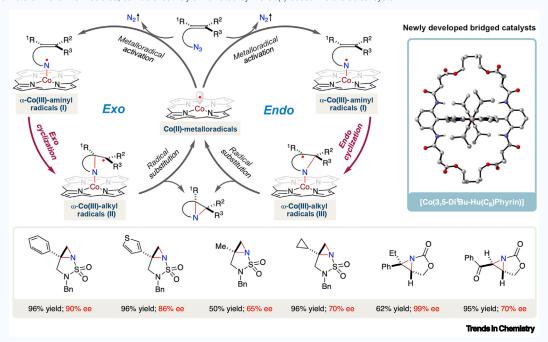
Trends in Chemistry | Mechanism of the Month

Asymmetric radical aziridination of alkenes

Wan-Chen Cindy Lee¹ and X. Peter Zhang page 1,*


¹Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467, USA

ORIGIN

Metalloradical catalysis (MRC) exploits metal-centered radicals from open-shell metal complexes as one-electron catalysts for homolytic activation of substrates, generating metalentangled organic radicals that serve as pivotal intermediates to direct the reaction pathway and stereochemical outcome of catalytic radical processes. Building on established intermolecular olefin aziridination with organic azides, recent advances have led to the development of Co(II)-based metalloradical systems that enable asymmetric N-heterobicyclization via a stepwise radical mechanism.

REACTION MECHANISM

Cobalt(II) complexes of porphyrins, which belong to the category of stable 15e-metalloradicals, have proved their efficacy as catalysts for the radical bicyclization of organic azides. Supported by D2-symmetric chiral amidoporphyrin ligands offering tunable steric, electronic, and chiral environments, the Co(II)-based metalloradical system provides a general approach for efficient construction of highly strained chiral bicyclic aziridines with effective control over stereoselectivities. The Co(II) porphyrin complexes display a remarkable capability for homolytic activation of diverse organic azides, generating the corresponding α-Co(III)-aminyl radicals I. This process involves translocation of the radical character from the catalyst's metal center to the α -nitrogen atom of the azide metalloradicophile, concurrently releasing dinitrogen gas. The initially generated α -Co(III)-aminyl radicals I may undergo either exo- or endo-cyclization, leading to the formation of the respective ω-Co(III)-alkyl radicals (II or III) while forming the first C-N bond. The resulting ω-Co(III)-alkyl radicals (II or III) effectively engage in intramolecular radical substitution, forming the second C-N bond and breaking the weak Co-N bond while simultaneously regenerating the Co(II)-based metalloradical catalysts. The regioselectivity in the radical addition (exo- vs endo-cyclization) of intermediate I plays a crucial role in determining the mode of asymmetric induction and influencing the control of stereochemistry during catalysis. Owing to its distinctive stepwise radical mechanism, Co(II)-catalyzed bicyclization offers the opportunity to accommodate a broad range of organic azides bearing dangling alkene units. Notably, the substrates containing electron-deficient alkene units, which are typically challenging in catalytic systems involving electrophilic metallonitrene intermediates, can be effectively aziridinated by the Co(II)-based metalloradical system.

IMPORTANCE

Distinct from existing catalytic systems via a concerted mechanism involving electrophilic metallonitrenes, intramolecular aziridination by Co(II)-metalloradicals follows a stepwise radical pathway that engages two metal-entangled organic radicals: α-Co(III)-aminyl radicals and ω-Co(III)-alkyl radicals. Besides its fundamental significance, Co(III)-catalyzed radical bicyclization presents an attractive method for the stereoselective synthesis of valuable chiral bicyclic aziridines from diverse organic azides while generating dinitrogen as the sole byproduct.

*Correspondence: peter.zhang@bc.edu (X.P. Zhang).

Trends in Chemistry | Mechanism of the Month

Acknowledgments

We are grateful for financial support from the National Institutes of Health (NIH) (R01-GM102554) and the National Science Foundation (NSF) (CHE-2154885).

Declaration of interests

The authors declare no competing interests.

Literature

- 1. Xu, H. et al. (2024) New mode of asymmetric induction for enantioselective radical N-heterobicyclization via kinetically stable chiral radical center. Chem 10, 283–298
- 2. Jiang, H. et al. (2017) Asymmetric radical bicyclization of allyl azidoformates via cobalt (II)-based metalloradical catalysis. J. Am. Chem. Soc. 139, 9164–9167
- 3. Riart-Ferrer, X. et al. (2021) Metalloradical activation of carbonyl azides for enantioselective radical aziridination. Chem 7, 1120–1134
- 4. Jin, L.M. et al. (2013) Effective synthesis of chiral N-fluoroaryl aziridines through enantioselective aziridination of alkenes with fluoroaryl azides. Angew. Chem. Int. Ed. 52, 5309–5313
- 5. Subbarayan, V. et al. (2009) Highly asymmetric cobalt-catalyzed aziridination of alkenes with trichloroethoxysulfonyl azide (TcesN₃). Chem. Commun. 4266–4268
- 6. Jones, J.E. et al. (2008) Cobalt-catalyzed asymmetric olefin aziridination with diphenylphosphoryl azide. J. Org. Chem. 73, 7260-7265
- Caselli, A. et al. (2008) Allylic amination and aziridination of olefins by aryl azides catalyzed by Co(II)(tpp): a synthetic and mechanistic study. Eur. J. Inorg. Chem. 2008, 3009–3019
- 8. Dequina, H.J. et al. (2023) Recent updates and future perspectives in aziridine synthesis and reactivity. Chem 9, 1658–1701
- 9. Degennaro, L. et al. (2014) Recent advances in the stereoselective synthesis of aziridines. Chem. Rev. 114, 7881–7929
- 10. Fantauzzi, S. et al. (2009) Nitrene transfer reactions mediated by metallo-porphyrin complexes. Dalton Trans. 5434-5443

