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Abstract
1.	 Numerous modelling techniques exist to estimate abundance of plant and ani-

mal populations. The most accurate methods account for multiple complexities 
found in ecological data, such as observational biases, spatial autocorrelation, 
and species correlations. There is, however, a lack of user-friendly and computa-
tionally efficient software to implement the various models, particularly for large 
data sets.

2.	 We developed the spAbundance R package for fitting spatially explicit Bayesian 
single-species and multi-species hierarchical distance sampling models, N-mixture 
models, and generalized linear mixed models. The models within the package can 
account for spatial autocorrelation using Nearest Neighbour Gaussian Processes 
and accommodate species correlations in multi-species models using a latent fac-
tor approach, which enables model fitting for data sets with large numbers of 
sites and/or species.

3.	 We provide three vignettes and three case studies that highlight spAbundance 
functionality. We used spatially explicit multi-species distance sampling mod-
els to estimate density of 16 bird species in Florida, USA, an N-mixture model 
to estimate black-throated blue warbler (Setophaga caerulescens) abundance in 
New Hampshire, USA, and a spatial linear mixed model to estimate forest above-
ground biomass across the continental USA.

4.	 spAbundance provides a user-friendly, formula-based interface to fit a variety 
of univariate and multivariate spatially explicit abundance models. The package 
serves as a useful tool for ecologists and conservation practitioners to generate 
improved inference and predictions on the spatial drivers of abundance in popula-
tions and communities.
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1  |  INTRODUC TION

Understanding how abundance of plant and animal populations 
varies across space and time is a central objective in ecology 
and conservation management. A variety of sampling and asso-
ciated modelling techniques have been developed over the last 
50 years to estimate abundance while accounting for imperfect 
detection (i.e. the failure to observe all individuals of a species 
that are present at a location during the sampling period), includ-
ing distance sampling and repeated counts, among others (Nichols 
et  al.,  2009). In distance sampling, the probability of detecting 
an individual is assumed to decay with increasing distance to the 
observer, which allows for the explicit estimation of abundance/
density while accommodating imperfect detection of individuals 
(Buckland et al., 2001). Hierarchical distance sampling (HDS; Royle 
et  al.,  2004) extends classical distance sampling to model abun-
dance/density as a function of spatially varying covariates. Royle 
et al.  (2004) introduced N-mixture models, which allow for esti-
mation of abundance and effects of spatially varying covariates 
while accounting for detection probability using replicated count 
data during some period where the population is assumed to be 
closed, that is where no births/deaths or immigration/emigration 
occur. In addition to approaches that explicitly account for im-
perfect detection, generalized linear mixed models (GLMMs) that 
estimate relative abundance (i.e. ignoring imperfect detection) 
can be used to assess how environmental covariates influence 
relative changes in abundance across space and/or time (Barker 
et al., 2018; Goldstein & de Valpine, 2022). Multi-species (i.e. mul-
tivariate) extensions of HDS (Sollmann et  al.,  2016), N-mixture 
models (Yamaura et al., 2012) and GLMMs (e.g. Hui et al., 2015) 
use count data from multiple species to estimate species-specific 
patterns in abundance, which may also estimate correlations be-
tween species in a joint species distribution model (JSDM) frame-
work (Warton et al., 2015).

When modelling abundance across large spatial domains and/
or using a large number of observed locations, accommodating 
spatial autocorrelation becomes increasingly important (Guélat 
& Kéry, 2018). Spatial autocorrelation can arise from a variety of 
ecological and/or biological processes, such as additional environ-
mental drivers not included as covariates in the model, dispersal, 
species interactions, and source-sink meta-population dynamics 
(Chapter  9; Kéry & Royle,  2021). Failing to account for residual 
spatial autocorrelation (i.e. remaining spatial autocorrelation after 
accounting for environmental covariates) can lead to overly pre-
cise estimates and inferior predictive performance. Modelling 
spatial dependence is commonly done via the addition of spatially 
structured random effects to point-referenced spatial regression 
models (i.e. spatially explicit models). Gaussian process-based ran-
dom effects provide a flexible non-parametric approach to capture 
spatial patterns, offer unparalleled process parameter and predic-
tive inference, and yield probabilistic uncertainty quantification. 
The hierarchical Bayesian framework is the preferred inferential 

framework for models developed here and in the literature due 
to their increased flexibility to fit models that would be infeasi-
ble with classical methods (Banerjee et  al.,  2014). Such models 
are, however, notoriously computationally intensive (Banerjee & 
Fuentes,  2012), as computational complexity increases in cubic 
order with the number of spatial locations. These computational 
bottlenecks make fitting spatially explicit models impractical for 
even moderately large data sets using Bayesian software pack-
ages such as Stan (Carpenter et al., 2017) and NIMBLE (de Valpine 
et al., 2017).

Many popular, formula-based R packages exist that can fit vari-
ous combinations of distance sampling models, N-mixture models, 
and/or spatially explicit GLMMs for assessing spatial patterns in 
abundance (Supplemental Information S1: Table S1). The R package 
unmarked (Fiske & Chandler,  2011; Kellner et  al.,  2023) is com-
monly used to fit single-species distance sampling and N-mixture 
models, but cannot accommodate spatial autocorrelation. The dsm 
package (Miller et al., 2013) can fit spatially explicit distance sam-
pling models using generalized additive models, the hSDM package 
(Vieilledent,  2019) can fit spatially explicit N-mixture models with 
an intrinsic conditional autoregessive model (Ver Hoef et al., 2018), 
while the ubms package (Kellner et al., 2021) fits both spatially ex-
plicit distance sampling and N-mixture models using restricted spa-
tial regression (Hodges & Reich,  2010). These packages, however, 
cannot accommodate multiple species within a multivariate frame-
work. A variety of R packages exist to fit spatially explicit univari-
ate and multivariate GLMMs, such as spBayes (Finley et al., 2015), 
Hmsc (Tikhonov et al., 2020), and sdmTMB (Anderson et al., 2022). 
However, none of these packages can explicitly account for imper-
fect detection.

In this paper, we introduce the spAbundance R package for 
fitting Bayesian single-species and multi-species HDS models, 
N-mixture models, and GLMMs that may or may not include spa-
tial autocorrelation in large data sets. We fit all spatially explicit 
models with Nearest Neighbour Gaussian Processes (NNGPs), a 
computationally efficient approach that closely approximates a 
full Gaussian process while drastically reducing computational run 
times (Datta et  al.,  2016; Finley et  al.,  2019). We designed sp-
Abundance syntax to closely follow the syntax of spOccupancy 
(Doser et al., 2022), an R package that fits a variety of analogous 
spatially explicit occupancy models, which together provide a 
user-friendly and computationally efficient set of tools to model 
occupancy and abundance while accounting for spatial autocor-
relation and imperfect detection.

2  |  OVERVIE W OF MODEL S IN 
spAbundance

Next we give a brief overview of the models included in spAbun-
dance. See Supplemental Information S1 for details on all prior dis-
tributions and their default values.
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1026  |    DOSER et al.

2.1  |  Single-species HDS models

The spAbundance functions DS and spDS fit non-spatial and spa-
tially explicit single-species HDS models, respectively. Let N

(

sj
)

 de-
note the true abundance of a species of interest at site j = 1, … , J 
with spatial coordinates sj. We model N

(

sj
)

 using either a Poisson or 
negative binomial (NB) distribution following:

where �
(

sj
)

 is the average abundance at site j, A
(

sj
)

 is an offset, and � 
is a positive dispersion parameter. Smaller values of � indicate overdis-
persion in the latent abundance values relative to a Poisson model, 
while higher values indicate minimal overdispersion in abundance. 
Note that as � → ∞, the negative binomial distribution becomes the 
Poisson distribution. The offset term A

(

sj
)

 can be used to convert �
(

sj
)

 
to units of density (i.e. abundance per unit area), while if A

(

sj
)

= 1, �
(

sj
)

 
is average abundance per site. We model �

(

sj
)

 using a log link function 
following

where � is a vector of regression coefficients for a set of covari-
ates x

(

sj
)

 including an intercept, w
(

sj
)

 is a zero-mean spatial random 
effect, and the ⊤ denotes transposition of column vector x

(

sj
)

. For 
non-spatial HDS models, w

(

sj
)

 is removed from Equation 2. For spa-
tially explicit HDS, we model w(s) using a NNGP as a computationally 
efficient alternative to using a full spatial GP. More specifically, we 
assume that

where C̃
(

s, s′,�
)

 is a J × J NNGP-derived spatial covariance matrix and 
� is a vector of parameters governing the spatial process according to a 
spatial covariance function. spAbundance supports four spatial cova-
riance models: exponential, spherical, Gaussian and Matérn (Banerjee 
et  al.,  2014). For the exponential, spherical and Gaussian functions, 
� =

{

�2,�
}

, where �2 is a spatial variance parameter controlling the 
magnitude of the spatial random effects and � is a spatial decay pa-
rameter controlling the range of spatial autocorrelation, while the 
Matérn function additionally includes a spatial smoothness parameter, 
�. See Supplemental Information S1 for statistical details on the NNGP 
approximation.

Suppose observers count the number of individuals of the spe-
cies of interest at each site j. Our HDS software implementation 
in spAbundance supports two types of “sites”: line transects and 
point count surveys. In line transects, each site j is a line transect 
the observer walks along and records the distance of each observed 
individual to the line within a set of k = 1, … ,K distance bands. In 
point count surveys, each site j is the centre of an imaginary cir-
cle at which an observer stands and records the distance of each 
observed individual to the centre of the circle within k = 1, … ,K 

circular distance bands. Note that sometimes continuous distances 
are recorded rather than distance bins, in which case the continu-
ous distance measurements can then be split into K distance bins 
prior to analysis. Define y

(

sj
)

 as a vector of K values indicating the 
number of individuals observed within each distance band k at site 
j. Similarly, let y∗

(

sj
)

 be a vector of K + 1 values, where the first K 
values correspond to y

(

sj
)

, and the last value is the number of unob-
served individuals at that location (i.e. N

�

sj
�

−
∑K

k=1
yk
�

sj
�

). Note the 
last value in y∗

(

sj
)

 is not observed (i.e. since N
(

sj
)

 is not known). We 
model y∗

(

sj
)

 according to

where �∗

j
 is a vector of cell probabilities with the first K values denoted 

as � j and the final value �j,K+1 = 1 −
∑K

k=1
� j,k. More specifically, �j,k is 

the probability of detecting an individual in the kth distance band at 
site j. We define �j,k as

where 
−

p
j,k is the probability of detecting an individual in distance band k,  

given the individual occurs in distance band k, and �k is the probability 
an individual occurs in distance band k. The definitions of 

−

p
j,k and �k are 

different depending on whether the distance bands are linear (as in line 
transects) or circular (as in point count surveys). Following the standard 
distance sampling assumption that animals are uniformly distributed in 
space, for line transects we have

where bk+1 and bk are the upper and lower distance limits for band k, 
and B is the line transect half-width (i.e. the maximum distance within 
which individuals are counted). Further, for distance x we have

For point count surveys, we have

where bk+1 and bk are similarly the upper and lower distance limits for 
band k, and B is the radius of the full point count circle. We then define 
−

p
j,k as

For both line transects and point count surveys, g(x) is some de-
clining function of distance x from the transect line/point count sur-
vey centre. We approximate the integrals in Equation 7 and 9 using 
numerical integration. Our software implementation in spAbun-
dance currently supports two detection functions: half-normal and 
negative exponential (see Supplemental Information S1 for their 

(1)
N
(

sj
)

∼Poisson
(

�
(

sj
)

A
(

sj
))

, or,

N
(

sj
)

∼NB
(

�
(

sj
)

A
(

sj
)

, �
)

,

(2)log
(

𝜇
(

sj
))

= x
(

sj
)⊤

� + w
(

sj
)

,

(3)w(s) ∼ Normal(0, C̃
(

s, s�,�
)

,

(4)y∗
(

sj
)

∼ Multinomial
(

N
(

sj
)

,�∗

j

)

,

(5)�j,k =
−

p
j,k�k ,

(6)�k =
bk+1 − bk

B
,

(7)
−

p
j,k =

1

bk+1 − bk ∫
bk+1

bk

g(x)dx .

(8)�k =
b2
k+1

− b2
k

B2
,

(9)
−

p
j,k =

1

b2
k+1

− b2
k
∫
bk+1

bk

g(x)2xdx .
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definitions). Both of these functions are governed by a scale param-
eter, �j, which can be modelled as a function of covariates to allow 
detection probability to vary across sites. More specifically, we have

where � is a vector of regression coefficients for covariates v j (includ-
ing an intercept).

2.2  |  Multi-species HDS models

Now consider the case where distance sampling data, y i
(

sj
)

, are col-
lected for multiple species i = 1, … , I at each survey location j with 
coordinates sj. We are now interested in estimating the abundance 
of each species i  at each location j, denoted as Ni

(

sj
)

. We model 
Ni

(

sj
)

 analogous to Equation 1, with expected abundance now vary-
ing by species and site according to

where � i are the species-specific effects of covariates x
(

sj
)

 (includ-
ing an intercept) and w∗

i

(

sj
)

 is a species-specific random effect. When 
Ni

(

sj
)

 is modelled using a negative binomial distribution, we estimate 
a separate dispersion parameter � i for each species. We model � i as 
random effects arising from a common, community-level normal dis-
tribution, which leads to increased precision of species-specific ef-
fects compared to single-species models (Sollmann et al., 2016). For 
example, the species-specific abundance intercept �0,i is modelled 
according to

where ��0
 is the community-level abundance intercept, and �2

�0
 is the 

variance of the intercept across all I species. The observation por-
tion of the multi-species distance sampling model is identical to the 
single-species model and follows Equations 4–10, with all parameters 
indexed by species, and the species-specific coefficients �i modelled 
hierarchically analogous to the species-specific abundance coeffi-
cients � i (Equation 12). Given that species-specific effects are treated 
as random effects, such an approach requires at least 5–6 species in 
the modelled community in order for reliable estimation of variance 
parameters.

spAbundance fits three types of multi-species models that 
differ in how they incorporate the species-specific random effect 
w∗

i

(

sj
)

 (if included). The function msDS fits the non-spatial multi-
species distance sampling model of Sollmann et al. (2016) in which 
we remove the random effect w∗

i

(

sj
)

 from Equation 11. The function 
sfMsDS fits spatial multi-species distance sampling models using a 
spatial factor model (Hogan & Tchernis, 2004), which simultaneously 
accommodates spatial autocorrelation and residual species correla-
tions in a spatial JSDM framework. Briefly, we decompose w∗

i

(

sj
)

 
into a linear combination of q latent variables (i.e. factors) and their 

associated species-specific coefficients (i.e. factor loadings). More 
specifically, we have

where �⊤
i
 is the ith row of factor loadings from an I × q loadings 

matrix �, and w
(

sj
)

 is a vector of length q of independent spatial 
factors at site j. By setting q ≪ I, we achieve dimension reduction 
to efficiently model communities with a large number of species 
(Doser et  al.,  2023; Taylor-Rodriguez et  al.,  2019). The approach 
accounts for residual species correlations via their species-specific 
responses to the q spatial factors, which results in a residual in-
terspecies covariance matrix that can be derived from the model 
as � = ��

⊤. We model each spatial factor using an independent 
NNGP according to Equation 3, except we fix the spatial variance 
parameter to 1 to ensure identifiability (Lopes & West, 2004). As 
an alternative, the function lfMsDS models w∗

i

(

sj
)

 identical to 
Equation 13, except assumes each of the q factors in w

(

sj
)

 arises 
from an independent standard normal distribution. This model 
does not account for spatial autocorrelation but does allow for 
the estimation of species correlations. The models fit by sfMsDS 
and lfMsDS can be thought of as abundance-based JSDMs that 
account for imperfect detection (Tobler et al., 2019; Chapter 8 in 
Kéry & Royle, 2021).

Our factor modelling approach to fitting spatially explicit 
multi-species models in spAbundance implicitly assumes species 
are correlated through latent factors w

(

sj
)

. If there is no interest 
in residual species correlations, we could imagine a multi-species 
model that includes a separate spatial process for each species. 
However, we do not include such models in spAbundance be-
cause they are computationally infeasible when working with even 
a moderate number of species (e.g. 10). Further, in the context 
of occupancy models, the spatial factor modelling approach has 
been shown to perform equally as well as a model that estimates a 
separate spatial random effect for each species even when there 
are no residual correlations between the species in the community 
(Doser et al., 2023).

2.3  |  Single-species N-mixture models

The functions NMix and spNMix fit non-spatial and spatial N-
mixture models in spAbundance. Following the N-mixture model 
structure of Royle  (2004), we assume observers count the num-
ber of individuals of a target species at each site j over a set of 
multiple surveys k = 1, … ,Kj, denoted as yk

(

sj
)

. Note the number 
of surveys can vary by site, but at least some sites must be sur-
veyed more than once to ensure identifiability. We model yk

(

sj
)

 
conditional on the true abundance of the species at site j, N

(

sj
)

, following:

where pj,k is the probability of detecting an individual given it is present 
at the site. We model pj,k using a logit link function in which we can 

(10)log
(

𝜎 j

)

= v⊤
j
�,

(11)log
(

𝜇i

(

sj
))

= x
(

s⊤
j

)

� i + w∗

i

(

sj
)

,

(12)�0,i ∼ Normal
(

��0
, �2

�0

)

,

(13)w∗

i

(

sj
)

= �⊤
i
w
(

sj
)

,

(14)yk
(

sj
)

∼ Binomial
(

N
(

sj
)

, pj,k
)

,
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1028  |    DOSER et al.

allow detection probability to vary over space and/or surveys. More 
specifically, we have

where � is a vector of effects of covariates v j,k (including an intercept). 
The model for abundance N

(

sj
)

 is identical to the single-species dis-
tance sampling model, which can include covariates and/or spatial ran-
dom effects (Equations 1–3).

2.4  |  Multi-species N-mixture models

Analogous to HDS models, we can extend single-species N-mixture 
models to model abundance of a community of I  total species 
(Yamaura et  al.,  2012). In multi-species N-mixture models, we es-
timate the abundance of species i  at spatial location j, Ni

(

sj
)

. Our 
model for Ni

(

sj
)

 follows that of multi-species HDS models, such 
that expected abundance can be modelled as a function of species-
specific effects of spatially varying covariates (Equation  11) and 
species-specific random effects that can accommodate residual spe-
cies correlations and residual spatial autocorrelation using a factor 
modelling approach (Equation 13). Species-specific covariate effects 
are modelled hierarchically following Equation 12. The observation 
portion of the multi-species N-mixture model is identical to the 
single-species model, now with species-specific covariate effects 
modelled hierarchically analogous to the abundance coefficients. 
spAbundance provides functions to fit non-spatial multi-species 
N-mixture models with (lfMsNMix) and without (msNMix) residual 
species correlations, as well as spatial multi-species N-mixture mod-
els that account for residual species correlations and spatial autocor-
relation (sfMsNMix).

2.5  |  Single-species GLMMs

The functions abund and spAbund fit single-species (i.e. univariate) 
non-spatial and spatial GLMMs in spAbundance using abundance 
and related (e.g. biomass) data. As opposed to HDS and N-mixture 
models, GLMMs do not explicitly account for imperfect detection 
via an additional hierarchical component to the model, and instead 
directly model the observed abundance at site j, y

(

sj
)

 to provide in-
ference on relative abundance (e.g. Chapter 1 in Kéry & Royle, 2021). 
Observed abundance y

(

sj
)

 is modelled using some probability distri-
bution with mean �

(

sj
)

. spAbundance currently supports Poisson 
and negative binomial for use with count data and the Gaussian dis-
tribution for use with continuous abundance data, such as biomass. 
Mean relative abundance �

(

sj
)

 is modelled according to Equation 2 
for the Poisson and negative binomial cases, while the log link func-
tion is removed for the Gaussian case. Note that variables thought 
to influence detection probability can be incorporated in the model 
for �

(

sj
)

 to improve estimates of relative abundance (e.g. random 
observer effects, Link & Sauer, 2002).

2.6  |  Multi-species GLMMs

Now consider the case where we have count data for multiple spe-
cies I  at each survey location j, denoted yi

(

sj
)

. We jointly model rela-
tive abundance of each species using a multivariate GLMM (e.g. Hui 
et al., 2015; Warton et al., 2015), in which expected abundance for 
each species i  at site j, �i

(

sj
)

, is modelled analogous to Equations 11–
13. Note the log link function is removed from Equation  11 when 
modelling abundance using a Gaussian distribution. As with HDS and 
N-mixture models, spAbundance provides functions to fit non-spatial 
multivariate GLMMs with (lfMsAbund) and without (msAbund) re-
sidual species correlations. Multivariate spatial GLMMs with residual 
species correlations are fit using the sfMsAbund function.

3  |  spAbundance  FUNC TIONALIT Y

Here we highlight the five main tasks performed by spAbundance 
(see Table 1 for function names).

1.	 Data simulation: The functions simDS, simMsDS, simNMix, 
simMsNMix, simAbund, and simMsAbund simulate data under 
the single-species and multi-species HDS, N-mixture and GLMM 
frameworks for use in simulation studies or power analyses.

2.	 Model fitting: Model fitting functions were described in Section 2. 
All models are implemented in a Bayesian framework using cus-
tom Markov chain Monte Carlo (MCMC) algorithms written in 
C/C++ using R's foreign language interface. spAbundance uses 
standard R formula syntax to specify abundance and detection 
probability models, with options to include random intercepts and 
random slopes using lme4 syntax (Bates et al., 2015). Users can 
specify initial values for the MCMC algorithm as well as each pa-
rameter's prior distribution to yield vague or informative priors as 
desired (Supplemental Information S1).

3.	 Model validation and comparison: The function ppcAbund per-
forms posterior predictive checks on spAbundance model ob-
jects to assess model Goodness of Fit. The function waicAbund 
computes the conditional version (Millar,  2018) of the Widely 
Applicable Information Criterion (WAIC; Watanabe,  2010) for 
model selection and assessment.

4.	 Posterior summaries: We include summary functions for sp-
Abundance model objects that display concise summaries of the 
posterior distributions for estimated parameters as well as the 
potential scale reduction factor (R̂; Gelman & Rubin,  1992) and 
effective sample size for convergence diagnostics. Simple plot 
functions allow for further convergence diagnostics via visual as-
sessment of traceplots. The complete posterior samples are re-
turned as coda::mcmc objects (Plummer et al., 2006).

5.	 Prediction: predict functions for all spAbundance model ob-
jects provide predictions of abundance across a user-specified set 
of locations, given covariate values and spatial coordinates. The 
resulting posterior predictive distributions can be used to gener-
ate abundance-based species distribution maps with associated 

(15)logit
(

pj,k
)

= v⊤
j,k
�,
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uncertainty or to obtain population size estimates across the 
study region or within smaller areal units of interest. Users can 
also predict detection probability for HDS and N-mixture models 
to yield insight on how detection probability varies across a user-
specified range of covariate values.

4  |  WORKED E X AMPLES AND ONLINE 
RESOURCES

We demonstrate spAbundance functionality with three worked 
examples and three vignettes. Complete details for all worked 

examples are provided in Supplemental Information S1, along with 
associated code and data available on Zenodo (Doser et al., 2024). 
The vignettes are provided in Supplemental Information S2–S4 as 
well as on the package website (https://​www.​jeffd​oser.​com/​files/​​
spabu​ndanc​e-​web/​). Here we provide a short overview of the 
worked examples and vignettes.

4.1  |  Case study 1: Bird density in central Florida

This case study demonstrates spAbundance functionality to fit spatial 
and nonspatial multi-species HDS models. We estimated density of 16 
bird species in 2018 in the Disney Wilderness Preserve (48.5 km2) in 
central Florida, USA. Distance sampling data were collected as part 
of the National Ecological Observatory Network landbird monitoring 
program (NEON, 2024). We compared the performance of the three 
multi-species model variants in spAbundance using WAIC. The spatial 
model substantially outperformed the non-spatial model with species 
correlations (ΔWAIC = 86) and the non-spatial model without species 
correlations (ΔWAIC = 155 ). Effects of forest cover on species-specific 
density varied across the community (Figure 1a), resulting in clear spa-
tial variation in density of the 16 species (Supplemental Information 
S1: Figure S1). Detection probability quickly decayed with increasing 
distance from the observer (Figure 1b).

4.2  |  Case study 2: Black-throated blue warbler 
abundance in Hubbard Brook Experimental Forest

In this case study, we showcase how to fit spatial and non-spatial 
single-species N-mixture models. We estimated abundance of 
black-throated blue warblers (Setophaga caerulescens) in the 
Hubbard Brook Experimental Forest (31.8 km2) in New Hampshire, 
USA using repeated count data from 2015 (Rodenhouse & 
Sillett,  2021; Supplemental Information S1). We found minimal 
support for overdispersion and residual spatial autocorrelation, 
with a non-spatial Poisson N-mixture model performing best ac-
cording to WAIC among multiple candidate models. A strong nega-
tive quadratic relationship with elevation revealed that abundance 
peaked at mid-elevations in the forest (Supplemental Information 
S1: Figure S2).

4.3  |  Case study 3: Forest biomass across the 
continental USA

Our final case study demonstrates how spAbundance can be used 
to fit models using “big data”. We estimated forest above-ground 
biomass across the continental US (∼ 7.8 million km2) using data 
from J = 86,933 forest inventory plots (Figure 2a) collected via the 
US Forest Service Forest Inventory and Analysis Program (Bechtold 
& Patterson, 2005). We fit a spatially explicit univariate GLMM using 
a Gaussian distribution with an ecoregion-specific random slope of 

TA B L E  1  List of core functions in the spAbundance package. 
Model fitting function name components correspond to: DS 
(hierarchical distance sampling), NMix (N-mixture model), abund 
(abundance-based GLMM), sp (spatial), ms (multi-species), lf 
(latent factor) and sf (spatial factor).

Functionality Description

Data simulation

simDS Simulate single-species distance sampling data

simMsDS Simulate multi-species distance sampling data

simNMix Simulate single-species repeated count data with 
imperfect detection

simMsNMix Simulate multi-species repeated count data with 
imperfect detection

simAbund Simulate single-species count data with perfect 
detection

simMsAbund Simulate multi-species count data with perfect 
detection

Model fitting

DS Single-species HDS model

spDS Single-species spatial HDS model

msDS Multi-species HDS model

lfMsDS Multi-species HDS model with species correlations

sfMsDS Multi-species spatial HDS model with species 
correlations

NMix Single-species N-mixture model

spNMix Single-species spatial N-mixture model

msNMix Multi-species N-mixture model

lfMsNMix Multi-species N-mixture model with species 
correlations

sfMsNMix Spatial multi-species N-mixture model with species 
correlations

abund Single-species GLMM

spAbund Single-species spatial GLMM

msAbund Multi-species GLMM

lfMsAbund Multi-species GLMM with species correlations

sfMsAbund Multi-species spatial GLMM with species 
correlations

Model assessment

ppcAbund Posterior predictive check using Bayesian p-values

waicAbund Compute Widely Applicable Information Criterion
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tree canopy cover to reflect potential spatial variation in the rela-
tionship between canopy cover and biomass across different for-
est types. We found an overall positive relationship between tree 
canopy cover and biomass (median = 0.54, 95% credible interval 

0.43–0.66), but clear variation in the magnitude of the effect across 
ecoregions (Figure  2b). Biomass predictions across the US aligned 
with expectations, with highest biomass predicted in the Pacific 
Northwest (Figure 2c,d).

F I G U R E  1  Species-specific effects of forest cover on density (a) and relationship between detection probability and distance from the 
observer (b) in the central Florida bird case study. Panel (a) shows the estimated mean (dark line), 50% credible interval (box), and 95% 
credible interval (whiskers) for the effect of forest cover on the overall community (COMM) and 16 individual species. In Panel (b), lines show 
the posterior mean detection probabilities for each species. The black line represents the average across the community (i.e. the community-
level effect), and the grey region is the associated 95% credible interval. See Supplemental Information S1 for species code definitions.

 2041210x, 2024, 6, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14332, W
iley O

nline Library on [30/06/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



    |  1031DOSER et al.

4.4  |  Vignettes

The three package vignettes provide complete details and exam-
ples for fitting all single-species and multi-species model types 
for HDS models (Supplemental Information S2), N-mixture mod-
els (Supplemental Information S3) and GLMMs (Supplemental 
Information S4). We provide extensive details on the required data 
formats for implementing the models in spAbundance and all func-
tion arguments including their default values. We additionally pro-
vide code to manipulate resulting objects after fitting models to 
generate a variety of plot types and summary figures.

5  |  CONCLUSIONS AND FUTURE 
DIREC TIONS

We envision numerous extensions to existing spAbundance func-
tionality and associated statistical methodology. We are currently 
working on functionality for zero-inflated models and spatiotem-
poral models, including “generalized” HDS and N-mixture models 
that account for imperfect availability (Chandler et al., 2011). We 

encourage future simulation studies to better identify the poten-
tial impacts of spatial confounding on inference in spatially explicit 
abundance models. Spatial confounding occurs when the spatial 
random effect is correlated with covariates included in the model, 
thus leading to difficulties in making inference on the covariate 
effects (Hodges & Reich, 2010). While approaches exist to reduce 
such confounding (e.g. restricted spatial regression; Hodges & 
Reich, 2010), they do not always provide more accurate inferences 
than standard approaches (Zimmerman & Ver Hoef,  2022). We 
echo the guidelines of Mäkinen et al. (2022) to assess the potential 
impacts of spatial confounding given the specific characteristics of 
the covariates of interest.

The aim in developing spAbundance is to provide ecologists and 
conservation practitioners with a user-friendly tool to quantify and 
understand spatial variation in the abundance of plant and animal 
species. This R package fits Bayesian spatially explicit single-species 
and multispecies versions of three of the most common modelling 
frameworks for “unmarked” data types: HDS models, N-mixture 
models and generalized linear mixed models. By using efficient sta-
tistical algorithms implemented in C/C++ via R's foreign language 
interface, spAbundance is capable of handling datasets with a large 

F I G U R E  2  Data and predictions from the forest biomass case study. Panel (a) shows the observed locations of the 86,933 Forest 
Inventory and Analysis plots. Note these are the publicly available perturbed locations in which FIA adds a small amount of random noise to 
the true plot locations. Panel (b) shows the estimated random effect of tree canopy cover on forest biomass within distinct ecoregions. Panel 
(c) shows predicted biomass (posterior median) across the continental USA (tons per acre), with associated uncertainty (95% credible interval 
[CI] width) depicted in Panel (d).
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number of species (e.g. >100) and locations (e.g. 100,000). Together, 
the package vignettes (Supplemental Information S2–S4), code to 
implement the three case studies (Doser et al., 2024), and the pack-
age website (https://​www.​jeffd​oser.​com/​files/​​spabu​ndanc​e-​web/​) 
provide full details and thorough exposition of spAbudance model 
objects.
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