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Key points 27 

1. An ensemble of deep convolutional residual neural networks is used to reduce the uncertainty 28 

in moist physics emulations.   29 

2. The ensemble of the neural networks trained on data from a present-day climate simulation 30 

generalizes well to a +4K warm climate offline. 31 

3. A multi-year stable online integration is achieved in a real-geography GCM with reasonable 32 

results. 33 

 34 
Abstract 35 

With the recent advances in data science, machine learning has been increasingly applied to 36 

convection and cloud parameterizations in global climate models (GCMs). This study extends the 37 

work of Han et al. (2020) and uses an ensemble of 32-layer deep convolutional residual neural 38 

networks, referred to as ResCu-en, to emulate convection and cloud processes simulated by a 39 

superparameterized GCM, SPCAM. ResCu-en predicts GCM grid-scale temperature and moisture 40 

tendencies, and cloud liquid and ice water contents from moist physics processes. The surface 41 

rainfall is derived from the column-integrated moisture tendency. The prediction uncertainty 42 

inherent in deep learning algorithms in emulating the moist physics is reduced by ensemble 43 

averaging. Results in one-year independent offline validation show that ResCu-en has high 44 

prediction accuracy for all output variables, both in the current climate and in a warmer climate 45 

with +4K sea surface temperature. The analysis of different neural net configurations shows that 46 

the success to generalize in a warmer climate is attributed to convective memory and the 1-47 

dimensional convolution layers incorporated into ResCu-en. We further implement a member of 48 
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ResCu-en into CAM5 with real world geography and run the neural-network-enabled CAM5 49 

(NCAM) for 5 years without encountering any numerical integration instability. The simulation 50 

generally captures the global distribution of the mean precipitation, with a better simulation of 51 

precipitation intensity and diurnal cycle. However, there are large biases in temperature and 52 

moisture in high latitudes. These results highlight the importance of convective memory and 53 

demonstrate the potential for machine learning to enhance climate modeling. 54 

 55 
 56 
Plain Language Summary 57 
 58 

The representation of storms and clouds through empirical algorithms known as 59 

parameterizations in global climate models (GCMs) is one of the main sources of biases in the 60 

simulation of rainfall and atmospheric circulation. Here an ensemble of 8 deep neural networks 61 

are used to replace the conventional parameterization of atmospheric moist physics processes. 62 

They are trained on data sampled from one-year present-day climate simulation by a 63 

"superparameterized" climate model, which uses a two-dimensional cloud-scale model to 64 

explicitly simulate convection and clouds inside each GCM grid box. On ensemble averaging, the 65 

neural nets produce highly accurate predictions of precipitation characteristics including global 66 

distribution and intensity. Furthermore, the machine-learned emulator trained on data in the current 67 

climate also represents convection and precipitation extremely well in a warmer climate. A 68 

member of the ensemble of the neural nets is implemented into a GCM. The model is then 69 

integrated for 5 years, producing reasonable results.  70 

   71 
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1. Introduction 72 

Convection and cloud parameterization schemes used in global climate models (GCMs) are a 73 

major source of many biases in the simulation of climate and its variability. These include biases 74 

in the Intertropical Convergence Zone (ITCZ) (Zhang et al., 2019), intraseasonal variability such 75 

as Madden Julian Oscillation (MJO) (Zhang & Mu, 2005; Cao & Zhang, 2017) and diurnal cycle 76 

of precipitation (Xie et al., 2019, Cui et al., 2021). They are also the main causes of uncertainties 77 

in GCM-simulated response of cloud radiative forcing and precipitation to global warming 78 

(Stevens & Bony, 2013). Current convection parameterization schemes (e.g., Arakawa & Schubert, 79 

1974; Tiedtke, 1989; Zhang & McFarlane, 1995 and many more) were developed based on limited 80 

observations and simplified or heuristic models. Although some incremental progress has been 81 

made in climate simulations by improving the parameterization schemes (e.g., Zhang & Mu, 2005; 82 

Neale et al., 2008; Bechtold et al., 2014; Wang et al., 2016; Song & Zhang, 2018; Xie et al., 2019), 83 

conventional convection and cloud parameterization has reached a deadlock (Randall et al., 2003; 84 

Gentine et al., 2018), and other alternatives have been actively explored.  85 

One of the alternatives is to embed a cloud resolving model (CRM) into each GCM grid box 86 

to replace the conventional convection parameterization scheme, the so called 87 

superparameterization approach. Khairoutdinov et al. (2005) developed the superparameterized 88 

National Center for Atmospheric Research (NCAR) Community Atmosphere Model (SPCAM). 89 

SPCAM performs better in the simulation of convection at different scales such as the eastward 90 

propagating mesoscale convective systems, the diurnal cycle of convection, and MJO (Pritchard 91 

& Somerville, 2009; Jiang et al., 2015).  92 

Data-driven machine learning (ML) has been actively explored for parameterizing subgrid-93 

scale convection and cloud processes in the last few years (Gentine et al., 2018; Rasp et al., 2018; 94 
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Brenowitz & Bretherton, 2018, 2019; Han et al., 2020; Yuval & O'Gorman, 2020; Brenowitz et al., 95 

2020; Beucler, Pritchard, Rasp, et al., 2021; Yuval et al., 2021; Irrgang et al., 2021; Beucler, 96 

Pritchard, Yuval, et al., 2021; Wang et al. 2022). Gentine et al. (2018) used deep learning to emulate 97 

convection and radiation processes simulated by SPCAM. Rasp et al. (2018) coupled a neural 98 

network (NN) to a 3-D aqua-planet GCM. Brenowitz and Bretherton (2019) trained a neural 99 

network parameterization scheme using coarse-grained global CRM simulation results and 100 

realized a multi-day online simulation in a coarse-resolution GCM. Yuval and O'Gorman (2020) 101 

developed a random forest-based ML parameterization with simulation results from a high-102 

resolution 3-D model run on an idealized beta plane. They reproduced the climate of the high-103 

resolution model in a coarse-resolution model with this parameterization. Later, Yuval et al. (2021) 104 

used neural networks and obtained similar results with less computational memory. The above 105 

studies all used the aqua-planet configuration of the GCMs. 106 

Recently, studies have emerged on ML parameterization schemes under real geography. Han 107 

et al. (2020), hereafter H20, accurately emulated convective heating, drying, cloud water and ice 108 

concentration in a realistically configured SPCAM by applying a 1-D residual convolution neural 109 

network (ResNet) with powerful nonlinear fitting ability, and tested it offline and in a single 110 

column model. Mooers et al. (2021) optimized a fully connected neural network with a 111 

sophisticated auto-learning technique to emulate convection under real land-ocean distribution and 112 

used the neural-network emulated fields to force an offline land surface model with some success.  113 

The performance of ML-based parameterizations has been improved in the last few years. 114 

However, not much attention has been paid to their uncertainties. Brenowitz & Bretherton (2019) 115 

first noted that the training bias fluctuates significantly from one training epoch to another, and 116 

thus determining when to stop the training can lead to considerable uncertainties. Furthermore, 117 
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individual predictions from a deep learning model can contain sizeable uncertainties even though 118 

the model performs well on average (Pearce et al., 2018; Gawlikowski et al., 2021). The prediction 119 

uncertainty from NN-based parameterizations can come from two major sources: aleatoric and 120 

epistemic uncertainties. Aleatoric uncertainty is the intrinsic uncertainty within the target data. For 121 

the superparameterization simulations, this uncertainty is mainly from losing many degrees of 122 

freedom when the CRM-domain fields are coarse-grained to the GCM grid. On the other hand, 123 

Epistemic uncertainty is due to limited data and knowledge of the ML models. To speed up the 124 

training process of an NN-based parameterization, we only use "limited" training data, which is 125 

often an arbitrarily selected subset in space and/or time of a sampling pool from a high-resolution 126 

model simulation. Since cloud and convection processes are highly complex and nonlinear, an NN 127 

emulator is not “perfect” with 100% fitting accuracy. In practice, the epistemic uncertainty comes 128 

from the process of training, which involves randomly initializing the weights and biases in the 129 

NNs first, and then training them with data in mini-batches, which randomly distribute the data 130 

into numerous subsets and shuffle the subset sequence after every training iteration. The algorithms 131 

to optimize the weights and biases during the training are stochastic or are related to stochastic 132 

processes, such as Stochastic Gradient Descent, Root Mean Squared Propagation, and Adaptive 133 

Moment Estimation (Adam) (Kingma & Ba, 2014). As a result, all the randomness involved in the 134 

training process contributes to the prediction uncertainty, which cannot be ignored in developing 135 

NN-based parameterizations.  136 

A challenging issue for an NN-based parameterization trained on one climate is to generalize 137 

it to another, unseen climate as it requires the neural net to fit out-of-distribution data. Several 138 

studies have tested the ability of their NN-based parameterizations to generalize to different 139 

climates (Rasp et al., 2018; O'Gorman and Dwyer, 2018; Beucler, Pritchard, Yuval, et al., 2021; 140 
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Clark et. al., 2022). They found that the NN-based parameterizations trained with data from the 141 

current climate degraded seriously in accuracy when directly used in warmer climates. To achieve 142 

a better generalization, Rasp et al. (2018) and Clark et al. (2022) included the warm climate 143 

simulation output in the training data. Beucler, Pritchard, Yuval, et al. (2021) rescaled the NN’s 144 

input and output variables to keep the probability distribution unchanged across climates.  145 

Besides generalization to different climates, making a stable model integration using NN-146 

based parameterizations is another great challenge (Irrgang et al., 2021). Several recent studies 147 

have explored the prognostic performance of ML parameterization schemes in 3D real-geography 148 

GCMs. Wang et al. (2022) emulated the moist physics and radiation processes in SPCAM with a 149 

group of deep neural networks. They succeeded in a 5-year online integration, but with significant 150 

climate biases in high latitudes. Bretherton et al. (2022) used machine learning of nudging 151 

tendencies as functions of the atmospheric state to correct the physical parameterization tendencies 152 

and ran a NOAA global forecasting model for 40 days. Clark et al. (2022) tested this ML-learned 153 

tendency correction approach and ran the model for more than 5 years as well as for different 154 

climates.  155 

In this study, we use an ensemble of 8 refined deep NNs based on the ResNet in H20 to reduce 156 

the uncertainties in NN predictions, similar to Krasnopolsky et al (2013). We then test its 157 

generalizability to a +4K SST warmer climate and explore different attributes of the NN in this 158 

regard. Finally, we attempt to carry out a multi-year online integration to assess whether a stable 159 

long-term integration is achievable with reasonable results. The organization of the paper is as 160 

follows. Section 2 presents the details of the data generation and NN design. Section 3 shows the 161 

results of offline validations. Section 4 tests the generalization of the NN to a warmer climate and 162 

the roles of the NN architecture and input variables in its generalization ability. Section 5 performs 163 



` 8 

the prognostic online simulation in a 3D real-geography GCM. A summary and discussion are 164 

given in section 6. 165 

2. An ensemble of Neural Networks  166 

2.1  Selection of Training Data  167 

Same as in H20, we use a year-long simulation from the NCAR SPCAM (Khairoutdinov et 168 

al., 2005). It includes a coupled land model CLM 4.0 and is run with prescribed monthly mean 169 

climatological sea surface temperature (SST) and sea ice for lower boundary conditions (Hurrell 170 

et al., 2008). The model is run for three and a half years with a timestep of 20 min, and we use 171 

subsets of year two simulation output for training the NN. To speed up the training, we select 800 172 

points out of the total of 13824 (96x144) grid points in the 2.5 deg x 1.9 deg horizontal resolution 173 

model. Instead of selecting 800 fixed points as in H20, for data from each day of the year we select 174 

800 points with each grid point randomly chosen from three latitude zones in proportion to their 175 

relative surface area. The three latitude zones are the tropics (30°S to 30°N), midlatitudes (60°S to 176 

30°S and 30°N to 60°N), and high latitudes (90°S to 60°S and 60°S to 90°N). Therefore, we have 177 

56,700 (800 points x 3 timesteps/hr x 24 hrs) training samples each day and nearly 21 million 178 

samples in total. The new method of data selection ensures that all regions on the globe are 179 

represented in the training dataset. This training data selection procedure is repeated for training 180 

each NN. 181 

2.2 Input and Output  182 

The input variables for the NN are mostly the same as those in H20. These include the GCM 183 

grid-scale state variables and tendencies that are used to force the CRM in SPCAM. They are 184 
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temperature profile ("), specific humidity ($!), large-scale temperature and moisture tendencies 185 

%
"#
"$&%&

and %"'!"$ &%&
 from the dynamic core of SPCAM's host CAM5 and planetary boundary layer 186 

(PBL) diffusion, surface sensible and latent heat fluxes (''()/+(  and ',()/,!) and surface 187 

pressure (-&). We also consider convective memory as in H20, but with some modification. In H20, 188 

we considered 4 GCM timesteps. In the sensitivity test in H20, it was found that including 2 189 

timesteps will suffice to account for the effect of the history of convection. Thus, here for 190 

convective memory we only consider the following variables in the previous 2 timesteps: the GCM 191 

grid-scale T, $!, %"#"$&%&
and %"'!"$ &%&

, temperature and moisture tendencies from moist physics "#"$  192 

and "'!"$ , and cloud water $) and cloud ice $* predicted by the CRM. The output variables are also 193 

the same as those in H20: GCM grid averaged diabatic temperature and moisture tendencies "#"$  194 

and "'!"$ , cloud water and cloud ice contents $)  and $* . Precipitation is diagnosed from the 195 

vertically integrated moisture tendency in the output.  196 

In total, the input layer consists of 20 vectors with a length of 33 and the output layer consists 197 

of four vectors with a length of 30. All input and output variables are normalized with 198 

normalization factors the same as those in H20 to ensure that they are of order of magnitude O(1) 199 

before they are input into the deep neural network for training and testing. 200 

2.3  Loss function accounting for moist static energy conservation 201 

In moist physics, the atmospheric moist static energy (h) is conserved in the absence of ice 202 

phase processes. As in H20, we customize the loss function to include ℎ conservation by adding 203 

the mean square error between column-integrated h change from the neural net and that from 204 
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SPCAM in the form of /+,∫
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"$ 12	
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+
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/
 as a penalty term in our loss function 205 

to make the integrated ℎ tendencies from deep learning model approach those from SPCAM. Thus, 206 

the loss function is written as 207 

  5677 = ‖:; − :‖/ + 	λ /
+
, ∫

"-"#
"$ 12	
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($ −

+
, ∫

"-$$
"$ 12	

(.
($ /

/
,                            (1)  208 

where y is the target fields from SPCAM, :; is the output of our neural network model, and > is a 209 

Lagrangian multiplier to simultaneously enforce accuracy and ℎ conservation.  210 

2.4  Deep ResNet 211 

In H20, a moist physics parameterization was developed using a 1-D residual convolutional 212 

neural network (ResNet), referred to as ResCu for short. We continue to use the same NN construct 213 

here, but with the following modifications: 1) extend the number of layers from 22 to 32; 2) add a 214 

batch normalization layer after each convolutional layer except the last one; and 3) remove the 215 

activation function in the last layer. The first modification is to further improve the accuracy of the 216 

neural network. The last two modifications are based on the sensitivity tests of H20. Batch-217 

normalization helps improve the accuracy and robustness when added after each layer, since it 218 

normalizes the output of the layer with a running average and a running standard deviation (Ioffe 219 

& Szegedy, 2015). With multiple activation functions in previous layers for nonlinear 220 

representation, the last layer activation does not add much further improvement in the accuracy of 221 

the output in a deep neural network.  222 

After increasing the depth of the NN from 22 to 32 layers, the RMSE of the fitting (the first 223 

term on the rhs of eq. (1)) is significantly smaller, which makes the h conservation penalty (the 224 
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second term on the rhs of eq. (1)) a dominant term in the loss function. Thus, the original value of 225 

the multiplier > = 5 × 1001 is too large, which affects the convergence of the NN training. We set 226 

>  to a new value of 1 × 1001  for the optimal balance between ℎ  conservation and prediction 227 

accuracy. This makes the penalty term from h conservation account for about 6% of the total loss. 228 

With some preliminary trial tests, we find that 32 layers are optimal for prediction accuracy as well 229 

as h conservations, reducing the total loss by 1.7% compared to the 22-layer NN (Fig. S1a in 230 

Supplementary Information). Further increasing the depth of the NN (in our case, to 42 layers) 231 

does not lead to further decrease of the total loss function.  232 

This deep ResNet applies 1-D convolutional layers with 128 feature vectors (1‐D feature maps) 233 

and 128 corresponding filter banks with a kernel size of 3. It contains 15 Resunits, including 32 234 

convolutional layers in total, with approximately 1.5 million trainable parameters and 40,000 235 

untrainable parameters (running averages and standard deviations in the batch normalization 236 

layers). The activation algorithms inside each Resunit are Rectified Linear Activations (ReLUs), 237 

with no activation in the output layer.   238 

As mentioned earlier, to reduce the prediction uncertainty from the NN, we use an ensemble 239 

of 8 NNs, referred to as NN-1 to NN-8 and the ensemble referred to as ResCu-en (Fig. S1b). Using 240 

the 32-layer ResNet, we independently trained each of the 8 NNs with different random seeds for 241 

initialization and selected training subset (see Sec. 2.1 above). All 8 neural networks are identical 242 

in input and output variables and NN architecture, and trained over 100 epochs, using the Adam 243 

optimizer that has an initial learning rate of 3 × 1002.  244 

3. Offline Validation for Current Climate 245 
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To evaluate the performance of ResCu-en, we compare the ensemble mean predictions from it 246 

with SPCAM simulations using the independent third-year testing data. As described in Section 247 

2.1, this target simulation is forced with the climatological mean SST, which we refer to as the 248 

baseline simulation hereinafter. We test the performance in multiple aspects: moist static energy 249 

conservation, annual mean of the predicted variables, and precipitation frequency distribution. 250 

Since the training data are from an SPCAM simulation under the present-day climate conditions, 251 

an important question is whether the trained NN can be used in a warmer climate. To test the 252 

capability of ResCu-en generalization to a warm climate, we perform an SPCAM simulation with 253 

+4K SST (Bretherton et al., 2014), that is, we add 4K uniformly on top of the monthly mean global 254 

SST distribution as the boundary condition. Then we use the simulated fields from the +4K 255 

simulation as input into ResCu-en, which is trained with the present-day climate simulation data, 256 

to diagnose the moist physics tendencies and precipitation. 257 

First, we check the accuracy of moist static energy conservation in ResCu-en. For moist 258 

physics, the column integrated heating and drying or ℎ tendencies 3!, ∫
"'
"$ 12	

(.
($ +	

4%
, ∫

"#
"$ 12

(.
($  259 

should be equal to the net freezing heating and melting cooling associated with ice phase change 260 

of hydrometeors in the column. Fig. 1 shows the histogram of column integrated ℎ tendencies from 261 

SPCAM, ResCu-en and their differences. The SPCAM simulation shows a mean D = 0.99	G/H/ 262 

and a standard deviation I = 10.66	G/H/ (Fig. 1a). The histogram of the column-integrated ℎ 263 

change predicted by ResCu-en is remarkably close to that of SPCAM with a mean of 1.21 G/H/ 264 

and a standard deviation of 9.62	G/H/(Fig. 1b). The difference plot (Fig. 1c) shows the histogram 265 

of the differences between column integrated NN-predicted h tendencies and the corresponding 266 
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SPCAM simulated values at each GCM grid column and time step for all data used in the test. 267 

There is only a small systematic positive bias of 0.22 G/H/ and a difference spread (standard 268 

deviation) of 4.71 G/H/. Note that the temperature and moisture tendencies from the moist 269 

physics processes in the NN are predicted independently and their column-integrated values are 270 

on the order of 1000 to 4000 W/m2 (cf. Fig. 2 in H20). Thus, this demonstrates that ResCu-en is 271 

remarkably accurate in ℎ  conservation even though the requirement of ℎ  conservation only 272 

contributes 5% to the total loss function (Fig. S1a). Note that past neural-network-based emulators 273 

struggled to maintain strict column-integrated ℎ conservation, with larger standard deviation (Rasp 274 

et al., 2018) or imbalances (Brenowitz and Bretherton, 2018). On the other hand, a random-forest-275 

based emulator developed by Yuval and O’Gorman (2020) has a much better h conservation, with 276 

only a small bias of 0.0001 W/m2. This is because random forest by design conserves energy 277 

whereas neural networks do not obey energy conservation a priori. 278 

The predicted annual mean precipitation by ResCu-en is in excellent agreement with the 279 

SPCAM simulation, with no significant localized biases but a slight underestimation on global 280 

average (Fig. 2). The differences between individual NN and SPCAM (Fig. S2) simulation are 281 

relatively larger, highlighting the advantage of using an ensemble of NNs. In H20, ResCu can 282 

reproduce the target precipitation with high accuracy already, except with some noticeable 283 

overestimation over the Tibetan Plateau and underestimation in the ITCZ and SPCZ. These biases 284 

are either almost completely gone or less evident in the individual NNs in Fig. S2, indicating a 285 

clear improvement owing to the use of a deeper NN (32 layers here vs. 22 layers in H20).  286 

The diabatic heating and drying rates in SPCAM from the CRM simulated convection and 287 
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condensation processes are also reproduced to a high degree of accuracy by ResCu-en. In the 288 

pressure-latitude cross section of the annual and zonal mean, the SPCAM simulation (Fig. 3a, b) 289 

shows the typical climatological features: a deep tropospheric heating and corresponding 290 

condensational drying in the tropics from deep convection, heating and moistening in the lower 291 

troposphere in the subtropics from shallow convection and stratiform processes, and heating and 292 

drying in the mid- and low troposphere by midlatitude cyclones. These features are well captured 293 

by ResCu-en (Fig 3c, d), with biases no larger than 5% of the SPCAM simulated values (Fig. 3e, 294 

f). Even for the strong cooling and drying near the surface, which are the CRM responses to the 295 

PBL forcing, ResCu-en reproduces them accurately. The individual NNs that constitute ResCu-en, 296 

on the other hand, have relatively larger biases (Fig. S3). We also computed the RMSE of heating 297 

rate relative to the SPCAM values at each GCM grid point using data from every time step and 298 

averaged the RMSE over (20°S, 20°N) following the method of Beucler, Pritchard, Yuval, et al. 299 

(2021). Fig. S4 shows the vertical profiles of RMSE and model layer thickness-weighted MSE for 300 

each member of ResCu-en. The RMSE is 2 to 4 K/day in the lower and middle troposphere. A 301 

more direct comparison with Beucler, Pritchard, Yuval, et al. (2021) is the thickness-weighted 302 

MSE, which has a maximum of about 800 W2/m4. This compares to about 2000 W2/m4 for the 303 

climate-invariant NN in Beucler, Pritchard, Yuval, et al. (2021), indicating that even members of 304 

ResCu-en are quite accurate.  Similar accuracies are found for ResCu-en predicted cloud water 305 

and cloud ice distributions, with differences between the ResCu-en prediction and SPCAM 306 

simulation less than 0.2 mg/kg everywhere (Fig. S5). These again demonstrate the superiority of 307 

using an ensemble of NNs with deeper NNs.  308 
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In addition to the annual mean fields, we also examine the frequency of precipitation, one of 309 

the essential precipitation characteristics conventional parameterization schemes often fail to 310 

represent (Wang et al., 2016, Xie et al., 2019). Fig. 4 shows the frequency distribution of daily 311 

averaged precipitation for SPCAM simulation and ResCu-en prediction. To show the land-sea 312 

contrast, the model grid points are divided into ocean (land fraction less than 0.1) and land (land 313 

fraction greater than 0.95). We also present the latitudinal differences by showing the results in the 314 

tropics (20°S to 20°N), northern hemisphere mid-latitudes (20°N to 50°N), and northern 315 

hemisphere high latitudes (50°N to 90°N). For comparison, we also plot the precipitation 316 

frequency for a simulation under the global warming scenario to be discussed in the next section 317 

and from TRMM observations for reference. In all regions, the precipitation intensity pdf from 318 

SPCAM is very well captured by ResCu-en. Compared to the TRMM observations, SPCAM 319 

underestimates the frequency of occurrence of heavy precipitation. Consequently, ResCu-en has 320 

the same deficiency. 321 

To summarize, an ensemble of neural networks, ResCu-en, obeys moist static energy 322 

conservation very well, with little systematic bias. It accurately reproduces the annual mean 323 

heating and drying from moist physics processes in SPCAM. For precipitation, ResCu-en 324 

reproduces the mean and the frequency of occurrence distribution with high accuracy.  325 

4. Offline Test of Generalization to a Warmer Climate 326 

4.1 Performance of Generalization to +4K SST simulation 327 

ResCu-en is trained with a SPCAM simulation under current SST conditions. Can it be 328 

extrapolated to represent moist processes in warmer climates? Rasp et al. (2018) tested their DNN 329 
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parameterization against aquaplanet SPCAM simulations under a warm climate with uniformly 330 

increased 4K SST. They showed that the DNN resulted in large errors when it was not trained with 331 

the warm climate simulations, including overestimating heavy rainfall rate and large diabatic 332 

heating biases in the tropical lower troposphere, possibly due to out-of-distribution data in the 333 

warmer climate. Recently, Beucler, Pritchard, Yuval, et al. (2021) developed a climate-invariant 334 

rescaling approach to help machine learning better generalize to climates different from that used 335 

in the training. They showed that when moisture is rescaled with relative humidity and temperature 336 

is rescaled with plume buoyancy the NN trained using simulation data from one climate can 337 

generalize well to another climate in offline tests. Here we also evaluate ResCu-en in a warm 338 

climate simulation by SPCAM with +4K SST added uniformly to the prescribed present-day 339 

climatological SST. The SPCAM is run for 2 years with a timestep of 20 min and the second year 340 

is used for the ResCu-en offline validation.  341 

In the warm climate with +4K SST, the global average rainfall simulated by SPCAM is 342 

increased by about 11% (Fig. 5a). Even though ResCu-en is trained using simulation data for the 343 

current climate, it can still accurately reproduce the global annual mean precipitation distribution 344 

under +4K SST conditions (Fig. 5b), with a slight overestimation in ITCZ, SPCZ and the western 345 

tropical Indian Ocean, and a slight underestimation over midlatitude oceans (Fig. 5c). For 346 

precipitation intensity frequency, the SPCAM simulates a significant shift of precipitation 347 

occurrence frequency toward higher precipitation rates in the warm climate over the oceans (Fig. 348 

4), but no obvious shifts over land in the tropics and midlatitudes for daily average precipitation. 349 

ResCu-en accurately reproduces the same shift as the SPCAM in all regions examined.  Since 350 
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precipitation is derived from the vertical integral of moisture tendencies from moist physics, we 351 

show in Fig. 6 the pressure-latitude cross section of temperature and moisture tendencies from 352 

SPCAM, ResCu-en and their difference to further demonstrate the ability of ResCu-en to 353 

generalize to a warmer climate. Clearly, ResCu-en reproduces the SPCAM temperature and 354 

moisture tendencies with high accuracy, with biases generally less than 5% of the maximum 355 

heating and moistening in SPCAM. The differences from individual ensemble member are 356 

somewhat larger than the ensemble mean (Fig. S6). They are also only slightly larger than those 357 

for the baseline simulation (compare Figs. S3 with S6). The RMSE and thickness-weighted MSE 358 

are also larger (Fig. S4). The MSE for the warmer climate can also be compared with that in 359 

Buecler, Pritchard, Yuval, et al. (2021). For all members of ResCu-en, the maximum MSE is about 360 

1300 W2/m4, which is smaller compared with 2000 to 4000 W2/m4 in Buecler, Pritchard, Yuval, et 361 

al. (2021). 362 

The performance of ResCu-en is further evaluated in terms of the geographical distribution of 363 

the coefficient of determination L/ for precipitation for both current and +4K climates (Fig. 7), 364 

which measures how accurately ResCu-en emulates the time series of the target precipitation at 365 

each grid point. Most regions have high accuracy with L/ greater than 0.9 (Fig. 7a). Some areas 366 

in tropical and subtropical oceans and land regions have low R2 values, especially in subtropical 367 

eastern Pacific and Atlantic, and to some extent in the central equatorial Pacific and the Sahara 368 

Desert. All these low R2 regions have low precipitation rates. The R2 distribution for the +4K SST 369 

simulation is similar to that in the baseline simulation, except in the Sahara Desert where the R2 370 

values are much lower.  371 
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To have a more intuitive feel on how well ResCu-en performs in both current and warm 372 

climates, we compare the precipitation time series from ResCu-en with those from SPCAM at two 373 

representative model grid points. We select one grid point in the ITCZ region (5°N, 180°E) where 374 

L/ is about 0.8 and another in the subtropical southeastern Pacific (20°S, 90°W) where L/ is below 375 

0.5. For a one-month-long precipitation time series (Fig. 8), ResCu-en can reproduce the timing 376 

and magnitude of the heavy rainfall at the ITCZ grid point extremely well for both the baseline 377 

and +4K SST simulations (Fig. 8a, b). For the southeastern Pacific grid point with low rainfall 378 

rates, ResCu-en generally underestimates the peak rainfall rates, but it can still capture the timing 379 

accurately for both the baseline and +4K SST simulations despite the low R2 values (Fig. 8c, d).  380 

All these results from the +4K SST simulation demonstrate that ResCu-en is capable of 381 

generalizing to a warmer climate with remarkable accuracy. In the next subsection, we will 382 

investigate what properties of our ResCu-en are responsible for this. 383 

4.2 Why is ResCu-en able to generalize to a different climate? 384 

The ability of a neural network to generalize to a different climate is an important attribute as 385 

it can then be used in global warming simulations. In this subsection, we investigate what attributes 386 

of ResCu-en make it generalizable to a warmer climate by testing different input variables and NN 387 

constructs. In doing so, we note that each member of the NN ensemble, when applied individually 388 

to the +4K SST SPCAM simulation offline is also able to reproduce the SPCAM results well (Fig. 389 

S6). Thus, the use of an ensemble of NNs is not among the factors responsible for ResCu-en's 390 

ability to generalize to a warmer climate. As such, we will use a single member of ResCu-en for 391 

this purpose. 392 
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4.2.1 Convective Memory 393 

The first factor we examine is convective memory since it is unique to ResCu. All NN’s 394 

developed by other researchers use current atmospheric state variables as input to their NNs. To 395 

this end, we developed an NN, ResCu-t0-ls, using only the current step temperature, humidity 396 

states and advective forcings as inputs. We also trained two deep fully connected neural networks: 397 

DNN-mem, which uses all the input variables as in ResCu, and DNN-t0-ls, which uses only the 398 

current step states and forcings. DNN-mem has 10 layers of 512 nodes, the same as DNN-t0-ls. 399 

Table 1 lists the NN training experiments used in both this and next subsections. We train all three 400 

neural networks (ResCu-t0-ls, DNN-mem, and DNN-t0-ls) on one subset of the data described in 401 

Section 2 and evaluate them on one-year independent datasets from both the current and +4K warm 402 

climates, as described in Section 3. We measure the accuracy of the NN predictions using R2 of 403 

the zonally averaged diabatic heating, which is a frequently used metric in previous studies 404 

(Gentine et al., 2018; Mooers et al 2021; Wang et al., 2022). These experiments allow us to evaluate 405 

the roles of convective memory and architecture on ResCu's generalization capability. 406 

Fig. 9 shows R2 for moist diabatic heating from ResCu-en, ResCu-t0-ls, DNN-mem and 407 

DNN-t0-ls for baseline and +4K SST climate, respectively. ResCu-en demonstrates remarkable 408 

generalization capability, with almost no drop in accuracy from the current climate to the +4K SST 409 

warm climate (Fig. 9a, b), consistent with Figs. 3 and 6. Without convective memory (ResCu-t0-410 

ls), the NN is less accurate in the entire troposphere over the tropics and subtropics compared to 411 

ResCu-en for the current climate (Fig. 9a vs. Fig. 9c). There is noticeable deterioration in R2 (Fig. 412 

9c, d) from the baseline to +4K SST climate in the tropical lower and mid-troposphere. When fully 413 
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connected NNs are used, DNN-mem performs well in both climates (Fig. 9c, d), while DNN-t0-ls 414 

experiences a significant accuracy drop in the tropical mid and lower troposphere in the warm 415 

climate (Fig. 9g, h), even more so than ResCu-t0-ls. Note that DNN-t0-ls is a fully connected NN 416 

with current time step variables as input. It is similar to the NN used in Beucler, Pritchard, Yuval, 417 

et al. (2021) without physical rescaling. Consistent with their findings, the generalizability to a 418 

different climate is poor (Figs. 9g vs. 9h). The use of convective memory as input alleviates this 419 

deficiency markedly, and the use of residual convolution neural net further improves the accuracy 420 

and generalizability in the absence of convective memory as input (compare Fig.s 9c,d and g,h).  421 

4.2.2 NN architectures 422 

In this subsection, we further explore the impact of different neural network architectures 423 

within the framework of ResCu-en on the generalization capability of the NN-based 424 

parameterization. We present 4 different NNs with different combinations of the 3 architectures 425 

(1D convolution, residual shortcuts, and batch-normalization): ResCu, the first member of ResCu-426 

en, with all three architectures, ResCNN with 1D convolution and residual shortcut, but no batch-427 

normalization, CNN with 1D convolution, but neither residual shortcuts nor batch normalization, 428 

and ResDNN, a residual fully-connected neural network with no batch normalization, in which all 429 

1D convolution layers in ResCNN are replaced with fully connected layers (Table 1). All four NNs 430 

use the same input and output variables as in ResCu-en, and we evaluate their generalization 431 

capability in the same way as in subsection 4.2.1. 432 

Fig. 10 shows R2 of moist diabatic heating for the NN architectures described above for both 433 

current climate and the +4K SST warm climate. ResCu, ResCNN, and CNN are all able to 434 



` 21 

generalize well to the warm climate. The 1D convolutional layer is the shared architecture in all 435 

three, suggesting that the 1D convolution layer plays a major role in the generalization capability 436 

of the NN. This is further demonstrated by comparing ResCNN and ResDNN (Fig. 10 e,f vs g,h). 437 

These results are consistent with the work of Molina et al. (2021) who found that convolutional 438 

neural networks have a better generalization capability. Without the convolutional layers, ResDNN 439 

has noticeable degradation in R2 from the current climate to +4K SST climate in tropical mid-440 

troposphere. Batch normalization (compared ResCu and ResCNN) does not affect much the 441 

generalization capability of ResCu. While residual shortcuts help improve the prediction accuracy 442 

of ResCu for both current and warm climates, their impact on the generalizability of ResCu is not 443 

significant.  444 

It is noted that while the degradation of R2 for DNN-t0-ls is substantial going from the current 445 

climate to a warmer climate (e.g. Fig.9 g, h), it is not as drastic as reported in Beucler, Pritchard, 446 

Yuval, et al. (2021). Out of curiosity, we conducted three additional tests on DNNs using the most 447 

basic input variables: temperature (T), specific humidity ($!), and surface sensible and latent heat 448 

fluxes. We have DNN-10 with 10 layers of 512 nodes, which is as deep as a DNN can go and much 449 

wider than a typical DNN is, DNN-7 with 7 layers of 128 nodes, which has the same NN 450 

architecture as in Beucler, Pritchard, Yuval, et al. (2021) without physical rescaling, and DNN-7-451 

nc without the moist static energy conservation penalty in the loss function on the basis of DNN-452 

7 (Table 1, bottom three rows). Since the DNN with no rescaling in Beucler, Pritchard, Yuval, et 453 

al. (2021) did not have energy conservation constraints, it is the closest to DNN-7-nc here. All 454 

DNNs with the basic input variables perform reasonably well in the current climate (Fig. 11). 455 
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However, for the warmer climate, DNN-7-nc has the poorest generalization capability throughout 456 

the entire tropical troposphere, to a similar extent to that reported in Beucler, Pritchard, Yuval, et 457 

al. (2021) for their NN without rescaling. DNN-7 with the MSE conservation penalty recaptures 458 

some accuracy in the tropical upper troposphere. The generalizability of DNN-10 is further 459 

improved. Therefore, within the DNN architecture, a wider and deeper neural network and the use 460 

of moist static energy conservation in the loss function contribute to the generalization capability. 461 

In summary, ResCu-en is capable of generalizing to a warm climate. When evaluated in the 462 

+4K SST warm climate that is not included in the training data, ResCu-en successfully predicts 463 

the global precipitation distribution and heating and moistening by moist physics processes with 464 

high accuracy. Higher order statistics of precipitation, such as intensity increase and occurrence 465 

frequency shift toward heavier precipitation over oceans simulated by SPCAM in the +4K SST 466 

simulation are also captured by ResCu-en.  467 

The use of convective memory as input is the most important attribute to the generalization 468 

capability of ResCu-en to a warmer climate. The 1D convolutional layers further boost its warm-469 

climate generalizability. The residual shortcuts also help improve the generalizability of ResCu-470 

en, while the benefit of batch normalization is not noticeable. For fully connected neural networks, 471 

while the generalizability is poor, relatively speaking, the use of moist static energy conservation 472 

has the most impact on improving the DNN’s generalizability. A wider and deeper net also 473 

improves it.  474 

5. Stable online integration 475 

The ultimate test of an NN-based parameterization is its performance in online GCM 476 
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integration. Attempts from past studies to make online integrations stable using their NN-based 477 

parameterizations were not successful until recently, particularly in real land-ocean geography 478 

GCMs (Wang et al. 2022, Bretherton et al. 2022, Clark et al. 2022). Wang et al. (2022) emulated 479 

the moist physics and radiation processes in SPCAM with a group of deep neural networks, each 480 

for a different process. They succeeded in a 5-year online integration through trial and error; some 481 

were successful in stable integration and others failed. No definitive answer was offered to explain 482 

this different model integration behavior though. Bretherton et al. (2022) took a different approach 483 

by learning the nudging tendencies as functions of the atmospheric state and then using these 484 

tendencies to correct the physical parameterization biases in a NOAA global weather forecasting 485 

model. They were able to integrate the model for 40 days. Clark et al. (2022) extended this work 486 

and were able to integrate the model for more than 5 years and for different climates. They applied 487 

input ablation and output tapering for the top 25 model levels (levels above ~200 hPa) to maintain 488 

stability and to prevent the model from drifting. In this section, we implement our neural network 489 

into the NCAR CAM5. The main objective is to demonstrate its ability to perform long-term stable 490 

integration consistently.  491 

5.1 The implementation of ResCu 492 

Due to computational cost (see details below), we only implement one member of ResCu-en 493 

into CAM5 (ResCu, i.e., member NN-1 of ResCu-en) instead of the ensemble of 8 members in 494 

this initial exploratory online implementation. ResCu replaces the moist diabatic heating and 495 

drying and cloud liquid and ice water contents from the conventional parameterization schemes 496 

for moist physical processes, including deep convection, shallow convection, and microphysics. 497 
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The conventional cloud parameterization schemes are still used to provide quantities that are not 498 

predicted by our neural network but needed by the radiative transfer scheme in CAM5, such as 499 

cloud liquid and ice number concentrations and cloud fraction. We refer to this configuration as 500 

NCAM.  501 

Before going into the online model integration, we should point out two technical details of 502 

the implementation of ResCu into CAM5. First, recall that ResCu includes convective memory as 503 

input. In the training and offline test of ResCu, moist physics heating and drying as well as cloud 504 

water and ice contents at two previous time steps, as part of convective memory, were taken from 505 

SPCAM. In online model integration, no such “ground truth” is available for representing 506 

convective memory. A natural substitute for them would be the predicted values at the previous 507 

time steps by the NN itself. This approximation will lead to some degradation in accuracy because 508 

the neural net is trained on SPCAM data. To estimate the impact of this approximation, we use the 509 

same trained neural network ResCu and test it offline using SPCAM data, except replacing the 510 

SPCAM values with ResCu-predicted values at past time steps for convective memory. Fig. S7 511 

shows that there is some degradation in NN-predicted precipitation in the Intertropical 512 

Convergence Zone, by up to 1.5 mm/day locally. While this is a significant increase in prediction 513 

biases, compared to the differences between typical GCM simulations and observations, which are 514 

often as much as 3 to 4 mm/day in tropical oceans (Xie et al., 2012; Kooperman et al., 2016; Rasch 515 

et al. 2019), this difference is still small. Therefore, in our implementation of ResCu into CAM5, 516 

we use the ResCu-predicted values at past time steps for convective memory. 517 

Second, similar to Brenowitz and Bretherton (2019) and Clark et al. (2022), we ablate the 518 
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heating and drying rates from moist physics above the CAM5 model level close to 120 hPa from 519 

the NN. The reason for doing so is that near the tropopause and above moist heating and drying 520 

values in GCMs (and real world too) are very small due to low moisture content. Although the NN 521 

also predicts small values, the relative errors are large, as can be seen from the low R2 values in 522 

the last section. In our initial tests without ablating the heating and drying tendencies above 120 523 

hPa, these errors cause the model integration to drift due to their effects on radiation although the 524 

integration remains stable.  525 

For computational cost, using 200 intel CPU cores, NCAM with a 32-layer deep neural net can 526 

reach 3.8 simulation years per day (SYPD), which is 10 times faster than SPCAM (0.37 SYPD), 527 

but 6 times slower than the default CAM5 (23.5 SYPD). This computational speed can be 528 

improved in the future since the Fortran implementation of the neural network, which contains 529 

excessive use of loops, has not been optimized.   530 

5.2 Online simulation results 531 

In addition to NCAM, we also run the standard CAM5 and SPCAM for the same period for 532 

comparison to put NCAM simulation in context. We succeeded in conducting a 5-yr NCAM stable 533 

simulation from Jan. 1998 to Dec. 2002 without encountering any integration instability, with no 534 

systematic drift in global mean total energy (Fig. S8a) and precipitable water (Fig. S8b), although 535 

there are some systematic biases. We also tested all other 7 members of the ResCu-en ensemble 536 

for a shorter period, and none experienced any integration instability either. Fig. 12 shows the 5-537 

year average boreal summer (June-July-August) and winter (December-January-February) 538 

precipitation for TRMM 3B42 observations, SPCAM, NCAM, and CAM5, respectively. 539 
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Comparing against TRMM observations, NCAM can capture the major features in precipitation 540 

distribution including the ITCZ and the South Pacific Convergence Zone (SPCZ) in the tropics 541 

and midlatitude storm tracks. Interestingly, in the western Pacific warm pool region both SPCAM 542 

and CAM5 underestimate the precipitation in JJA, a well-known problem in the NCAR model, 543 

while NCAM simulation is much better. However, it underestimates precipitation over tropical 544 

land compared to both TRMM observations and SPCAM/CAM5 simulations in JJA and DJF.  545 

Although the simulated precipitation in NCAM is realistic, the simulated temperature and 546 

moisture in high latitudes have much larger biases than those in CAM5 when compared against 547 

ECMWF Reanalysis - Interim (ERA-Interim) (Dee et al., 2011) (Fig. 13 and Fig. S9). These high 548 

latitude biases are probably caused by inadequate representation of cloud-radiation interaction due 549 

to inconsistencies between NN-based parameterization and conventional cloud microphysics and 550 

macrophysics parameterizations. For instance, cloud fraction is parameterized by a conventional 551 

macrophysics scheme. Cloud water and ice number concentrations as well as snow mass and 552 

number concentrations are parameterized by the conventional Morrison and Gettelman (2008) 553 

cloud microphysics scheme. The mismatch between cloud ice and water contents from ResCu and 554 

their number concentrations from conventional microphysics scheme will affect cloud droplet and 555 

ice crystal sizes, thereby affecting cloud-radiation interaction. These issues show that there is still 556 

a long way to go before NN-based parameterization can replace the conventional physics 557 

parameterization schemes.    558 

In offline validation, we showed that ResCu-en predicts the pdf of precipitation intensity 559 

extremely well (Fig. 4). In the online simulation, the ResCu-predicted precipitation pdf is not as 560 
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close to that from SPCAM, as shown in Fig. 14 for tropical oceans. However, SPCAM itself 561 

underestimates the occurrence frequency of precipitation intensity greater than 50 mm/day 562 

compared to TRMM observations. In this regard, the ResCu-predicted precipitation pdf is actually 563 

closer to TRMM observations, especially for high intensity precipitation greater than ~70 mm/day. 564 

In comparison, CAM5 shows the well-known “too much light rain and too little heavy rain” 565 

problem (Wang et al., 2016).  566 

The diurnal cycle of precipitation is another rainfall characteristic that is a long-standing 567 

challenge in GCMs with conventional parameterizations (Dai, 2006; Zhang, 2003; Cui et al., 2021). 568 

The diurnal cycle of rainfall is characterized by the local solar time (LST) of maximum 569 

precipitation of the day and the amplitude within the diurnal cycle. We calculate the annually 570 

averaged diurnal cycle of rainfall at every grid point globally and then find the LST of the 571 

maximum rainfall rate in the day and regard the difference between the maximum and minimum 572 

rainfall rate as the amplitude. Fig. 15 shows the warm season average (June-July-August for 573 

northern hemisphere and December-January-February for southern hemisphere) rainfall diurnal 574 

cycle between 45°S and 45°N from the 3h TRMM 3B42 observation and hourly output from 575 

SPCAM, NCAM and CAM5 simulations, respectively. In CAM5, as in many other GCMs, the 576 

simulated warm-season precipitation peaks 4-6 h earlier than observations over land and 2-4 h 577 

earlier over oceans (Dai, 2006), as shown in Fig. 15a and 15d. SPCAM only manages to mitigate 578 

this delay in some ocean areas (visually below 40%), while similar effects are not observed over 579 

land (Fig. 15b). However, NCAM alleviates the early precipitation problem remarkably by 580 

delaying the peak time by 2-4 h over tropical land areas and by 2 h over 50% of the ocean areas 581 
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(Fig. 15c). Moreover, the amplitude of the diurnal cycle over land in most models is weak 582 

compared with observations (Dai, 2006, Xie et al. 2019). In CAM5, the amplitude over tropical 583 

land area is less than half of that in TRMM observations (Fig. 15e, h). Both SPCAM and NCAM 584 

increase the amplitude by a factor of 2 in many tropical land regions (Fig. 15f, g).  585 

6. Summary and Discussions 586 

This study extends the work of Han et al. (2020) by using an ensemble of 8 neural networks 587 

(ResCu-en) to account for the random errors inherent in the NN configuration. The depth of the 588 

NN is also increased from 22 layers to 32 layers to improve the accuracy of the predictions, with 589 

a batch-normalization layer added after each convolution layer for more robustness. The sampling 590 

strategy of the training data is also improved by selecting 800 model grid columns randomly over 591 

the globe every day in the SPCAM simulation instead of taking data from 800 fixed model grid 592 

columns distributed over the globe. Therefore, ResCu-en has a stronger nonlinear fitting capability 593 

from more layers, with reduced uncertainties from the ensemble mean.  594 

In the independent offline test, ResCu-en reproduces all four output variables and the derived 595 

precipitation with smaller biases and higher L/ than ResCu in H20. ResCu-en can also reproduce 596 

accurately the SPCAM's rainfall frequency distribution. To assess the ability of ResCu-en trained 597 

on data from current climate to emulate convection in a warmer climate, we evaluated ResCu-en 598 

in a +4K SST simulation using SPCAM. ResCu-en has an excellent generalizability to a warmer 599 

climate when tested offline, with performance in predictions in a warmer climate comparable to 600 

that for the current climate. It reproduces very well the precipitation intensity increase and the 601 

occurrence frequency shift toward heavier rainfall over oceans. 602 
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To understand what factors contribute to the strong generalization capability to warm climates, 603 

we conducted a series of tests on input variables and NN architectures that are used in ResCu-en. 604 

It is found that the use of convective memory as input variables is the most important factor 605 

contributing to ResCu-en’s generalization capability, as demonstrated in both deep convolutional 606 

NNs and fully connected NNs. Under the framework of ResCu-en, among the NN architectures 607 

we tested, 1D convolutional layers were found to be the most important, while residual shortcuts 608 

improved accuracy in both current and warm climates. On the other hand, batch normalization did 609 

not have a significant impact on generalization. Fully connected NNs performed relatively poorly 610 

on generalization, but their performance can be improved by deepening and widening the NNs or 611 

by adding a moist static energy conservation penalty to the loss function. 612 

The success of ResCu-en highlights the importance of incorporating convective memory into 613 

machine-learning-based parameterization schemes. Several previous studies have noticed the role 614 

of convective memory in the prediction of convection. They range from simple theories and toy 615 

model simulations (Davies et al., 2009, Colin & Sherwood, 2021) to detailed simulations with 616 

CRMs (Muller & Bony, 2015; Colin et al., 2019). In an NN-based parameterization, Shamekh et 617 

al. (2022) explored the impact of convective organization and memory on precipitation intensities 618 

and extremes. 619 

We further implemented a member of ResCu-en into CAM5 with real-world geography, 620 

referred to as NCAM, and ran it successfully for 5 years without encountering any model 621 

integration stability issue. The simulated 5-year mean precipitation captures the major features of 622 

the global precipitation distribution, including the ITCZ in the tropics and the storm tracks in 623 
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midlatitudes. However, NCAM underestimates precipitation over land and have large biases in 624 

temperature and moisture in high latitudes.  625 

NCAM also produces a frequency distribution of precipitation intensity that is closer to TRMM 626 

observations than CAM5, with significantly less bias in underestimating heavy precipitation. 627 

Additionally, NCAM improves the diurnal cycle of precipitation in CAM5 by delaying the peak 628 

time and increasing the diurnal amplitude. All these online simulation results show that our NN-629 

based parameterization is promising for use in future simulations for both current climate and 630 

future climate projection studies. However, before this is possible, we must address the issues of 631 

large biases in high latitudes, which were also noticed in previous studies. Furthermore, 632 

conventional convection and cloud parameterization schemes output many more parameters that 633 

NN-based parameterizations do not provide, such as cloud droplet and ice crystal numbers, as well 634 

as snow and graupel mass and number concentrations. These variables are needed for aerosol-635 

cloud-radiation interactions and cloud feedbacks that are fundamentally important for climate 636 

projection studies. Therefore, much more work is needed before it is feasible for NN-based 637 

parameterizations to fully replace physically based parameterizations in GCMs. 638 
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Tables and Figure Captions: 872 

 873 

Table 1. List and description of neural networks used in the offline generalization test. The 874 

configurations include 1D convolutional layers, fully connected layers, residual shortcuts, batch-875 

normalization, convective memory as inputs, and moist static energy conservation penalty in the 876 

loss function.  877 

 878 

Figure 1. The histograms of probability density function (PDF) of column-integrated moist static 879 

energy change for (a) SPCAM, (b) ResCu-en, and (c) the differences between prediction from 880 

ResCu-en and SPCAM at each GCM grid column. The standard deviation (I) and mean (D) for 881 

each PDF are shown at the top of each plot. 882 

 883 

Figure 2. Global distribution of the annual mean precipitation for the baseline climate in (a) 884 

SPCAM simulation, (b) offline test by ResCu-en, and (c) their differences (ResCu-en minus 885 

SPCAM). Note that the color intervals for the differences is 5% of that for the mean to provide a 886 

better visualization of the differences.  887 

 888 

Figure 3. Latitude‐pressure cross sections of annual and zonal average heating (left) and 889 

moistening (right) from moist physics for (a and b) SPCAM simulation, (c and d) offline test by 890 

ResCu-en, (e and f) and their differences (ResCu-en minus SPCAM). 891 

 892 

Figure 4. The probability distribution function (PDF) of rainfall intensity for both baseline climate 893 

(solid lines) and +4K SST warm climate (dashed lines) for different regions: (a and d) tropics (20S 894 

to 20N), (b and e) northern hemisphere extratropical regions (20N to 50N), and (c and f) northern 895 

hemisphere high latitudes (50N to 90N). The left column is for land regions and the right column 896 

is for oceans. The TRMM 3B42 rainfall product (green solid line) is included for reference. The 897 

bin intervals for the PDFs are 2 mm/day. 898 

 899 

Figure 5. Same as Figure 2 but for the warm climate with 4K increase in SST. 900 

 901 

Figure 6. Same as Figure 3 but for the warm climate with 4K increase in SST. 902 

 903 

Figure 7. Global distribution of coefficient of determination (L/) for precipitation predictions by 904 

ResCu-en under different climates: (a) the baseline climate for the present-day (b) the warm 905 

climate with 4K increase in SST. R2 is calculated using L/ = 1 −
567
!89 , where MSE is the mean 906 
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squared error between ResCu-en predictions and SPCAM targets and MNO is the variance of the 907 

SPCAM targets. 908 

 909 

Figure 8. Time series of precipitation from SPCAM simulations (black lines) and ResCu-en 910 

predictions (red dotted lines) at selected locations under (a and c) the baseline climate and (b and 911 

d) the warm climate. A grid point in the northern ITCZ region is selected (a and b) for heavy 912 

precipitation where R2 is high and a grid point in the southeastern Pacific stratus region is selected 913 

(c and d) for light precipitation where R2 is low.  914 

 915 

Figure 9. The coefficient of determination (R2) of the zonally averaged heating for different NNs 916 

in the current climate (top row) and the +4K SST warm climates (bottom row): (a and b) ResCu-917 

en, (c and d) ResCu-t0-ls, (e and f) DNN-mem, and DNN-t0-ls (g and h). Note that ResCu-en and 918 

DNN-mem are trained with full input variables including convective memory, while ResCu-t0-ls 919 

and ResCu-t0-ls are only trained on input variables of T, $!, 1"%.&., and 1$!	%.&. at current timestep. 920 

 921 

Figure 10. Same as Figure 9 but for the deep NNs trained on full input variables including 922 

convective memory: (a and b) ResCu, (c and d) ResCNN, which is ResCu without batch 923 

normalization, (e and f) CNN, which is ResCu without batch normalization or residual shortcuts, 924 

and (i and j) ResDNN, which is ResCu without batch normalization or convolution layers. 925 

 926 

Figure 11. Same as Figure 9 but for fully connected NNs only trained on input variables of T and 927 

$! at current timestep: (a and b) DNN-10, (c and d) DNN-7, and (e and f) DNN-7-nc without moist 928 

static energy conservation. 929 

 930 

Figure 12. Global distribution of temporal mean precipitation rate (mm/day) in June-July-August 931 

(the left panels) and December-January-Feburary (the right panels) over the years of 1998 to 2002 932 

for (a and b) TRMM 3B42, (c and d) NCAM, and (e and f) CAM5. The spatial mean and root 933 

mean square error to the TRMM 3B42 observations are shown above each frame. 934 

 935 

Figure 13. Latitude‐pressure cross sections of annual and zonal average temperature (left) and 936 
specific humidity (right) over years 1998 to 2002 for (a and b) ERA-Interim, (c and d) NCAM, 937 
and (e and f) CAM5. The root mean square error to ERA-Interim reanalysis is shown above each 938 
frame from (c) to (f). 939 

 940 

Figure 14. Probability density distribution of the daily mean precipitation in the tropics (20°' −941 

20°Q) over oceans from the three model simulations and the TRMM 3B42 daily product. The 942 
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black, blue, red and green solid lines are for SPCAM, NNCAM, CAM5, and TRMM 3B42, 943 

respectively. 944 

 945 

Figure 15. Tropical distribution of warm season averaged diurnal peak time (a) to (d) and 946 

amplitude (e) to (h) of the diurnal cycle of precipitation (mm day−1) derived from observations 947 

from hourly data of (a and e) TRMM 3B42, (b and f) SPCAM, (c and g) NCAM, and (d and h) 948 

CAM5. In (a) to (c), areas with precipitation less than 1mm/day are masked. The warm season is 949 

defined as June-July-August (JJA) for Northern Hemisphere and December–January-February 950 

(DJF) for Southern Hemisphere, respectively. The thick black line marks the equator, where the 951 

warm season is undefined. 952 

  953 
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 954 

Table 1. List and description of neural networks used in the offline generalization test. The 955 

configurations include 1D convolutional layers, fully connected layers, residual shortcuts, batch-956 

normalization, convective memory as inputs, and moist static energy conservation penalty in the 957 

loss function.  958 

 959 
 1D 

Convolution 
Layers 

Fully-
connected 
Layers 

Residual 
Shortcuts 

Batch-
Normalization 

Convective 
Memory 
Inputs 

MSE 
Penalty 
in Loss 
Function 

ResCu-t0-
ls 

32 layers of 
128 3x1 
kernels 

No Yes Yes No Yes 

DNN-
mem 

No 10 layers of 
512 nodes  

No No Yes Yes 

DNN-t0-
ls 

No 10 layers of 
512 nodes  

No No No Yes 

ResCu 32 layers of 
128 3x1 
kernels 

No Yes Yes Yes Yes 

ResCNN 32 layers of 
128 3x1 
kernels 

No Yes No Yes Yes 

CNN 32 layers of 
128 3x1 
kernels 

No No No Yes Yes 

ResDNN No 32 layers of 
512 nodes  

Yes No Yes Yes 

DNN-10 No 10 layers of 
512 nodes  

No No No  Yes 

DNN-7 No 7 layers of 
128 nodes  

No No No Yes 

DNN-7-
nc 

No 7 layers of 
128 nodes  

No No No No 

  960 
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 961 

 962 

  963 

Figure 1. The histograms of probability density function (PDF) of column-integrated moist static 964 

energy change for (a) SPCAM, (b) ResCu-en, and (c) the differences between prediction from 965 

ResCu-en and SPCAM at each GCM grid column. The standard deviation (I) and mean (D) for 966 

each PDF are shown at the top of each plot. 967 

 968 

  969 
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 970 

Figure 2. Global distribution of the annual mean precipitation for the baseline climate in (a) 971 

SPCAM simulation, (b) offline test by ResCu-en, and (c) their differences (ResCu-en minus 972 

SPCAM). Note that the color intervals for the differences is 5% of that for the mean to provide a 973 

better visualization of the differences.  974 

 975 

 976 

 977 
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 978 

 979 

Figure 3. Latitude‐pressure cross sections of annual and zonal average heating (left) and 980 

moistening (right) from moist physics for (a and b) SPCAM simulation, (c and d) offline test by 981 

ResCu-en, (e and f) and their differences (ResCu-en minus SPCAM). 982 

 983 

 984 

 985 

 986 
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 987 
Figure 4. The probability distribution function (PDF) of rainfall intensity for both baseline climate 988 

(solid lines) and +4K SST warm climate (dashed lines) for different regions: (a and d) tropics (20S 989 

to 20N), (b and e) northern hemisphere extratropical regions (20N to 50N), and (c and f) northern 990 

hemisphere high latitudes (50N to 90N). The left column is for land regions and the right column 991 

is for oceans. The TRMM 3B42 rainfall product (green solid line) is included for reference. The 992 

bin intervals for the PDFs are 2 mm/day. 993 

 994 
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 995 
Figure 5. Same as Figure 2 but for the warm climate with 4K increase in SST. 996 

 997 

 998 

 999 

 +4K      
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 1000 

Figure 6. Same as Figure 3 but for the warm climate with 4K increase in SST. 1001 

 1002 
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 1003 

Figure 7. Global distribution of coefficient of determination (L/) for precipitation predictions by 1004 

ResCu-en under different climates: (a) the baseline climate for the present-day (b) the warm 1005 

climate with 4K increase in SST. R2 is calculated using L/ = 1 −
567
!89 , where MSE is the mean 1006 

squared error between ResCu-en predictions and SPCAM targets and MNO is the variance of the 1007 

SPCAM targets. 1008 

 1009 
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 1010 

Figure 8. Time series of precipitation from SPCAM simulations (black lines) and ResCu-en 1011 

predictions (red dotted lines) at selected locations under (a and c) the baseline climate and (b and 1012 

d) the warm climate. A grid point in the northern ITCZ region is selected (a and b) for heavy 1013 

precipitation where R2 is high and a grid point in the southeastern Pacific stratus region is selected 1014 

(c and d) for light precipitation where R2 is low.   1015 

 1016 

 1017 
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 1018 

Figure 9. The coefficient of determination (R2) of the zonally averaged heating for different NNs 1019 

in the current climate (top row) and the +4K SST warm climates (bottom row): (a and b) ResCu-1020 

en, (c and d) ResCu-t0-ls, (e and f) DNN-mem, and DNN-t0-ls (g and h). Note that ResCu-en and 1021 

DNN-mem are trained with full input variables including convective memory, while ResCu-t0-ls 1022 

and ResCu-t0-ls are only trained on input variables of T, $!, 1"%.&., and 1$!	%.&. at current timestep. 1023 

 1024 

 1025 

  1026 
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 1027 

Figure 10. Same as Figure 9 but for the deep NNs trained on full input variables including 1028 

convective memory: (a and b) ResCu, (c and d) ResCNN, which is ResCu without batch 1029 

normalization, (e and f) CNN, which is ResCu without batch normalization or residual shortcuts, 1030 

and (i and j) ResDNN, which is ResCu without batch normalization or convolution layers. 1031 

  1032 

 1033 

  1034 

 (w/o BN)

 (w/o BN)

 (w/o BN or Shortcut)

 (w/o BN or Shortcut)

 (w/o BN or CNN)

 (w/o BN or CNN)
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 1035 

Figure 11. Same as Figure 9 but for fully connected NNs only trained on input variables of T and 1036 

$! at current timestep: (a and b) DNN-10, (c and d) DNN-7, and (e and f) DNN-7-nc without moist 1037 

static energy conservation. 1038 

 1039 

c

c
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 1040 
Figure 12. Global distribution of temporal mean precipitation rate (mm/day) in June-July-August 1041 

(the left panels) and December-January-February (the right panels) over the years of 1998 to 2002 1042 

for (a and b) TRMM 3B42, (c and d) NCAM, and (e and f) CAM5. The spatial mean and root 1043 

mean square error to the TRMM 3B42 observations are shown above each frame. 1044 

 1045 
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 1046 

Figure 13. Latitude‐pressure cross sections of annual and zonal average temperature (left) and 1047 
specific humidity (right) over years 1998 to 2002 for (a and b) ERA-Interim, (c and d) NCAM, 1048 
and (e and f) CAM5. The root mean square error to ERA-Interim reanalysis is shown above each 1049 
frame from (c) to (f). 1050 
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 1055 

 1056 

Figure 14. Probability density distribution of the daily mean precipitation in the tropics (20°' −1057 

20°Q) over oceans from the three model simulations and the TRMM 3B42 daily product. The 1058 

black, blue, red and green solid lines are for SPCAM, NNCAM, CAM5, and TRMM 3B42, 1059 

respectively. 1060 

 1061 
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 1062 

Figure 15. Tropical distribution of warm season averaged diurnal peak time (a) to (d) and 1063 

amplitude (e) to (h) of the diurnal cycle of precipitation (mm day−1) derived from observations 1064 

from hourly data of (a and e) TRMM 3B42, (b and f) SPCAM, (c and g) NCAM, and (d and h) 1065 

CAM5. In (a) to (c), areas with precipitation less than 1mm/day are masked. The warm season is 1066 

defined as June-July-August (JJA) for Northern Hemisphere and December–January-February 1067 

(DJF) for Southern Hemisphere, respectively. The thick black line marks the equator, where the 1068 

warm season is undefined. 1069 

 1070 


