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Key points

1. An ensemble of deep convolutional residual neural networks is used to reduce the uncertainty
in moist physics emulations.

2. The ensemble of the neural networks trained on data from a present-day climate simulation
generalizes well to a +4K warm climate offline.

3. A multi-year stable online integration is achieved in a real-geography GCM with reasonable

results.

Abstract

With the recent advances in data science, machine learning has been increasingly applied to
convection and cloud parameterizations in global climate models (GCMs). This study extends the
work of Han et al. (2020) and uses an ensemble of 32-layer deep convolutional residual neural
networks, referred to as ResCu-en, to emulate convection and cloud processes simulated by a
superparameterized GCM, SPCAM. ResCu-en predicts GCM grid-scale temperature and moisture
tendencies, and cloud liquid and ice water contents from moist physics processes. The surface
rainfall is derived from the column-integrated moisture tendency. The prediction uncertainty
inherent in deep learning algorithms in emulating the moist physics is reduced by ensemble
averaging. Results in one-year independent offline validation show that ResCu-en has high
prediction accuracy for all output variables, both in the current climate and in a warmer climate
with +4K sea surface temperature. The analysis of different neural net configurations shows that
the success to generalize in a warmer climate is attributed to convective memory and the 1-

dimensional convolution layers incorporated into ResCu-en. We further implement a member of
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ResCu-en into CAMS with real world geography and run the neural-network-enabled CAMS
(NCAM) for 5 years without encountering any numerical integration instability. The simulation
generally captures the global distribution of the mean precipitation, with a better simulation of
precipitation intensity and diurnal cycle. However, there are large biases in temperature and
moisture in high latitudes. These results highlight the importance of convective memory and

demonstrate the potential for machine learning to enhance climate modeling.

Plain Language Summary

The representation of storms and clouds through empirical algorithms known as
parameterizations in global climate models (GCMs) is one of the main sources of biases in the
simulation of rainfall and atmospheric circulation. Here an ensemble of 8 deep neural networks
are used to replace the conventional parameterization of atmospheric moist physics processes.
They are trained on data sampled from one-year present-day climate simulation by a
"superparameterized” climate model, which uses a two-dimensional cloud-scale model to
explicitly simulate convection and clouds inside each GCM grid box. On ensemble averaging, the
neural nets produce highly accurate predictions of precipitation characteristics including global
distribution and intensity. Furthermore, the machine-learned emulator trained on data in the current
climate also represents convection and precipitation extremely well in a warmer climate. A
member of the ensemble of the neural nets is implemented into a GCM. The model is then

integrated for 5 years, producing reasonable results.
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1. Introduction

Convection and cloud parameterization schemes used in global climate models (GCMs) are a
major source of many biases in the simulation of climate and its variability. These include biases
in the Intertropical Convergence Zone (ITCZ) (Zhang et al., 2019), intraseasonal variability such
as Madden Julian Oscillation (MJO) (Zhang & Mu, 2005; Cao & Zhang, 2017) and diurnal cycle
of precipitation (Xie et al., 2019, Cui et al., 2021). They are also the main causes of uncertainties
in GCM-simulated response of cloud radiative forcing and precipitation to global warming
(Stevens & Bony, 2013). Current convection parameterization schemes (e.g., Arakawa & Schubert,
1974; Tiedtke, 1989; Zhang & McFarlane, 1995 and many more) were developed based on limited
observations and simplified or heuristic models. Although some incremental progress has been
made in climate simulations by improving the parameterization schemes (e.g., Zhang & Mu, 2005;
Neale et al., 2008; Bechtold et al., 2014; Wang et al., 2016; Song & Zhang, 2018; Xie et al., 2019),
conventional convection and cloud parameterization has reached a deadlock (Randall et al., 2003;
Gentine et al., 2018), and other alternatives have been actively explored.

One of the alternatives is to embed a cloud resolving model (CRM) into each GCM grid box
to replace the conventional convection parameterization scheme, the so called
superparameterization approach. Khairoutdinov et al. (2005) developed the superparameterized
National Center for Atmospheric Research (NCAR) Community Atmosphere Model (SPCAM).
SPCAM performs better in the simulation of convection at different scales such as the eastward
propagating mesoscale convective systems, the diurnal cycle of convection, and MJO (Pritchard
& Somerville, 2009; Jiang et al., 2015).

Data-driven machine learning (ML) has been actively explored for parameterizing subgrid-

scale convection and cloud processes in the last few years (Gentine et al., 2018; Rasp et al., 2018;
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Brenowitz & Bretherton, 2018, 2019; Han et al., 2020; Yuval & O'Gorman, 2020; Brenowitz et al.,
2020; Beucler, Pritchard, Rasp, et al., 2021; Yuval et al., 2021; Irrgang et al., 2021; Beucler,
Pritchard, Yuval, et al., 2021; Wang et al. 2022). Gentine et al. (2018) used deep learning to emulate
convection and radiation processes simulated by SPCAM. Rasp et al. (2018) coupled a neural
network (NN) to a 3-D aqua-planet GCM. Brenowitz and Bretherton (2019) trained a neural
network parameterization scheme using coarse-grained global CRM simulation results and
realized a multi-day online simulation in a coarse-resolution GCM. Yuval and O'Gorman (2020)
developed a random forest-based ML parameterization with simulation results from a high-
resolution 3-D model run on an idealized beta plane. They reproduced the climate of the high-
resolution model in a coarse-resolution model with this parameterization. Later, Yuval et al. (2021)
used neural networks and obtained similar results with less computational memory. The above
studies all used the aqua-planet configuration of the GCMs.

Recently, studies have emerged on ML parameterization schemes under real geography. Han
et al. (2020), hereafter H20, accurately emulated convective heating, drying, cloud water and ice
concentration in a realistically configured SPCAM by applying a 1-D residual convolution neural
network (ResNet) with powerful nonlinear fitting ability, and tested it offline and in a single
column model. Mooers et al. (2021) optimized a fully connected neural network with a
sophisticated auto-learning technique to emulate convection under real land-ocean distribution and
used the neural-network emulated fields to force an offline land surface model with some success.

The performance of ML-based parameterizations has been improved in the last few years.
However, not much attention has been paid to their uncertainties. Brenowitz & Bretherton (2019)
first noted that the training bias fluctuates significantly from one training epoch to another, and

thus determining when to stop the training can lead to considerable uncertainties. Furthermore,
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individual predictions from a deep learning model can contain sizeable uncertainties even though
the model performs well on average (Pearce et al., 2018; Gawlikowski et al., 2021). The prediction
uncertainty from NN-based parameterizations can come from two major sources: aleatoric and
epistemic uncertainties. Aleatoric uncertainty is the intrinsic uncertainty within the target data. For
the superparameterization simulations, this uncertainty is mainly from losing many degrees of
freedom when the CRM-domain fields are coarse-grained to the GCM grid. On the other hand,
Epistemic uncertainty is due to limited data and knowledge of the ML models. To speed up the
training process of an NN-based parameterization, we only use "limited" training data, which is
often an arbitrarily selected subset in space and/or time of a sampling pool from a high-resolution
model simulation. Since cloud and convection processes are highly complex and nonlinear, an NN
emulator is not “perfect” with 100% fitting accuracy. In practice, the epistemic uncertainty comes
from the process of training, which involves randomly initializing the weights and biases in the
NN first, and then training them with data in mini-batches, which randomly distribute the data
into numerous subsets and shuffle the subset sequence after every training iteration. The algorithms
to optimize the weights and biases during the training are stochastic or are related to stochastic
processes, such as Stochastic Gradient Descent, Root Mean Squared Propagation, and Adaptive
Moment Estimation (Adam) (Kingma & Ba, 2014). As a result, all the randomness involved in the
training process contributes to the prediction uncertainty, which cannot be ignored in developing
NN-based parameterizations.

A challenging issue for an NN-based parameterization trained on one climate is to generalize
it to another, unseen climate as it requires the neural net to fit out-of-distribution data. Several
studies have tested the ability of their NN-based parameterizations to generalize to different

climates (Rasp et al., 2018; O'Gorman and Dwyer, 2018; Beucler, Pritchard, Yuval, et al., 2021;
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Clark et. al., 2022). They found that the NN-based parameterizations trained with data from the
current climate degraded seriously in accuracy when directly used in warmer climates. To achieve
a better generalization, Rasp et al. (2018) and Clark et al. (2022) included the warm climate
simulation output in the training data. Beucler, Pritchard, Yuval, et al. (2021) rescaled the NN’s
input and output variables to keep the probability distribution unchanged across climates.

Besides generalization to different climates, making a stable model integration using NN-
based parameterizations is another great challenge (Irrgang et al., 2021). Several recent studies
have explored the prognostic performance of ML parameterization schemes in 3D real-geography
GCMs. Wang et al. (2022) emulated the moist physics and radiation processes in SPCAM with a
group of deep neural networks. They succeeded in a 5-year online integration, but with significant
climate biases in high latitudes. Bretherton et al. (2022) used machine learning of nudging
tendencies as functions of the atmospheric state to correct the physical parameterization tendencies
and ran a NOAA global forecasting model for 40 days. Clark et al. (2022) tested this ML-learned
tendency correction approach and ran the model for more than 5 years as well as for different
climates.

In this study, we use an ensemble of 8 refined deep NNs based on the ResNet in H20 to reduce
the uncertainties in NN predictions, similar to Krasnopolsky et al (2013). We then test its
generalizability to a +4K SST warmer climate and explore different attributes of the NN in this
regard. Finally, we attempt to carry out a multi-year online integration to assess whether a stable
long-term integration is achievable with reasonable results. The organization of the paper is as
follows. Section 2 presents the details of the data generation and NN design. Section 3 shows the
results of offline validations. Section 4 tests the generalization of the NN to a warmer climate and

the roles of the NN architecture and input variables in its generalization ability. Section 5 performs
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the prognostic online simulation in a 3D real-geography GCM. A summary and discussion are
given in section 6.
2. An ensemble of Neural Networks
2.1 Selection of Training Data

Same as in H20, we use a year-long simulation from the NCAR SPCAM (Khairoutdinov et
al., 2005). It includes a coupled land model CLM 4.0 and is run with prescribed monthly mean
climatological sea surface temperature (SST) and sea ice for lower boundary conditions (Hurrell
et al., 2008). The model is run for three and a half years with a timestep of 20 min, and we use
subsets of year two simulation output for training the NN. To speed up the training, we select 800
points out of the total of 13824 (96x144) grid points in the 2.5 deg x 1.9 deg horizontal resolution
model. Instead of selecting 800 fixed points as in H20, for data from each day of the year we select
800 points with each grid point randomly chosen from three latitude zones in proportion to their
relative surface area. The three latitude zones are the tropics (30°S to 30°N), midlatitudes (60°S to
30°S and 30°N to 60°N), and high latitudes (90°S to 60°S and 60°S to 90°N). Therefore, we have
56,700 (800 points x 3 timesteps/hr x 24 hrs) training samples each day and nearly 21 million
samples in total. The new method of data selection ensures that all regions on the globe are
represented in the training dataset. This training data selection procedure is repeated for training
each NN.

2.2 Input and Output

The input variables for the NN are mostly the same as those in H20. These include the GCM

grid-scale state variables and tendencies that are used to force the CRM in SPCAM. They are
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temperature profile (T), specific humidity (q,), large-scale temperature and moisture tendencies

(Z—:) and (%) from the dynamic core of SPCAM's host CAMS and planetary boundary layer
ls ls

(PBL) diffusion, surface sensible and latent heat fluxes (SSHF /c, and SLHF /L,) and surface

pressure (P;). We also consider convective memory as in H20, but with some modification. In H20,
we considered 4 GCM timesteps. In the sensitivity test in H20, it was found that including 2
timesteps will suffice to account for the effect of the history of convection. Thus, here for

convective memory we only consider the following variables in the previous 2 timesteps: the GCM

. aT ] . . . . T
grid-scale T, q,, (5) and (%) , temperature and moisture tendencies from moist physics o
ls ls

and aa%’ and cloud water q. and cloud ice g; predicted by the CRM. The output variables are also
the same as those in H20: GCM grid averaged diabatic temperature and moisture tendencies Z—:

] . e
and %, cloud water and cloud ice contents q. and q;. Precipitation is diagnosed from the

vertically integrated moisture tendency in the output.

In total, the input layer consists of 20 vectors with a length of 33 and the output layer consists
of four vectors with a length of 30. All input and output variables are normalized with
normalization factors the same as those in H20 to ensure that they are of order of magnitude O(1)
before they are input into the deep neural network for training and testing.

2.3 Loss function accounting for moist static energy conservation
In moist physics, the atmospheric moist static energy (/) is conserved in the absence of ice
phase processes. As in H20, we customize the loss function to include h conservation by adding

the mean square error between column-integrated 4 change from the neural net and that from
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SPCAM in the form of ” f pb ahN —dp ” as a penalty term in our loss function

to make the integrated h tendencies from deep learning model approach those from SPCAM. Thus,

the loss function is written as

loss = |5 — ylI, + A”§fpptb dhsp 4 __fpb ahNN ” ’ (1)

where y is the target fields from SPCAM, J is the output of our neural network model, and A is a
Lagrangian multiplier to simultaneously enforce accuracy and h conservation.
2.4 Deep ResNet

In H20, a moist physics parameterization was developed using a 1-D residual convolutional
neural network (ResNet), referred to as ResCu for short. We continue to use the same NN construct
here, but with the following modifications: 1) extend the number of layers from 22 to 32; 2) add a
batch normalization layer after each convolutional layer except the last one; and 3) remove the
activation function in the last layer. The first modification is to further improve the accuracy of the
neural network. The last two modifications are based on the sensitivity tests of H20. Batch-
normalization helps improve the accuracy and robustness when added after each layer, since it
normalizes the output of the layer with a running average and a running standard deviation (Ioffe
& Szegedy, 2015). With multiple activation functions in previous layers for nonlinear
representation, the last layer activation does not add much further improvement in the accuracy of
the output in a deep neural network.

After increasing the depth of the NN from 22 to 32 layers, the RMSE of the fitting (the first

term on the rhs of eq. (1)) is significantly smaller, which makes the /4 conservation penalty (the

10
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second term on the rhs of eq. (1)) a dominant term in the loss function. Thus, the original value of
the multiplier A = 5 x 1077 is too large, which affects the convergence of the NN training. We set
A to a new value of 1 x 1077 for the optimal balance between h conservation and prediction
accuracy. This makes the penalty term from /4 conservation account for about 6% of the total loss.
With some preliminary trial tests, we find that 32 layers are optimal for prediction accuracy as well
as h conservations, reducing the total loss by 1.7% compared to the 22-layer NN (Fig. Sla in
Supplementary Information). Further increasing the depth of the NN (in our case, to 42 layers)
does not lead to further decrease of the total loss function.

This deep ResNet applies 1-D convolutional layers with 128 feature vectors (1-D feature maps)
and 128 corresponding filter banks with a kernel size of 3. It contains 15 Resunits, including 32
convolutional layers in total, with approximately 1.5 million trainable parameters and 40,000
untrainable parameters (running averages and standard deviations in the batch normalization
layers). The activation algorithms inside each Resunit are Rectified Linear Activations (ReLUs),
with no activation in the output layer.

As mentioned earlier, to reduce the prediction uncertainty from the NN, we use an ensemble
of 8 NN, referred to as NN-1 to NN-8 and the ensemble referred to as ResCu-en (Fig. S1b). Using
the 32-layer ResNet, we independently trained each of the 8 NNs with different random seeds for
initialization and selected training subset (see Sec. 2.1 above). All 8 neural networks are identical
in input and output variables and NN architecture, and trained over 100 epochs, using the Adam
optimizer that has an initial learning rate of 3 x 107%.

3. Offline Validation for Current Climate

11
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To evaluate the performance of ResCu-en, we compare the ensemble mean predictions from it
with SPCAM simulations using the independent third-year testing data. As described in Section
2.1, this target simulation is forced with the climatological mean SST, which we refer to as the
baseline simulation hereinafter. We test the performance in multiple aspects: moist static energy
conservation, annual mean of the predicted variables, and precipitation frequency distribution.
Since the training data are from an SPCAM simulation under the present-day climate conditions,
an important question is whether the trained NN can be used in a warmer climate. To test the
capability of ResCu-en generalization to a warm climate, we perform an SPCAM simulation with
+4K SST (Bretherton et al., 2014), that is, we add 4K uniformly on top of the monthly mean global
SST distribution as the boundary condition. Then we use the simulated fields from the +4K
simulation as input into ResCu-en, which is trained with the present-day climate simulation data,
to diagnose the moist physics tendencies and precipitation.

First, we check the accuracy of moist static energy conservation in ResCu-en. For moist

J‘p 661 Cp fpb aT

physics, the column integrated heating and drying or h tendencies ~ ot 6t ot at

should be equal to the net freezing heating and melting cooling associated with ice phase change
of hydrometeors in the column. Fig. 1 shows the histogram of column integrated h tendencies from
SPCAM, ResCu-en and their differences. The SPCAM simulation shows a mean u = 0.99 W /m?
and a standard deviation 0 = 10.66 W /m? (Fig. 1a). The histogram of the column-integrated h
change predicted by ResCu-en is remarkably close to that of SPCAM with a mean of 1.21 W /m?
and a standard deviation of 9.62 W /m?(Fig. 1b). The difference plot (Fig. 1¢) shows the histogram

of the differences between column integrated NN-predicted h tendencies and the corresponding

12
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SPCAM simulated values at each GCM grid column and time step for all data used in the test.
There is only a small systematic positive bias of 0.22 W /m? and a difference spread (standard
deviation) of 4.71 W /m?. Note that the temperature and moisture tendencies from the moist
physics processes in the NN are predicted independently and their column-integrated values are
on the order of 1000 to 4000 W/m? (cf. Fig. 2 in H20). Thus, this demonstrates that ResCu-en is
remarkably accurate in h conservation even though the requirement of h conservation only
contributes 5% to the total loss function (Fig. S1a). Note that past neural-network-based emulators
struggled to maintain strict column-integrated h conservation, with larger standard deviation (Rasp
et al., 2018) or imbalances (Brenowitz and Bretherton, 2018). On the other hand, a random-forest-
based emulator developed by Yuval and O’Gorman (2020) has a much better /4 conservation, with
only a small bias of 0.0001 W/m?2. This is because random forest by design conserves energy
whereas neural networks do not obey energy conservation a priori.

The predicted annual mean precipitation by ResCu-en is in excellent agreement with the
SPCAM simulation, with no significant localized biases but a slight underestimation on global
average (Fig. 2). The differences between individual NN and SPCAM (Fig. S2) simulation are
relatively larger, highlighting the advantage of using an ensemble of NNs. In H20, ResCu can
reproduce the target precipitation with high accuracy already, except with some noticeable
overestimation over the Tibetan Plateau and underestimation in the ITCZ and SPCZ. These biases
are either almost completely gone or less evident in the individual NNs in Fig. S2, indicating a
clear improvement owing to the use of a deeper NN (32 layers here vs. 22 layers in H20).

The diabatic heating and drying rates in SPCAM from the CRM simulated convection and
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condensation processes are also reproduced to a high degree of accuracy by ResCu-en. In the
pressure-latitude cross section of the annual and zonal mean, the SPCAM simulation (Fig. 3a, b)
shows the typical climatological features: a deep tropospheric heating and corresponding
condensational drying in the tropics from deep convection, heating and moistening in the lower
troposphere in the subtropics from shallow convection and stratiform processes, and heating and
drying in the mid- and low troposphere by midlatitude cyclones. These features are well captured
by ResCu-en (Fig 3c, d), with biases no larger than 5% of the SPCAM simulated values (Fig. 3e,
f). Even for the strong cooling and drying near the surface, which are the CRM responses to the
PBL forcing, ResCu-en reproduces them accurately. The individual NNs that constitute ResCu-en,
on the other hand, have relatively larger biases (Fig. S3). We also computed the RMSE of heating
rate relative to the SPCAM values at each GCM grid point using data from every time step and
averaged the RMSE over (20°S, 20°N) following the method of Beucler, Pritchard, Yuval, et al.
(2021). Fig. S4 shows the vertical profiles of RMSE and model layer thickness-weighted MSE for
each member of ResCu-en. The RMSE is 2 to 4 K/day in the lower and middle troposphere. A
more direct comparison with Beucler, Pritchard, Yuval, et al. (2021) is the thickness-weighted
MSE, which has a maximum of about 800 W2/m*. This compares to about 2000 W2/m* for the
climate-invariant NN in Beucler, Pritchard, Yuval, et al. (2021), indicating that even members of
ResCu-en are quite accurate. Similar accuracies are found for ResCu-en predicted cloud water
and cloud ice distributions, with differences between the ResCu-en prediction and SPCAM
simulation less than 0.2 mg/kg everywhere (Fig. S5). These again demonstrate the superiority of

using an ensemble of NNs with deeper NNs.
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In addition to the annual mean fields, we also examine the frequency of precipitation, one of
the essential precipitation characteristics conventional parameterization schemes often fail to
represent (Wang et al., 2016, Xie et al., 2019). Fig. 4 shows the frequency distribution of daily
averaged precipitation for SPCAM simulation and ResCu-en prediction. To show the land-sea
contrast, the model grid points are divided into ocean (land fraction less than 0.1) and land (land
fraction greater than 0.95). We also present the latitudinal differences by showing the results in the
tropics (20°S to 20°N), northern hemisphere mid-latitudes (20°N to 50°N), and northern
hemisphere high latitudes (50°N to 90°N). For comparison, we also plot the precipitation
frequency for a simulation under the global warming scenario to be discussed in the next section
and from TRMM observations for reference. In all regions, the precipitation intensity pdf from
SPCAM is very well captured by ResCu-en. Compared to the TRMM observations, SPCAM
underestimates the frequency of occurrence of heavy precipitation. Consequently, ResCu-en has
the same deficiency.

To summarize, an ensemble of neural networks, ResCu-en, obeys moist static energy
conservation very well, with little systematic bias. It accurately reproduces the annual mean
heating and drying from moist physics processes in SPCAM. For precipitation, ResCu-en
reproduces the mean and the frequency of occurrence distribution with high accuracy.

4. Offline Test of Generalization to a Warmer Climate
4.1 Performance of Generalization to +4K SST simulation
ResCu-en is trained with a SPCAM simulation under current SST conditions. Can it be

extrapolated to represent moist processes in warmer climates? Rasp et al. (2018) tested their DNN
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parameterization against aquaplanet SPCAM simulations under a warm climate with uniformly
increased 4K SST. They showed that the DNN resulted in large errors when it was not trained with
the warm climate simulations, including overestimating heavy rainfall rate and large diabatic
heating biases in the tropical lower troposphere, possibly due to out-of-distribution data in the
warmer climate. Recently, Beucler, Pritchard, Yuval, et al. (2021) developed a climate-invariant
rescaling approach to help machine learning better generalize to climates different from that used
in the training. They showed that when moisture is rescaled with relative humidity and temperature
is rescaled with plume buoyancy the NN trained using simulation data from one climate can
generalize well to another climate in offline tests. Here we also evaluate ResCu-en in a warm
climate simulation by SPCAM with +4K SST added uniformly to the prescribed present-day
climatological SST. The SPCAM is run for 2 years with a timestep of 20 min and the second year
is used for the ResCu-en offline validation.

In the warm climate with +4K SST, the global average rainfall simulated by SPCAM is
increased by about 11% (Fig. 5a). Even though ResCu-en is trained using simulation data for the
current climate, it can still accurately reproduce the global annual mean precipitation distribution
under +4K SST conditions (Fig. 5b), with a slight overestimation in ITCZ, SPCZ and the western
tropical Indian Ocean, and a slight underestimation over midlatitude oceans (Fig. 5c). For
precipitation intensity frequency, the SPCAM simulates a significant shift of precipitation
occurrence frequency toward higher precipitation rates in the warm climate over the oceans (Fig.
4), but no obvious shifts over land in the tropics and midlatitudes for daily average precipitation.

ResCu-en accurately reproduces the same shift as the SPCAM in all regions examined. Since
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precipitation is derived from the vertical integral of moisture tendencies from moist physics, we
show in Fig. 6 the pressure-latitude cross section of temperature and moisture tendencies from
SPCAM, ResCu-en and their difference to further demonstrate the ability of ResCu-en to
generalize to a warmer climate. Clearly, ResCu-en reproduces the SPCAM temperature and
moisture tendencies with high accuracy, with biases generally less than 5% of the maximum
heating and moistening in SPCAM. The differences from individual ensemble member are
somewhat larger than the ensemble mean (Fig. S6). They are also only slightly larger than those
for the baseline simulation (compare Figs. S3 with S6). The RMSE and thickness-weighted MSE
are also larger (Fig. S4). The MSE for the warmer climate can also be compared with that in
Buecler, Pritchard, Yuval, et al. (2021). For all members of ResCu-en, the maximum MSE is about
1300 W2/m*, which is smaller compared with 2000 to 4000 W?/m* in Buecler, Pritchard, Yuval, et
al. (2021).

The performance of ResCu-en is further evaluated in terms of the geographical distribution of
the coefficient of determination R? for precipitation for both current and +4K climates (Fig. 7),
which measures how accurately ResCu-en emulates the time series of the target precipitation at
each grid point. Most regions have high accuracy with R? greater than 0.9 (Fig. 7a). Some areas
in tropical and subtropical oceans and land regions have low R? values, especially in subtropical
eastern Pacific and Atlantic, and to some extent in the central equatorial Pacific and the Sahara
Desert. All these low R? regions have low precipitation rates. The R? distribution for the +4K SST
simulation is similar to that in the baseline simulation, except in the Sahara Desert where the R?

values are much lower.
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To have a more intuitive feel on how well ResCu-en performs in both current and warm
climates, we compare the precipitation time series from ResCu-en with those from SPCAM at two
representative model grid points. We select one grid point in the ITCZ region (5°N, 180°E) where
R? is about 0.8 and another in the subtropical southeastern Pacific (20°S, 90°W) where R? is below
0.5. For a one-month-long precipitation time series (Fig. 8), ResCu-en can reproduce the timing
and magnitude of the heavy rainfall at the ITCZ grid point extremely well for both the baseline
and +4K SST simulations (Fig. 8a, b). For the southeastern Pacific grid point with low rainfall
rates, ResCu-en generally underestimates the peak rainfall rates, but it can still capture the timing
accurately for both the baseline and +4K SST simulations despite the low R? values (Fig. 8c, d).

All these results from the +4K SST simulation demonstrate that ResCu-en is capable of
generalizing to a warmer climate with remarkable accuracy. In the next subsection, we will

investigate what properties of our ResCu-en are responsible for this.
4.2 Why is ResCu-en able to generalize to a different climate?

The ability of a neural network to generalize to a different climate is an important attribute as
it can then be used in global warming simulations. In this subsection, we investigate what attributes
of ResCu-en make it generalizable to a warmer climate by testing different input variables and NN
constructs. In doing so, we note that each member of the NN ensemble, when applied individually
to the +4K SST SPCAM simulation offline is also able to reproduce the SPCAM results well (Fig.
S6). Thus, the use of an ensemble of NNs is not among the factors responsible for ResCu-en's
ability to generalize to a warmer climate. As such, we will use a single member of ResCu-en for
this purpose.
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4.2.1 Convective Memory

The first factor we examine is convective memory since it is unique to ResCu. All NN’s
developed by other researchers use current atmospheric state variables as input to their NNs. To
this end, we developed an NN, ResCu-t0-Is, using only the current step temperature, humidity
states and advective forcings as inputs. We also trained two deep fully connected neural networks:
DNN-mem, which uses all the input variables as in ResCu, and DNN-t0-Is, which uses only the
current step states and forcings. DNN-mem has 10 layers of 512 nodes, the same as DNN-t0-Is.
Table 1 lists the NN training experiments used in both this and next subsections. We train all three
neural networks (ResCu-t0-Is, DNN-mem, and DNN-t0-Is) on one subset of the data described in
Section 2 and evaluate them on one-year independent datasets from both the current and +4K warm
climates, as described in Section 3. We measure the accuracy of the NN predictions using R? of
the zonally averaged diabatic heating, which is a frequently used metric in previous studies
(Gentine et al., 2018; Mooers et al 2021; Wang et al., 2022). These experiments allow us to evaluate
the roles of convective memory and architecture on ResCu's generalization capability.

Fig. 9 shows R? for moist diabatic heating from ResCu-en, ResCu-t0-Is, DNN-mem and
DNN-t0-Is for baseline and +4K SST climate, respectively. ResCu-en demonstrates remarkable
generalization capability, with almost no drop in accuracy from the current climate to the +4K SST
warm climate (Fig. 9a, b), consistent with Figs. 3 and 6. Without convective memory (ResCu-t0-
Is), the NN is less accurate in the entire troposphere over the tropics and subtropics compared to
ResCu-en for the current climate (Fig. 9a vs. Fig. 9¢). There is noticeable deterioration in R? (Fig.

9c¢, d) from the baseline to +4K SST climate in the tropical lower and mid-troposphere. When fully
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connected NNs are used, DNN-mem performs well in both climates (Fig. 9¢c, d), while DNN-t0-1s
experiences a significant accuracy drop in the tropical mid and lower troposphere in the warm
climate (Fig. 9g, h), even more so than ResCu-t0-Is. Note that DNN-t0-Is is a fully connected NN
with current time step variables as input. It is similar to the NN used in Beucler, Pritchard, Yuval,
et al. (2021) without physical rescaling. Consistent with their findings, the generalizability to a
different climate is poor (Figs. 9g vs. 9h). The use of convective memory as input alleviates this
deficiency markedly, and the use of residual convolution neural net further improves the accuracy

and generalizability in the absence of convective memory as input (compare Fig.s 9c,d and g,h).
4.2.2 NN architectures

In this subsection, we further explore the impact of different neural network architectures
within the framework of ResCu-en on the generalization capability of the NN-based
parameterization. We present 4 different NNs with different combinations of the 3 architectures
(1D convolution, residual shortcuts, and batch-normalization): ResCu, the first member of ResCu-
en, with all three architectures, ResCNN with 1D convolution and residual shortcut, but no batch-
normalization, CNN with 1D convolution, but neither residual shortcuts nor batch normalization,
and ResDNN, a residual fully-connected neural network with no batch normalization, in which all
1D convolution layers in ResCNN are replaced with fully connected layers (Table 1). All four NNs
use the same input and output variables as in ResCu-en, and we evaluate their generalization
capability in the same way as in subsection 4.2.1.

Fig. 10 shows R? of moist diabatic heating for the NN architectures described above for both
current climate and the +4K SST warm climate. ResCu, ResCNN, and CNN are all able to
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generalize well to the warm climate. The 1D convolutional layer is the shared architecture in all
three, suggesting that the 1D convolution layer plays a major role in the generalization capability
of the NN. This is further demonstrated by comparing ResCNN and ResDNN (Fig. 10 e,f vs g,h).
These results are consistent with the work of Molina et al. (2021) who found that convolutional
neural networks have a better generalization capability. Without the convolutional layers, ResDNN
has noticeable degradation in R? from the current climate to +4K SST climate in tropical mid-
troposphere. Batch normalization (compared ResCu and ResCNN) does not affect much the
generalization capability of ResCu. While residual shortcuts help improve the prediction accuracy
of ResCu for both current and warm climates, their impact on the generalizability of ResCu is not
significant.

It is noted that while the degradation of R? for DNN-t0-1Is is substantial going from the current
climate to a warmer climate (e.g. Fig.9 g, h), it is not as drastic as reported in Beucler, Pritchard,
Yuval, et al. (2021). Out of curiosity, we conducted three additional tests on DNNs using the most
basic input variables: temperature (T), specific humidity (g, ), and surface sensible and latent heat
fluxes. We have DNN-10 with 10 layers of 512 nodes, which is as deep as a DNN can go and much
wider than a typical DNN is, DNN-7 with 7 layers of 128 nodes, which has the same NN
architecture as in Beucler, Pritchard, Yuval, et al. (2021) without physical rescaling, and DNN-7-
nc without the moist static energy conservation penalty in the loss function on the basis of DNN-
7 (Table 1, bottom three rows). Since the DNN with no rescaling in Beucler, Pritchard, Yuval, et
al. (2021) did not have energy conservation constraints, it is the closest to DNN-7-nc here. All

DNNs with the basic input variables perform reasonably well in the current climate (Fig. 11).
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However, for the warmer climate, DNN-7-nc has the poorest generalization capability throughout
the entire tropical troposphere, to a similar extent to that reported in Beucler, Pritchard, Yuval, et
al. (2021) for their NN without rescaling. DNN-7 with the MSE conservation penalty recaptures
some accuracy in the tropical upper troposphere. The generalizability of DNN-10 is further
improved. Therefore, within the DNN architecture, a wider and deeper neural network and the use
of moist static energy conservation in the loss function contribute to the generalization capability.

In summary, ResCu-en is capable of generalizing to a warm climate. When evaluated in the
+4K SST warm climate that is not included in the training data, ResCu-en successfully predicts
the global precipitation distribution and heating and moistening by moist physics processes with
high accuracy. Higher order statistics of precipitation, such as intensity increase and occurrence
frequency shift toward heavier precipitation over oceans simulated by SPCAM in the +4K SST
simulation are also captured by ResCu-en.

The use of convective memory as input is the most important attribute to the generalization
capability of ResCu-en to a warmer climate. The 1D convolutional layers further boost its warm-
climate generalizability. The residual shortcuts also help improve the generalizability of ResCu-
en, while the benefit of batch normalization is not noticeable. For fully connected neural networks,
while the generalizability is poor, relatively speaking, the use of moist static energy conservation
has the most impact on improving the DNN’s generalizability. A wider and deeper net also
improves it.

5. Stable online integration

The ultimate test of an NN-based parameterization is its performance in online GCM
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integration. Attempts from past studies to make online integrations stable using their NN-based
parameterizations were not successful until recently, particularly in real land-ocean geography
GCMs (Wang et al. 2022, Bretherton et al. 2022, Clark et al. 2022). Wang et al. (2022) emulated
the moist physics and radiation processes in SPCAM with a group of deep neural networks, each
for a different process. They succeeded in a 5-year online integration through trial and error; some
were successful in stable integration and others failed. No definitive answer was offered to explain
this different model integration behavior though. Bretherton et al. (2022) took a different approach
by learning the nudging tendencies as functions of the atmospheric state and then using these
tendencies to correct the physical parameterization biases in a NOAA global weather forecasting
model. They were able to integrate the model for 40 days. Clark et al. (2022) extended this work
and were able to integrate the model for more than 5 years and for different climates. They applied
input ablation and output tapering for the top 25 model levels (levels above ~200 hPa) to maintain
stability and to prevent the model from drifting. In this section, we implement our neural network
into the NCAR CAMS5. The main objective is to demonstrate its ability to perform long-term stable
integration consistently.
5.1 The implementation of ResCu

Due to computational cost (see details below), we only implement one member of ResCu-en
into CAMS5 (ResCu, i.e., member NN-1 of ResCu-en) instead of the ensemble of 8 members in
this initial exploratory online implementation. ResCu replaces the moist diabatic heating and
drying and cloud liquid and ice water contents from the conventional parameterization schemes

for moist physical processes, including deep convection, shallow convection, and microphysics.
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The conventional cloud parameterization schemes are still used to provide quantities that are not
predicted by our neural network but needed by the radiative transfer scheme in CAMS, such as
cloud liquid and ice number concentrations and cloud fraction. We refer to this configuration as
NCAM.

Before going into the online model integration, we should point out two technical details of
the implementation of ResCu into CAMS. First, recall that ResCu includes convective memory as
input. In the training and offline test of ResCu, moist physics heating and drying as well as cloud
water and ice contents at two previous time steps, as part of convective memory, were taken from
SPCAM. In online model integration, no such “ground truth” is available for representing
convective memory. A natural substitute for them would be the predicted values at the previous
time steps by the NN itself. This approximation will lead to some degradation in accuracy because
the neural net is trained on SPCAM data. To estimate the impact of this approximation, we use the
same trained neural network ResCu and test it offline using SPCAM data, except replacing the
SPCAM values with ResCu-predicted values at past time steps for convective memory. Fig. S7
shows that there is some degradation in NN-predicted precipitation in the Intertropical
Convergence Zone, by up to 1.5 mm/day locally. While this is a significant increase in prediction
biases, compared to the differences between typical GCM simulations and observations, which are
often as much as 3 to 4 mm/day in tropical oceans (Xie et al., 2012; Kooperman et al., 2016; Rasch
et al. 2019), this difference is still small. Therefore, in our implementation of ResCu into CAMS,
we use the ResCu-predicted values at past time steps for convective memory.

Second, similar to Brenowitz and Bretherton (2019) and Clark et al. (2022), we ablate the
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heating and drying rates from moist physics above the CAMS model level close to 120 hPa from
the NN. The reason for doing so is that near the tropopause and above moist heating and drying
values in GCMs (and real world too) are very small due to low moisture content. Although the NN
also predicts small values, the relative errors are large, as can be seen from the low R? values in
the last section. In our initial tests without ablating the heating and drying tendencies above 120
hPa, these errors cause the model integration to drift due to their effects on radiation although the
integration remains stable.

For computational cost, using 200 intel CPU cores, NCAM with a 32-layer deep neural net can
reach 3.8 simulation years per day (SYPD), which is 10 times faster than SPCAM (0.37 SYPD),
but 6 times slower than the default CAMS (23.5 SYPD). This computational speed can be
improved in the future since the Fortran implementation of the neural network, which contains
excessive use of loops, has not been optimized.

5.2 Online simulation results

In addition to NCAM, we also run the standard CAMS and SPCAM for the same period for
comparison to put NCAM simulation in context. We succeeded in conducting a 5-yr NCAM stable
simulation from Jan. 1998 to Dec. 2002 without encountering any integration instability, with no
systematic drift in global mean total energy (Fig. S8a) and precipitable water (Fig. S8b), although
there are some systematic biases. We also tested all other 7 members of the ResCu-en ensemble
for a shorter period, and none experienced any integration instability either. Fig. 12 shows the 5-
year average boreal summer (June-July-August) and winter (December-January-February)

precipitation for TRMM 3B42 observations, SPCAM, NCAM, and CAMS, respectively.
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Comparing against TRMM observations, NCAM can capture the major features in precipitation
distribution including the ITCZ and the South Pacific Convergence Zone (SPCZ) in the tropics
and midlatitude storm tracks. Interestingly, in the western Pacific warm pool region both SPCAM
and CAMS underestimate the precipitation in JJA, a well-known problem in the NCAR model,
while NCAM simulation is much better. However, it underestimates precipitation over tropical
land compared to both TRMM observations and SPCAM/CAMS simulations in JJA and DJF.

Although the simulated precipitation in NCAM is realistic, the simulated temperature and
moisture in high latitudes have much larger biases than those in CAMS when compared against
ECMWF Reanalysis - Interim (ERA-Interim) (Dee et al., 2011) (Fig. 13 and Fig. S9). These high
latitude biases are probably caused by inadequate representation of cloud-radiation interaction due
to inconsistencies between NN-based parameterization and conventional cloud microphysics and
macrophysics parameterizations. For instance, cloud fraction is parameterized by a conventional
macrophysics scheme. Cloud water and ice number concentrations as well as snow mass and
number concentrations are parameterized by the conventional Morrison and Gettelman (2008)
cloud microphysics scheme. The mismatch between cloud ice and water contents from ResCu and
their number concentrations from conventional microphysics scheme will affect cloud droplet and
ice crystal sizes, thereby affecting cloud-radiation interaction. These issues show that there is still
a long way to go before NN-based parameterization can replace the conventional physics
parameterization schemes.

In offline validation, we showed that ResCu-en predicts the pdf of precipitation intensity

extremely well (Fig. 4). In the online simulation, the ResCu-predicted precipitation pdf is not as
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close to that from SPCAM, as shown in Fig. 14 for tropical oceans. However, SPCAM itself
underestimates the occurrence frequency of precipitation intensity greater than 50 mm/day
compared to TRMM observations. In this regard, the ResCu-predicted precipitation pdf is actually
closer to TRMM observations, especially for high intensity precipitation greater than ~70 mm/day.
In comparison, CAMS5 shows the well-known “too much light rain and too little heavy rain”
problem (Wang et al., 2016).

The diurnal cycle of precipitation is another rainfall characteristic that is a long-standing
challenge in GCMs with conventional parameterizations (Dai, 2006; Zhang, 2003; Cui et al., 2021).
The diurnal cycle of rainfall is characterized by the local solar time (LST) of maximum
precipitation of the day and the amplitude within the diurnal cycle. We calculate the annually
averaged diurnal cycle of rainfall at every grid point globally and then find the LST of the
maximum rainfall rate in the day and regard the difference between the maximum and minimum
rainfall rate as the amplitude. Fig. 15 shows the warm season average (June-July-August for
northern hemisphere and December-January-February for southern hemisphere) rainfall diurnal
cycle between 45°S and 45°N from the 3h TRMM 3B42 observation and hourly output from
SPCAM, NCAM and CAMS simulations, respectively. In CAMS, as in many other GCMs, the
simulated warm-season precipitation peaks 4-6 h earlier than observations over land and 2-4 h
earlier over oceans (Dai, 2006), as shown in Fig. 15a and 15d. SPCAM only manages to mitigate
this delay in some ocean areas (visually below 40%), while similar effects are not observed over
land (Fig. 15b). However, NCAM alleviates the early precipitation problem remarkably by

delaying the peak time by 2-4 h over tropical land areas and by 2 h over 50% of the ocean areas
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(Fig. 15¢). Moreover, the amplitude of the diurnal cycle over land in most models is weak
compared with observations (Dai, 2006, Xie et al. 2019). In CAMS, the amplitude over tropical
land area is less than half of that in TRMM observations (Fig. 15¢, h). Both SPCAM and NCAM
increase the amplitude by a factor of 2 in many tropical land regions (Fig. 151, g).

6. Summary and Discussions

This study extends the work of Han et al. (2020) by using an ensemble of 8 neural networks
(ResCu-en) to account for the random errors inherent in the NN configuration. The depth of the
NN is also increased from 22 layers to 32 layers to improve the accuracy of the predictions, with
a batch-normalization layer added after each convolution layer for more robustness. The sampling
strategy of the training data is also improved by selecting 800 model grid columns randomly over
the globe every day in the SPCAM simulation instead of taking data from 800 fixed model grid
columns distributed over the globe. Therefore, ResCu-en has a stronger nonlinear fitting capability
from more layers, with reduced uncertainties from the ensemble mean.

In the independent offline test, ResCu-en reproduces all four output variables and the derived
precipitation with smaller biases and higher R? than ResCu in H20. ResCu-en can also reproduce
accurately the SPCAM's rainfall frequency distribution. To assess the ability of ResCu-en trained
on data from current climate to emulate convection in a warmer climate, we evaluated ResCu-en
in a +4K SST simulation using SPCAM. ResCu-en has an excellent generalizability to a warmer
climate when tested offline, with performance in predictions in a warmer climate comparable to
that for the current climate. It reproduces very well the precipitation intensity increase and the

occurrence frequency shift toward heavier rainfall over oceans.
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To understand what factors contribute to the strong generalization capability to warm climates,
we conducted a series of tests on input variables and NN architectures that are used in ResCu-en.
It is found that the use of convective memory as input variables is the most important factor
contributing to ResCu-en’s generalization capability, as demonstrated in both deep convolutional
NNs and fully connected NNs. Under the framework of ResCu-en, among the NN architectures
we tested, 1D convolutional layers were found to be the most important, while residual shortcuts
improved accuracy in both current and warm climates. On the other hand, batch normalization did
not have a significant impact on generalization. Fully connected NNs performed relatively poorly
on generalization, but their performance can be improved by deepening and widening the NNs or
by adding a moist static energy conservation penalty to the loss function.

The success of ResCu-en highlights the importance of incorporating convective memory into
machine-learning-based parameterization schemes. Several previous studies have noticed the role
of convective memory in the prediction of convection. They range from simple theories and toy
model simulations (Davies et al., 2009, Colin & Sherwood, 2021) to detailed simulations with
CRMs (Muller & Bony, 2015; Colin et al., 2019). In an NN-based parameterization, Shamekh et
al. (2022) explored the impact of convective organization and memory on precipitation intensities
and extremes.

We further implemented a member of ResCu-en into CAMS with real-world geography,
referred to as NCAM, and ran it successfully for 5 years without encountering any model
integration stability issue. The simulated 5-year mean precipitation captures the major features of

the global precipitation distribution, including the ITCZ in the tropics and the storm tracks in
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midlatitudes. However, NCAM underestimates precipitation over land and have large biases in
temperature and moisture in high latitudes.

NCAM also produces a frequency distribution of precipitation intensity that is closer to TRMM
observations than CAMS, with significantly less bias in underestimating heavy precipitation.
Additionally, NCAM improves the diurnal cycle of precipitation in CAMS by delaying the peak
time and increasing the diurnal amplitude. All these online simulation results show that our NN-
based parameterization is promising for use in future simulations for both current climate and
future climate projection studies. However, before this is possible, we must address the issues of
large biases in high latitudes, which were also noticed in previous studies. Furthermore,
conventional convection and cloud parameterization schemes output many more parameters that
NN-based parameterizations do not provide, such as cloud droplet and ice crystal numbers, as well
as snow and graupel mass and number concentrations. These variables are needed for aerosol-
cloud-radiation interactions and cloud feedbacks that are fundamentally important for climate
projection studies. Therefore, much more work is needed before it is feasible for NN-based

parameterizations to fully replace physically based parameterizations in GCMs.
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Tables and Figure Captions:

Table 1. List and description of neural networks used in the offline generalization test. The
configurations include 1D convolutional layers, fully connected layers, residual shortcuts, batch-
normalization, convective memory as inputs, and moist static energy conservation penalty in the

loss function.

Figure 1. The histograms of probability density function (PDF) of column-integrated moist static
energy change for (a) SPCAM, (b) ResCu-en, and (c) the differences between prediction from
ResCu-en and SPCAM at each GCM grid column. The standard deviation (o) and mean (u) for
each PDF are shown at the top of each plot.

Figure 2. Global distribution of the annual mean precipitation for the baseline climate in (a)
SPCAM simulation, (b) offline test by ResCu-en, and (c) their differences (ResCu-en minus
SPCAM). Note that the color intervals for the differences is 5% of that for the mean to provide a

better visualization of the differences.

Figure 3. Latitude-pressure cross sections of annual and zonal average heating (left) and
moistening (right) from moist physics for (a and b) SPCAM simulation, (¢ and d) offline test by
ResCu-en, (e and f) and their differences (ResCu-en minus SPCAM).

Figure 4. The probability distribution function (PDF) of rainfall intensity for both baseline climate
(solid lines) and +4K SST warm climate (dashed lines) for different regions: (a and d) tropics (20S
to 20N), (b and e) northern hemisphere extratropical regions (20N to S0N), and (¢ and f) northern
hemisphere high latitudes (50N to 90N). The left column is for land regions and the right column
is for oceans. The TRMM 3B42 rainfall product (green solid line) is included for reference. The
bin intervals for the PDFs are 2 mm/day.

Figure 5. Same as Figure 2 but for the warm climate with 4K increase in SST.
Figure 6. Same as Figure 3 but for the warm climate with 4K increase in SST.

Figure 7. Global distribution of coefficient of determination (R?) for precipitation predictions by

ResCu-en under different climates: (a) the baseline climate for the present-day (b) the warm

climate with 4K increase in SST. R? is calculated using R? = 1 — IZTSf, where MSE is the mean
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squared error between ResCu-en predictions and SPCAM targets and var is the variance of the
SPCAM targets.

Figure 8. Time series of precipitation from SPCAM simulations (black lines) and ResCu-en
predictions (red dotted lines) at selected locations under (a and c) the baseline climate and (b and
d) the warm climate. A grid point in the northern ITCZ region is selected (a and b) for heavy
precipitation where R? is high and a grid point in the southeastern Pacific stratus region is selected

(c and d) for light precipitation where R? is low.

Figure 9. The coefficient of determination (R?) of the zonally averaged heating for different NNs
in the current climate (top row) and the +4K SST warm climates (bottom row): (a and b) ResCu-
en, (c and d) ResCu-t0-1Is, (e and f) DNN-mem, and DNN-t0-Is (g and h). Note that ResCu-en and
DNN-mem are trained with full input variables including convective memory, while ResCu-t0-Is

and ResCu-t0-Is are only trained on input variables of T, q,,, dT} 5, and dq,, ;s at current timestep.

Figure 10. Same as Figure 9 but for the deep NNs trained on full input variables including
convective memory: (a and b) ResCu, (¢ and d) ResCNN, which is ResCu without batch
normalization, (e and f) CNN, which is ResCu without batch normalization or residual shortcuts,
and (i and j) ResDNN, which is ResCu without batch normalization or convolution layers.

Figure 11. Same as Figure 9 but for fully connected NNs only trained on input variables of T and
q, at current timestep: (a and b) DNN-10, (c and d) DNN-7, and (e and f) DNN-7-nc without moist

static energy conservation.

Figure 12. Global distribution of temporal mean precipitation rate (mm/day) in June-July-August
(the left panels) and December-January-Feburary (the right panels) over the years of 1998 to 2002
for (a and b) TRMM 3B42, (¢ and d) NCAM, and (e and f) CAMS. The spatial mean and root

mean square error to the TRMM 3B42 observations are shown above each frame.

Figure 13. Latitude-pressure cross sections of annual and zonal average temperature (left) and
specific humidity (right) over years 1998 to 2002 for (a and b) ERA-Interim, (¢ and d) NCAM,
and (e and f) CAMS. The root mean square error to ERA-Interim reanalysis is shown above each
frame from (c) to (f).

Figure 14. Probability density distribution of the daily mean precipitation in the tropics (20°S —
20°N) over oceans from the three model simulations and the TRMM 3B42 daily product. The
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black, blue, red and green solid lines are for SPCAM, NNCAM, CAMS, and TRMM 3B42,

respectively.

Figure 15. Tropical distribution of warm season averaged diurnal peak time (a) to (d) and
amplitude (¢) to (h) of the diurnal cycle of precipitation (mm day ') derived from observations
from hourly data of (a and e) TRMM 3B42, (b and f) SPCAM, (c and g) NCAM, and (d and h)
CAMS. In (a) to (c), areas with precipitation less than 1mm/day are masked. The warm season is
defined as June-July-August (JJA) for Northern Hemisphere and December—January-February
(DJF) for Southern Hemisphere, respectively. The thick black line marks the equator, where the

warm season is undefined.
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Table 1. List and description of neural networks used in the offline generalization test. The

configurations include 1D convolutional layers, fully connected layers, residual shortcuts, batch-

normalization, convective memory as inputs, and moist static energy conservation penalty in the

loss function.

1D Fully- Residual Batch- Convective MSE
Convolution connected Shortcuts Normalization Memory Penalty
Layers Layers Inputs in Loss
Function
ResCu-t0- 32 layers of No Yes Yes No Yes
Is 128 3x1
kernels
DNN- No 10 layers of  No No Yes Yes
mem 512 nodes
DNN-t0- No 10 layers of  No No No Yes
Is 512 nodes
ResCu 32 layers of No Yes Yes Yes Yes
128 3x1
kernels
ResCNN 32 layers of No Yes No Yes Yes
128 3x1
kernels
CNN 32 layers of No No No Yes Yes
128 3x1
kernels
ResDNN  No 32 layers of  Yes No Yes Yes
512 nodes
DNN-10  No 10 layers of  No No No Yes
512 nodes
DNN-7 No 7 layers of No No No Yes
128 nodes
DNN-7-  No 7 layers of No No No No
nc 128 nodes
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Figure 1. The histograms of probability density function (PDF) of column-integrated moist static
energy change for (a) SPCAM, (b) ResCu-en, and (c) the differences between prediction from
ResCu-en and SPCAM at each GCM grid column. The standard deviation (o) and mean (u) for
each PDF are shown at the top of each plot.
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971  Figure 2. Global distribution of the annual mean precipitation for the baseline climate in (a)

972  SPCAM simulation, (b) offline test by ResCu-en, and (c) their differences (ResCu-en minus
973  SPCAM). Note that the color intervals for the differences is 5% of that for the mean to provide a
974  Dbetter visualization of the differences.
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980  Figure 3. Latitude-pressure cross sections of annual and zonal average heating (left) and
981  moistening (right) from moist physics for (a and b) SPCAM simulation, (c and d) offline test by
982  ResCu-en, (e and f) and their differences (ResCu-en minus SPCAM).
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Figure 4. The probability distribution function (PDF) of rainfall intensity for both baseline climate
(solid lines) and +4K SST warm climate (dashed lines) for different regions: (a and d) tropics (20S
to 20N), (b and e) northern hemisphere extratropical regions (20N to S0N), and (¢ and f) northern
hemisphere high latitudes (SON to 90N). The left column is for land regions and the right column
is for oceans. The TRMM 3B42 rainfall product (green solid line) is included for reference. The
bin intervals for the PDFs are 2 mm/day.
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Figure 5. Same as Figure 2 but for the warm climate with 4K increase in SST.
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Figure 6. Same as Figure 3 but for the warm climate with 4K increase in SST.
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Figure 7. Global distribution of coefficient of determination (R?) for precipitation predictions by
ResCu-en under different climates: (a) the baseline climate for the present-day (b) the warm

MSE

——, where MSE is the mean
var

climate with 4K increase in SST. R? is calculated using R? = 1 —

squared error between ResCu-en predictions and SPCAM targets and var is the variance of the
SPCAM targets.
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Figure 8. Time series of precipitation from SPCAM simulations (black lines) and ResCu-en
predictions (red dotted lines) at selected locations under (a and c) the baseline climate and (b and
d) the warm climate. A grid point in the northern ITCZ region is selected (a and b) for heavy
precipitation where R? is high and a grid point in the southeastern Pacific stratus region is selected
(c and d) for light precipitation where R? is low.
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Figure 9. The coefficient of determination (R?) of the zonally averaged heating for different NNs
in the current climate (top row) and the +4K SST warm climates (bottom row): (a and b) ResCu-
en, (c and d) ResCu-t0-1Is, (e and f) DNN-mem, and DNN-t0-Is (g and h). Note that ResCu-en and
DNN-mem are trained with full input variables including convective memory, while ResCu-t0-1s

and ResCu-t0-Is are only trained on input variables of T, q,,, dT} 5, and dq,, ;s at current timestep.
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Figure 10. Same as Figure 9 but for the deep NNs trained on full input variables including
convective memory: (a and b) ResCu, (¢ and d) ResCNN, which is ResCu without batch
normalization, (e and f) CNN, which is ResCu without batch normalization or residual shortcuts,

and (i and j) ResDNN, which is ResCu without batch normalization or convolution layers.
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1036  Figure 11. Same as Figure 9 but for fully connected NNs only trained on input variables of T and
1037 g, atcurrent timestep: (a and b) DNN-10, (c and d) DNN-7, and (e and f) DNN-7-nc without moist
1038  static energy conservation.
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Figure 12. Global distribution of temporal mean precipitation rate (mm/day) in June-July-August
(the left panels) and December-January-February (the right panels) over the years of 1998 to 2002
for (a and b) TRMM 3B42, (¢ and d) NCAM, and (e and f) CAMS. The spatial mean and root
mean square error to the TRMM 3B42 observations are shown above each frame.
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1047  Figure 13. Latitude-pressure cross sections of annual and zonal average temperature (left) and
1048  specific humidity (right) over years 1998 to 2002 for (a and b) ERA-Interim, (¢ and d) NCAM,
1049  and (e and f) CAMS. The root mean square error to ERA-Interim reanalysis is shown above each
1050  frame from (c) to ().
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Figure 14. Probability density distribution of the daily mean precipitation in the tropics (20°S —
20°N) over oceans from the three model simulations and the TRMM 3B42 daily product. The
black, blue, red and green solid lines are for SPCAM, NNCAM, CAMS, and TRMM 3B42,

respectively.
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Figure 15. Tropical distribution of warm season averaged diurnal peak time (a) to (d) and

amplitude (¢) to (h) of the diurnal cycle of precipitation (mm day ') derived from observations
from hourly data of (a and ) TRMM 3B42, (b and f) SPCAM, (c and g) NCAM, and (d and h)

CAMS. In (a) to (c), areas with precipitation less than Imm/day are masked. The warm season is

defined as June-July-August (JJA) for Northern Hemisphere and December—January-February

(DJF) for Southern Hemisphere, respectively. The thick black line marks the equator, where the

warm season is undefined.
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