(8;2) = argmax;cz ¥ (@, £; Zm)-
To establish convergence, one more assumption is needed.
Assumption 6: Function f satlsﬁes the following conditions.
1) Gradient estimates V, i,fr*(l? ¢hizy) at & are unbi-
ased and have bounded variance. That is, for m =
1---M, we have E[Vzy*(0, £} : 2m) — Vaf(#)] = 0 and
E[IV5¥*©. &3 2m) — VO] < 02

2) The expected norm of g'(f) is bounded, that is,
Elg'®)|* < B>

We can now present a theorem on the convergence of Alg. 2;
see Appendix-C for the proof.

Theorem 2 (Convergence of Alg. 2): Let Ap = F (6_'0) —
infy F (f_)), and D denote the diameter of the feasible set ©.
Under As. 1-4 and 6, for a constant step size a > 0, and a
fixed batch size M > 0, after T iterations, Alg. 2 satisfies

(22)

e 2
E[dist(ﬂ, BF(BT)) ] < T: -AF

t‘»‘zv[ _ 2 2] ﬁg
L ap)D? + o’B* | + 7 (23)
where v, v, and p = yp — L; are some posmve constants.

Theorem 2 implies that the sequence {B }r_] generated by
Alg. 2 converges to a stationary point. The upper bound in (23)
is characterized by a vanishing term induced by initial error
Apr, and constant bias terms.

V. DISTRIBUTIONALLY ROBUST FEDERATED LEARNING

In practice, massive datasets are distributed geographically
across multiple sites, where scalability, data privacy and
integrity, as well as bandwidth scarcity typically discourage
uploading them to a central server. This has propelled the so-
called federated learning framework, where multiple workers
exchange information with a server to learn a centralized

2Burther details regarding this assumption are provided in Section VII-D.
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model using data locally generated and/or stored across work-
ers [2]. Workers in this learning framework communicate
iteratively with the server. Albeit appealing for its scalability,
one needs to carefully address the bandwidth bottleneck
associated with server-worker links. Furthermore, the workers’
data may have (slightly) different distributions, which further
challenges the learning task. To seek a model robust to
distribution drifts across workers, we will adapt our novel
SPGDA approach to design a privacy-respecting and robust
algorithm.

To that end, consider K workers with each worker k <
K collecting samples {zn(k)ﬂ:]. A globally shared model
parameterized by @ is to be updated at the server by aggregat-
ing gradients computed locally per worker. For simplicity, we
consider workers having the same number of samples N. The
goal is to learn a single global model from stored data at all
workers by minimizing the following objective function

min B, p[£(0; 2)] + () (24)

where B, 3[€(0;2)] == b YN | S, £(8. z4(K)). To endow
the learned model with robustness against distributional
uncertainties, our novel formulation will solve the following
problem in a distributed fashion

min sup E..p[£(6;2)]+ r(6)
#€® pcp

s.to. P = IP’ ZK:WC(P, ‘ﬁ(N)(k)) < p] 25)
k=1

where W.(P, ﬁ(N)(k)) denotes the Wasserstein distance
between distribution P and the local P®) (k), per worker k.

Clearly, the constraint P € P couples the optimization
in (25) across all workers. To offer distributed implemen-
tations, we resort to Prop. 1, to arrive at the equivalent
reformulation

K
min inf Z ]Ez(k)";ﬁw)(k)[ sup {f(ﬂ, é,v.)
1 teZ

fec® yel
eyk

+ y(p —ck), §))}]] +r(0). (26)

Next, we present our communication- and computation-
efficient DRFL that builds on the SPGDA scheme in
Section IV.

Specifically, our DRFL hinges on the fact that with fixed
server parameters S per iteration t, the
optimization problem becomes separable across all workers.
Hence, upon receiving 6 from the server, each worker k

K: i) samples a minibatch B‘gk) of data from P™(k); ii)
forms the perturbed loss Y (0 ,¢;27) = €(0%;¢) + Y tHp —
c(z, £)) for each z e B'(k); iii) lazily maximizes i,bk(ﬂ i)
over ¢ using a single gradient ascent step to yield £(# ;z) =
z+ Ve %(9 £:2)|¢=: and, 1v} sends the stochastic gra-
dient [B'(0)|~' Y. cpray Va @', 28" 2); 2)|;_g back to the
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Algorithm 3: DRFL

Input : Initial guess ] 1, a set of workers X with data
samples {z, (k}}"N=] per worker k € K, step size

sequence {ay, n > 0}

Output: §T+l

1 fort=1,...,T do
2 Each worker:
3 Samples a minibatch B'(k) of samples

4 Given 8’ and z € B'(k), forms local perturbed loss
W@, £52): =@ 8) +y'(p — ¢, 1))

Lazily maximizes lj;k(f_lt, ¢;z) over ¢ to find
£@:2) =2+ Ve wr®', £ Do

Computes stochastic gradient

1

B 3 Vg%(ér,é:(ét;z):z)h:y

zeB!(k)
and uploads to server
5 Server:
6 Updates 6’ according to (27)
7 Broadcasts @tH to workers
s end

server. Upon receiving all local gradients, the server updates
8" using a proximal gradient descent step to find 8", that is

K

oy 1
K ,§ 1Bt (k)|

+1

= Proxg,, Ii(_f‘ —

x Y Vaw(0'.e@5052)sp | @D

zeBt (k)

which is then broadcast to all workers to begin a new round
of local updates. Our DRFL approach is tabulated in Alg. 3.

VI. NUMERICAL TESTS

To assess the performance in the presence of distribution
drifts and adversarial perturbations, we will rely on empirical
classification of standard MNIST and Fashion- (F-)MNIST
datasets using standard cross-entropy loss. Specifically, we
compare performance using models trained with empir-
ical risk minimization (ERM), the fast-gradient method
(FGSM) [13], its iterated variant (IFGM) [40], and the
‘Wasserstein robust method (WRM) [34]. We further evaluate
the testing performance using the projected gradient descent
(PGD) attack [41]. We first test performance of SPGD with
e-accurate oracle, and SPGDA on these standard classification
tasks.

A. SPGD With e-Accurate Oracle and SPGDA

The FGSM attack performs one step gradient update along
the direction of the gradient’s sign to find an adversarial

sample; that is,

Xady = Clip_; 11{x + €aavsign(VELc(0; (x, )} (28)
where €,,q4 controls the maximum £, perturbation of adver-
sarial samples. The element-wise Clipy, ;;{} operator forces its
input to reside in the prescribed range [—1, 1]. By running
T.qy iterations of (28) iterative (I) FGSM attack samples are
generated [13]. Starting with an initialization x%, = x, and

considering the £, norm, the PGD attack iterates [41]

=g (et ) 1 ¥aay T+ asign(VE(0: (ryg,. 1))} (29)

for T4y steps, where Il denotes projection onto the ball
Be(xly,) = {x : [|x—x5y lloo < €adv}, and & > 0 is the stepsize
set to 1 in our experiments. We use T4, = 10 iterations for
all iterative methods both in training and attack samples. The
PGD can also be interpreted as an iterative algorithm that
solves the optimization problem max, £(f; (x’, y)) subject to
lx" — x|lg,, < a. The Wasserstein attack on the other hand,
generates adversarial samples by solving a perturbed training
loss with an f£;-based transportation cost associated with the
Wasserstein distance between the training and adversarial data
distributions [34].

Remark 7 (e-accurate Oracle Implementation): To imple-
ment the e-accurate oracle for Algorithm 1, several
optimization algorithms can be employed. Here we rely on
10 iterations of gradient ascent with a constant step size
n = 0.001. While this method provides only an approximate
solution, in theory for large enough number of iterations
it can generate e-accurate solution. This holds specifically
because the feasible set for y is such that the function v (-)
is guaranteed to be strongly concave, and thus with at least
O(1/(en)) gradient ascent steps an e-accurate solution can be
obtained.

For the MNIST and F-MNIST datasets, a convolutional
neural network (CNN) classifier consisting of 8 x 8, 6 x 6, and
5 x 5 filter layers with rectified linear units (ReLU) [42] and
the same padding, is used. Its first, second, and third layers
have 64, 128, and 128 channels, respectively, followed by a
fully connected layer, and a softmax layer at the output.

CNNs with the same architecture are trained, using different
adversarial samples. Specifically, to train a Wasserstein robust
CNN model (WRM), y = 1 was used to generate Wasserstein
adversarial samples, €,q, was set to 0.1 for the other two
methods, and p = 25 was used to define the uncertainty
set for both Algs. 1 and 2. Unless otherwise noted, we set
the batch size to 128, the number of epochs to 30, the
learning rates to @ = 0.001 and n = 0.02, and used the
Adam optimizer [43]. Fig. 1(a) shows the classification error
on the MNIST dataset. The error rates were obtained using
testing samples generated according to the FGSM method
with €,4y. Clearly all training methods outperform ERM, and
our proposed Algs. 1 and 2 offer improved performance over
competing alternatives. The testing accuracy of all methods
using samples generated according to an IFGSM attack is
presented in Fig. 1(b). Likewise, Algs. 1 and 2 outperform
other methods in this case. Fig. 1(c) depicts the testing
accuracy of the considered methods under different levels of
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Fig. 1. Misclassification error rate for different training methods using MNIST dataset.
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Fig. 2. Misclassification error rate for different training methods using F-MNIST dataset.

a PGD attack. The plots in Fig. 1 showcase the improved
performance obtained by CNNs trained using Algs. 1 and 2.

The F-MNIST article image dataset is adopted in the second
experiment. Similar to the MNIST dataset, each example in
F-MNIST is also a 28 x 28 gray-scale image, associated with
a label from 10 classes. F-MNIST is a modern replacement
for the original MNIST dataset for benchmarking machine
learning algorithms. Using CNNs with similar architectures
as before, the classification error is depicted for different
training methods in Fig. 2. Three different attacks, namely
FGSM, IFGSM, and PGD are used during testing. The result-
ing classification error rates are reported in Figs. 2(a), 2(b),
and 2(c), respectively. The proposed SPGD and SPGDA
algorithms outperform the other training methods, verifying
the superiority of Algs. 1 and 2 in terms of yielding robust
models.

B. Extended Numerical Tests on CIFAR-10 and CIFAR-100

In this section, we present an extended evaluation of
our approach on more practical tasks using large-scale
pre-trained CNNs for classification. Specifically, we lever-
age well-established models such as ResNet-18 [44],
WideResNet-50-20 [45], and VGG-11-BN [46] for both
10-class and 100-class challenges on the CIFAR dataset. These
models are initially pretrained on the ImageNet dataset [47]
and fine-tuned on CIFAR-10 and CIFAR-100. CIFAR-10
comprises a total of 60,000 color images of sizes 32 x 32
across 10 classes, with 50, 000 training images and 10, 000 for

testing. On the other hand, CIFAR-100 features 600 images
per class, with 500 for training and 100 for testing per class. To
ensure fair comparisons, we kept hyperparameters consistent
across experiments, utilizing SGD with a fixed learning rate of
0.001 and a momentum of 0.9 for fine-tuning over 15 epochs.

We conducted extensive adversarial testing using var-
ious attack strategies, including variance-tuning based
(VNFIGSM) [48], ensemble adversarial (RFGSM) [49], trans-
ferable adversarial (TIFGSM) [50], transferable attack with
input diversity (DIFGSM) [51], Nesterov accelerated scale
invariance (NIFGSM) [52], Carlini and Wagner (CW) [53],
K1 -divergence based (TPGD) [54], and parameter-free attack
(APGD) [55]. The hyperparameters used during adversarial
testing in this case are reported in Table III in the Appendix.

The results are presented in Tables I and II. The normal
testing accuracies of all models for CIFAR-10 dataset were
above 90% and for CIFAR-100 were above 78%, which
shows that models were trained to classify normal input data
accurately. The results in Tables I and II reveal that models
trained using ERM demonstrate increased vulnerability to
adversarial attacks compared to models trained using our
robust method (Algorithm 1). This aligns with the expectation
of the inherent vulnerability of conventionally trained models
to adversarial perturbations. However, a notable finding is the
consistent improvement in model performance when transi-
tioning from ERM to robust models. This transition enhances
performance across most adversarial testing scenarios while
causing only a negligible drop in normal testing accuracy.
Similar results were observed for the 100-class classification
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TABLE 1
TESTING ACCURACY RESULTS IN % FOR THE CIFAR-10 DATASET
Models FGSM | TPGD cw PGD APGD | TIFGSM | NIFGSM | DIFGSM | RFGSM | VNIFGSM
ResNet-18-ERM 37.03 27.57 | 0.45 0.57 0.68 2.30 0.55 1.29 0.54 0.88
ResNet-18-Robust 40.13 31.66 | 2.16 8.10 11.03 13.76 7.81 8.74 6.76 8.19
VGG-11-BN-ERM 28.75 24.72 0.06 0.16 0.24 1.16 0.16 0.33 0.16 0.71
VGG-11-BN-Robust 31.13 25.11 1.03 3.11 5.31 7.45 3.46 4.10 2.83 3.89
WideResNet-50-20-ERM 42.97 44.52 1.06 1.40 1.55 4.04 1.46 2.71 1.35 24
WideResNet-50-20-Robust 44.17 45.14 2.71 10.07 11.83 15.13 11.17 11.85 8.72 11.73
TABLE 1T
TESTING ACCURACY RESULTS IN % FOR THE CIFAR-100 DATASET
Models FGSM | TPGD | CW PGD | APGD | TIFGSM | NIFGSM | DIFGSM | RFGSM | VNIFGSM
ResNet-18-ERM 17.50 19.17 1.13 18.88 17.61 18.47 18.16 20.09 18.86 19.36
ResNet-18-Robust 21.13 24.34 4.54 | 2297 21.69 21.84 21.53 24 .88 21.93 24.52
VGG-11-BN-ERM 17.47 17.82 | 2.52 | 16.81 12.15 20.37 16.95 19.27 16.81 17.89
VGG-11-BN-Robust 21.02 21.92 6.26 18.84 15.31 20.70 19.65 21.70 19.79 21.79
WideResNet-50-20-ERM 20.05 21.44 | 5.87 | 21.02 | 17.78 22.87 21.24 22.69 21.00 21.66
WideResNet-50-20-Robust 23.54 25.06 9.45 | 23.83 18.36 26.71 24.67 26.52 23.63 23.92
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Fig. 3. Distributionally robust federated learning for image classification using the non-i.i.d. F-MNIST dataset.

problem, which are reported in Table II. The hyperparameters
used for testing are reported in Table IV in the
Appendix.

These observations underscore the practical significance of
designing and implementing distributionally robust algorithms.
Furthermore, the consistency of these improvements across a
range of models, including ResNet, VGG, and WideResNet,
across different classification tasks, highlights the effective-
ness and generalizability of our robust training algorithms in
enhancing model reliability.

C. Distributionally Robust Federated Learning

To validate the performance of our DRFL algorithm, we
considered an FL environment consisting of a server and
10 workers, with local batch size 64, and assigned to every
worker an equal-sized subset of training data containing i.i.d.
samples from 10 different classes. All workers participated
in each communication round. To benchmark the DRFL, we
simulated the federated averaging method [56]. The testing
accuracy on the MNIST dataset per communication round
using clean (normal) images is depicted in Fig. 4(a). Clearly,
both DRFL and federated averaging algorithms exhibit rea-
sonable performance when the data is not corrupted. The
performance is further tested against IFGSM and PGD

attacks with a fixed €,4y = 0.1 during each communication
round, and the corresponding misclassification error rates are
shown in Figs. 4(b) and 4(c), respectively. The classification
performance using federated averaging does not improve in
Fig. 4(b), whereas the DRFL performance keeps improving
across communication rounds. This is a direct consequence
of accounting for the data uncertainties during the learning
process. Moreover, Fig. 4(c) showcases that the federated
averaging becomes even worse as the model gets progressively
trained under the PGD attack. This indeed motivates our DRFL
approach when data are from untrusted entities with possibly
adversarial input perturbations. Similarly, Fig. 5 depicts the
misclassification rate of the proposed DRFL method compared
with federated averaging, when using the F-MNIST dataset.

As the distribution of data across devices may influence
performance, we further considered a biased local data set-
ting. In particular, each worker k = 1, ..., 10 has data from
only one class, so the distributions at workers are highly
perturbed, and data stored across workers are thus non-
ii.d. The testing error rate for normal inputs is reported in
Fig. 3(a), while the test error against adversarial attacks is
depicted in Figs. 3(b) and 3(c). This additional set of tests
shows that having distributional shifts across workers can
indeed enhance testing performance when the samples are
adversarially manipulated.
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VII. CONCLUSION APPENDIX

A framework to robustify parametric machine learning
models against distributional uncertainties was put forth in
this paper. The learning task was cast as a distributionally
robust optimization problem, for which two scalable stochastic
optimization algorithms were developed. The first algorithm
relies on an e-accurate maximum-oracle to solve the inner
convex subproblem, while the second approximates its solution
via a single gradient ascent step. Convergence guarantees
for both algorithms to a stationary point were obtained. The
upshot of the proposed approach is that it is amenable to
federated learning from unreliable datasets across multiple
workers. The novel DRFL algorithm ensures data privacy
and integrity, while offering robustness with minimal com-
putational and communication overhead. Numerical tests for
classifying standard real images showcased the merits of
the proposed algorithms against distributional uncertainties
and adversaries. This study uncovers promising avenues for
future research, particularly in the domain of personalization.
A key focus is on exploring the integration of distribution-
ally robust learning with personalization. In this context,
there is potential to extend this approach to heterogeneous
datasets by incorporating the concept of multi-distribution
Wasserstein distance [27]. This would involve utilizing two
distinct models—one globally shared and another dedicated to
aligning local data distributions within a common probability
space. Further advancements in this research direction can
be achieved by leveraging Bayesian and ensemble learning
techniques to enhance both the robustness and personalization
of federated learning methods.

A. Proof of Lemma 1

Since function ¢ > _1};(5,{;2) is A-strongly concave,
then &,(0) = sup;.z ¥ (8, £:2) is unique. In addition, the
first-order optimality condition gives (V ¥ (0, £,.(0);2),¢ —
£,(@) < 0. Let us define &, = £,(61), ¢5 = £,(02),
and use the strong concavity for any 6; and 67, to
write

'!f(f_’z, ﬁ;z) < '#(f_i‘z, é‘l;z) +(Vgl;'/(6_'2. Cl;z), i;i =2 é;l)

- %u«;i — &P (30)
and
¥ (02, 852) < v (02, 6% 2) +(Vew (02, 63:2) 61 - £2)
- S -
< 9(02. £3:2) — 502 — £ 31

where the last inequality is a consequence of the first-
order optimality condition. Summing (30) and (31), we find
that

Mgl = enl? < (Vew (82, £:2), 3 — 1)
< (Vew (62, £hi2). 82— £1) (Ve (B, £d:2). £2 - £1)
= (Vew (b2, ¢hiz) - Vew (B, ekiz) 2 —¢l). 32

Authonized licensed use limited to: University of Minnesota. Downloaded on June 30,2024 at 15:53:06 UTC from IEEE Xplore. Restnictions apply.



SADEGHI et al.: LEARNING ROBUST TO DISTRIBUTIONAL UNCERTAINTIES AND ADVERSARIAL DATA 115

And using Holder’s inequality, we obtain that

Ae2 -

Cl;z) = chb(@l, Ci;z)"‘ ‘
from which we deduce
Ji2 1] = gvew (B2 21:2) - Ve (Bn.212)| 09
Using (0, £;2) = £(0: &) + y(p — ¢(z, £)), we have that
[Pet (02.212) - weu (1219

— ch(ﬂz; ;l) pe, VgE(I?]; Cl)

2
1
L9

22—l 33)

e2-¢!

& nV;C(z, i:i) = nV;C(a é‘l)
Vee(02:21) - Ve (61 ¢}) |

+ vecfest) - v ),
< Lall02 — 81l + |Vee(z.21)| 12—l G39)

Substituting (35) into (34), yields

Ly 1
— 6l = 221102 — 011+ 2 1Vee(z £1) v — ml

Ly L:
< lllz ||I+k|i}/”2 il

*

[ A

T3
(36)

where the last inequality holds because ¢ +— ¢(z, ) is Lg-
Lipschitz as per Assumption 3.

To obtain (12b), we first suppose without loss of generality
that only a single datum z is given, and in order to prove
existence of the gradient of Jf(f_l, z) with respect to 6, we resort
to the Danskin’s theorem as follows.

Danskin’s Theorem [57]: Consider the following minimax
optimization problem

i 0
ggglglea;f( &)

(37)

where A’ is a nonempty compact set, and f : ® x & —
[0, oco) is such that f(-, ¢) is differentiable for any ¢ € &', and
Vef(0, ¢) is continuous on ® x X. With S(0) = {¢,.]|¢, =
arg max; f(#, £)}, the function

f@) = rcneagf(ﬂ, %)

is locally Lipschitz and directionally differentiable, where the
directional derivatives satisfy

f6.d)= sup (d, Vef(®,¢)).
teS(0)

(38)

For a given 6, if the set S(f) is a singleton, then the function
f(6) is differentiable at # with gradient

Vof (8) = Vaf (0, £.(8)).

Given 6, and the p-strongly convex c(z, -), function y’;(f_l, = 2)
is concave if L;; — yp < 0, which holds true for yp > Lz/p.
Replacing f(@, ¢) with ¥ (8, ¢; z), and given the concavity of

(39)

= 1,!/(5_3, ¢ z7), we have that 1;7/(5; Z) is a continuous function
with gradient

V¥ (0:2) = V39(0. £,0;2): 2). (40)
We can then obtain the second inequality, as
||V§1!f(51,€i; z) = Va'!!(f_*z, £ z) ||
< |Vaw (81 ¢k2) - Vaw (1. ¢%:2) |
+ HV"# 91 Cf;z) = Vaxif(éz, é‘i;z) H
" [Vef (61, e: — Vol(61, «:%)]
—c(z.¢4)
4 H I:Vef 91 ; i,',.() — Vot(62, CE)]
0
<Ly |4 — &5 — &3] + Looll61 — 62]]
< (oo + =22 ) g, g
% 2=l 1)

where we again used inequality (36). As a technical note,
if the considered model is a neural network with a non-
smooth activation function, the loss will not be continuously
differentiable. However, we will not encounter this challenge
often in practice.

B. Proof of Theorem 1

With slight abuse of notation, define for convenience
F@@,y) =f@,y)+r(@)+ h(y), where h(y) is the indicator
function

_ )0, ifyel
h(y)_loo, ify¢rl

with I := {y|y > w0}, and for ease of representation we use
7(#) :== r(#) + h(y). Having an Ly—smooth function f, yields

1) <10) +{or(@). 7% 7)o 2

For a given 7', the gradients are

(42)

§r+1 éf

(43)

() Va%ﬁ(ﬂ’,%ii*(@r;z‘);z‘)_
. (Gt) - 3y14’f('9‘=}',¢'$(5r;z‘);z‘)_
(9’,V,§*(5r;z*);z')_
—C(z‘.s‘:*(ét,z‘) 1

[Voy 0, y. 027 ]
a,v (0, y, £ (022
_V.ggfx(ﬂ‘, . .02 z‘)
p—c(z‘,{e(él z‘) i

_Va‘.ff

and

() =
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obtained by an oracle at the optimal ¢, and the e- optlmal ¢,
solvers respectwely Now, we define the error vector 3(6 Yop=
Vf(9 )—g (0 ), and replace this into (43), to obtain

) <1(F) @) o) -3

+ 2|7 -7 (@4

The following properties hold equivalently for the proximal
operator, and for any x, y

I = prox, (x) < (x— u)T(y —u) <ar(y) —ar(u).
(45)

and x = 8 — a;g°(8") in (45), it holds that
(5‘ —age (§1) 0.0 _9‘+‘> < a(7') — e (i)
and upon rearranging, we obtain

(g€ (ét), g _ ér) » ;—(é‘) B F_(gt—i—]) B _Iiﬂr-pl _d ”2

(46)

=41
Withu =6

Adding inequalities in (46) and (44) gives
70 <1(7) +{3(8). 7' - a’) L2 _FP
+7(8) -7(0"") - — ||a‘+‘ o'
and with F() = f(#) + 7(f), we can write
F(6*") - F(7) < (a (7).0"" - a‘)

HF - -

> (47)

Usmg Youn% s inequality for any n > 0 gives {3(5"), 5"“ —
6y < 218" —0'1? + 156" and hence

#(f)-alf) (50 -

|I3( )II

2n

(48)

Next, we will bound 8(9 ) = Vfﬂ? )—g (6 ). By adding
and subtracting g (8 ) to the right hand side, we find

Js@)] < 2for(@) @) +2le @) - @)
(49)
The Lipschitz smoothness of the gradient, implies that
o) -¢(@)]
_ ‘ [vw(ﬂ‘, 2 c*@‘;zf);zf)]

p—czt £, @07
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| Vew (', v. L. 6":21):7")
o —c(@, 2:6(9 7"

= | Vov 8", v, £,6";2):2) — oy (0", v, £.(0';2); )|
+ e, &5 — e, &

g (L*’Z +Lo)lgh — g1
2 (G v

LZ
- (B n)e
where (a) uses the A' = py' — L; strong-concavity of ¢
¥(0, v, £; 2), and the second term is bounded by L.||¢%, — ¢! ||?
according to Assumption 3. The last inequality holds for Xg =

uvo — Ly, where we used (42) to bound y' > y > L. So
far, we have established that

(30)

@)@ <% @
where for notational convenience we let L2 = J[,2 + ApLe.
Substituting (51) into (49), the error can be i)ounded as

(@) <2lor@) - @O + 3 @
Combining (48) and (50) yields
F(ém) —F(Er) ” (# . air) §r+1 _7 2

12 ¢
+-22 (53
nio

)@

Considering a constant step size o and summing these inequal-
ities over t =1, ..., T yields
T 2
1 Li+nq
(;——2 );e i <#(@) (@)

P 2 (T+1)Lie
[ (#) -+ ) ”

+ —Z . 54

1 4
+5]or(

=t+1 =

0

~t+1

0 = argmm ar(8) + ol — é',

g (7)) + 5lo -7

(35)

the optimality of 8" in (55), implies that
_ (741 ~t4l =t ft 1 2 e
O+ 0™ 8 (0) + 5o <#(#)
which combined with the smoothness of f (c.f. (43)) yields
BT B gy ~t 1 L\ a4l a2
(a #'.g°(8") - vr(0 )>+ (h : )||9 8|

< F(é‘) = F(é‘“) (56)

9—1‘—6—| _ §t
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1 _ér, Vf(ﬂ_H_l)}

7 5.) -9+ (5 )
< F(é“) —F(E‘“) L (9 —§ Vf( ‘“) - Vf(é‘)).

Considering [|g¢(@") — VF(""") + L@ — )12 on the left
hand side, and adding relevant terms to the right hand side,
we arrive at

( ) Vf( r+l)+l(e—r+i
o< (8°) = vr(8"") I +—||9'+'—9"|I2

(2= )1 -7+ 2(#(@) - ()
{7 () (i ))
£ (7)) + & -]
(B 20
{5 =) w6 (@)

(@) - wr(@) + [

Subtracting (EH from both sides gives
At =f 2

[

IA

[A

IA

Ly 1 \[zt+1 5t 2 g af\ o fat+l
+ (; — )|f -]+ F(8) - F(0"")
. N2 BN |12
+ 2 af—f—l e 9.' + T Br+l _91 “ (57)
a n

where the last inequality is obtained by applying Young’s
inequality, and then using the Lf-Lipschitz continuity of f(-).
By simplifying the last inequality, we obtain

(7)) 2@ )|
¢ (@) - wr(@) | + (@) - ("))
+ (L)

The first term in the ri ight hand side can be bounded by adding
and subtracting g (8 ) and using (51), to arrive at

(7)o (0") 50 -9)|
ofor®)-r @) 5 +;(F<af) )
(G

Summing these inequalities over t =1,...,

; g( ) Vf( “”) é(gf-i-l_a_r) 2

=

peo

—0

(38)

=

—0 (59)

T, we find

7 N |, 2T+ 1L%e
< 22 Vf(ﬂ) g (6) e
+ %I:F(éﬂ) - F(ér):l
_!_(: 19’:7?); §r+1_612 (60)
Using (54) to bound the last term yields
E
1 #
[ (#) - + 5
T
=) (O + 550
1=0
%) —g*(m 2
0
‘ BT+ L] e -

Ao

where 8 = (J- + J—) +n —. By taking expectation of
both sides of thxs mequallty, we obtain
2]

n ( ) Vf( r+1) é(g’“ _5’)
(@G () S0 @

where we have used E[[|[Vf(8") —g*(ﬁ“)ug] < o2, which holds
according to Assumption 5. By [39, Th. 10] and [58], we know

that
o gt (ﬁ—’:) L é(ém _5:) " 3?(§r+1)

which gives
Vf(é‘“) - (ﬂ;:) . é(ém _ é‘)

c Vf(é‘“) i a?(é‘“)

= aF(é’“).

Upon replacing the latter in the left hand side of (62), and
recalling the definition of distance, we deduce that

E[dist(l], 3,&(6"))] < (2 g g)ﬁ 4 (% 4 2)0‘2
(B+2)L; €
Ao

(63)

+

where ¢ is randomly drawn from el 20
concludes the proof.

T+ 1}, which

C. Proof of Theorem 2

Instead of resorting to an oracle to obtain an e-optimal
solver for the surrogate loss, here we utilize a single step
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stochastic gradient ascent with mini-batch size M to solve the
maximization step. Consequently, the updates become

ot — ProXg,, (5: —ag’ (E_Jf))

where g'(8") = 3 XM (@', ¢l 2m). Letting 88"
Vf(@’)—g“(ér), and using the Ly-smoothness off(t_i), we obtain

(64)

) ) @) - o
<1(#) +{¢(#) + (7). ‘9’“—‘?)
& ““—ﬂ" (65)

Next, we substitute 8 —> u, 6" — y, and 0 —a;g‘(ér) —x

in (45), to arrive at

<§: . cu,g’(@t) B E}’“,E' _ ar+1) " a;?(@") " ar?(ém)

which leads to

()47 ) <)) -4

Substituting the latter into (65), gives

f( :+|) 4f( ) ( (6’),@”' —ﬁ’)+ l?f"am _g
i F(@‘) _ ?(@rH) _ alr §:+1 _ ér"?
and with F(0) :=f(0) + r(#), we have
F(@H']) 0 F(f_lr) 2 (8(51‘), §H _ ér)

B

-

2

2
Using Young’s inequality (3(8"),8""" — 8") < L18@"I2 +
119™" — 8|12 implies that
_ . oz l8(8°)12
F(ef+’>—F(ef>s(%—gwem—ofu )
(67)
and after adding the term (6 =F. Vf(t?iprl to both sides

in (67), and simplifying terms, yields

(i -0t #) -5r (0
< (-2~ 9|| +F(a)
—(0 y Vf( ‘“

Completing the square yields

¢(7) - wr (i) + g(ﬁ'“—a*)z
< J¢(@) - v

")

(68)

2
t

gt _g

1
+—

I
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(- 2| o 0D

2 ) o)

= 2fe(@) @) +2o@) -6

= 2*(0%‘5%) 2
{¢) r(#”)

o —w(5) -9

519

27 2*(%‘53)

() A6") 2

oo+ X))

+
oy
—t+1 ot "
6 -0

f_?H_l _ Ef

|2

2+2“Vf(é

A

1

—t+1

0

=T

ptl g

=

—0

+

2
t

éH_] _a

[A

@)

2
+2L

=1

2
éH_] 8 at—i—] I ér"

gt _ gt 0
-+ —0

| A

31f +2L2e

ot

(69)

Recalling that 8(8") := Vf(8') — g'(8"), we can bound the
first term as
Bf|e'(

()~ wr(#)| 1]

[ “(#") - vr (@) + | le']
¢ (#) - v (8] + |
+2E[(g (¢") — vr(#'). )le']

where the third equality lS obtained by expandmg the square
term, and using ]E[{g*(ﬁ) — Vf(ﬂ) 8t )|6] = 0. We will
further bound the right hand side here as follows. Recalling
that - M Zm_]g(ﬂ leoz)—g *(6"), where g*(0") =
7 3 Bl Vguﬂr(ﬂ £oti Tm), it holds that

e

(70)

£ 2 g 5y e 2—1 ¢
=E[‘|E£[g(s,cm;zm)—g (9)] 9,5,,,]
1 - ol ut al et 2“ t
= EEE[ Vv (8, S zm) — Vv, Ciiza)| |0 ,;m]
2 M
< 10 lelcfﬂ—czill2 (71)

where the second equality is because the samples {zm} _q are
ii.d., and last inequality holds due to the Lipschitz smoothness
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of ¥(-). Since ¢!, is obtained by a single gradient ascent

update over a p-strongly concave function, we have that
2 M
0z t »«r
73 Zl 50— &l <
m=

where D is the diameter of the feasible set, and a; > 0 is the
step size. The following holds for the expected error term

Lo —z|a —awD? +afB| (72)

. I
E[1817(6", ¢ ] < 22 [(1 —awD? + 7B (73)

and using it in (70), we arrive at

e[} (#) - v (@) 1] <

12
+ | (1 — e)D? + o282 .

(@)-w@)l

(74)

Substituting the last inequality into (69) boils down to
]E[ ( ) Vf( :+1) ai(ém —EI) 2|é‘]
t
e (@) -w(@)]
_,]

3L + 2020,
+ —

' ]E|:||§t+1 _§
ap
2F({J’) —2E [F(é‘“) lé‘]
N

oy

12
+ %[(1 — ayp)D? + afBz]. (75)

Taking again expectation over 8 on both sides, yields

o))+ 56
< 415:[ g*( ) ( )" ] [(1 — ayp)D? +a232]
+E[zp(a ) —2r(e"") | 3y + 203, i éﬂ'

(043 oy
(76)
Recalling that E[||y* (6’ ;m,zm) — Vf(i? )[|2] < o2, and that

g"‘(ér) = = f’:_l W(ﬂ L5 zm), the first term on the right

hand side can be bounded by %2 For a fixed learning rate
a > 0, summing inequalities (76) from t =0, ..., T, yields

A 2 @) o) 20 )]
" ﬁ(p(oﬂ) - E[F(of)])

3L +2L%a

8r+l —r
+ o T+1 I:Z"
212

;Z [(1 —aw)D? + asz:I

27 442
=%

1 (2  6Lr+4Lfa o T
= T+I[E+ [2—;::(1Lf+,s)]](F(fJ )_E[F(B )D
272 3L + 2L%a
0z ! _ 2 2p2
=+ I l+2(2—a(Lf—|—ﬁ))}|:(1 ap)D —|—aB]
402
+?. (77)

Consider now replacing F(H ) — F{B ) w1th AF = F{0 ) —
inf F(G) and note that g (6 ) — Vf(ﬁ 1 (8 A 0 ) €

aF (B ), where dF denotes the set of subgradlents of F. It
then becomes clear that

E[dist(0, 8F)?]

| S ) ()

[A

w9

202 v 2

¢ Bz [ 2 2 7] 4o
2N 2 (1 —au)D B+ =
= T+1 7+ N ( ap)D” + o + ]

Ly+4L}a 3Ly+2L}a

6.
where§—2+m#ﬁandv_l+m,which

concludes the proof.

D. Bounded gradient norm assumpftion.

Regarding a bounded gradient norm assumption, this
indeed a consequence of the other assumption already made.
Specifically, the condition E[||V5y* (8, &; 2m) — Vf(ﬂ)nz] <

2 to hold, requires that the gradient of the loss be bounded,
that is ||Vg€(f.2)|l» < By V#@,z, where B; is a constant

dependent on o. A similar argument is presented in [34]). To
formalize this, recall the definition

M
#(7) = 2 3 Viu (. 64 78)
m=1 7=
Using this, the gradient norm can be bounded as
M
1/ (7) 1 = ﬁ > Vi (7. ¢1i5) 19

@IZWW(G%JN

(k) 1
{

M
1 o 512

- gy (7.2

where (a) is due to norm properties, and (b) is simply since
each term is replaced by the maximum value it can take. For
brevity, with a slight abuse of notation let us define

[F09(5.05) = ma s 512
(80)

Upon invoking the definition of 1,!/(5, £7) = £0:¢) +

y(p —c(z, &)) (c.f., (10)), it holds that

|vsv* (8.5:2)] = " [ %o — ot cm]

2
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TABLE III

HYPERPARAMETERS USED FOR TESTING ON CIFAR-10

Testing Method FGSM TPGD CwW PGD DIFGSM
€ = 0.001 o= e=0.03 e=0.03
e k=001 a = 0.008 a = 0.007
Hypaparmicion e=10.08 ast:. 2'0_027 steps = 50 steps = 10 steps = 10
= Ir =0.01 | random start = True | decay = 0.0
Testing Method TIFGSM NIFGSM RFGSM VNIFGSM APGD
e =0.03
a = 0.007 €= 0.03
nsig = 3 T
_ a = 0.007 ¢ = 0.06 _
il steps = 10 e=0.03 o = 0.007 i
Hyperparameters 1en kernél — 15 decay = 0.0 a = 0.007 steps = 10 steps — 10
resize rate — 0.9 Tesize rate = 0.9 steps = 10 decay = 1.0 noter— g
i e diversity prob = 0.5 N=508=15 =8
diversity_pfo b— 05 random start = False
random start = False
TABLE IV
HYPER-PARAMETERS USED FOR TESTING ON CIFAR-100
Testing Method FGSM TPGD CcwW PGD DIFGSM
=1 e = 0.001 e = 0.001
=0.001 N
Hyperparameters e=10.03 ;: = 0.005 =00 g=0:0p =007
o teDs - 9 steps = 5 steps = 10 steps = 5
Heps = Ir = 0.01 | random start = True | decay = 0.001
Testing Method TIFGSM NIFGSM RFGSM VNIFGSM APGD
e = 0.001
ﬁ;g ‘{03} ¢ =0.03
= a = 0.007 e = 0.001 _
= (1100 steps — 10 ¢ = 0.001 a = 0.01 = 06081
Hyperparameters y = s decay = 0.0 a = 0.01 steps = 10 R=T
len kernel = 15 ; steps = 10
: te = 0.9 resize rate = 0.9 steps = 5 decay = 1.0 —¢
{::{’;T ’:aga:ssﬁn diversity prob = 0.5 N=5p8=15 PR e
diversity prob = 0.5 random start==Ralze
random start = False
W2
< Ve ®; O + | Vy (v (0 — @, ©))) REFERENCES

=<

— B2

IVee(0; O + lp — c@ O
B + B2

(1

2]
(81)

31

where ||Vg£(#; g')|E2 < BI2 follows from discussion above, and

lp —c@ O < B% is a direct consequence of boundedness

[4]

constriint under the Assumption 1. Hence it is clear that
Ellg'@)1* < E|V5y*®.¢: 2] < B2

E. Hyperparameters for CIFAR-10 and CIFAR-100 Tests

(51
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The numerical test results presented in Table I and Table II

correspond to testing against adversarial samples generated

71

using the trained model parameters and specific algorithms

with preselected hyperparameters. For reference, Table III
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details the hyperparameters utilized for the CIFAR-10 classifi-

cation problem. To address the observed drop in performance

91
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