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Abstract—We propose novel non-linear graph-based analog
codes that directly encode k real-valued source samples into
n real-valued samples by using (non-linear) sample-by-sample
soft quantization of the input samples followed by a linear
transformation on the soft-quantized values. Different from
existing analog coding schemes, the proposed analog codes are
able to produce additional output symbols in a rateless manner
and can be decoded utilizing message passing algorithms dealing
with real-valued nodes, achieving a performance close to the
theoretical limits.

Index Terms—Analog coding, non-linear codes, sparse codes,
iterative decoding.

I. INTRODUCTION

DIGITAL systems based on separation between source and
channel coding have been the cornerstone of modern

communications. However, digital systems are not very robust
to changes in channel conditions and require long block
lengths to approach the theoretical limits, which means
substantial delays and high encoding/decoding complexity.
These problems can be alleviated by the use of analog
joint source-channel coding, where the concatenation of
the (vector) quantizer, source encoder and channel encoder
characteristic of digital systems is substituted by a simple
end-to-end analog encoder. Indeed, the concatenation of
quantizer, source encoder, channel encoder and modulation
in a digital communication system can be seen as an
analog code implementing a non-linear transformation, but this
transformation is quite complex to be described as a single
block. When designing analog codes, the objective is to define
them as discrete-time, continuous-amplitude systems, which
directly process k real-valued samples1 and, using a non-
linear transformation, produce n real-valued samples which
after proper modulation are transmitted directly through the
channel (i.e., bits are never used in the encoding process.)
The origin of analog coding goes back to Shannon in

1949, who in [1] discussed the idea of designing noise-
resilient analog transformations, introducing the idea of
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using space-filling curves for analog coding. In 1976, [2]
developed bounds for analog linear systems, proving that linear
transformations have mediocre performance when used for
bandwidth expansion (n > k) and very bad performance when
bandwidth reduction is sought (n < k). This motivated the
development of new non-linear mappings, including space-
filing curves [3], [4] and other techniques, which have been
successfully used in applications such as image transmission
[5], [6]. While many of the analog codes proposed in the
literature have low delay and good performance [6], [7],
[8], they must be completely redesigned if (k, n) changes.
Moreover, as k or n increases, searching for good mappings
becomes intractable due to the computational complexity of
the optimization algorithms.

II. SYSTEM OVERVIEW

In a digital system, the concatenation of quantizer, source
encoder, channel encoder and modulation can be simplified by
substituting the last three blocks by a block performing coded
modulation, such as Rate Compatible Modulation (RCM) [9]
or an Analog Fountain Code (AFC) [10]. Then, we can see
the end-to-end system as an analog code consisting of the
concatenation of a quantizer and a coded modulation block.
Since coded modulation schemes are flexible in terms of
rate (rateless codes), this flexibility also holds for the whole
system. However, the end-to-end performance would still be
limited by the quantizer, which means that, contrary to what
occurs in well-designed analog codes existing in the literature,
performance will not improve when the channel quality gets
better. The use of a quantizer leads to this lack of robustness,
which is typical of digital systems.
Inspired by the scheme described in the previous paragraph,

we propose novel non-linear graph-based analog codes which,
different from existing schemes in the literature, i) are flexible
in terms of rate, and additional redundant symbols can be
added in a rateless manner, ii) do not need to be redesigned for
different values of k and n, and iii) can be decoded utilizing
message passing algorithms dealing with real-valued nodes.
Specifically, the proposed analog codes generate the

transmitted symbols by using n linear combinations of shifted
versions of the k real-valued source samples. Therefore, they
consist of two serially concatenated stages. In the first stage,
the quantizer is substituted by a non-linearity (shifting) that
acts directly on the k real-valued source samples, producing a
vector of k intermediate real numbers. The way this is done
is to partition the input space into regions, similar to what a
quantizer does. The difference is that rather than assigning a
different centroid to each one of the regions, as in quantization,
all the input source samples belonging to the same region are
shifted by the same value, and different regions are shifted
by different amounts so that after shifting the regions are
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separated from each other in what we can consider a “soft”
quantization. In the second stage, the transmitted symbols
are produced by generating n linear combinations of the k
intermediate real numbers obtained in the first stage.
We consider normally distributed samples with mean zero

and unit variance that are sequentially grouped into blocks of
k samples, vector mk. The analog encoder transforms the k
source samples into n output symbols, which are denoted by
the vector xn = [x1, . . . , xn], xi 2 R. The output symbols
are normalized to have an average energy per symbol of Es,
and transmitted through an Additive White Gaussian Noise
(AWGN) channel of mean zero and variance �2

n. Finally, the
decoder processes the received noisy sequence and generates
the estimate vector m̂k.

The mean square error (MSE) is used as the distortion
metric, expressed as signal-to-distortion rate SDRdB =
10 log10 1

MSE . The signal-to-noise ratio, SNRdB, is defined
as SNRdB = 10 log10

Es
�2
n
, where Es = E[kxnk2]/n is the

average transmitted energy per symbol. The end-to-end system
performance is assessed by the SDR vs SNR curve. Since
kR(D) < nC, where R(D) is the rate distortion function and
C is the channel capacity, for a given Rc = k/n we can easily
obtain the theoretical limit (OPTA) in terms of SDR vs SNR.

III. ENCODER

As explained before, the encoder consists of two sequential
stages: Shifting and analog linear coding.

A. Stage 1: Shifting
The first stage in the proposed scheme is to perform a

sample-by-sample shifting of the source samples. In order
to do this, we partition the real line, R, in Q segments or
regions, similar to what a quantizer would do. Different from
quantization, where a different centroid is assigned to each
one of the regions, in the proposed scheme all the input source
samples belonging to the same region are shifted by a fixed
value, and different regions are shifted by different amounts
so that after shifting the transformed regions are separated
from each other in what we can consider a “soft” quantization.
In this letter, where we focus on Gaussian sources, we will use
the partitions that are optimal for the scalar quantization of a
Gaussian random variable, as described in [11]. Since we are
working in a joint source-channel coding framework, this does
not guarantee optimality. However, it considerably simplifies
the design.
Figure 1 depicts the distribution of the output of the

aforementioned shifting transformation, S0(mi), for Q = 4.
Notice that since for any value of Q the interval lengths
are fixed (optimal quantization for Gaussian sources), the
transformation S0 is uniquely defined by providing the
separation between the transformed regions. Since the input
distribution (Gaussian) as well as the partition used as starting
point are symmetric, optimal transformations S0 will also be
symmetric. When Q is odd, S0 will be defined by a vector
of q = Q�1

2 real numbers, [l0, l1, . . . , lq�1] specifying the
separation between the transformed regions in R+. For an
even Q, S0 will be defined by a vector of q = Q

2 real numbers,
with l0 specifying the separation between the two transformed

Fig. 1. Proposed non-linear shifting function, S0, for the case of Q = 4.

Fig. 2. Proposed scheme that encodes 6 Gaussian samples into 4 output
symbols. Each symbol is generated by the linear combination of a subset of
the source samples shifted by the function S.

regions that are closer to 0 and [l1, . . . , lq�1] indicating the
separation between the transformed regions in R+. The final
shifting transformation, S, is constructed by normalizing S0,
so that the variance of the prior for nodes gi = S(mi) is the
same as that of source nodes mk (unit variance in this letter).
As we will see in the sequel, the design of the function

S is key in order to obtain good performance. Notice that
the discontinuities introduced by S are an extension of what
a quantizer does. Discontinuities also appear in a different
manner in existing analog codes, such as in space-filling
curves. As indicated before, linear analog codes have a very
poor performance, and the discontinuities introduced in the
shifting stage can be seen as very simple non-linearities that
allow for improved performance over linear schemes.

B. Stage 2: Analog Linear Coding

Each transmitted symbol, xj 2 R, is generated as a linear
combination of a random subset of nodes, gi = S(mi),
proceeding from the first stage. Specifically,

xj =< w,gj >=
drX

k=1

wkgi|w(eij)=wk
, (1)

where dr is the number of connections of each output symbol
xj , and its value is small so that the resulting graph is
sparse and message passing can be applied; w(eij) is the
weight of the edge that connects gi and xj , and gj =
[gi|w(eij)=w1 , . . . , gi|w(eij)=wdr

] is the set of nodes connected
to the output symbol xj , which are ordered according to
the weight vector w = [w1, . . . , wdr ].2 Figure 2 depicts
an example of the proposed non-linear analog code when
k = 6 and n = 4 (Rc = 1.5).

2To facilitate the description of the decoding process, w is chosen so that
the average transmitted energy per symbol is the desired value Es.
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IV. DECODER

As typically done for sparse graph-based digital channel
codes, we use the belief propagation algorithm or message
passing [12] to decode the received symbols, yn, resulting
from the transmission of xn through the AWGN channel (yj =
xj + nj , where nj ⇠ N(0,�2

n)). The objective is to obtain
the estimates of the source symbols, m̂i, that minimize the
mean square error. This is achieved by estimating the posterior
probability density function of the source samples, ppmi

, in an
iterative manner and then choosing m̂i as the mean of ppmi

.
The iterative decoder for linear analog codes can be found in
[13] and [14]. The proposed decoder, which is presented next,
follows [13], [14] closely with two differences: First, the non-
linearity introduced by the shifting function S. Second, [13],
[14] use check nodes instead of the projections we consider
here. In the sequel, the iteration number is denoted by t, where
t = 0 in the first iteration.

A. Initialization
The only information at the nodes gi during the first iteration

comes from the a priori knowledge of the source, which is
the probability density function pam(x) ⇠ N (0, 1). Thus, the
a priori probability density function of gi, pag(x) = S(pam(x)),
is obtained by transforming pam through the non-linear shifting
function S, as follows

pag(x) /
(
e
�y2
2 , for x = S(y), y 2 R

0 otherwise.
(2)

B. Symbol Nodes
The message passed from the transmitted symbol node,

xj , to the shifted node, gi, is denoted as s(t)ij (x), x 2 R.
As previously mentioned, the equation of the received symbol,
yj , is expressed as

yj =< w,gj > +nj =
drX

k=1

wkgv|w(evj)=wk
+ nj , (3)

where gj = [gv|w(evj)=w1 , . . . , gv|w(evj)=wdr
] is the vector

of shifted nodes connected to xj ordered according to their
weight index.
The auxiliary variable, zj\i, is defined as

zj\i =
drX

k=1
v 6=i

wkgv|w(evj)=wk
+ nj , (4)

and has probability density function

pzj\i /

0

B@ ~
k s.t. ekj2Ej

k 6=i

q0(t�1)
kj

1

CA ~ N (0,�2
n), (5)

where ~ is the convolution operator, q0(t�1)
kj (x) /

q(t�1)
kj (x/wk) is the properly scaled message (probability
density function) passed from shifted node gk to symbol node
xj as calculated in (10), Ej is the set of edges of the graph
departing from symbol node xj , and ekj is the edge connecting
gk and xj .

TABLE I
PARTITION OF THE INPUT SPACE AS A FUNCTION OF Q

Substituting (4) in (3) we get yj = zj\i+w(eij)gi, and then
we calculate

p(yj |gi) /
Z 1

1
p(yj |gi, zj\i)p(zj\i)dzj\i (6)

/
Z 1

1
�(yj � w(eij)gi � zj\i)p(zj\i)dzj\i (7)

/ pzj\i(yj � w(eij)gi), (8)

where �(·) is the delta function and p(zj\i) denotes the
probability density function, pzj\i(·), calculated by (5).

Finally, the message from the symbol node, xj , to the shifted
node, gi, is given by the probability density function

s(t)ij (x) /

0

B@ ~
k s.t. ekj2Ej

k 6=i

q0(t�1)
kj

1

CA ~ N (0,�2
n)(yj � w(eij)x).

(9)

Compared with (5), s(t)ij has been shifted leftwards by the value
of the received observation, yj , and scaled by �w(eij).

C. Shifted Nodes
The message passed from the shifted node gi to the symbol

node xj at the t-th iteration is denoted as q(t)ij (x). As in [13]
and [14], the outgoing message q(t)ij is equal to the point-wise
product of the incoming messages, which includes the prior
pag , leading to the probability density function

q(t)ij (x) / pag(x)⇥

0

@
Y

v s.t. eiv2Ei,v 6=j

s(t�1)
iv (x)

1

A , (10)

where Ei is the set of edges departing from node gi, and eiv
is the edge between nodes gi and xv .

D. Decision
In order to make the final decision, we first estimate the

posterior probability density function of shifted node gi, ppgi ,
by using all the incoming messages at node gi. This results in

ppgi(x) / pag(x)⇥

0

@
Y

v s.t. eiv2Ei

s(t�1)
iv (x)

1

A . (11)

Then, we obtain the posterior probability density function of
input node mi by applying the inverse to transformation S,
so that

ppmi
(x) / ppgi(y) for y = S(x), x 2 R. (12)

The source sample estimate, m̂i, is obtained by computing the
expectation of this posterior probability.
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Fig. 3. Simulation results for dr = 4 and Rc = 2 as a function of l0.

V. SIMULATION RESULTS

We perform Monte Carlo simulations to evaluate the
performance of the proposed scheme over the AWGN channel.
As explained before, the partition of the input space is the
same as for optimal scalar quantization and is presented in
Table I for Q = 2 . . . 5. The coefficients for the linear mapping
(stage 2) of the proposed scheme, w, are the same as in
[10], consisting of the dr leftmost components of the vector
K ⇥ [1/2, 1/3, 1/5, 1/7, 1/11, 1/13], where K is chosen
so that the average transmitted energy per symbol is
the desired value Es. The vector l = [l0, . . . , lq�1]
indicating the separation among the transformed regions is
optimized by simulations. In order to calculate the messages
(probability density functions) exchanged in the iterative
decoder, we quantize them in the interval [�50, 50] with
50001 values, which results in a resolution step of 0.002. The
decoder performs 15 iterations per block.

Fig. 4. Distribution of the prior for nodes gi when Q = 3. As explained in
Section III, normalization is performed so that the variance for nodes gi is
equal to that of the Gaussian source (unit variance in this letter). The increase
of l0 leads to a shrinkage of the lobes, which in the limit converge to deltas
(scalar quantization).

We first evaluate the proposed scheme when k = 300 and
n = 150 (Rc = 2) by simulating 80 blocks. Figures 3a and 3b
depict the performance, in terms of SDR, of the proposed
codes for dr = 4 and several values of the SNR as a function
of l0 when Q = 2 and Q = 3, respectively. We also depict the
limit of a system where optimal scalar quantization with Q
levels is performed for each source sample, as in [11]. Notice
that when l0 = 0 the system is indeed a linear analog code.
It is remarkable that in both subfigures the SDR begins to
improve when l0 increases, provided that the SNR is high
enough.3 When l0 continues to increase, SDR achieves a
maximum and then it decreases up to the theoretical limit
for optimal scalar quantization. The reason is that, as depicted
in Fig. 4, when l0 increases the proposed non-linear analog
code approximates a digital system performing optimal scalar
quantization followed by coded modulation. It is remarkable
that by choosing the appropriate value of l0, the proposed
non-linear analog code is able to easily outperform linear
codes and it is not bounded by the SDR limit of scalar
quantization. A similar behavior can be observed when both
l0 and l1 increase and Q = 4 or Q = 5.
Figure 5 compares the performance of the proposed non-

linear analog codes to the OPTA and to the theoretical limits
when scalar quantization is used. For each value of SNR, the
SDR was obtained by optimizing the vector l = [l0, . . . , lq�1].
In the low SNR case, the best performance, already very close
to the OPTA, is obtained by linear codes (l = 0). As the
SNR increases, the proposed non-linear analog codes rapidly
begin to outperform the linear system, and they are also able
to achieve SDRs higher than those of optimal digital systems
based on scalar quantization. Although the performance of the
proposed codes is several dB worse than that of the best analog
codes in the literature [6], [7], [8] (e.g., for SNR = 30 dB,
SDR = 10 dB vs SDR close to 15 dB in the aforementioned
references), contrary to existing schemes in the literature the

3For low SNR, the performance of linear codes (l0 = 0) is already close
to the OPTA and using a non-linear code (l0 > 0) will not lead to improved
performance.
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Fig. 5. Simulation results for the proposed non-linear analog codes with
Rc = 2 for different values of Q and dr . For comparison purposes, we also
depict the performance of the optimal system when scalar quantization with
Q levels is used [11], as well as the performance of an optimal linear code
(l = 0) [2]. Each data point for the non-linear codes corresponds to the best
SDR obtained when the vector l is optimized.

Fig. 6. Simulation results for the proposed non-linear analog codes with
Rc = 3 for different values of Q and dr . For comparison purposes, we also
depict the performance of the optimal system when scalar quantization with
Q levels is used [11], as well as the performance of an optimal linear code
(l = 0) [2]. Each data point for the non-linear codes corresponds to the best
SDR obtained when the vector l is optimized.

proposed scheme does not have to be redesigned for different
values of n and k and can be used in a rateless manner. Note
that the envelope of the curves in Fig. 5 is parallel to the
OPTA. This is an interesting result, as it is the first time it has
been observed in the literature for graph-based analog codes
decoded using message passing.
Next, we simulate 80 blocks for a k = 300, n = 100 analog

system (Rc = 3). The system behavior when the vector l varies
is similar to the case of Rc = 2 described before. Figure 6
compares the performance of the proposed non-linear analog
codes to the OPTA and to the theoretical limits when scalar
quantization is used. As before, the SDR was optimized for
each value of SNR by optimizing the vector l. Again, the

performance is several dBs worse than that of the best analog
codes in the literature.

VI. CONCLUSION

We have presented a novel analog coding scheme for
the transmission of Gaussian samples through an AWGN
channel by using a random-like sparse graph. The key idea
is the insertion of non-linearities into each input sample
prior to linear coding. These non-linearities are introduced
by partitioning the input space into regions, similar to what
a quantizer does. However, rather than assigning a different
centroid to each one of the regions, all the input source
samples belonging to the same region are shifted by the same
value, and different regions are shifted by different amounts
so that after shifting the regions are separated from each other
in what we can consider as “soft” quantization. By optimizing
the number of regions and the shifts applied to each region
(e.g., more regions are required when the channel quality
is better,) the proposed analog codes are able, for the first
time in the literature, to achieve a performance close to the
theoretical limits in a rateless fashion, easily outperforming
analog linear codes and surpassing the theoretical limits that
would be imposed by scalar quantization.
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