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Abstract
We propose a novel analog joint source-channel coding system
for image transmission over noisy channels. First, a variable
density compressive sensing encoder is applied to the desired
image. Then, the resulting compressive measurements are en-
coded using a recently proposed non-linear analog encoder,
which can operate in a rate-less fashion and produces contin-
uous amplitude symbols that are directly transmitted over the
noisy channel. Due to the non-uniform energy allocation re-
sulting from the compressive sensing encoder, the non-linear
encoder has to be carefully designed following the insights
provided by an optimization analysis. Simulation results show
the potential of the proposed framework, which completely
skips the digital domain (bits are never utilized during the en-
coding process).

1 Introduction
Compressive sensing (CS) [1–5] has been one of the most im-
portant recent innovations in the field of signal processing in
general, and image processing in particular. By obtaining ran-
domized non-adaptive linear projections from the original im-
age, which is sparse in the proper domain, CS manages to pro-
duce efficient, dimensionally reduced representations of the
signal of interest at a rate lower than Nyquist’s. Reconstruction
is performed by solving an inverse problem, e.g., by greedy
pursuit in a basis where the original signal admits a sparse rep-
resentation.
Compressive sensing can be integrated in a digital com-

munication system in exactly the same manner as standard
schemes based on sampling. In order to do so, a source en-
coder would first be applied to the CS measurements, produc-
ing a sequence of bits, and then these bits would be protected
by applying channel coding. Provided that the source encoder
and the channel encoder are optimal, and by properly fixing
the rates dedicated to the source and channel encoders (for a
fixed end-to-end overall information rate), the digital system
will be asymptotically optimal for increasing block lengths.
However, the price to pay is the need to use i) very powerful,
and complex, vector quantizers to approach the rate distortion
limit and ii) sophisticated channel codes such as Low-Density
Parity Check (LDPC) codes that approach the channel capac-
ity. In addition to the aforementioned complexity issues, ap-
proaching the theoretical limits requires the use of long block
lengths, with the consequent delays. Moreover, digital systems
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are not robust against changes in the channel conditions, since
they have to be specifically designed for a desired signal to
noise ratio, SNR: If the real SNR is lower than that utilized for
the design, the channel encoder breaks down and the distortion
will increase substantially. On the other hand, if the real SNR
is higher than expected, the resulting distortion does not show
any improvement.
In order to deal with the aforementioned issues, in this pa-

per we propose to integrate compressive sensing in a discrete-
time, analog-amplitude communications system that com-
pletely skips the digital domain (i.e., bits are never used in
the encoding or decoding processes). The idea is to encode the
measurements proceeding from the compressive sensing block
utilizing very simple non-linear analog codes that directly pro-
duce the symbols to be transmitted through the channel. Dif-
ferent from our previous work, where non-linear transforma-
tions based on space-filling curves were used [6], we utilize a
family of recently proposed non-linear codes consisting of the
concatenation of soft quantization and analog linear coding.
As opposed to [6], the new non-linear codes can be utilized in
a rate-less manner, and are decoded utilizing message passing,
which means that they can be easily adjusted to the statistics
of the source/channel of interest. As we will see in the sequel,
non-linear processing of the CS measurements is key, since it
is well known in the literature [7] that linear coding of real
numbers performs extremely poorly at high SNRs (horizontal
SDR asymptote). This explains why stand-alone CS systems,
where the CS measurements are directly transmitted through
the noisy channel, do not achieve good performance.

2 Proposed Framework
Fig. 1 illustrates the communications framework proposed in
this paper. In the first stage, variable density compressive sens-
ing is applied to the image of interest to compress the L ⇥ L
original image pixels to kM samples. The second stage is an
application of a family of non-linear analog encoders to the
kM compressed samples, resulting in a total number of M
samples that are directly transmitted through the noisy chan-
nel. Parameter k defines the trade-off between the compressive
sensing block and the analog non-linear encoder. Notice that
when k is high most of the compression is performed in the
analog encoder, while if k is low most of the compression is
done in the compressive sensing block. As we will see in the
sequel, in order to optimize performance, k must be chosen
as a function of the SNR of interest and the optimal value of
k will increase with the SNR. The reason is that compressive
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Figure 1: (a) Proposed system model: variable density compressive sensing produces kM measurements, and the number
of transmitted samples is further reduced to M by applying an analog non-linear code; (b) Stand-alone CS: variable density
compressive sensing produces M measurements that are directly transmitted through the channel. The number of transmitted
samples in (a) and (b) is the same.

sensing is a particular case of analog linear coding, and as it is
well known in the literature [7], analog linear codes perform
very poorly at high SNRs (their achievable SDR is limited by
an horizontal asymptote that depends on their rate).
Next, we describe in detail the system that we will use in our

simulations as well as its constituent blocks (variable density
compressive sensing and the novel non-linear analog codes
mentioned above). We will also discuss a general analytical
optimization procedure to allocate the rates and energies to the
non-linear analog codes utilized in our system, which will pro-
vide insights for the design of a practical system in our simu-
lations.

3 Variable Density CS Encoder
In this work, we adopted the variable density CS scheme of [8]
because 1) it exploited the a priori information of the statistical
distributions that natural images exhibit in the wavelet domain,
2) it reduced the necessary number of measurements for image
reconstruction, and 3) it can be applied to several transform
domains with simple implementation.
This section begins with an outline of the compressive sens-

ing algorithm applied for source encoding and source decoding
in the proposed JSCC scheme. It then walks through the im-
plementation details discussing selection of transform domain,
construction of the sampling matrix, and finally reconstructing
the image from the transmitted data via convex optimization
techniques.

3.1 CS of Natural Images
Compressive Sensing as a source coding technique for 2D im-
ages is well suited for images when applied in a transform do-
main wherein the image signal can be considered sparse. To be
sparse in a domain, a signal x 2 RN , must be capable of be-
ing represented by a linear combination of some subset of the
basis vectors for the transform domain, x =  ✓ where ✓ is an
N ⇥ 1 vector with zeros values for entries wherein the sparse
data is non-present and  is the basis  = [ 1, 2, ..., N ]
of the transform domain wherein x is being represented. It

has been shown in [4] that natural images are well represented
via this sparse signal model when viewed in a frequency do-
main. For the CS source encoder, sensing is performed in
the transform domain. The CS measurements are calculated
by y = �⌦x where � is a M ⇥ N matrix with M ⌧ N .
With the consideration of zero-mean additive white Gaussian
noise (AWGN), the measurements become y = �⌦ ✓+n. As
shown in [5], x can be recovered from y with high probability
when CS logN ⌧ N , where C � 1 is an over sample factor
and S is the number of linear combinations of  (Sparseness)
required to represent x.

3.2 CS in Ordered DHT Domain

Selection of transform domain and sampling matrix in variable
density CS are directly intertwined to leverage 2-D natural im-
age wavelet distributions.
The ordered discrete Hadamard transform (DHT) transform

is suitable for analog source coding of images because it is
composed of strictly binary measurement matrices and fast
transform techniques are available. This is due to the basis im-
ages of the ordered DHT being binary. In an ordered DHT, the
atoms are ordered according to the number of zero crossings
between each entry. DHT is a transform into the generalized
frequency domain, similar to a DFT. More specifically, it is
most similar to the DCT of which it can be considered a bi-
nary approximation. An additional benefit of the DHT is that
the result is entirely real with no imaginary components, thus
simplifying calculations and matrix dimensions.
Sampling in the Hadamard domain is analogous to sam-

pling in the DCT domain. 2-D natural images are composed
of wavelets which are found in non-uniform distributions. To
leverage the patterns typically found in natural images, the ran-
dom selection matrix should match these patterns. The dis-
tribution pattern of the sub-band coefficients of the wavelets
has been shown to be well modeled by the Generalized Gaus-
sian Distribution (GGD) model [9]. Using the GGD as our
model then the 2-D sampling probability distribution matrix

can be formulated as ⇢H(m,n) = exp [�
p

( m

M
)2+( n

N
)2

↵H

�
2
H

]
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where ⇢H(m,n) is the binary probability at index (m,n) of
sampling that specific coordinate of the transformed image.
0  m  M � 1, 0  n  N � 1. The value of �H is used to
control the total number of samples taken. Calculation of �H

is performed through numerical method by a binary search tree
algorithm to sample the desired number of points. An example
⇢H(m,n) for selection of k = 15, 000 points (out of 65536 to-
tal) is shown in Fig. 2. The 2-D exponential decay pattern of
the sample energy as predicted by a GGD is seen in Fig. 3.
Values from 1-5 for ↵ were simulated in [8] and ↵H is arbi-

trarily set to 2.65 for our calculations as this was demonstrated
empirically to perform well across a variety of images in pre-
vious research [10].

Figure 2: CS Random Sampling Matrix for 15,000 Samples.

Figure 3: Energy per sample for the 15, 000 CS measurements
of the image “boat”. Notice that the energy decreases with the
measurement number.

3.3 Reconstruction of Sampled Images
Reconstruction of the original signal can be performed via an
iterative convex optimization solver minimizing the two fol-
lowing terms. Variation, V (y) =

P
|yn+1 � yn| and Mean

Squared Error (MSE), E(x, y) = 1
n

P
(xn � yn)2. Total

Variation (TV) to be minimized is thenE(y, x̄)+�V (x̄)where
the value � is a control parameter weighting the importance of

MSE against variation in the reconstruction. The constraint on
the minimization is an inequality constraint that y � �⌦x̄  ✏
where x̄ is the reconstruction of original signal x, y is the noisy
measurement vector described previously, and ✏ is the upper
bound on the difference between the transform of the recon-
structed x̄ and the received vector y. In order to aid solver
convergence, the initial x̄ starting point for the solver is speci-
fied as the back projection of the received vector, ��1

⌦ y.

4 Non-Linear Analog Coding
In this section we first provide an overview of the non-linear
analog codes proposed by some of us in [11], where the in-
put symbols were realizations of an Independent and Identi-
cally Distributed (iid) Gaussian random variable of mean 0
and variance 1. Then we explain how to use this family of
analog codes to encode the kM compressive sensing samples
obtained as explained in the previous CS section.

4.1 Analog Coding for iid Gaussian input sym-
bols

The non-linear analog codes proposed in [11] produce the out-
put symbols by linearly encoding sample-by-sample shifted
versions of the input samples. Those output symbols will then
be sent directly through the noisy channel. Thus, the encoder
proceeds in two steps. First, the standard scalar quantizer char-
acteristic of digital communication systems is replaced by a
sample-by-sample shifting transformation (non-linearity), out-
putting an intermediate vector of real numbers. As in a stan-
dard quantizer, the input space is partitioned into regions, but
instead of assigning a different centroid to each region, all
the input source samples in the same region are shifted by
the same specific value, which varies across different regions.
In this way, after shifting the regions are separated from each
other, and the shifting process can be seen as a soft quantizer.
In the second step, the output symbols are obtained by lin-
early transforming the aforementioned intermediate vector of
shifted samples. They are then normalized to the desired av-
erage energy per symbol, Es, and directly transmitted through
an Additive White Gaussian Noise (AWGN) channel of mean
zero and variance �2

n
. Finally, the decoder obtains the esti-

mated vector of input samples by processing the received noisy
sequence.
As explained in [11], in order to obtain good performance

for a specific SNR, it is key to optimize the number of regions,
Q, and the shifting values that are applied to each one of the
regions. Indeed, as we discussed above the discontinuities in-
troduced by the shifting step can be seen as an extension of
what a standard quantizer does1. For simplicity, we will parti-
tion the input space into regions that are optimal for the scalar
quantization of a Gaussian random variable [12], which is sub-
optimal in our joint source-channel coding framework but sim-
plifies the design procedure. Fig. 4 shows the distribution of

1Notice that discontinuities always appear in analog codes, such as in
space-filling curves, existing in the literature: linear analog codes have very
poor performance, and the discontinuities act as the non-linearities required
for good performance.
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the intermediate vector of shifting samples when Q = 4 (re-
call that the input is Gaussian.) Since the interval length of
a region is fixed, the shifting transformation, S’, which must
be symmetric with respect to the y-axis as the input distribu-
tion (Gaussian) and the regions also present that symmetry,
is perfectly defined by providing the separation between the
transformed regions in R+, {l0, l1, l2 . . . } whenQ is odd. For
evenQ, l0 specifies the separation between the transformed re-
gions in R+ and R� which are closest to 0 and {l1, l2 . . . } are
the separations between the transformed regions in R+. The
final shifting transformation, S, is constructed by normalizing
S’, so that the variance of the prior for the intermediate shifted
nodes is the same as that of the source nodes (unit variance in
this subsection).

Figure 4: Probability density function of the prior for the in-
termediate shifted samples when Q = 4.

Figure 5: Proposed scheme that encodes six Gaussian samples
into four output symbols. Each symbol is generated by the
linear combination of a subset of the source samples shifted
by the function S.

As shown in Fig. 5, the linear encoding performed in the
second step of the encoding process can be represented as a
weighted graph, where each output (transmitted) symbol is
generated as a weighted linear combination of a random sub-
set of dr “shifted” nodes proceeding from the first step. The
value of dr should be small to generate a sparse graph in which
decoding can be performed using message passing [13]. Dif-
ferent from typical message passing utilized in digital commu-
nication systems, here we deal with continuous random vari-
ables. Thus, the messages that are exchanged in the decod-

ing process are the probability density functions of the random
variables of interest. The objective is to obtain the estimates
of the source symbols that minimize the mean squared error.
This is achieved by estimating the posterior probability density
function of the intermediate vector of shifted samples in an it-
erative manner. Then, the posterior probability density func-
tion of each one of the source samples is obtained through the
inverse shifting transformation, and the estimate of each one
of the source samples is calculated as the mean of the corre-
sponding posterior probability density function. The detailed
equations can be seen in [11], where the proposed system is
shown to achieve an excellent performance for the transmis-
sion of Gaussian sources over AWGN channels.

4.2 Analog coding of the CS measurements:
Theoretical analysis

Fig. 3 shows the energy per sample of the CS measurements
when kM = 15, 000. Notice that the energy decreases along
the x-axis. This means that the proposed non-linear analog
codes described in the previous subsection have to be adapted
to this situation in which the input samples are not identically
distributed. As a first approximation, we will model the kM
CS measurements as the concatenation of P bands, with each
band i = 1 . . . P consisting of Ki iid Gaussian samples of
mean 0 and variance �2

i
. In the more general case, depicted in

Fig. 6, which we will consider for the analysis in this subsec-
tion, each band can be encoded with a different analog code, so
that the Ni encoded samples of band i, each one of them with
energy per sample Ei, will be directly transmitted through an
AWGN channel of mean zero and variance �2. Notice thatP

i
Ki = kM and

P
i
Ni = M so that the overall information

rate for the analog encoder is k. Decoding will be performed
independently for each band.

Figure 6: Framework for the proposed multi-band analysis.

The theoretical limit for the aforementioned multi-band
transmission scheme can be obtained by minimizing the distor-
tion per sample of the decoded vector. Since each band is mod-
eled as a Gaussian source generating iid samples of mean zero
and variance �2

i
, the minimum distortion per sample for each

band is obtained equaling KiR(Di) = NiC, where R(Di) is
the rate distortion of the band and C is the channel capacity.
We then obtain
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Ki

2
log

�2
i

Di

=
Ni

2
log(1 +

Ei

�2
)

) Di =
�2
i

(1 +
Ei

�2
)Ni/Ki

.
(1)

The optimization problem is formulated as

min
Ni,Ei

P
i
KiDi

m

s.t.
X

i

Ni = n

P
i
NiEi

n�2
= 10SNR/10

Ni � 0, Ei � 0,

(2)

where SNR is the desired signal to noise ratio in dB (different
SNRs will lead to different results in the optimization prob-
lem). By defining the constants B1 and B2 as B1 = n and
B2 = 10SNR/10 ⇤ n�2 and assuming Ki = K for all i, the
objective function reduces to minimizing

P
i
Di. According

to the Kuhn-Tucker conditions, the optimization problem is
equivalent to solving

F (Ni, Ei,↵,�,�i, �i) =
X

i

�2
i

(1 +
Ei

�2
)Ni/K

+↵(
X

i

Ni �B1) + �(
X

i

NiEi �B2) + �iNi + �iEi

@F

@Ni

= 0,
@F

@Ei

= 0,
@F

@↵
= 0,

@F

@�
= 0,

�iNi = 0,�i � 0, Ni � 0, �iEi = 0, �i � 0, Ei � 0.
(3)

Taking the partial derivative with respect to Ni and Ei, we
obtain

@F

@Ni

=�
�2
i
(1 +

Ei

�2
)�Ni/K

K
ln(1 +

Ei

�2
)

+ ↵+ �Ei + �i

(4)

@F

@Ei

= �
�2
i
Ni(1 +

Ei

�2
)�Ni/K

K(�2 + Ei)
+ �Ni + �i.

(5)

Since Ni � 0 and Ei � 0, it means �i = 0, �i = 0 (other-
wise Ni = Ei = 0). Solving for �i and �i in (4) and (5) and
setting them equal to 0, we arrive at

�(�2 + Ei)ln(1 +
Ei

�2
) = ↵+ �Ei, (6)

where ↵ and � are constants which are independent of i. No-
tice that (6) shows that Ei is also independent of i, and, there-
fore, the optimal Ei is equal to B2/B1 for all i. Therefore, the
multivariate optimization problem (3) is reduced to P univari-
ate optimization problems consisting of solving for Ni in (4)

when � = 0, which results in

Ni = max
⇢
0,�K

lnt
ln

↵K

�2
i
lnt

�
,

where t = 1 +
E

�2
.

(7)

The Lagrange multiplier ↵ can be obtained by using the con-
straint

P
i
Ni = B1. Notice that for every desired SNR, the

optimization process provides the solution, N⇤
i
, i = 1 . . . P ,

which can be used to calculate the corresponding SDR. Re-
peating the process for multiple values of SNR, we can depict
the theoretical limit, in terms of SDR vs SNR, for the transmis-
sion of the compressive sensing measurements, modeled as the
sequence of bands defined before, over a Gaussian channel.
Fig. 7 presents the results obtained with the optimization

above for kM = 15, 000 CS measurements of the image
‘Boat’. Specifically, we partition the vector of CS measure-
ments in P = 10, 15, 30, 60 bands when the end-to-end cod-
ing rate is fixed to Rc = k = 3. The figure depicts three types
of curves: i) SDR achieved when Ei is the same for all bands
and Ni is optimized (recall Ei equal for all samples provides
the best results), ii) SDR achieved when Ni is the same for
all bands and Ei is optimized, and iii) SDR when the whole
vector is treated as iid samples with variance equal to the av-
erage variance for the whole vector of CS measurements. It is
worth noticing that for the number of bands, P , considered in
Fig.7, the results are practically independent of P . Optimiz-
ing Ei while fixing Ni results in some improvement over the
case iii), but the real improvement is obtained when Ni is op-
timized. This is an important observation which will guide the
design of our practical system in the following subsection. It
is important to remark that the optimal values of Ni decrease
for the bands associated to the CS measurements where the en-
ergy per sample decreases (see Fig. 3), and the difference be-
tween the maximum and minimum values of the optimal N 0

i
s

increases as the SNR decreases.
Fig. 8 presents the results obtained with the proposed op-

timization method when kM = 10, 000 CS measurements of
the image ‘Boat’ are considered, the end-to-end rate is fixed
to Rc = k = 2, and the vector of CS measurements is parti-
tioned in P = 10, 20, 40 bands. The results are very similar
to the ones obtained for kM = 15, 000 CS measurements in
the previous figure, but it is interesting that, independently of
the SNR value, the difference between the maximum and min-
imum values of the optimalN 0

i
s is now less than in the case of

kM = 15, 000 CS measurements. This will guide our practi-
cal designs presented in the next subsection.

4.3 Analog coding of the CS measurements:
Practical approach

Although, as described in the previous subsection, the optimal
approach is to encode each one of the bands in an indepen-
dent manner performing the proper energy (Ei) and rate (Ni)
allocation among all the bands, implementing this scheme is
quite involved from a practical perspective. The reason is that
it requires a large number of different analog codes (as many
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Figure 7: For kM = 15, 000 CS measurements of the image
‘Boat’, and different number of bands, P , i) SDR achieved
when Ei is the same for all bands and Ni is optimized, ii)
SDR achieved when Ni is the same for all bands and Ei is
optimized, and iii) SDR when the whole vector is treated as
iid samples with variance equal to the average variance of the
CS measurements.

as bands, P ), and each has to be optimized for the desired
rate. To simplify the design, we utilize a much more limited
number of codes, while trying to follow the intuition gained
from the optimization method described in the previous sub-
section, namely i) use rates close to 1 for the CS measurements
with high energy per sample, ii) use rates close to 0 for the CS
measurements with very low energy per sample, iii) use codes
of intermediate rates (between 0 and 1) for CS measurements
with intermediate energy per sample. In the proposed imple-
mentation, we use a simplified version of these guidelines as
follows:

• We start with kM CS measurements.

• The first LI CS measurements are transmitted directly
through the channel, each with energy proportional to its
amplitude (same proportionality factor, �, for all the LI

measurements.)

• The last LE CS measurements are not transmitted.

• The remaining L = kM � LI � LE measurements are
transmitted using one of the non-linear analog codes de-
scribed in the previous section, which will have a rate
close to k so that the total number of channel uses isM .

The parameters to optimize in our practical implementation are
k, LI , �, LE , and the parameters of the non-linear code: num-
ber of regionsQ and separation among regions {l0, l1, . . . } for
the shifting stage, which may be different for nodes coming
from different bands, and dr. The decoding of the non-linear
analog code is done in exactly the same manner as in the pre-
vious subsection, except that for a specific input node the prior
depends on the band to which it belongs (recall that each of
the P bands has a different variance). To facilitate the encod-
ing/decoding process, the L input symbols are permuted and

Figure 8: For kM = 10, 000 CS measurements of the im-
age ‘Boat’ and different number if bands P , i) SDR achieved
when Ei is the same for all bands and Ni is optimized, ii)
SDR achieved whenNi is the same for all bands and Ei is op-
timized, and iii) SDR when the whole vector is treated as iid
samples with variance equal to the average variance of the CS
measurements.

partitioned into several pieces so that all pieces are encoded
independently using the same code.

5 Simulation Results
In order to assess the performance of the proposed framework,
we apply it to the 256⇥ 256 image “Boat”. As discussed pre-
viously, we first perform CS to obtain kM measurements, and
then we apply the proposed non-linear codes so that we al-
ways transmit M symbols through the noisy channel. We fix
M = 5, 000 and, in addition to the trivial case of k = 1, we
consider k = 2 and k = 3. For each one of these cases, we
performMonte Carlo simulations to “optimize” for parameters
LI , �, LE , Q,{l0, l1, . . . } and dr.

The results in terms of SDR vs SNR for the best systems at
each SNR are presented in Fig. 9, while Tab. 1 and Tab. 2
show the parameters of the utilized systems. As expected, at
high SNR the systems based on k = 3, which is the value of k
for which the non-linear code performs the highest amount of
compression, perform best, while the stand-alone system (k =
1) is the best for low SNR. The reason is that linear codes,
of which compressive sensing is an example, behave poorly at
high SNRs, since they achieve an asymptotic distortion which
does not diminish when the SNR increases. Therefore, the
minimum distortion achieved by the proposed scheme at high
SNR values will be determined by the compressive sensing
block, and will decrease when k increases.

Fig. 10 shows the reconstructed images and their corre-
sponding PSNRs when SNR=80 dB. As expected, the best per-
formance at high SNR is obtained when k = 3 and the worst
occurs for k = 1 (standard stand-alone CS).
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Figure 9: For the 256 ⇥ 256 image “Boat”, PSNR of the re-
constructed image as a function of the channel SNR when
M = 5, 000 samples are transmitted through an AWGN chan-
nel and different design parameters are used. For high SNRs,
the systems with k = 3 outperform the ones with k = 1 and
k = 2, while for medium SNRs parameter k = 2 leads to the
best performance. The performance of the stand-alone CS sys-
tem (k = 1) withM = 5, 000,M = 10, 000 andM = 15, 000
measurements is also depicted for comparison purposes.

Table 1: Parameters of the k = 2 systems utilized in Fig. 9 for
different SNR values.

SNR (dB) LI � LE Q l0, l1, l2 dr
10 30 0.06 30 4 10, 10, - 4
20 400 0.06 400 4 18, 2, - 4
30 400 0.06 400 4 10, 13, - 4
40 30 0.06 30 5 13, 10, - 4
50 30 0.06 30 7 10, 10, 10 4
60 30 0.06 30 7 10, 10, 10 4
70 30 0.06 30 7 10, 10, 10 4
80 30 0.06 30 7 10, 10, 10 4

6 Conclusions
We have proposed an analog joint source-channel coding sys-
tem for image transmission over noisy channels consisting of
two stages: A variable density compressive sensing encoder
applied to the image of interest followed by non-linear analog
coding applied on the CS measurements. We have used the
insights gained from a theoretical analysis of the optimal en-
ergy and rate allocation to design practical codes that present
excellent performance.
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(a) Original 256⇥ 256 Boat image (b) k = 1, PSNR=24.94 dB

(c) k = 2, PSNR=26.81 dB (d) k = 3, PSNR=27.92 dB

Figure 10: For the original 256 ⇥ 256 image “Boat” represented in (a), reconstructed images corresponding to (b) k = 1
(stand-alone CS); (c) k = 2; and (d) k = 3 whenM = 5, 000 samples are transmitted through an AWGN channel and SNR=80
dB.
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