133-4 - MIDDLE PLEISTOCENE HYDROCLIMATE CHANGES IN THE TROPICAL ANDES INFERRED FROM CARBON AND OXYGEN ISOTOPE RECORDS OF SPELEOTHEMS FROM HUAGAPO CAVE, PERU

2:20 PM - 2:35 PM

310 / 311 (3, David L Lawrence Convention Center)

Abstract

Glacial-interglacial transitions and abrupt millennial-scale events are the most prominent features in many paleoclimate records. Understanding these oscillations requires highresolution time series from multiple locations to constrain the latitudinal response to forcings. Few high-resolution records exist from the Southern Hemisphere tropics that predate the last two glaciations. We present a high-resolution speleothem oxygen and carbon isotope record from Huagapo Cave in the Central Peruvian Andes covering Marine Isotope Stage (MIS) 8 glacial and MIS 9 interglacial (339 to 249 ka). Uranium-series dates on three stalagmites (n=18) with small age uncertainty ±1% allows us to resolve abrupt climate events similar in structure and duration to Dansgaard-Oescchger and Heinrich events. The South American Summer Monsoon (SASM) controls modern hydroclimate variability in the Andes, and previous records from Huagapo Cave have provided records of past SASM variability. Termination three (T-III) in our record has a steep increase in δ^{18} O values of 5%, punctuated by two stadial event decreases of ~3% (S8.1 and S8.2). This pattern is mirrored in the δ^{13} C record, indicating that these millennial-scale events record hydroclimate and vegetation productivity changes. The same structure as our T-III record is found in other records globally, where they are noted to be Heinrich-like events. Frequency analysis indicates that the occurrence of these abrupt events changes between glacial cycles. Precession is weakly expressed in the δ^{18} O record during MIS 8; similar to speleothem records from the region dating to the Last Glacial Maximum (LGM). Global ice cover and sea levels were similar in the LGM and MIS 8, but the Milankovitch insolation forcing differed. This change in SASM behavior is not observed in the East Asian monsoon, where the precession signal is dominant throughout. Interglacial precessional control is apparent during the latter half of MIS 9 and during Huagapo Cave intervals dating to MIS 6 and 7. These data indicate that the response to high-latitude forcing in the Southern Hemisphere tropics fluctuates through time, and potential explanations for lowlatitude sensitivity to forcing factors are further explored.

Geological Society of America Abstracts with Programs. Vol. 55, No. 6, 2023 doi: 10.1130/abs/2023AM-394169

© Copyright 2023 The Geological Society of America (GSA), all rights reserved.

Author

Elizabeth Olson

Union College

Authors

Dylan Parmenter

University of Minnesota

David Gillikin

Union College

Hailey Stoltenberg

Union College

Avery Clavel

Union College

Laura Piccirillo

Union College

Anouk Verheyden

Union College

Lawrence Edwards

University of Minnesota

Donald Rodbell

Union College

Ask a question or comment on this session (not intended for technical support questions).

Have a question or comment? Enter it here.

Presentation File(s)

0:00 / 15:49

View Related