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Abstract: Low-dimension materials such as transition metal dichalcogenides (TMDCs) have received
extensive research interest and investigation for electronic and optoelectronic applications. Due
to their unique widely tunable band structures, they are good candidates for next-generation op-
toelectronic devices. Particularly, their photoluminescence properties, which are fundamental for
optoelectronic applications, are highly sensitive to the nature of the band gap. Monolayer TMDCs in
the room temperature range have presented a direct band gap behavior and bright photolumines-
cence. In this work, we investigate a popular TMDC material WSe2’s photoluminescence performance
using a Raman spectroscopy laser with temperature dependence. With temperature variation, the
lattice constant and the band gap change dramatically, and thus the photoluminescence spectra
are changed. By checking the photoluminescence spectra at different temperatures, we are able to
reveal the nature of direct-to-indirect band gap in monolayer WSe2. We also implemented density
function theory (DFT) simulations to computationally investigate the band gap of WSe2 to provide
comprehensive evidence and confirm the experimental results. Our study suggests that monolayer
WSe2 is at the transition boundary between the indirect and direct band gap at room temperature.
This result provides insights into temperature-dependent optical transition in monolayer WSe2 for
quantum control, and is important for cultivating the potential of monolayer WSe2 in thermally
tunable optoelectronic devices operating at room temperature.

Keywords: WSe2; photoluminescence; band gap; optoelectronics

1. Introduction

Since graphene was first exfoliated in 2004, two-dimensional (2D) materials [1–8], with
their atomically thin crystalline structure, have received extensive research attention due to
their unique atomically thin structure and novel physical properties. They have unique
electronic [1–3,7,9], optical [4,7,10–12], mechanical [13], and energy harvesting [14–16]
properties for enabling novel 2D devices that make them ideal materials and platforms
for future information technology devices [14,17–20]. Among all 2D materials, transition
metal dichalcogenides (TMDCs) materials, in the family of MX2 (M: Mo, W; X: S, Te, Se),
have been discovered as a new class of semiconductors for atomically thin electronics
and optoelectronics. They presented superior and intriguing properties [16,21–25] in
optical, thermal, and electrical, such as prominent band structure [26], enhanced figure
of merit [22], and semiconducting behavior [4], which distinguishes them from graphene.
This makes TMDCs materials an ideal candidate for the next-generation optical, thermal,
and electrical devices.

Specifically, there is a particular interest in monolayer (1L) MX2, which have been
identified as direct band gap semiconductors and emerged as new optically active mate-
rials for developing novel 2D-material-based light emitters and absorbers. Experimental
evidence of direct band gap in 1L MX2 was obtained from the observation of strongly
enhanced photoluminescence (PL) caused by the indirect-to-direct band gap transition
when MX2 were thinned to 1L, while its bulk form has an indirect band gap. The indirect-
to-direct band 1L MX2 has been believed to be a common property. Although the common
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TMDCs materials—MoS2’s optical and semiconducting properties have been studied ex-
tensively [4,27–29]—the investigation of the emerging optoelectronic material WSe2 has
received much less attention.

On the other hand, 2D WSe2 has emerged as a promising candidate for optoelectronic
devices due to its high quasi-ballistic transport [30]. It has been shown that 1L WSe2
exhibits a direct band gap (K-K) with strong photoluminescence [31]. This has led to an
increasing interest of not only discovering WSe2’s band gap from the fundamental aspect,
but also its optoelectronic device applications such as light-emitting diodes, photodetectors,
and lasers. An indirect band gap in WSe2 will limit their application in optoelectronic
devices. If at another temperature WSe2 exhibits an indirect band gap behavior, it will be
an important discovery for optoelectronic devices’ design. Thus, discovering the band gap
properties of 2D WSe2 and the temperature-dependent trend is of fundamental importance
and also lays immediate guides to the development of flexible thin film optoelectronic
devices, thereby revolutionizing both fundamental optical and semiconducting properties
in materials and application technologies in optoelectronic devices.

Temperature modulation of WSe2 will change its lattice constant and therefore change
its band structure. This will further modulate the energies of the conduction band (CB)
minima and valence band (VB) maxima for the material. If the energy difference of the
direct and indirect band gaps is small, it will be possible to achieve a crossover from one to
the other using temperature modulation.

Temperature and power-dependent PL tests of monolayer WSe2 have been conducted
to investigate the variations in PL peaks, and the linear relationship between PL peak
intensity and temperature or laser power has been observed and discussed, elucidating
underlying principles such as competitions between localized and delocalized exciton
emissions [32] or the opening of additional non-radiative relaxation channels [33]. In
this study, we endeavor to examine the relationship between temperature and PL peak
position and elucidate its underlying mechanisms through Density Functional Theory
(DFT) calculations.

While the thermal, electrical, and optical properties of 2D WSe2 have been previously
studied, to date, there is no experimental research reported on the temperature-dependent
band gap behaviors in 2D WSe2. Therefore, it is needed to conduct a comprehensive
experimental band gap investigation of WSe2 in the 2D atomic-layered form to discover
the intrinsic band gap behavior with a temperature tuning.

In this article, we demonstrate a drastic change of WSe2’s band gap with a temperature
modulation from 140 K to 600 K. Experimental, computational, and theoretical investi-
gations have been conducted in WSe2’s band gap behaviors—a key parameter in the
optoelectronic properties. We have found that band gap is tunable by temperature, and at
the room temperature, 1L WSe2 is at the transition boundary between indirect and direct
band gap. Experimental work demonstrates the phenomena, and computational work by
DFT further confirms a temperature-dependent indirect-to-direct transition in 1L WSe2,
with a theoretical analysis from these results. This work not only demonstrates a tuning
mechanism for WSe2’s band gap, but also sheds light on engineering next-generation
optoelectronics.

2. Materials and Methods

We prepared the monolayer WSe2 (1L WSe2) sample by the scotch tape mechanical
exfoliation method from the WSe2 bulk crystal from 2D Semiconductors Inc., Phoenix, AZ,
USA on 1 cm × 1 cm SiO2 (285 nm)/Si substrates. Silicon substrates with an oxide layer
SiO2 of a thickness of 285 nm are being used because this thickness can provide the best
optical contrast for us to distinguish between 1L, 2L, and few-layer WSe2 under the optical
microscope. In total, 1L and few-layer WSe2 flakes were found using an optical microscope,
and their thicknesses were further confirmed using Raman spectroscopy and an atomic
force microscope [34].
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Temperature-dependent photoluminescence (PL) experiments were performed on
Raman spectroscopy equipment (RENISHAW inVia Raman Microscope system), with the
1L WSe2 on SiO2/Si sample standing on a temperature controllable platform (Linkam Stage
THMS 600). The temperature-controllable platform allows for both a heating up and a
cooling down of the sample in order to explore the properties in a broad temperature range,
from 140 K to 600 K, with a step of 20 K. The 1L WSe2 sample was protected in a pure N2
environment to prevent sample oxidation and degradation during the heating and cooling
process. A 514 nm green laser was used for Raman testing, and a power of 200 µW was
employed to conduct PL and Raman tests.

In order to fully understand the evolution of electronic states, we have conducted a
density functional theory (DFT) calculation for a 1L WSe2’s band gap based on temperature.
We used ABINIT, which is an open-source program for implementing density functional
theory by solving the Kohn–Sham equations of electron potential. The unit cell is defined
as hexagonal, with the angle between the lattice direction a and b is 60 degrees. The lattice
parameters used in the calculation are a = b = 3.2–3.5 Angstrom and c = 129.63 Angstrom,
with the two Se atoms defined at the (0, 0, 0) and (0, 0, 0.0258) locations of the unit cell,
and the W atom defined at the (1/3, 1/3, 0.0129) location of the unit cell. The values of a
and b are varied in order to simulate the temperature-dependent lattice expansion, with
a = b = 3.283 Angstrom at 273 K. The value of c is chosen to be ten times larger than the bulk
WSe2 in order to simulate single layer electronic band property. For the calculation, we used
local density approximation (LDA). The convergent tolerance of the potential is set to be
1 × 10−15 and the energy cutoff is set to be 20 eV. We calculated the first 20 electronic bands
and presented them in Section 3. We select the k-vector trajectory of Γ → M → K → Γ, with
Γ = (0, 0, 0), M = (0.5, 0.5, 0), and K = (1/3, 2/3, 0) in the first Brillouin zone.

3. Results

Figure 1a shows the optical spectra of the PL signal’s intensity amplitude I as a function
of the photon energy E at a broad temperature range from 140 K to 600 K.
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Figure 1. (a) Renormalized PL spectra of 1L WSe2 from 140 K to 600 K, at a photon energy range from
1.4 eV to 1.9 eV. (b) The Raman spectrum of monolayer WSe2.

The temperature-dependent PL curves present that at the lowest temperature of
T = 140 K, the PL peak possesses the highest photon energy of 1.715 eV, along with a sharp
PL peak (small linewidth). As the temperature increases, the PL peak shifts towards a
lower energy range, with the PL peak intensity amplitude maximized at around 0 degree
Celsius (T = 273 K). Above T = 273 K, as the temperature increases, the PL peak intensity
amplitude starts to decrease and eventually disappears at around T = 600 K.

Figure 1b shows the Raman spectrum of monolayer WSe2. The monolayer’s character-
istics can be confirmed by comparing the intensities of the E1

2g and A1g peaks, as well as
the absence of the B1

2g peak around 308 cm−1 [35,36].
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The PL signal of peak curves can be fitted to a symmetric Lorentzian line shape
function, as in the following:

I =
I0∆E2

(E − E0)
2 + ∆E2

(1)

where I0 is the PL peak intensity amplitude (a.u.), E0 is the PL peak position (eV), and ∆E
is the PL peak linewidth (eV). This Lorentzian fitting function helps to extract the values of
PL peak intensity amplitude, peak position, and peak linewidth for each PL peak.

Despite the precise temperature control provided by the instrumentation, capable
of mitigating temperature deviations induced by laser heating, and our deliberate ef-
forts to maintain consistent testing powers during experimentation, we conducted power-
dependent PL tests to elucidate the influence of varying laser powers on PL intensity.
As depicted in Figure 2b, at the scale of 0.1 mW, the impact on intensity remains con-
fined within a narrow range, indicating the effectiveness and accuracy of our temperature
testing procedures.
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Figure 3 shows the extracted PL peak intensity amplitude and the PL peak position as
a function of temperature, from the Lorentzian function fitting. From the fitting results of
PL peak intensity amplitude I0, we can observe two different regions, which are separated
by T = 273 K, where a maximum of I0 is located at. In Figure 3, we marked this separation
by a vertical red line at T = 273 K. This observation indicates that there is a change of the
PL mechanism at 273 K, and this transition is from an indirect band gap PL (T < 273 K) to a
direct band gap PL (T > 273 K). For PL peak position E0, it is clearly observed that there is
a monotonous decrease with temperature (Figure 3b). And in addition to its monotonous
decrease with temperature, we also observed a slight deviation from the linear extrapolation
at a low temperature range (T < 273 K), which is also marked by the separation line. To
present this difference, all the experimental results below 273 K are marked by cyan circles,
and the data above 273 K are marked by black circles. In Figure 3b, we also plot the linear fit
line for the data where T > 273 K and extrapolate it between 100 K and 600 K. The extracted
slope is k = −4.26 × 10−4 eV/K, which is primarily due to the thermal expansion of the 1L
WSe2 crystal lattice and the resulting change of band gap.
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Figure 3. Extracted PL parameters from Lorentzian fitting of 1L WSe2 as a function of temperature.
(a) Peak amplitude I0 and (b) peak position E0. The vertical red lines denote the transition of PL
evolution at T = 273 K, corresponding to (a) the maximum of I0, and (b) the location where the E0–T
slope has changed. The red lines indicate the transition from the indirect band gap (Γ K to K for
T < 273 K) to the direct band gap (K to K for T > 273 K) PL.

In order to understand the impact of temperature’s effect and thermal expansion
on 1L WSe2 and explain the temperature-dependent behavior of its PL and band gap,
we have conducted density functional theory (DFT) calculations of the electronic band
structures of 1L WSe2 at various lattice constants to simulate temperature-dependent
lattice expansion and temperature-dependent band gap. Figure 4 shows the calculated
first 20 electronic bands for 1L WSe2 along the Γ → M → K → Γ trajectory for three
conditions: (a) a = 3.2 Angstrom, (b) a = 3.35 Angstrom, and (c) a = 3.5 Angstrom. The
details of DFT parameter definitions and simulation steps are included in the Section 2.
For the smallest lattice parameter, a = 3.2 Angstrom in Figure 4a, the maximum of the
valence band (VBM) is at the K point, while the minimum of the conduction band (CBM)
appears between the K and Γ point (K Γ). This will lead to indirect band gap PL process
because the photon-excited electrons will primarily relax to the K Γ point in the conduction
band, and the created holes will aggregate at the K point in the valence band, leading to
the major electron–hole annihilation events from K Γ to K. When the lattice parameter
is increased to a = 3.35 Angstrom, as shown in Figure 4b, the K point will become the
CBM, which means the PL will be dominated by a direct band gap from K to K. And
because this process satisfies both energy and momentum conservations, the probability of
electron–hole annihilation is maximized, and the PL intensity will reach its peak. As the
temperature increases, the lattice of 1L WSe2 will further expand. As shown in Figure 4c, at
a = 3.5 Angstrom, the VBM will still happen at the K point, but the CBM will be changed
from the K point to the Γ point, again leading to an indirect band gap PL. The occurrence
of the three different regimes at their corresponding temperatures will be discussed below.
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Figure 5 summarizes the band gap energy for the three different scenarios from
Figure 4 as a function of the lattice parameter a from 3.2 to 3.5 Angstrom. The main feature
happens between a = 3.25 Anstrom and a = 3.3 Angstrom, where the evolution of the direct
band gap PL from K to K point intersects with the indirect band gap PL from Γ K to K
point, with the intersection taking place at a = 3.277 Angstrom. In order to identify their
corresponding temperatures, we take the room temperature lattice parameter of WSe2
as a0 = 3.278 A [37]. For the thermal expansion of WSe2, we take the X-ray diffraction
data from Ref. [38] as a = 3.264 + 4.717·10−5 × T, with a in Angstrom and T in Kelvin. In
Figure 5b, we mark the three characteristic lattice parameters at different temperatures:
a = 3.264 Angstrom corresponding to T = 0 K, 3.278 Angstrom corresponding to T = 300 K,
and 3.292 Angstrom corresponding to T = 600 K. The lattice parameter at 300 K agrees
well with the intersection of the Γ K to K gap and the K to K gap, meaning that the direct-
to-indirect gap transition will happen at around the room temperature. This prediction
agrees well with the experimental observations in Figure 3, and will serve as a quantitative
support of this main conclusion in the work.
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Figure 5. DFT calculated band gaps of 1L WSe2 between different conduction band maximum
(CBM) and valence band minimum (VBM). (a) Complete relationship between gap energy and lattice
parameter, showing energy crossing between direct band gap relaxation (K to K, pink) and two
indirect band gap relaxation (Γ K to K, blue, and Γ to K, purple). (b) Zoomed band gap to lattice
parameter dependence, with marked temperature extracted from the PL experiment.
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4. Discussion

From the experimental data and the DFT calculation result, we are able to calculate
the thermal expansion coefficient of 1L WSe2. We first take the E0–T slope in the direct
band gap regime (T > 273 K) in Figure 3b, (k = −4.26 × 10−4 eV/K), which should be
an accurate reflection of band gap change because there is only one PL path available
(K → K). We then take the DFT calculated K → K band gap evolution from Figure 5b,
as lK→K = −3.42 eV/Angstrom. The thermal coefficient α is calculated as α = k

a0lK→K

= 3.8 × 10−5, or 1.25 × 10−4 Angstrom/K. This is more than twice the reported value
for bulk WSe2, which is 1.45 × 10−5, or 4.72 × 10−5 Angstrom/K for the a-axis, in the
reference Murray et al. [38]. A similar increase in α has also been reported from bulk
graphite to 1L graphene [39], and from bulk to 1L transition metal dichalcogenides such
as MoS2 [40,41] and MoSe2 [42,43]. It is worth noting that the PL that has been used in
this work provides a simple and direct approach to studying the thermal properties of
layered materials via linking to the electronic band structure. Micro Raman spectroscopy is
another approach that is able to sensitively measure the temperature dependence of phonon
modes in order to extract the thermal expansion coefficient of 2D materials. However, the
data obtained from Raman spectroscopy are much more difficult to interpret, since the
frequencies of the specific phonon modes are more complicated to calculate as compared to
electronic band structures. In addition, sometimes there could also be a large difference
in Raman-determined thermal expansion coefficient from different modes. For example,
Kumar et al. [42] have reported a nearly ten-fold difference in α between the out-of-plane
A1g mode and the in-plane E1

2g shear mode in 1L and 2L MoSe2, where Zhang et al. [41]
have reported a consistent α for the A1g and E1

2g modes in 1L MoS2. For PL, the emitted
photon energy is closely dependent on the minimal band gap of the material, which can be
accurately calculated for a given lattice constant.

We now discuss the temperature evolution of I0 and E0 in Figure 3. In Figure 3a, I0
increases with temperature for T < 273 K, which is attributed to the change from an indirect
band gap to a direct band gap. For T > 273 K, I0 decreases with temperature. This is mainly
due to the increased relaxation rate of electrons during their scattering with lattice, which
will determine the population of electrons at the CBM and the holes at the VBM during the
excitation relaxation process. The excited electron hole pairs can annihilate by scattering
with the lattice, and the energy will be relaxed to the lattice without emitting a photon. In
Figure 3b, the deviation of E0 in the low temperature regime (cyan circles) from the linear
extrapolation is likely due to the flattened band structure when the K → K direct gap and
the ΓK → K indirect band gap energies degenerate and the resulting change in density
of states. This may lead to more electronic states slightly higher than the CBM and create
photon emissions with a larger energy. This observation is different from prior PL reports
of 1L-WSe2, where a monotonic increase in PL intensity was measured as the temperature
was decreased [32,33]. We attribute the difference to a better sample quality in our case,
which quantitatively matches with the DFT calculation for the temperature boundary of
direct-to-indirect bandgap transition.

For the PL spectra below 273 K, the line shapes are asymmetric, with a larger lobe for
energy below the peak compared with the energy above the peak. This likely suggests the
appearance of an additional PL peak at a lower energy from the main peak. It is worth
noting that at a low temperature (<0 K) the 1L WSe2 becomes an indirect band gap material.
However, because the K → K direct gap is very close to the ΓK → K indirect band gap,
both cases may contribute to the PL spectra. As a continuation of the direct band gap light
emission for T > 273 K, we attribute the main peak of the PL spectra for T < 273 K to the
K → K direct gap, and the additional low-energy PL peak to the ΓK → K indirect band
gap. The result is in contrast to a few other previous reports where lower-energy peaks
are observed with a difference in photon energy from the main PL peaks [32,33]. In their
reports, the lower-energy peaks are attributed to disorder-induced local excitations. In
our results, the absence of lower-energy peaks suggests a defect-free sample condition
for our PL measurements. We also point out that a finite exciton binding energy should
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be considered as a consequence of Coulomb interaction, and this energy can be different
between direct and indirect bandgap transitions because of the different spatial confinement
with different wavenumbers [44,45]. However, in 1L-WSe2, this binding energy difference
has been reported to be 0.03 eV (theo) and 0.08 eV (exp) [45], both much smaller than
the energy difference of the lower-energy peaks in the prior reports [32]. The binding
energy difference is too difficult to resolve in our results because of the relatively large
PL linewidths.

5. Conclusions

In conclusion, we have systematically investigated the direct and indirect band gaps in
1L WSe2 at a broad temperature range, experimentally and theoretically. Furthermore, 1L
WSe2 is shown to exhibit drastic increase in PL intensity from 140 K to 600 K. Specifically,
we have revealed the nature of direct-to-indirect band gap transition in 1L WSe2 in the
room temperature range. At room temperature, 1L WSe2 is at the transition boundary
between indirect and direct band gaps. This result is also verified using DFT at different
temperatures and lattice constants. This phenomenon is mainly attributed to the increased
relaxation rate of electrons during their scattering with lattice, which will determine the
population of electrons at the CBM and the holes at the VBM during the excitation relaxation
process. Then, the K → K direct gap is changed to the ΓK → K indirect band gap, and this
leads to more electronic states that are higher than the CBM and creates photon emissions
with a larger energy.

Moving forward, band structure and bandgap engineering with temperature can be
used as a method to change the mobility of carriers in 1L WSe2. In addition, increased PL
emission properties make temperature-heated/cooled or -strained/compressed 1L WSe2 a
promising candidate for next-generation optoelectronic devices. In addition to emission
properties, future absorption studies at various temperatures will provide promising insight
into the potential use of 1L WSe2. The findings from this study provide key information for
WSe2’s fundamental physical properties and its potential applications in thermally tunable
optoelectronic devices at room temperature.
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