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Abstract
1. Numerous modelling techniques exist to estimate abundance of plant and ani-

mal populations. The most accurate methods account for multiple complexities
found in ecological data, such as observational biases, spatial autocorrelation,
and species correlations. There is, however, a lack of user-friendly and computa-
tionally efficient software to implement the various models, particularly for large

data sets.

. We developed the spAbundance R package for fitting spatially explicit Bayesian

single-species and multi-species hierarchical distance sampling models, N-mixture
models, and generalized linear mixed models. The models within the package can
account for spatial autocorrelation using Nearest Neighbour Gaussian Processes
and accommodate species correlations in multi-species models using a latent fac-
tor approach, which enables model fitting for data sets with large numbers of

sites and/or species.

. We provide three vignettes and three case studies that highlight spAbundance

functionality. We used spatially explicit multi-species distance sampling mod-
els to estimate density of 16 bird species in Florida, USA, an N-mixture model
to estimate black-throated blue warbler (Setophaga caerulescens) abundance in
New Hampshire, USA, and a spatial linear mixed model to estimate forest above-

ground biomass across the continental USA.

. spAbundance provides a user-friendly, formula-based interface to fit a variety

of univariate and multivariate spatially explicit abundance models. The package
serves as a useful tool for ecologists and conservation practitioners to generate
improved inference and predictions on the spatial drivers of abundance in popula-

tions and communities.
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1 | INTRODUCTION

Understanding how abundance of plant and animal populations
varies across space and time is a central objective in ecology
and conservation management. A variety of sampling and asso-
ciated modelling techniques have been developed over the last
50vyears to estimate abundance while accounting for imperfect
detection (i.e. the failure to observe all individuals of a species
that are present at a location during the sampling period), includ-
ing distance sampling and repeated counts, among others (Nichols
et al., 2009). In distance sampling, the probability of detecting
an individual is assumed to decay with increasing distance to the
observer, which allows for the explicit estimation of abundance/
density while accommodating imperfect detection of individuals
(Buckland et al., 2001). Hierarchical distance sampling (HDS; Royle
et al., 2004) extends classical distance sampling to model abun-
dance/density as a function of spatially varying covariates. Royle
et al. (2004) introduced N-mixture models, which allow for esti-
mation of abundance and effects of spatially varying covariates
while accounting for detection probability using replicated count
data during some period where the population is assumed to be
closed, that is where no births/deaths or immigration/emigration
occur. In addition to approaches that explicitly account for im-
perfect detection, generalized linear mixed models (GLMMs) that
estimate relative abundance (i.e. ignoring imperfect detection)
can be used to assess how environmental covariates influence
relative changes in abundance across space and/or time (Barker
et al., 2018; Goldstein & de Valpine, 2022). Multi-species (i.e. mul-
tivariate) extensions of HDS (Sollmann et al., 2016), N-mixture
models (Yamaura et al., 2012) and GLMMs (e.g. Hui et al., 2015)
use count data from multiple species to estimate species-specific
patterns in abundance, which may also estimate correlations be-
tween species in a joint species distribution model (JSDM) frame-
work (Warton et al., 2015).

When modelling abundance across large spatial domains and/
or using a large number of observed locations, accommodating
spatial autocorrelation becomes increasingly important (Guélat
& Kéry, 2018). Spatial autocorrelation can arise from a variety of
ecological and/or biological processes, such as additional environ-
mental drivers not included as covariates in the model, dispersal,
species interactions, and source-sink meta-population dynamics
(Chapter 9; Kéry & Royle, 2021). Failing to account for residual
spatial autocorrelation (i.e. remaining spatial autocorrelation after
accounting for environmental covariates) can lead to overly pre-
cise estimates and inferior predictive performance. Modelling
spatial dependence is commonly done via the addition of spatially
structured random effects to point-referenced spatial regression
models (i.e. spatially explicit models). Gaussian process-based ran-
dom effects provide a flexible non-parametric approach to capture
spatial patterns, offer unparalleled process parameter and predic-
tive inference, and yield probabilistic uncertainty quantification.
The hierarchical Bayesian framework is the preferred inferential
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framework for models developed here and in the literature due
to their increased flexibility to fit models that would be infeasi-
ble with classical methods (Banerjee et al., 2014). Such models
are, however, notoriously computationally intensive (Banerjee &
Fuentes, 2012), as computational complexity increases in cubic
order with the number of spatial locations. These computational
bottlenecks make fitting spatially explicit models impractical for
even moderately large data sets using Bayesian software pack-
ages such as stan (Carpenter et al., 2017) and NIMBLE (de Valpine
etal, 2017).

Many popular, formula-based R packages exist that can fit vari-
ous combinations of distance sampling models, N-mixture models,
and/or spatially explicit GLMMs for assessing spatial patterns in
abundance (Supplemental Information S1: Table S1). The R package
unmarked (Fiske & Chandler, 2011; Kellner et al., 2023) is com-
monly used to fit single-species distance sampling and N-mixture
models, but cannot accommodate spatial autocorrelation. The dsm
package (Miller et al., 2013) can fit spatially explicit distance sam-
pling models using generalized additive models, the hsDM package
(Vieilledent, 2019) can fit spatially explicit N-mixture models with
an intrinsic conditional autoregessive model (Ver Hoef et al., 2018),
while the ubms package (Kellner et al., 2021) fits both spatially ex-
plicit distance sampling and N-mixture models using restricted spa-
tial regression (Hodges & Reich, 2010). These packages, however,
cannot accommodate multiple species within a multivariate frame-
work. A variety of R packages exist to fit spatially explicit univari-
ate and multivariate GLMMs, such as spBayes (Finley et al., 2015),
Hmsc (Tikhonov et al., 2020), and sdmTMB (Anderson et al., 2022).
However, none of these packages can explicitly account for imper-
fect detection.

In this paper, we introduce the spAbundance R package for
fitting Bayesian single-species and multi-species HDS models,
N-mixture models, and GLMMs that may or may not include spa-
tial autocorrelation in large data sets. We fit all spatially explicit
models with Nearest Neighbour Gaussian Processes (NNGPs), a
computationally efficient approach that closely approximates a
full Gaussian process while drastically reducing computational run
times (Datta et al., 2016; Finley et al., 2019). We designed sp-
Abundance syntax to closely follow the syntax of spOccupancy
(Doser et al., 2022), an R package that fits a variety of analogous
spatially explicit occupancy models, which together provide a
user-friendly and computationally efficient set of tools to model
occupancy and abundance while accounting for spatial autocor-

relation and imperfect detection.

2 | OVERVIEW OF MODELS IN

spAbundance

Next we give a brief overview of the models included in spAbun-
dance. See Supplemental Information S1 for details on all prior dis-

tributions and their default values.
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2.1 | Single-species HDS models

The spAbundance functions DS and spDs fit non-spatial and spa-
tially explicit single-species HDS models, respectively. Let N(s;) de-
note the true abundance of a species of interest at site j=1, ... ,J
with spatial coordinates s;. We model N(s,-) using either a Poisson or

negative binomial (NB) distribution following:

N(s;) ~ Poisson(u(s;)A(s;
N(s;) ~NB(u(s;)A(s;). x),

L
<
—
o
ol

(1)

where y(s;) is the average abundance at site j, A(s;) is an offset, and x
is a positive dispersion parameter. Smaller values of x indicate overdis-
persion in the latent abundance values relative to a Poisson model,
while higher values indicate minimal overdispersion in abundance.
Note that as k — oo, the negative binomial distribution becomes the
Poisson distribution. The offset term A(s;) can be used to convert u(s;)
to units of density (i.e. abundance per unit area), while if A(s;) = 1, u(s;)
is average abundance per site. We model y(sj) using a log link function

following
log(u(s;)) =x(s;) "B +w(s)). 2)

where B is a vector of regression coefficients for a set of covari-
ates x(sj) including an intercept, W(Sj) is a zero-mean spatial random
effect, and the T denotes transposition of column vector x(sj). For
non-spatial HDS models, w(sj) is removed from Equation 2. For spa-
tially explicit HDS, we model w(s) using a NNGP as a computationally
efficient alternative to using a full spatial GP. More specifically, we
assume that

w(s) ~ Normal(0,C(s,s',6), (3)

where E(s,s/, 0) is a J x JNNGP-derived spatial covariance matrix and
0 is a vector of parameters governing the spatial process according to a
spatial covariance function. spAbundance supports four spatial cova-
riance models: exponential, spherical, Gaussian and Matérn (Banerjee
et al., 2014). For the exponential, spherical and Gaussian functions,
0= {62,¢}, where 62 is a spatial variance parameter controlling the
magnitude of the spatial random effects and ¢ is a spatial decay pa-
rameter controlling the range of spatial autocorrelation, while the
Matérn function additionally includes a spatial smoothness parameter,
v. See Supplemental Information S1 for statistical details on the NNGP
approximation.

Suppose observers count the number of individuals of the spe-
cies of interest at each site j. Our HDS software implementation
in spAbundance supports two types of “sites” line transects and
point count surveys. In line transects, each site j is a line transect
the observer walks along and records the distance of each observed
individual to the line within a set of k = 1, ... ,K distance bands. In
point count surveys, each site j is the centre of an imaginary cir-
cle at which an observer stands and records the distance of each
observed individual to the centre of the circle within k=1, ... ,K

circular distance bands. Note that sometimes continuous distances
are recorded rather than distance bins, in which case the continu-
ous distance measurements can then be split into K distance bins
prior to analysis. Define y(sj) as a vector of K values indicating the
number of individuals observed within each distance band k at site
j. Similarly, let y* (s,-) be a vector of K + 1 values, where the first K
values correspond to y(s,»), and the last value is the number of unob-
served individuals at that location (i.e. N(s;) — Xf_, v (5;)). Note the
last value in y*(s;) is not observed (i.e. since N(s;) is not known). We
model y* (s;) according to

y*(s;) ~ MuItinomiaI(N(sj) zr]*) ()
where n]* is a vector of cell probabilities with the first K values denoted
as m; and the final value 7,4 =1 - Zle 7k More specifically, z; is
the probability of detecting an individual in the kth distance band at
site j. We define z;, as

Tik = PjxWi (5)

where 5j,k is the probability of detecting an individual in distance band k,
given the individual occurs in distance band k, and w is the probability
anindividual occurs in distance band k. The definitions of ;_;j’k andy are
different depending on whether the distance bands are linear (as in line
transects) or circular (as in point count surveys). Following the standard
distance sampling assumption that animals are uniformly distributed in
space, for line transects we have

b1 —b
Wk:%, (6)

where by, 1 and b, are the upper and lower distance limits for band k,
and B is the line transect half-width (i.e. the maximum distance within

which individuals are counted). Further, for distance x we have

- 1 ka+1 d ( )
piy=——" g(x)dx. 7
e by = by Jp,
For point count surveys, we have
b2 . —b?
_ k1T Tk
V= —82 ) (8)

where by, and b, are similarly the upper and lower distance limits for
band k, and B is the radius of the full point count circle. We then define

pj-yk as

- 1 bk+1 2 d
P = —J 8(X)2xdx. (9)
! blf+1 - bf b

For both line transects and point count surveys, g(x) is some de-
clining function of distance x from the transect line/point count sur-
vey centre. We approximate the integrals in Equation 7 and 9 using
numerical integration. Our software implementation in spAbun-
dance currently supports two detection functions: half-normal and
negative exponential (see Supplemental Information S1 for their
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definitions). Both of these functions are governed by a scale param-
eter, o}, which can be modelled as a function of covariates to allow
detection probability to vary across sites. More specifically, we have

Iog(aj) = v}.Ta, (10)

where a is a vector of regression coefficients for covariates v; (includ-

ing an intercept).

2.2 | Multi-species HDS models

Now consider the case where distance sampling data, y,-(si), are col-
lected for multiple speciesi= 1, ... ,lat each survey location j with
coordinates s;. We are now interested in estimating the abundance
of each species i at each location j, denoted as N,(sj). We model
N; (sj) analogous to Equation 1, with expected abundance now vary-
ing by species and site according to

log (ki(s;) ) =X<5jT>ﬁi + W (s;) (11)

where g; are the species-specific effects of covariates x(s]-) (includ-
ing an intercept) and w; (sj) is a species-specific random effect. When
N; (s}-) is modelled using a negative binomial distribution, we estimate
a separate dispersion parameter «; for each species. We model g; as
random effects arising from a common, community-level normal dis-
tribution, which leads to increased precision of species-specific ef-
fects compared to single-species models (Sollmann et al., 2016). For
example, the species-specific abundance intercept fy; is modelled
according to

Boj ~ Normal(yﬂo,rlzi()), (12)

where He, is the community-level abundance intercept, and ng is the
variance of the intercept across all | species. The observation por-
tion of the multi-species distance sampling model is identical to the
single-species model and follows Equations 4-10, with all parameters
indexed by species, and the species-specific coefficients «; modelled
hierarchically analogous to the species-specific abundance coeffi-
cients B; (Equation 12). Given that species-specific effects are treated
as random effects, such an approach requires at least 5-6 species in
the modelled community in order for reliable estimation of variance
parameters.

spAbundance fits three types of multi-species models that
differ in how they incorporate the species-specific random effect
wi (s;) (if included). The function msDs fits the non-spatial multi-
species distance sampling model of Sollmann et al. (2016) in which
we remove the random effect w; (s,-) from Equation 11. The function
sfMsDS fits spatial multi-species distance sampling models using a
spatial factor model (Hogan & Tchernis, 2004), which simultaneously
accommodates spatial autocorrelation and residual species correla-
tions in a spatial JSDM framework. Briefly, we decompose w; (s;)
into a linear combination of g latent variables (i.e. factors) and their
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associated species-specific coefficients (i.e. factor loadings). More
specifically, we have

w; (s)) = 4/ w(s;), (13)

I

where ,liT is the ith row of factor loadings from an I x q loadings
matrix A, and w(sj) is a vector of length g of independent spatial
factors at site j. By setting g < I, we achieve dimension reduction
to efficiently model communities with a large number of species
(Doser et al., 2023; Taylor-Rodriguez et al., 2019). The approach
accounts for residual species correlations via their species-specific
responses to the q spatial factors, which results in a residual in-
terspecies covariance matrix that can be derived from the model
as X = AA". We model each spatial factor using an independent
NNGP according to Equation 3, except we fix the spatial variance
parameter to 1 to ensure identifiability (Lopes & West, 2004). As
an alternative, the function 1fMsDS models w?(s;) identical to
Equation 13, except assumes each of the g factors in w(s,-) arises
from an independent standard normal distribution. This model
does not account for spatial autocorrelation but does allow for
the estimation of species correlations. The models fit by sfMsDS
and 1£fMsDS can be thought of as abundance-based JSDMs that
account for imperfect detection (Tobler et al., 2019; Chapter 8 in
Kéry & Royle, 2021).

Our factor modelling approach to fitting spatially explicit
multi-species models in spAbundance implicitly assumes species
are correlated through latent factors w(sj-). If there is no interest
in residual species correlations, we could imagine a multi-species
model that includes a separate spatial process for each species.
However, we do not include such models in spAbundance be-
cause they are computationally infeasible when working with even
a moderate number of species (e.g. 10). Further, in the context
of occupancy models, the spatial factor modelling approach has
been shown to perform equally as well as a model that estimates a
separate spatial random effect for each species even when there
are no residual correlations between the species in the community
(Doser et al., 2023).

2.3 | Single-species N-mixture models

The functions NMix and spNMix fit non-spatial and spatial N-
mixture models in spAbundance. Following the N-mixture model
structure of Royle (2004), we assume observers count the num-
ber of individuals of a target species at each site j over a set of
multiple surveys k=1, ... ,Kj, denoted as yk(sj). Note the number
of surveys can vary by site, but at least some sites must be sur-
veyed more than once to ensure identifiability. We model yk(s]-)
conditional on the true abundance of the species at site j, N(sj)

, following:
yi (s;) ~ Binomial (N(s;), p;y ), (14)

where p; is the probability of detecting an individual given itis present
at the site. We model p;; using a logit link function in which we can
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allow detection probability to vary over space and/or surveys. More

specifically, we have
logit (p;y ) = v, e (15)

where a is a vector of effects of covariates v (including an intercept).
The model for abundance N(sj) is identical to the single-species dis-
tance sampling model, which can include covariates and/or spatial ran-

dom effects (Equations 1-3).

2.4 | Multi-species N-mixture models

Analogous to HDS models, we can extend single-species N-mixture
models to model abundance of a community of | total species
(Yamaura et al., 2012). In multi-species N-mixture models, we es-
timate the abundance of species i at spatial location j, N,-(sj). Our
model for N;(s;) follows that of multi-species HDS models, such
that expected abundance can be modelled as a function of species-
specific effects of spatially varying covariates (Equation 11) and
species-specific random effects that can accommodate residual spe-
cies correlations and residual spatial autocorrelation using a factor
modelling approach (Equation 13). Species-specific covariate effects
are modelled hierarchically following Equation 12. The observation
portion of the multi-species N-mixture model is identical to the
single-species model, now with species-specific covariate effects
modelled hierarchically analogous to the abundance coefficients.
spAbundance provides functions to fit non-spatial multi-species
N-mixture models with (1 fMsNMix) and without (msNMix) residual
species correlations, as well as spatial multi-species N-mixture mod-
els that account for residual species correlations and spatial autocor-

relation (s fMsNMi x).

2.5 | Single-species GLMMs

The functions abund and spAbund fit single-species (i.e. univariate)
non-spatial and spatial GLMMs in spAbundance using abundance
and related (e.g. biomass) data. As opposed to HDS and N-mixture
models, GLMMs do not explicitly account for imperfect detection
via an additional hierarchical component to the model, and instead
directly model the observed abundance at site j, y(sj) to provide in-
ference on relative abundance (e.g. Chapter 1 in Kéry & Royle, 2021).
Observed abundance y(sj) is modelled using some probability distri-
bution with mean ﬂ(Sj). spAbundance currently supports Poisson
and negative binomial for use with count data and the Gaussian dis-
tribution for use with continuous abundance data, such as biomass.
Mean relative abundance y(sj) is modelled according to Equation 2
for the Poisson and negative binomial cases, while the log link func-
tion is removed for the Gaussian case. Note that variables thought
to influence detection probability can be incorporated in the model
for ﬂ(sj) to improve estimates of relative abundance (e.g. random
observer effects, Link & Sauer, 2002).

2.6 | Multi-species GLMMs

Now consider the case where we have count data for multiple spe-
cies | at each survey location j, denoted y; (51)- We jointly model rela-
tive abundance of each species using a multivariate GLMM (e.g. Hui
et al., 2015; Warton et al., 2015), in which expected abundance for
each species i at site j, /4,-(5,-), is modelled analogous to Equations 11-
13. Note the log link function is removed from Equation 11 when
modelling abundance using a Gaussian distribution. As with HDS and
N-mixture models, spAbundance provides functions to fit non-spatial
multivariate GLMMs with (1 fMsAbund) and without (msAbund) re-
sidual species correlations. Multivariate spatial GLMMs with residual

species correlations are fit using the sfMsAbund function.

3 | spAbundance FUNCTIONALITY

Here we highlight the five main tasks performed by spAbundance

(see Table 1 for function names).

1. Data simulation: The functions simDS, simMsDS, simNMix,
simMsNMix, simAbund, and simMsAbund simulate data under
the single-species and multi-species HDS, N-mixture and GLMM
frameworks for use in simulation studies or power analyses.

2. Model fitting: Model fitting functions were described in Section 2.
All models are implemented in a Bayesian framework using cus-
tom Markov chain Monte Carlo (MCMC) algorithms written in
C/C++ using R's foreign language interface. spAbundance uses
standard R formula syntax to specify abundance and detection
probability models, with options to include random intercepts and
random slopes using 1me4 syntax (Bates et al., 2015). Users can
specify initial values for the MCMC algorithm as well as each pa-
rameter's prior distribution to yield vague or informative priors as
desired (Supplemental Information S1).

3. Model validation and comparison: The function ppcAbund per-
forms posterior predictive checks on spAbundance model ob-
jects to assess model Goodness of Fit. The function waicAbund
computes the conditional version (Millar, 2018) of the Widely
Applicable Information Criterion (WAIC; Watanabe, 2010) for
model selection and assessment.

4. Posterior summaries: We include summary functions for sp-
Abundance model objects that display concise summaries of the
posterior distributions for estimated parameters as well as the
potential scale reduction factor (ﬁ; Gelman & Rubin, 1992) and
effective sample size for convergence diagnostics. Simple plot
functions allow for further convergence diagnostics via visual as-
sessment of traceplots. The complete posterior samples are re-
turned as coda : :mcmc objects (Plummer et al., 2006).

5. Prediction: predict functions for all spAbundance model ob-
jects provide predictions of abundance across a user-specified set
of locations, given covariate values and spatial coordinates. The
resulting posterior predictive distributions can be used to gener-
ate abundance-based species distribution maps with associated
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TABLE 1 Listof core functions in the spAbundance package.
Model fitting function name components correspond to: DS
(hierarchical distance sampling), NMi x (N-mixture model), abund
(abundance-based GLMM), sp (spatial), ms (multi-species), 1 £
(latent factor) and sf (spatial factor).

Functionality Description
Data simulation
simDS Simulate single-species distance sampling data
simMsDS Simulate multi-species distance sampling data
simNMix Simulate single-species repeated count data with
imperfect detection
simMsNMix Simulate multi-species repeated count data with
imperfect detection
simAbund Simulate single-species count data with perfect
detection
simMsAbund  Simulate multi-species count data with perfect
detection
Model fitting
DS Single-species HDS model
spDS Single-species spatial HDS model
msDS Multi-species HDS model
1£fMsDS Multi-species HDS model with species correlations
sfMsDS Multi-species spatial HDS model with species
correlations
NMix Single-species N-mixture model
SPNMi x Single-species spatial N-mixture model
msNMi x Multi-species N-mixture model
1£fMsNMix Multi-species N-mixture model with species
correlations
sfMsNMix Spatial multi-species N-mixture model with species
correlations
abund Single-species GLMM
spAbund Single-species spatial GLMM
msAbund Multi-species GLMM
1fMsAbund Multi-species GLMM with species correlations
sfMsAbund Multi-species spatial GLMM with species

correlations
Model assessment
ppcAbund Posterior predictive check using Bayesian p-values
waicAbund Compute Widely Applicable Information Criterion
uncertainty or to obtain population size estimates across the
study region or within smaller areal units of interest. Users can
also predict detection probability for HDS and N-mixture models
to yield insight on how detection probability varies across a user-

specified range of covariate values.

4 | WORKED EXAMPLES AND ONLINE
RESOURCES

We demonstrate spAbundance functionality with three worked
examples and three vignettes. Complete details for all worked
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examples are provided in Supplemental Information S1, along with
associated code and data available on Zenodo (Doser et al., 2024).
The vignettes are provided in Supplemental Information S2-S4 as
well as on the package website (https://www.jeffdoser.com/files/
spabundance-web/). Here we provide a short overview of the
worked examples and vignettes.

4.1 | Case study 1: Bird density in central Florida

This case study demonstrates spAbundance functionality to fit spatial
and nonspatial multi-species HDS models. We estimated density of 16
bird species in 2018 in the Disney Wilderness Preserve (48.5km?) in
central Florida, USA. Distance sampling data were collected as part
of the National Ecological Observatory Network landbird monitoring
program (NEON, 2024). We compared the performance of the three
multi-species model variants in spAbundance using WAIC. The spatial
model substantially outperformed the non-spatial model with species
correlations (AWAIC = 86) and the non-spatial model without species
correlations (AWAIC = 155). Effects of forest cover on species-specific
density varied across the community (Figure 1a), resulting in clear spa-
tial variation in density of the 16 species (Supplemental Information
S1: Figure S1). Detection probability quickly decayed with increasing
distance from the observer (Figure 1b).

4.2 | Case study 2: Black-throated blue warbler
abundance in Hubbard Brook Experimental Forest

In this case study, we showcase how to fit spatial and non-spatial
single-species N-mixture models. We estimated abundance of
black-throated blue warblers (Setophaga caerulescens) in the
Hubbard Brook Experimental Forest (31.8 km?) in New Hampshire,
USA using repeated count data from 2015 (Rodenhouse &
Sillett, 2021; Supplemental Information S1). We found minimal
support for overdispersion and residual spatial autocorrelation,
with a non-spatial Poisson N-mixture model performing best ac-
cording to WAIC among multiple candidate models. A strong nega-
tive quadratic relationship with elevation revealed that abundance
peaked at mid-elevations in the forest (Supplemental Information
S1: Figure S2).

4.3 | Case study 3: Forest biomass across the
continental USA

Our final case study demonstrates how spAbundance can be used
to fit models using “big data”. We estimated forest above-ground
biomass across the continental US (~ 7.8 million km? using data
from J = 86,933 forest inventory plots (Figure 2a) collected via the
US Forest Service Forest Inventory and Analysis Program (Bechtold
& Patterson, 2005). We fit a spatially explicit univariate GLMM using
a Gaussian distribution with an ecoregion-specific random slope of
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FIGURE 1 Species-specific effects of forest cover on density (a) and relationship between detection probability and distance from the
observer (b) in the central Florida bird case study. Panel (a) shows the estimated mean (dark line), 50% credible interval (box), and 95%
credible interval (whiskers) for the effect of forest cover on the overall community (COMM) and 16 individual species. In Panel (b), lines show
the posterior mean detection probabilities for each species. The black line represents the average across the community (i.e. the community-
level effect), and the grey region is the associated 95% credible interval. See Supplemental Information S1 for species code definitions.

tree canopy cover to reflect potential spatial variation in the rela- 0.43-0.66), but clear variation in the magnitude of the effect across

tionship between canopy cover and biomass across different for- ecoregions (Figure 2b). Biomass predictions across the US aligned

est types. We found an overall positive relationship between tree
canopy cover and biomass (median=0.54, 95% credible interval

with expectations, with highest biomass predicted in the Pacific
Northwest (Figure 2c,d).
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FIGURE 2 Dataand predictions from the forest biomass case study. Panel (a) shows the observed locations of the 86,933 Forest
Inventory and Analysis plots. Note these are the publicly available perturbed locations in which FIA adds a small amount of random noise to
the true plot locations. Panel (b) shows the estimated random effect of tree canopy cover on forest biomass within distinct ecoregions. Panel
(c) shows predicted biomass (posterior median) across the continental USA (tons per acre), with associated uncertainty (95% credible interval

[CI] width) depicted in Panel (d).

4.4 | Vignettes

The three package vignettes provide complete details and exam-
ples for fitting all single-species and multi-species model types
for HDS models (Supplemental Information S2), N-mixture mod-
els (Supplemental Information S3) and GLMMs (Supplemental
Information S4). We provide extensive details on the required data
formats for implementing the models in spAbundance and all func-
tion arguments including their default values. We additionally pro-
vide code to manipulate resulting objects after fitting models to

generate a variety of plot types and summary figures.

5 | CONCLUSIONS AND FUTURE
DIRECTIONS

We envision numerous extensions to existing spAbundance func-
tionality and associated statistical methodology. We are currently
working on functionality for zero-inflated models and spatiotem-
poral models, including “generalized” HDS and N-mixture models
that account for imperfect availability (Chandler et al., 2011). We

encourage future simulation studies to better identify the poten-
tial impacts of spatial confounding on inference in spatially explicit
abundance models. Spatial confounding occurs when the spatial
random effect is correlated with covariates included in the model,
thus leading to difficulties in making inference on the covariate
effects (Hodges & Reich, 2010). While approaches exist to reduce
such confounding (e.g. restricted spatial regression; Hodges &
Reich, 2010), they do not always provide more accurate inferences
than standard approaches (Zimmerman & Ver Hoef, 2022). We
echo the guidelines of Makinen et al. (2022) to assess the potential
impacts of spatial confounding given the specific characteristics of
the covariates of interest.

The aim in developing spAbundance is to provide ecologists and
conservation practitioners with a user-friendly tool to quantify and
understand spatial variation in the abundance of plant and animal
species. This R package fits Bayesian spatially explicit single-species
and multispecies versions of three of the most common modelling
frameworks for “unmarked” data types: HDS models, N-mixture
models and generalized linear mixed models. By using efficient sta-
tistical algorithms implemented in C/C++ via R's foreign language
interface, spAbundance is capable of handling datasets with a large
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number of species (e.g. >100) and locations (e.g. 100,000). Together,
the package vignettes (Supplemental Information S2-54), code to
implement the three case studies (Doser et al., 2024), and the pack-
age website (https://www.jeffdoser.com/files/spabundance-web/)
provide full details and thorough exposition of spAbudance model
objects.
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