
PLASMA: Private, Lightweight Aggregated Statistics against
Malicious Adversaries

Dimitris Mouris
∗†

University of Delaware & Nillion

Newark, DE, USA

jimouris@udel.edu

Pratik Sarkar
∗

Supra Research

Kolkata, WB, India

pratik93@bu.edu

Nektarios Georgios Tsoutsos

University of Delaware

Newark, DE, USA

tsoutsos@udel.edu

ABSTRACT

Private heavy-hitters is a data-collection task where multiple clients

possess private bit strings, and data-collection servers aim to iden-

tify the most popular strings without learning anything about the

clients’ inputs. In this work, we introduce PLASMA: a private ana-

lytics framework in the three-server setting that protects the pri-

vacy of honest clients and the correctness of the protocol against a

coalition of malicious clients and a malicious server.

Our core primitives are a verifiable incremental distributed point

function (VIDPF) and a batched consistency check, which are of in-

dependent interest. Our VIDPF introduces new methods to validate

client inputs based on hashing. Meanwhile, our batched consistency

check uses Merkle trees to validate multiple client sessions together

in a batch. This drastically reduces server communication across

multiple client sessions, resulting in significantly less communica-

tion compared to related works. Finally, we compare PLASMA with

the recent works of Asharov et al. (CCS’22) and Poplar (S&P’21)

and compare in terms of monetary cost for different input sizes.

KEYWORDS

Function secret sharing, histograms, heavy hitters, privacy enhanc-

ing technologies, secure multiparty computation

1 INTRODUCTION

In today’s technology-driven world, companies are constantly col-

lecting user data to perform analysis, compute statistics, expose

patterns in user behaviors, and apply them to improve their prod-

ucts [16, 26, 31, 34, 40]. Common analysis practices resort to his-

tograms, where client data are aggregated together in predefined

and non-overlapping buckets. Each bucket may represent a quan-

titative range (e.g., salary) or a categorical value (e.g., profession).

The resulting histogram displays the frequencies of each bucket

based on multiple aggregated participant responses.

Private Histograms. When computing histograms, it is crucial to

maintain client privacy, such as preventing data collection servers

from inferring additional information about the clients. Existing

solutions for privacy-preserving histograms solve this problem

efficiently [6, 10, 19], given a relatively small number of buckets.

Nevertheless, histograms are resource-intensive on the server side

∗
The first two authors have equal contribution and appear in alphabetical order.

†
Research mainly conducted at the University of Delaware and completed at Nillion.

This work is licensed under the Creative Commons Attribu-

tion 4.0 International License. To view a copy of this license

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Proceedings on Privacy Enhancing Technologies 2024(3), 4–24

© 2024 Copyright held by the owner/author(s).

https://doi.org/10.56553/popets-2024-0064

when the goal is to find popular entries among the clients’ inputs.

For instance, assume clients that hold GPS coordinates of their

location and servers aiming to discover crowded areas without

compromising client privacy. The naive solution of creating a his-

togram over all possible inputs results in sparsely populated sets,

which wastes server-side computational power due to sparse inputs.

Conversely, in an optimal solution, the server computation should

scale with the most popular inputs, instead of all possible ones.

Private Heavy-Hitters. This problem is addressed by the concept

of “heavy hitters”. T -heavy hitters allow computing the T most

popular responses (for a given threshold T) among clients’ inputs

and have a broad range of applications: from finding popular web-

sites that users visit or malicious URLs that cause browsers to crash

[10, 30], to discovering commonly used passwords [39], learning

new words typed by users and identifying frequently used emojis

[27], to name a few. Private heavy-hitters allow computing these

results while also preserving client privacy. Existing protocols (such

as [2, 8, 10, 39]) only focus on the “popular” inputs and disregard

other inputs that appear less than T times (i.e., they are pruned by

the protocol). This renders private heavy hitters a suitable candi-

date for finding the most common client entries, such as computing

crowded areas using client-provided GPS coordinates.

Different Approaches. The literature considers the setting where

two or more servers collect client inputs and run the private heavy-

hitters protocol. A notable approach based on differential privacy

(DP) is [2] (we discuss DP-based solutions in Section 1.2). While

these protocols are computationally fast, they are limited to DP-

based privacy guarantees for the client. Likewise, MPC-based solu-

tions [8] employ general-purpose secure computation frameworks

(e.g., MP-SPDZ [33], SCALE-MAMBA [1], Sharemind [7]), so these

methods fall short in terms of practicality. Thus, recent works in-

troduced custom MPC-based techniques for private heavy-hitters

[4, 32]. The underlying protocols perform secure sorting of client

inputs under MPC [4, 32] and then aggregate the sorted data, guar-

anteeing that private inputs remain hidden when a majority of the

servers are honest. However, the communication of all aforemen-

tioned solutions is linearly dependent on the number of clients,

resulting in high server-to-server communication costs.

Distributed point functions (DPFs) [12] offer an alternative ap-

proach for private histograms. Informally, DPFs allow a client to

send succinct shares of a point function corresponding to their pri-

vate inputs to two ormore servers. The servers then use these shares

to locally evaluate the function over the entire input space and add

the resulting outputs to obtain additive shares of a histogram.

Poplar [10] builds upon the DPF approach by introducing incre-

mental DPFs (IDPF), detailed in Appendix A. It provides an IDPF-

based solution for private heavy-hitters in the two-server setting,

4

https://orcid.org/0000-0002-2601-203X
https://orcid.org/0000-0001-6370-0977
https://orcid.org/0000-0002-5769-0124
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0064

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

Table 1: Threat model comparisons, client input validation, and server-to-server communication.

Protocol

Correctness & Privacy Against Malicious Corruption

Client Input

Validation

Low

Server-to-Server

Communication

No. of

ServersClients Server Server & Clients

DPF [12, 13, 29]
†

2+

Poplar (IDPF) [10]
†

2

Bucketization (DP) [2]
†

2-3

MPC-based [8]
‡ †

3

Sorting-based [4, 32] 3

PLASMA (this work) 3

†
These works only preserve privacy against a malicious server but not correctness.

‡
[8] is susceptible to data poisoning attacks by malicious clients or malicious servers. Privacy of honest clients is preserved.

and their server-to-server communication depends on the input

string length in semi-honest security. For security against malicious

clients, the servers validate every client’s input so that malformed

inputs are preemptively discarded from the computation. This is

referred to as client input validation and it prevents malicious clients

from causing an abort in the protocol. To do so, Poplar requires

additional checks, which cause the server-to-server communication

to scale linearly with the total number of clients. As a result, their

concrete server-to-server communication is large. Sabre [43] uses

multi-verifier MPC-in-the-head that attests to the well-formedness

of DPFs but does not focus on heavy hitters. The concurrent work of

Doplar also introduced a “Verifiable IDPF (VIDPF)” similar to ours,

which guarantees the same security properties. However, their con-

structions, namely Doplar and Prio3, rely on multiple Fully-Linear

Proofs (FLPs) [21] to verify that the client’s input is valid, resulting

in significant communication overheads. Moreover, their approach

does not consider malicious servers.

Motivation. Since all aforementioned solutions incur server-to-

server communication that scales linearly with the number of

clients (with large concrete communication costs), they are prohibi-

tive for most real-world applications that require millions of clients

for data collection. The concrete server-to-server communication

should be low, even for a large number of clients. Likewise, neither

Poplar nor the DP-based solutions [2] tolerate additive attacks from

a malicious server, which results in incorrect outputs when one of

the servers does not follow the protocol steps. More formally, they

fail to provide both correctness and privacy against the collusion

of a malicious server and malicious clients. In this regard, we ask

the following motivating question:

Can we obtain a private heavy-hitters protocol with low concrete

server-to-server communication that is secure against malicious

clients and a malicious server?

1.1 Our Contributions

We answer the aforementioned question with PLASMA, a frame-

work for private statistics that provides security against a malicious

server and malicious clients. Our contributions are as follows:

Verifiable incremental DPF (VIDPF). First, we introduce our

VIDPF primitive, which builds upon incremental DPFs (IDPF) [10]

and verifiable DPFs (VDPF) [22]. VIDPF allows us to verify that

clients’ inputs are valid by relying on hashing while preserving the

client’s input privacy. We also propose a novel way to verify that

IDPF keys are “one-hot” - i.e., they have a single non-zero evaluation

path (containing the same value along the path) by solely relying on

hashing. This is of independent interest and can be used to improve

earlier results in [10, 20, 21]. Previous protocols solved this problem

using FLPs [9, 21] or expensive sketching that involves information-

theoretic MACs [10, 11, 20]. More specifically, [21] uses FLPs in

each level to verify that the client’s input is one-hot, resulting in

significant communication overhead as each FLP entails a large

proof. Conversely, our checks for one-hot vectors do not require

field multiplications, only additions and hashes which allow us to

batch-verify multiple inputs together.

Batched Consistency Check. Next, we introduce a novel batched

consistency check that allows us to drastically reduce server-to-

server communication. At a high level, we validate the inputs of ℓ

clients using a Merkle tree and identify the malformed ones using

logarithmic (in the total number of clients denoted as ℓ) commu-

nication. This optimization reduces the dependency of our server-

to-server communication on the total number of clients from 𝒪(ℓ)
to 𝒪(ℓ ′(log

2

ℓ
ℓ′)) number of hashes where there are ℓ ′ malicious

clients, yielding a concrete improvement over the state-of-the-art

(as reported in our experiments), even in the presence of malicious

clients. Here, ℓ ′ is the number of corrupt clients who provide mal-

formed inputs during the protocol execution and it does not need to

be a priori bounded. In case ℓ ′ = 0, then our servers only exchange

a pair of hashes. Our communication cost remains low even when

a constant fraction (e.g., 10%) of the clients are malicious.

PLASMA framework.We combine these new primitives to con-

struct PLASMA, a protocol for private histograms and heavy hitters

in the three-server setting that guarantees security against a mali-

cious server and malicious clients while maintaining low server-to-

server communication. PLASMA relies only on efficient hashing

and cheap field additions rather than expensive general-purpose

MPC or field multiplications. Due to our novel VIDPF primitive,

PLASMA outperforms Poplar with regard to runtime by a factor of

5 − 10× over WAN for T = 1% of the clients. In the same setting,

our batched consistency check optimization enables us to drasti-

cally outperform both Poplar and the sorting-based protocol of

[4] in terms of server-to-server communication by a factor of 35×
and 45×, respectively. For these conditions, we further analyzed the
monetary cost of PLASMA, [4], and Poplar and report that PLASMA

is more than 2.5× and 4× cheaper respectively.

Applications.We evaluate PLASMA for two applications: a) detect-

ing frequently visited URLs, and b) identifying popular coordinates.

5

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

Popular URLs.A prominent application (discussed both in [4] and

[10]) is identifying which URLs crash the clients’ browsers more

frequently. Each client has a string of 𝑛 bits that represents the

last URL that crashed their browser. In our evaluations (Section 6),

we consider 𝑛 = 256 bits, which is sufficient for standard domain

names, and compute the heavy hitter URLs that caused more than

1% of client browsers to crash. We perform the task over WAN in

approximately 5 minutes for 10
6
clients, while incurring less than

1 GB of server-to-server communication (less than $1 in total cost).

Popular GPS coordinates. We demonstrate a new application

where PLASMA identifies popular geographic locations without

sacrificing user privacy. This can be beneficial with traffic avoidance,

restaurant recommendations, as well as advertising (e.g., businesses

may identify crowded shopping areas and target their marketing

efforts), while ensuring the GPS coordinates of the users remain

private to the servers. Likewise, ride-sharing services can enhance

vehicle distribution in busy areas and proactively dispatch more dri-

vers during rush hour. This is possible by encoding GPS coordinates

as 64-bit strings using plus codes [35]. We compute the heavy hitter

plus codes for a threshold T = 1% in under 2 minutes over WAN

across 10
6
clients, while incurring very minimal server-to-server

communication with $0.3 in total monetary costs.

Extensions. We also discuss how to extend PLASMA to obtain

fairness against a malicious adversary that corrupts one server and

an arbitrary number of clients. PLASMA is the first work to consider

different thresholds for heavy hitters based on pre-agreed prefixes

by the servers, allowing for more elaborate private statistics, such

as the GPS application, where different coordinates (e.g. highways

and suburban roads) have different congestion thresholds.

1.2 Related Work

We now discuss relevant works for private heavy hitters. They can

be classified into four main groups: those based on DPFs, those

based on differential privacy (DP), those based on MPC sorting, and

finally those based on general-purpose MPC. A comparison of our

protocol with related works can be found in Table 1.

DPF-based. Distributed point functions [12] offer a straightfor-

ward solution for private histograms but they fail for heavy hitters

due to the blowup in key size, as the client would need to send new

DPF keys for each level, resulting in 𝒪(𝑛) DPF keys for 𝑛 levels.

This was addressed by Poplar [10], which uses two non-colluding

servers and introduces the notion of IDPFs to allow efficient eval-

uation of strings based on prefixes by reusing the same DPF key.

Poplar’s threat model is robust against malicious clients but remains

susceptible to additive attacks by a malicious server. Therefore, as

the servers reconstruct the output, a malicious server can add ar-

bitrary noise to the result without the honest server realizing it.

The recent works of [21, 38] propose a framework for secure data

aggregation and they improve the clients’ consistency checks in

Poplar and Prio [19]. However, their threat model does not address

additive attacks from a malicious server either. Adding such se-

curity using zero-knowledge [15, 45] is interesting future work.

In contrast, PLASMA provides security against both a malicious

server and malicious clients by adding one additional server. Also,

Poplar still leaks some information about the heavy hitter prefixes

to the servers as they reconstruct the roots of the paths before they

prune them. PLASMA performs a secure comparison and either

keeps the node with its subtree if T > 𝑐𝑜𝑢𝑛𝑡 , or prunes the subtree.

DP-based. There is also a body of work based on local DP and

randomized responses for heavy hitters [5, 41, 46]. These tech-

niques use a single server to collect data from clients. Therefore,

this method introduces a trade-off between utility and privacy, as

it leaks some information about clients’ private data to the server.

In contrast, other methods that provide stronger privacy guaran-

tees require at least two non-colluding servers. Notably, secure

computation-based solutions can be modified to achieve DP either

by using local DP or by adding a smaller amount of noise in MPC

and achieving higher data utility while maintaining privacy.

Likewise, bucketization [2] computes approximate statistics on

a permuted version of the clients’ data combined with dummy

data that are sampled as differentially private noise. Bucketization

ensures security against malicious clients, and similarly to Poplar,

it can only guarantee privacy without correctness in the presence of

a malicious server. In contrast, PLASMA focuses on exact statistics

and provides both correctness and privacy against both malicious

clients and one malicious server. Note that PLASMA is compatible

with DP as we describe in Appendix F.

Sorting-based. Recent works that rely on secure sorting algorithms

construct private heavy-hitter protocols [4, 32] or private ad attri-

bution measurement [16] based on the sorted data. They provide

security against malicious servers and clients in the three-server

setting, where one of the servers can be malicious. These proto-

cols are computationally fast over LAN. However, they perform

secure sorting under MPC, and as a result, they incur heavy com-

munication overheads and their performance degrades significantly

over realistic WAN networks. Notably, PLASMA achieves a 45×
improvement in server-to-server communication compared to [4]

as shown in Fig. 12 for T = 1%. Moreover, our PLASMA protocol

allows different thresholds for heavy hitters based on pre-agreed

prefixes (allowing for more elaborate statistics), this is not possible

for sorting-based heavy-hitter protocols.

General MPC-based. One could use generic MPC in the honest

majority [18, 28] or dishonest majority setting [33, 44] to compute

heavy hitters, but an efficient representation of the heavy-hitters

problem in terms of addition and multiplication gates is not known.

In fact, the work by Böhler and Kerschbaum [8] provides a generic

MPC-based protocol for computing differentially private heavy

hitters. They use MPC frameworks like MP-SPDZ [33] and SCALE-

MAMBA [1] to achieve semi-honest and malicious security, but

their solution suffers from high communication and slow runtime.

3-Party Computation based. Multiple customized 3-party proto-

cols [4, 32] aim to solve the problem of heavy-hitters. These works

consider a third server to exploit the faster computation guarantees

in the honest majority. Using a third server is a realistic setup and

it is widely considered both in the industry and academia as it

ensures practical deployments with malicious security. Notable ex-

amples include the Interoperable Private Attribution (IPA) proposal

by Meta and Mozilla [16], JP Morgan’s PrimeMatch [40], NTT’s

heavy-hitters protocol [4], protocols for private advertisement mea-

surement [37], Duoram [42], Sabre [43], and others. The servers are

meant to run across different organizations; for example, they can

be hosted by companies and non-profit organizations as mentioned

6

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

in Google-Apple’s Covid Exposure system [3]. Table 1 compares

our work with state-of-the-art results.

2 PRELIMINARIES

Threat Model. Our threat model assumes three non-colluding

servers (S0,S1,S2) that run the histogram/heavy-hitters protocol,

as well as ℓ clients. The clients provide inputs to the servers and the

servers do not have any private input. We assume that an adversary

A maliciously corrupts one of the servers and ℓ ′ < ℓ clients.

Clients.Malicious clients may try to deviate from the protocol to

disproportionally influence the result or even corrupt the output

of the protocol. PLASMA is robust against malicious clients and

PLASMA servers preemptively reject any malformed client input

before incorporating it into the computation. PLASMA preserves

the privacy of honest clients when one of the servers is corrupt

along with any number of clients.

Servers. Similarly, a malicious server may try to deviate from the

protocol and attempt to learn private user inputs; PLASMA always

protects input privacy against one malicious server. Another pos-

sible attack for a malicious server would be to over-influence or

corrupt the protocol result. The semi-honest model does not protect

correctness against a malicious server, which is problematic in real-

world applications, like advertisement measurements [16] between

two companies, where one company may benefit from reporting

inflated measurements by introducing undetectable errors. Mali-

cious security ensures that such behaviors are caught and parties

are forced to behave honestly, fostering a transparent environment

for computation. Poplar has this limitation while PLASMA protects

correctness. Hence, PLASMA is robust against a malicious server,

since it protects both correctness and privacy. Note that in all DPF-

based approaches, the servers learn the heavy prefixes, which can

be beneficial in some cases (e.g., for detection of a heavy-hitting

web domain that contains multiple non-heavy hitting URL errors)

but can also be viewed as leakage. However, PLASMA preserves

the exact counts of the prefixes.

Notation. We denote the computational and statistical security pa-

rameters by 𝜅 and 𝜇, respectively. Let PRG : {0, 1}𝜅 → {0, 1}2(𝜅+1)
be a pseudorandom generator and Convert : {0, 1}𝜅 → G be a

map converting a 𝜅-bit string to a pseudorandom group element of

additive group G (where |G| > ℓ). We use B for assignment,

𝑟←− D
for sampling from distributionD, = for checking equality, and ∥ for
concatenation. For histograms, wedefine a public set Xwith𝑚 𝑛-bit

strings as X B {𝑥1, 𝑥2, . . . , 𝑥𝑚} where the 𝑖th string is denoted as

𝑥𝑖 for 𝑖 ∈ [𝑚] and the 𝑗th bit in 𝑥𝑖 ∈ {0, 1}𝑛 is denoted as 𝑥𝑖, 𝑗 for

𝑗 ∈ [𝑛]. We denote the first 𝐿 bits of 𝑥𝑖 as 𝑥𝑖,≤𝐿 B (𝑥𝑖,1, 𝑥𝑖,2, . . . 𝑥𝑖,𝐿)
for 𝐿 ≤ 𝑛. LetS𝑏 denote the 𝑏th server, for 𝑏 ∈ {0, 1, 2}; we consider
𝑏 + 1 B (𝑏 + 1) mod 3 and 𝑏 + 2 B (𝑏 + 2) mod 3. We assume

ℓ clients, each denoted as C𝑖 for 𝑖 ∈ [ℓ]. For an 𝑛-bit string 𝑎 we

represent its bit decomposition as 𝑎1, . . . , 𝑎𝑛 ∈ {0, 1}. In histograms,

each client C𝑖 has an 𝑛-bit input string 𝛼𝑖 ∈ X, for 𝑖 ∈ [ℓ], while
𝛼𝑖 ∈ {0, 1}𝑛 in the case of heavy-hitters.We use𝛼𝑖,1, . . . 𝛼𝑖,𝑛 ∈ {0, 1}
to denote the bit representation of the client’s input 𝛼𝑖 .

Distributed Point Functions (DPF). Function secret sharing (FSS)

[12] enables splitting the output of a function 𝑓 into additive shares,

where each share of the function is represented by a separate key.

Each key allows the owner to efficiently generate an additive share

of the output 𝑓 (𝑥) on a given input 𝑥 . DPFs are a special case

of FSS where 𝑓 is a point function 𝑓𝛼,𝛽 (𝑥) B 𝛽 if 𝑥 = 𝛼 , or 0

otherwise. A DPF consists of two algorithms: Gen and Eval. The

Gen algorithm takes as input the function 𝑓𝛼,𝛽 and outputs two

keys key
0
and key

1
. The Eval algorithm evaluates an input 𝑥 such

that Eval(0, key
0
, 𝑥) + Eval(1, key

1
, 𝑥) = 𝛽 for 𝑥 = 𝛼 , and 0 for

𝑥 ≠ 𝛼 . Privacy ensures (𝛼, 𝛽) remains hidden from an adversary

in possession of one of the keys (but not both). We discuss DPF,

IDPF [10] and VDPF [22] in Appendix A for completeness.

3 TECHNICAL OVERVIEW

We recall the histogram and heavy-hitters protocol by Poplar [10]

in Section 3.1. Then, we briefly describe our histogram protocol in

Section 3.2 as a stepping stone to our heavy-hitters protocol, which

we describe in Sections 3.3 and 3.4.

3.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset his-

tograms. Each client holds an 𝑛-bit string 𝛼 and the servers S0 and
S1 have a small set X B {𝑥1, 𝑥2, . . . , 𝑥𝑚} of𝑚 𝑛-bit strings. Each

client secret shares their input 𝛼 ∈ X using a DPF as (key
0
, key

1
) B

DPF.Gen(1𝜅 , 𝛼, 1,G). The client sends key
0
to S0 and key

1
to S1.

Upon receiving the client key, each server S𝑏 evaluates the DPF on

all𝑚 strings of X as 𝑦𝑏 B {DPF.Eval(𝑏, key𝑏 , 𝑥𝑖)}𝑥𝑖 ∈X and com-

putes a vector of output shares 𝑦𝑏 ∈ F𝑚 , for some large enough

finite field F and 𝑚 = |X|. The servers repeat this for multiple

clients and aggregate the 𝑦𝑏 vectors in a counter vector 𝑌𝑏 . Finally,

the servers exchange 𝑌0 and 𝑌1 to compute the output histogram

as 𝑌 B 𝑌0 + 𝑌1. This protocol requires the client to communicate

one key to each server and the server-to-server communication is

independent of the number of clients since𝑌0 and𝑌1 are aggregated

values. This protocol preserves client privacy.

However, a malicious client can double vote by generating the

DPF keys maliciously such that it contains more than one non-zero

point or the DPF output at 𝛼 is greater than 1. To tackle this, Poplar

introduces a malicious sketching protocol to ensure that the client

inputs are well-formed. It also preserves the client’s privacy against

a malicious server. However, Poplar allows a malicious server to

add an error to its shares of the output without the honest server

realizing it. For instance, sayS0 is malicious and introduces additive

errors (e.g., 𝛿 ∈ F𝑚) in 𝑌 ′
0
B 𝑌0 + 𝛿 . That way, the output 𝑌 of the

histogram would be biased by 𝛿 as 𝑌 B 𝑌 ′
0
+ 𝑌1 = 𝑌0 + 𝑌1 + 𝛿. The

honest server S1 cannot detect such an additive attack, leading

to an error in the correctness of the protocol. Moreover, Poplar’s

server-to-server communication scales linearly with 𝒪(ℓ) due to
the malicious sketching protocol.

3.2 Our Basic Histogram Protocol

We address Poplar’s limitations by (1) introducing one additional

server, (2) building upon the primitive of verifiable DPF [22] (Ap-

pendix A), and (3) introducing novel consistency checks in the

three-party setting. We claim the following benefits over Poplar:

(a) Robustness against a collusion of a malicious server and

malicious clients,

7

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

(b) Lightweight consistency checks for malicious behavior (us-

ing only symmetric operations and field additions),

(c) Server-to-server communication depends logarithmically on

the total number of clients.

Our work provides the first maliciously secure protocol whose

server-to-server communication is logarithmic in the total number

of clients ℓ . Our servers communicate 𝒪(ℓ ′(log
2

ℓ
ℓ′)) hashes for

consistency checks, where ℓ ′ is the number of corrupt clients. Simi-

lar to Poplar, we ensure input validation against malicious clients

(i.e., honest servers preemptively detect inconsistent inputs and dis-

card them). We present the ideas of our histogram protocol, which

are crucial for our heavy-hitters protocol in Section 3.4.2.

Robustness Against a Malicious Server. The histogram protocol

of Poplar is not robust against a malicious server. We consider

a third server S2 to allow an honest majority to obtain security

against one malicious server with improved efficiency. Each client

runs three DPF sessions, one between each pair of servers, with

independent randomness, but the same input 𝛼 (i.e., the pairwise

evaluation of the DPF keys on point 𝛼 outputs secret shares of one).

However, adding a third server significantly complicates things

as we need to ensure consistency between the three sessions. For in-

stance, we need to check that a malicious client submitted the same

input 𝛼 to all three sessions without revealing it. The client sends

the DPF keys for the sessions to the servers and each server obtains

two keys. Upon obtaining the DPF keys, each server evaluates the

DPF on all input points in X. It is ensured that if the client behaved

honestly then at least one of the three sessions will be evaluated

honestly since two of the servers are honest. After aggregating all

the clients’ inputs, the output histogram is reconstructed across

the three sessions. If the output is the same between each pair of

servers then the servers behaved honestly and that is considered as

the output. If the output is inconsistent across a pair of servers then

one of the servers behaves maliciously (by launching an additive

attack) and the honest servers abort, which provides robustness

against the malicious server.

Reducing Server-to-Server Latency. We empirically observed

that the server-to-server latency increases if there is pairwise com-

munication between the three servers for consistency checks. There

are three server-to-server sessions for each client, and the third

server S2 is involved in two of the three sessions: specifically, ses-

sions S1 −S2 and S2 −S0. The client generates (key(0,1) , key(1,0))
for session S0 − S1, (key(1,2) , key(2,1)) for session S1 − S2, and
(key(0,2) , key(2,0)) for session S2 − S0. S0 receives key(0,1) and
key(0,2) from the client for sessionsS0−S1 andS2−S0, respectively.
S1 receives key(1,0) for session S0 − S1 and key(1,2) for S1 − S2,
while S2 receives key(2,1) and key(2,0) for sessions S1 − S2 and
S2 − S0, respectively.

In our optimization, instead of running two sessions in each

server, we run all three sessions between S0 and S1 and use S2 as
the attestation server. By doing that, we significantly reduce the

latency due to the synchronization overhead of the three servers.

To enable that, our protocol instructs the client to send key(2,1) to
server S0 and key(2,0) to server S1 respectively. The key distribu-

tion process by the client is illustrated in Fig. 1.

Our optimization allows S0 to replicate the computation of S2 in
session S1 −S2 (because they both have key(2,1)) and S2 acts as an

key(0,1) , key(0,2) , key(2,1)

key(1,0) , key(1,2) , key(2,0)

key(2,1) , key(2,0)

C𝑖 S1

S0

S2

Figure 1: Distribution of session keys by client C𝑖 .

attestator by just sending hashes to S1 for the same messages that

S0 should send. These hashes prevent S0 from acting maliciously.

Similar protocol steps are run by S2 to attest the S2 − S0 session
and preventS1 (who is replicatingS2) from acting maliciously. This

optimization, shown in Fig. 2, allows us to batch-verify all three

sessions as a single session between S0 and S1 using hashes.

key(0,1) (S0 − S1) session key(1,0)

key(0,2) (S2 − S0) session key(2,0)

key(2,1) (S1 − S2) session key(1,2)

hashes for

(S2 − S0)
hashes for

(S1 − S2)

S0 S1

S2

Figure 2: Session keys and attestation by S2.

Client Input Validation. The above protocol assumes that the

client computes the DPF evaluation keys honestly and sends them

to the servers. A malicious client could construct malformed DPF

keys such that the client’s input gets counted more than once. To

prevent this class of attacks, we propose a novel consistency check

that only relies on inexpensive symmetric operations, like hashing.

We first ensure that the DPF output is non-zero only at a single

point. The work of [22] introduces the primitive of verifiable DPF

(VDPF), which we summarize in Appendix A. This is a stronger

notion of DPF, where the servers obtain a correctness proof 𝜋 upon

evaluating a pair of DPF keys on a given input point. The two

servers obtain the same proof 𝜋 if the client generates the DPF keys

honestly (i.e., the DPF output is non-zero only at a single point 𝛼).

Multiple proofs corresponding to different evaluation points are

batch-verified. Next, we ensure that the DPF output value at the

non-zero point is indeed 1. Our protocol instructs the servers to

sum up all the output shares (corresponding to each point in X) of
the client and reconstruct the output. If the reconstructed output is

not well-formed (i.e., is not 1), then the client’s input is discarded.

If the output is 1 (i.e., the client behaved honestly), then the DPF

output shares are aggregated by the server in the histogram share.

Client Input Consistency Across Sessions. A malicious client

can provide inconsistent inputs across the three server sessions

by providing DPF keys for different points 𝛼1, 𝛼2, and 𝛼3 in each

session respectively. The verifiability of the VDPF fails to detect

this attack since each individual VDPF in each session is valid.

To address the challenge, we propose a novel consistency check

that relies on a single hash verification. Let us denote Y(0,1) , Y(0,2) ,
and Y(2,1) be the output of the VDPF evaluation by S0 on keys

key(0,1) , key(0,2) , and key(2,1) corresponding to sessions S0 − S1,
S0 − S2, and S2 − S1, respectively. Similarly, let us denote Y(1,0) ,
Y(2,0) , and Y(1,2) be the output of the VDPF evaluation by S1 on
keys key(1,0) , key(2,0) , and key(1,2) corresponding to sessions S0 −

8

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

S1, S0−S2, and S2−S1, respectively. By definition, reconstructing
each pair of secret shared outputs (e.g., Y(0,1) , Y(1,0)) results in a

vector of zeros except a single location. Note that the client has also

sent key(2,1) to S0 and key(2,0) to S1 respectively. Server S0 sends
hash ℎ B H(Y(0,1) − Y(0,2) ∥ Y(0,2) − Y(2,1)) to S1, who verifies

that ℎ = H(Y(2,0) − Y(1,0) ∥ Y(1,2) − Y(2,0)). The verification of the

hash ℎ ensures that the client’s input is consistent between: (1) the

sessions S0 − S1 and S0 − S2, as well as (2) the sessions S0 − S2
and S2 − S1. By transitivity, all three sessions are consistent if

the hash verification succeeds. Observe that if the servers acted

honestly, Y(0,1) + Y(1,0) = Y(0,2) + Y(2,0) = Y(1,2) + Y(2,1) and thus,

Y(0,1) − Y(0,2) = Y(2,0) − Y(1,0) and Y(0,2) − Y(2,1) = Y(1,2) − Y(2,0) .
Our novel check requires additions (without any multiplications)

and a cheap hash computation. The communication cost is one hash

of size 𝜅 bits. This leads to 𝒪(𝜅ℓ) server-server communication

for ℓ clients, but it is optimized to logarithmic communication by

applying batched client verification, described in Section 5. We

present the histogram protocol in Appendix H.

3.3 Heavy-Hitters from T -Prefix Count

Poplar reduced the problem of computing heavy hitters to the

problem of computing prefix count queries for a prefix 𝑝 ∈ {0, 1}∗
over client inputs. Then, they implemented prefix count queries by

relying on IDPFs (summarized in Appendix A). However, they leak

the count of strings that contain the T heavy-hitting prefix 𝑝 due to

the reliance on a prefix-count query oracle that outputs the count.

To mitigate this leakage, we introduce the notion of T -threshold
prefix-count queries that return 1 if at least T of clients’ input

strings contain 𝑝 , otherwise, it returns 0. We define it as:

Definition 1 (T -Prefix-countQuery Oracle Ω𝛼1,...,𝛼ℓ
(𝑝,T)).

Return 1 (on input prefix 𝑝 ∈ {0, 1}∗) if prefix 𝑝 appears at least T
times in the clients’ input strings 𝛼1, 𝛼2, . . ., 𝛼ℓ ∈ {0, 1}∗ where client
C𝑖 has input string 𝛼𝑖 for 𝑖 ∈ [ℓ], otherwise, return 0.

T -Heavy hitters. The T -heavy hitters algorithm (for threshold

T) is provided with oracle Ω𝛼1,...,𝛼ℓ
(𝑝,T) for computing T -prefix

count for prefix 𝑝 over the client input strings 𝛼1, . . . , 𝛼ℓ . The initial

prefix is the empty string 𝜖 . At each level 𝑘 , it considers the heavy-

hitter prefixes 𝑝 ∈ {0, 1}𝑘 of length 𝑘 in set HH
𝑘
, which contains

the list of 𝑘-bit strings that appear at least T times. The algorithm

performs a breadth-first search of the prefix tree. It includes 𝑘 +1 bit
length strings 𝑝 ∥ 0 in HH

𝑘+1
if 𝑝 ∥ 0 occurs at least T times in the

input strings (𝛼1, . . . , 𝛼ℓ), otherwise it gets pruned along its subtree.
This is performed by querying the oracle Ω𝛼1,...,𝛼ℓ

(𝑝 ∥ 0,T). The
same process is repeated for 𝑝 ∥ 1. The algorithm repeats this for

all 𝑘-bit strings in HH
𝑘
(which updates HH

𝑘+1
based on the search

and pruning of set HH
𝑘
). At the end of the breadth-first search and

pruning, the algorithm outputs the set of strings that are T -heavy
hitters. Our formal algorithm is presented in Fig. 3.

Cost Analysis. There are ℓ input strings in total. For any string of

length 𝑘 , there are at most
ℓ/T candidate heavy hitter strings. At

each level 𝑘 , the algorithm makes at most one oracle query per

heavy hitter string. Hence, the algorithm makes at most
𝑛ℓ/T prefix-

count oracle queries for 𝑛 levels. If we set the threshold to be a

constant fraction of all input strings (e.g., T = 0.01ℓ), then the

number of prefix-count queries are independent of the number of

input strings (e.g.,
𝑛ℓ/T = 𝑛ℓ/0.01ℓ = 100𝑛).

Parameters: Threshold T ∈ N and string length 𝑛 ∈ N.
Inputs: The algorithm has no explicit input. It has access to 𝑡 -prefix count query

oracle Ω𝛼
1
,...,𝛼ℓ

(𝑝, 𝑡) for securely computing 𝑡 -prefix-count queries over prefix 𝑝

for strings 𝛼1, . . . , 𝛼ℓ .

Outputs: The set of T-heavy-hitter strings in 𝛼1, 𝛼2, . . . , 𝛼ℓ .

Algorithm:

• Init. HH
≤𝑛 B {HH0,HH1, . . .HH𝑛 } B {{𝜖 }, ∅, . . . , ∅}, where HH0

contains empty string 𝜖 and HH
1, . . .HH𝑛

are empty sets.

• For each prefix 𝑝 ∈ HH𝑘
of length 𝑘-bits in set HH

𝑘
(where

𝑘 = 0, 1, 2, . . . 𝑛 − 1) and 𝑏 ∈ {0, 1}:
If Ω𝛼

1
,...,𝛼ℓ

(𝑝 ∥ 𝑏, T) = 1, then HH
𝑘+1 B HH

𝑘+1 ∪ {𝑝 ∥ 𝑏 }.
• Output T-heavy hitters HH

≤𝑛 = {HH0,HH1, . . .HH𝑛 }.

Figure 3: Algorithm for computing T -heavy hitters.

3.4 T -Prefix Count Queries Oracle from VIDPF

We realize the T -Prefix Count Query Oracle Ω (·,T) from Def. 1 by

relying on a new verifiable incremental DPF (VIDPF) primitive and

using an ideal functionality FCMP (Fig. 7) for secure comparison.

3.4.1 Verifiable Incremental DPF (VIDPF). A DPF allows a client

to succinctly share a vector of size 2
𝑛
with a single non-zero point.

Meanwhile, an incremental DPF (introduced by Poplar and denoted

as IDPF) allows the client to succinctly secret share a path in the

binary tree (used for representing 2
𝑛
leaves in binary format) and

each node in the path can hold non-zero values. Our novel VIDPF

primitive offers strong integrity guarantees over IDPFs since the

evaluation of the client keys also provides proofs (𝜋1, . . . , 𝜋𝑛) to
the servers ensuring that the VIDPF output is non-zero along a

single path in the binary tree. It also allows incremental evaluation

of the VIDPF over an input 𝑥 ∈ {0, 1}𝑘 , given state st
𝑘−1
𝑏

and proof

𝜋𝑘−1
𝑏

, corresponding to VIDPF evaluation of the first 𝑘 − 1 bits of
x. The incremental evaluation enables the party possessing key𝑏

to process one level and obtain the secret sharing of output 𝑓 (𝑥),
a new state st

𝑘
𝑏
, and a new proof 𝜋𝑘

𝑏
corresponding to the VIDPF

evaluation of the path involving 𝑥 . More formally, we capture the

high-level ideas of VIDPF using the following two algorithms:

• Gen(1𝜅 , 1𝑛, 𝛼, (𝛽1, 𝛽2, . . . , 𝛽𝑛),G) → (key
0
, key

1
) : Given

security parameter 𝜅, input size 𝑛, input string 𝛼 ∈ {0, 1}𝑛 ,
and values 𝛽1, . . . , 𝛽𝑛 , the key generation algorithm outputs

two VIDPF keys key
0
and key

1
.

• EvalPref(𝑏, key𝑏 , 𝑥, st𝑘−1𝑏
, 𝜋𝑘−1

𝑏
) → (st𝑘

𝑏
, 𝑦𝑏 , 𝜋

𝑘
𝑏
) : Given a

VIDPF key key𝑏 and an input string 𝑥 ∈ {0, 1}𝑘 of length

𝑘 ≤ 𝑛 bits, this algorithm outputs an internal state st
𝑘
, secret-

shared value 𝑦𝑏 ∈ G, and a proof 𝜋𝑘
𝑏
∈ {0, 1}∗.

Correctness of the VIDPF ensures that for all input points 𝛼 ∈
{0, 1}𝑛 , output values 𝛽1, . . . , 𝛽𝑛 ∈ G, VIDPF keys generated as

(key
0
, key

1
) ← Gen(𝛼, 𝛽1, 𝛽2, . . . , 𝛽𝑛,G) and all values 𝑥 ∈ {0, 1}𝑘 ,

where 𝑘 ≤ 𝑛, the following holds for all 𝑘 ≤ 𝑛:

𝜋𝑘
0
= 𝜋𝑘

1
and 𝑦 = (𝑦0 + 𝑦1) =

{
𝛽𝑘 , if 𝑥 is a prefix of 𝛼 ,

0, otherwise,

where (st𝑘
0
, 𝑦0, 𝜋

𝑘
0
) BEvalPref(0, key

0
, 𝑥, st𝑘−1

0
, 𝜋𝑘−1

0
) and (st𝑘

1
, 𝑦1,

𝜋𝑘
1
) BEvalPref(1, key

1
, 𝑥, st𝑘−1

1
, 𝜋𝑘−1

1
). For security guarantees, we

require two additional properties from the VIDPF primitive:

• Input Privacy. The security of VIDPF guarantees that an

adversarial evaluator in possession of either key
0
or key

1

9

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

(but not both), does not learn anything about the input 𝛼 or

the outputs 𝛽1, . . . , 𝛽𝑛 of the client.

• Verifiability. This property states that if two proofs (e.g., 𝜋𝑘
0

and 𝜋𝑘
1
) are the same, then there is at most one path of length

𝑘 in the binary tree whose evaluation with (key
0
, key

1
) out-

puts (𝛽1, 𝛽2, . . . , 𝛽𝑘). More formally, for any 𝑘 ∈ [𝑛] there
exists a single 𝑘-bit string 𝑥 ∈ {0, 1}𝑘 such that if 𝜋𝑘

0
= 𝜋𝑘

1
,

then the following holds:

(st𝑘
0
, 𝑦0, 𝜋

𝑘
0
) B EvalPref(0, key

0
, 𝑧, st𝑘−1

0
, 𝜋𝑘−1

0
)

(st𝑘
1
, 𝑦1, 𝜋

𝑘
1
) B EvalPref(1, key

1
, 𝑧, st𝑘−1

1
, 𝜋𝑘−1

1
)

𝑦0 + 𝑦1 =
{
𝛽𝑘 , if 𝑧 = 𝑥,

0, if 𝑧 = {0, 1}𝑘 \ {𝑥},

where st
𝑘−1
0

, 𝜋𝑘−1
0

and st
𝑘−1
1

, 𝜋𝑘−1
1

are obtained by recur-

sively running the EvalPref algorithm on 𝑘 − 1 bits of 𝑧.

The evaluators initialize st
0

0
B st

0

1
B 0 and 𝜋0

0
B 𝜋0

1
B 0. It

also implicitly captures the requirement that 𝑥 ∈ {0, 1}𝑘−1
is a prefix of 𝑥 ∈ {0, 1}𝑘 for 𝑘 ∈ [𝑛].

We provide a construction of VIDPF in Figs. 14 and 15 (Appendix B)

based on length doubling PRG in the random oracle model. Next,

we outline our protocol for securely implementing T -prefix count
queries using VIDPF and the comparison functionality FCMP.

3.4.2 Implementing T -Prefix Count Queries. Each client gener-

ates three pairs of VIDPF keys, one for each pair of servers, with

independent randomness but the same input point 𝛼 and output

values (1, . . . , 1). The client sends the keys for the sessions to the

respective servers (Fig. 1) as in our histogram protocol.

Basic Protocol.As depicted in Fig. 2,S1 replicatesS2 in theS2−S0
session and S2 behaves as an attestator for S1 by sending hashes

of the messages that S1 should send. The hash prevents S1 from
acting maliciously corresponding to the S2 − S0 session. Similar

protocol steps are run byS2 for the sessionS1−S2, whereS2 sends
hashes to S1. Hence, S0 and S1 run three sessions, and S2 runs
two of those sessions in parallel. Next, we describe the protocol to

compute a T -prefix count query on a string 𝑝 ∥ 0 ∈ {0, 1}𝑘 (note,

the same process can be repeated for 𝑝 ∥ 1). S0 and S1 evaluate the
VIDPF keys for the three sessions on 𝑝 ∥ 0 and obtain a secret share

of the output 𝑦𝑝 ∥0 and proof 𝜋 . For an honest client, 𝑦𝑝 ∥0 should
be 𝛽𝑘 = 1. However, a malicious client can construct malformed

keys such that the client’s input gets counted more than once.

Client Input Validation. We introduce the following consistency

checks to validate a client’s input. Checks 1-3 ensure that the VIDPF

keys are “one-hot”, i.e., they have a single non-zero evaluation path

(containing 1 in this case, along the path), and check 4 ensures that

the client input is consistent across the sessions:

Check 1: The servers S0 and S1 first verify that the proofs 𝜋 are

the same for all three sessions. This ensures that there is at

most one path in the binary tree that is non-zero.

Check 2: For the root level (i.e., 𝑘 = 0), the servers evaluate the

VIDPF keys on the empty string 𝜖 and verify it is 1.

Check 3: Finally, at the 𝑘𝑡ℎ level, the servers need to verify that

𝑦𝑝 ∥0 is either 0 or 1, without reconstructing the output. We

perform this check by observing that the output of the par-

ent 𝑝 should be the sum of the outputs of 𝑝 ∥ 0 and 𝑝 ∥ 1.
The servers evaluate the VIDPF keys on the parent string

𝑝 and sibling (of 𝑝 ∥ 0) string 𝑝 ∥ 1 to obtain secret shares

of the output of 𝑦𝑝 and 𝑦𝑝 ∥1 respectively. The servers re-

construct 𝑦𝑝 − (𝑦𝑝 ∥0 + 𝑦𝑝 ∥1) and verify that it is 0. The

first check ensures that at most one of 𝑦𝑝 ∥0 or 𝑦𝑝 ∥1 is non-
zero. Combining the two checks, we can conclude that either

(𝑦𝑝 ∥0 = 0, 𝑦𝑝 ∥1 = 1) or (𝑦𝑝 ∥0 = 1, 𝑦𝑝 ∥1 = 0), since at most

one child can equal 1 when the parent holds a value of 1.

Iterating this for all 𝑘 levels ensures that 𝑦𝑝 ∥0 = 1 iff 𝑦𝑝 = 1

and 𝑦𝑝 ∥1 = 0, else 𝑦𝑝 ∥0 = 0. The servers also verify (using

check 1) the corresponding proofs 𝜋 generated during the

VIDPF evaluation along the path, to ensure there is at most

one non-zero path in the entire binary tree.

Check 4: The servers also need to ensure that the client input is

consistent across the sessions. This is ensured by comput-

ing the difference of the reconstructed outputs across the

sessions and verifying that they are equal to 0 by matching

their hash values. For more details, we defer to Section 4.

Output Phase. Once the client’s VIDPF output 𝑦𝑝 ∥0 is verified,

the secret shares of 𝑦𝑝 ∥0 are aggregated into counter cnt
𝑝 ∥0

. The

servers repeat the above steps for all the clients in parallel to obtain

secret shares of cnt
𝑝 ∥0

. The servers invoke the comparison func-

tionality FCMP (Fig. 7) with the secret shares of cnt and threshold

T . FCMP reconstructs cnt and it outputs 1 if cnt ≥ T , otherwise, it
outputs 0. This is returned by the servers as the output of the T -
prefix count oracle query response to the string 𝑝 ∥ 0. Similar steps

are run for 𝑝 ∥ 1. The comparison functionality FCMP is securely

implemented using the state-of-the-art protocol of Rabbit [36].

Robustness Against a Malicious Server. Note that the above

validation check assumes that both servers are honest. Otherwise,

malicious behaviour is detected as described next. The third server

ensures that if the client behaves honestly then at least one of the

three sessionswill be evaluated correctly since two of the servers are

honest. After aggregating all the client’s inputs, cnt is reconstructed

across the three sessions by FCMP. If cnt is inconsistent across any

pair of servers then FCMP returns ⊥ indicating that one of the

servers behaved maliciously by launching an additive attack. This

causes the honest servers to abort, providing robustness against

the malicious server. We observe that our protocol satisfies fairness

(which is a stronger security notion than selective abort) if FCMP

is implemented using a fair protocol. We discuss this in Sec. 7.

Batched Client Verification. In our final protocol, we verify mul-

tiple client inputs at each level in one batch. We batch all the clients’

VIDPF evaluations using a Merkle tree that has ℓ leaves for ℓ clients.

First, the servers check the equality of ℓ leaves by asserting that the

Merkle roots are the same. If the roots match then the leaves are

the same, while if they differ then the servers recursively repeat

the same process for each of the two children of the parent node.

Proceeding this way, the servers identify the malformed leaves on

which the two trees differ. This reduces the dependency of our

server-to-server communication to𝒪(ℓ ′(log
2

ℓ
ℓ′)), for ℓ

′
malicious

clients, instead of 𝒪(ℓ), while when ℓ ′ = 0 our communication is

down to 𝒪(1). Formal details can be found in Section 5.

10

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

4 PRIVATE HEAVY HITTERS

We provide the ideal functionality FHH for heavy-hitters between

three servers and ℓ clients in Fig. 4. Adversary A maliciously cor-

rupts any one of the servers and multiple clients. Note that this

corruption can easily happen; if A has maliciously corrupted a

server, then A can spawn multiple malicious clients. Additionally,

if A controls a server, it can instruct FHH to discard an honest

client’s input. It can also instruct the functionality to abort at a par-

ticular level 𝑘 + 1. In this case,A and the honest servers receive the

set of all (that have not been discarded by A) 𝑘-bit heavy-hitting

prefixes as output, and the functionality instructs the honest servers

to abort. We remark that FHH never leaks an honest client’s inputs.

Parameters: Servers S0, S1, S2 . ℓ clients C𝑖 for 𝑖 ∈ [ℓ]. S0, S1, S2 agree on:
• A bound ℓ on the number of client submissions.

• A bound T on the threshold for heavy hitters.

Inputs: Servers S0, S1, S2 do not have any input. Clients C𝑖 : A point

𝛼𝑖 ∈ {0, 1}𝑛 for 𝑖 ∈ [ℓ]. 𝛼𝑖,𝑗 represents the 𝑗 th bit of 𝛼𝑖 .

Outputs: Init. HH
≤𝑛 B {HH0,HH1, . . .HH𝑛 } B {{𝜖 }, ∅, . . . , ∅}. For

𝑘 ∈ [0, . . . , 𝑛 − 1] and for each prefix 𝑝 ∈ HH𝑘
, update

HH
𝑘+1 B HH

𝑘+1 ∪ (𝑝 ∥ 𝑏) if∑ℓ
𝑖=1

��(𝛼𝑖,≤𝑘+1 = (𝑝 ∥ 𝑏)) �� ≥ T, for 𝑏 ∈ {0, 1}.
FHH outputs the following:

• Servers S0, S1, S2 : Set of T-heavy hitters HH
≤𝑛 .

• Clients C𝑖 : No output for 𝑖 ∈ [ℓ].
Corruption: Adversary A maliciously corrupts one server and multiple clients

together. A can perform the following:

If A instructs the functionality to discard the 𝑗 th client’s input, then FHH
discards 𝛼 𝑗 from the output computation.

If A instructs the functionality to abort at level 𝑘 + 1 by sending (⊥, 𝑘 + 1) , then
FHH returns HH

≤𝑘
to A and the honest servers; additionally, FHH instructs the

honest servers to abort by sending ⊥.

Figure 4: The ideal FHH functionality for T -heavy hitters.

Our detailed protocol 𝜋HH that implements FHH appears in Figs.

5 and 6, while high-level ideas of our protocol can be found in

Sections 3.3 and 3.4. Our 𝜋HH protocol privately computes all the

T -heavy-hitting strings (and their heavy-hitting prefixes) given the
input data of ℓ clients, while protecting the privacy of the individual

data points. 𝜋HH runs on three servers (S0,S1,S2) that utilize our
verifiable incremental DPF (VIDPF) protocol to privately aggregate

the clients’ data points. Specifically, 𝜋HH runs three VIDPF sessions,

which guarantees security against a malicious server. Our protocol

proceeds in three phases: a client computation phase, a server

computation phase, and an output phase.

Client Computation. During the client computation phase, each

client C prepares three pairs of VIDPF keys for their private data

point 𝛼 ∈ {0, 1}𝑛 , and output value (𝛽1, . . . , 𝛽𝑛) B (1, . . . , 1) along
the path to 𝛼 , using independent randomness for each key gener-

ation. Employing three pairs of keys essentially allows us to run

three separate VIDPF sessions. S0 and S1 each have one key for

each of the three sessions, while S2 acts as a consistency check-

ing server and shares one key with each of the other two servers.

More specifically, the client generates (key(0,1) , key(0,2)) for S0,
(key(1,0) , key(1,2)) for S1, and (key(2,1) , key(2,0)) for S2. The client
sends (key(0,1) , key(0,2) , key(2,1)) toS0, (key(1,0) , key(1,2) , key(2,0))
to S1, and (key(2,1) , key(2,0)) to S2 as shown in Fig. 1.

Server Computation. Each server initializes a set of sets for heavy-

hitters asHH
≤𝑛 B {HH0,HH1, . . . ,HH𝑛} B {{𝜖}, ∅, . . . , ∅}, where

HH
0
is a set with the empty string 𝜖 , HH1, . . . ,HH𝑛

are empty sets

and HH
𝑘
corresponds to the 𝑘th level. The servers start accepting

VIDPF keys from the clients. As in our histogram protocol, S2 acts
as an attesting server for the sessions involving keys key(2,0) and
key(2,1) by sending hashes (depicted in Fig. 2). Next, for 𝑘 ∈ [𝑛]
the servers perform the following:

Initialization. For each 𝑘-bit heavy-hitting prefix 𝑝 ∈ HH𝑘
, the

servers initialize to 0 a cnt
𝑝 ∥0

(resp. cnt
𝑝 ∥1

) variable for each session

to count the frequency of prefix 𝑝 ∥ 0 (resp. 𝑝 ∥ 1). Each server

aggregates for each of the three sessions their additive shares of each

frequency in their local cnt variables and uses them for pruning.

VIDPF Evaluation. Next, the servers retrieve from memory the

states for VIDPF evaluation in all three sessions corresponding to

prefix 𝑝 ∈ {0, 1}𝑘 for each client. These states are used to incre-

mentally evaluate the VIDPF on prefix strings 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} for
every client in all three sessions. For each client, the servers obtain

new evaluation states (corresponding to prefix 𝛾), VIDPF output for

prefix string 𝛾 , and proof strings. The states are stored in memory

for future VIDPF evaluations on 𝛾 ∥ 0 and 𝛾 ∥ 1 in the (𝑘 + 1)𝑡ℎ level.

More formally, the servers compute a secret shared vector 𝑦
𝛾

(𝑏1,𝑏2)
and a hash 𝜋

𝛾

(𝑏1,𝑏2) that is used for consistency checking by relying

on the verifiability property of the VIDPF. Next, the servers validate

the client’s input. If 𝑘 = 1, then the servers reconstruct 𝑦0 + 𝑦1 for
each client to verify that 𝑦0 + 𝑦1 = 1 (i.e., the non-zero root value

is 1). If 𝑘 ≠ 1, then the servers reconstruct 𝑦𝑝 − (𝑦𝑝 ∥0 + 𝑦𝑝 ∥1) and
verify that it is 0, asserting that the parent value is propagated to the

children correctly. Note that in either of the above cases, nothing

is leaked about the client’s input, apart from the fact that it is a

valid submission (i.e., 1 at the root layer and correct propagation).

This ensures that the subtrees involving 𝑝 ∥ 0 and 𝑝 ∥ 1 are valid.
The servers also need to ensure that the client has provided consis-

tent input across the three sessions. This is ensured by computing

the difference of the reconstructed outputs across the sessions and

verifying that they equal 0 by matching their hash values with the

other servers’ hash in Step 2e of Fig. 5.

Batch-Verification. The servers need to check: (1) that the hashes

they possess for a client are equal, and (2) that 𝑦𝑝 = (𝑦𝑝 ∥0 + 𝑦𝑝 ∥1).
Both these checks are reduced to checking the equality of a string

(corresponding to each client) held by servers. Let u (resp. v) be the
list of ℓ (one for each client) strings held by the first (resp. second)

server. Then, the servers perform a batch verification of u and v
strings by invoking the subprotocol 𝜋

check
(u, v) in Fig. 8. If the two

lists u and v are equal then 𝜋
check

returns ver = 1, else it returns

ver = 0 and a list L containing the indices of elements where the

lists differ. This is performed for all three sessions. S2 also attests

to the sessions that it is involved in. This is performed using batch-

verification, yielding output lists L
′
and L

′′
. Finally, the servers

identify the list of bad clients as L = L ∪ L′ ∪ L′′ and their VIDPF

output is ignored. The servers consider the rest of the clients as

“validated" and they are moved to the aggregation phase.

Aggregation. Once a client’s VIDPF output 𝑦𝛾 is validated for

𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1}, it is aggregated into cnt
𝛾 B cnt

𝛾 + 𝑦𝛾 . This
is locally performed by each server (for all three sessions) using

the secret shares of 𝑦𝛾 since it only involves addition. The servers

perform this over every validated client output, and at the end of

11

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

Input: Each client C𝑖 has an input point 𝛼𝑖 ∈ X for 𝑖 ∈ [ℓ].
Output: The servers S𝑏 (for 𝑏 ∈ {0, 1, 2}) output the set of T-heavy hitters HH

≤𝑛 B FHH (ℓ, T, {𝛼𝑖 }𝑖∈[ℓ]) .
Primitive: VIDPF B (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}𝜅 are random oracles.

Client C Computation. (Repeated for ℓ clients, each of which has their own private input 𝛼)

(1) Client C with input 𝛼 prepares three pairs DPF keys with independent randomness 𝑢, 𝑣, 𝑤
𝑟←− {0, 1}𝜅 , as follows:

(key(0,1) , key(1,0)) B Gen(1𝜅 , 1𝑛, 𝛼, (1, . . . , 1),G), (key(1,2) , key(2,1)) B Gen(1𝜅 , 1𝑛, 𝛼, (1, . . . , 1),G), (key(2,0) , key(0,2)) B Gen(1𝜅 , 1𝑛, 𝛼, (1, . . . , 1),G)
(2) The client sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 .

Server Computation.

Each server S𝑏 initializes HH
≤𝑛
𝑏

= {HH0

𝑏
,HH1

𝑏
, . . .HH𝑛

𝑏
} B {{𝜖 }, ∅, . . . , ∅}. Repeat the following steps for length of 𝑘 bits, where 𝑘 ∈ [0, . . . , 𝑛 − 1]:

(1) Initialization. For prefix 𝑝 ∈ HH𝑘
𝑏
, servers initialize the aggregation variables for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows:

S0 sets cnt𝛾(0,1) B cnt
𝛾

(0,2) B cnt
𝛾

(2,1) B 0, S1 sets cnt𝛾(1,2) B cnt
𝛾

(1,0) B cnt
𝛾

(2,0) B 0, S2 sets cnt𝛾(2,0) B cnt
𝛾

(2,1) B 0

(2) VIDPF Evaluation. For prefix 𝑝 ∈ HH≤𝑘
𝑏

, Server S𝑏 computes: (Repeated for ℓ clients)

(a) If (𝑝 = ∅) : then S0 sets st∅(0,1) B 𝜋 ∅(0,1) B st
∅
(0,2) B 𝜋 ∅(0,2) B st

∅
(2,1) B 𝜋 ∅(2,1) B ∅, S1 sets st

∅
(1,2) B 𝜋 ∅(1,2) B st

∅
(1,0) B 𝜋 ∅(1,0) B st

∅
(2,0) B 𝜋 ∅(2,0) B ∅. S2 sets

st
∅
(2,0) B 𝜋 ∅(2,0) B st

∅
(2,1) B 𝜋 ∅(2,1) B ∅.

If (𝑝 ≠ ∅) : then S𝑏 retrieves the state from memory corresponding to the internal states of 𝜋VIDPF for prefix 𝑝 : S0 retrieves (st𝑝(0,1) , 𝑦
𝑝

(0,1) , 𝜋
𝑝

(0,1)), (st
𝑝

(0,2) , 𝑦
𝑝

(0,2) ,

𝜋
𝑝

(0,2)) and (st
𝑝

(2,1) , 𝑦
𝑝

(2,1) , 𝜋
𝑝

(2,1)). S1 retrieves (st
𝑝

(1,2) , 𝑦
𝑝

(1,2) , 𝜋
𝑝

(1,2)) , (st
𝑝

(1,0) , 𝑦
𝑝

(1,0) , 𝜋
𝑝

(1,0)) and (st
𝑝

(2,0) , 𝑦
𝑝

(2,0) , 𝜋
𝑝

(2,0)). S2 retrieves (st
𝑝

(2,0) , 𝑦
𝑝

(2,0) , 𝜋
𝑝

(2,0)) and (st
𝑝

(2,1) ,

𝑦
𝑝

(2,1) , 𝜋
𝑝

(2,1)).

(b) Each server S𝑏 evaluates the VIDPF on the prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows and stores them in memory:

S0 sets (st𝛾(0,1) , 𝑦
𝛾

(0,1) , 𝜋
𝛾

(0,1)) B EvalPref(0, key(0,1) , 𝛾, st
𝑝

(0,1) , 𝑘, 𝜋
𝑝

(0,1)), (st
𝛾

(0,2) , 𝑦
𝛾

(0,2) , 𝜋
𝛾

(0,2)) B EvalPref(1, key(0,2) , 𝛾, st
𝑝

(0,2) , 𝑘, 𝜋
𝑝

(0,2)) and stores them in memory.

S1 sets (st𝛾(1,2) , 𝑦
𝛾

(1,2) , 𝜋
𝛾

(1,2)) B EvalPref(0, key(1,2) , 𝛾, st
𝑝

(1,2) , 𝑘, 𝜋
𝑝

(1,2)), (st
𝛾

(1,0) , 𝑦
𝛾

(1,0) , 𝜋
𝛾

(1,0)) B EvalPref(1, key(1,0) , 𝛾, st
𝑝

(1,0) , 𝑘, 𝜋
𝑝

(1,0)) and stores them in memory.

S2 and S1 set (st𝛾(2,0) , 𝑦
𝛾

(2,0) , 𝜋
𝛾

(2,0)) B EvalPref(0, key(2,0) , 𝛾, st
𝑝

(2,0) , 𝑘, 𝜋
𝑝

(2,0)) and store them in memory.

S2 and S0 set (st𝛾(2,1) , 𝑦
𝛾

(2,1) , 𝜋
𝛾

(2,1)) B EvalPref(1, key(2,1) , 𝛾, st
𝑝

(2,1) , 𝑘, 𝜋
𝑝

(2,1)) and store them in memory.

(c) If 𝑘 = 1 : Servers compute the proof that the VIDPF evaluation at the root layer sums up to 1:

S0 sets ℎ∅(0,1) B H1 (∅, 1 − 𝑦0

(0,1) − 𝑦
1

(0,1)) and ℎ
∅
(0,2) B H1 (∅, 𝑦0

(0,2) + 𝑦
1

(0,2) ,), S1 sets ℎ∅(1,2) B H1 (∅, 1 − 𝑦0

(1,2) − 𝑦
1

(1,2)) and ℎ
∅
(1,0) B H1 (∅, 𝑦0

(1,0) + 𝑦
1

(1,0)),

S2 and S1 set ℎ∅(2,0) B H1 (∅, 1 − 𝑦0

(2,0) − 𝑦
1

(2,0)), S2 and S0 set ℎ∅(2,1) B H1 (∅, 𝑦0

(2,1) − 𝑦
1

(2,1)) .
(d) If 𝑘 ≠ 1 : Servers compute proof that (VIDPF output on prefix 𝑝) = (VIDPF output on prefix 𝑝 ∥ 0) + (VIDPF output on prefix 𝑝 ∥ 1):

S0 sets ℎ𝑝(0,1) B H1 (𝑝, 𝑦𝑝(0,1) − 𝑦
𝑝 ∥0
(0,1) − 𝑦

𝑝 ∥1
(0,1)) and ℎ

𝑝

(0,2) B H1 (𝑝,−(𝑦𝑝(0,2) − 𝑦
𝑝 ∥0
(0,2) − 𝑦

𝑝 ∥1
(0,2)))

S1 sets ℎ𝑝(1,2) B H1 (𝑝, 𝑦𝑝(1,2) − 𝑦
𝑝 ∥0
(1,2) − 𝑦

𝑝 ∥1
(1,2)) and ℎ

𝑝

(1,0) B H1 (𝑝,−(𝑦𝑝(1,0) − 𝑦
𝑝 ∥0
(1,0) − 𝑦

𝑝 ∥1
(1,0)))

S2 and S1 set ℎ𝑝(2,0) B H1 (𝑝, 𝑦𝑝(2,0) − 𝑦
𝑝 ∥0
(2,0) − 𝑦

𝑝 ∥1
(2,0)), S2 and S0 set ℎ𝑝(2,1) B H1 (𝑝,−(𝑦𝑝(2,1) − 𝑦

𝑝 ∥0
(2,1) − 𝑦

𝑝 ∥1
(2,1))) .

(e) S0 and S1 ensure that the client input is consistent across the three sessions by computing the following hashes.

S0 computes ℎ̂𝑝 ∥0 = H1 (𝑦𝑝 ∥0(0,1) − 𝑦
𝑝 ∥0
(0,2) , 𝑦

𝑝 ∥0
(0,2) − 𝑦

𝑝 ∥0
(2,1)) and ℎ̂𝑝 ∥1 = H1 (𝑦𝑝 ∥1(0,1) − 𝑦

𝑝 ∥1
(0,2) , 𝑦

𝑝 ∥1
(0,2) − 𝑦

𝑝 ∥1
(2,1)) .

S1 computes ℎ𝑝 ∥0 B H1 (𝑦𝑝 ∥0(2,0) − 𝑦
𝑝 ∥0
(1,0) , 𝑦

𝑝 ∥0
(1,2) − 𝑦

𝑝 ∥0
(2,0))) and ℎ𝑝 ∥1 B H1 (𝑦𝑝 ∥1(2,0) − 𝑦

𝑝 ∥1
(1,0) , 𝑦

𝑝 ∥1
(1,2) − 𝑦

𝑝 ∥1
(2,0)))

(f) Client State Accumulation: The servers accumulate their local state for each client session as follows:

S0 sets 𝑅𝑘
(0,1) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(0,1) , 𝜋
𝑝 ∥0
(0,1) , 𝜋

𝑝 ∥1
(0,1)

))
and 𝑅𝑘

(0,2) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(0,2) , 𝜋
𝑝 ∥0
(0,2) , 𝜋

𝑝 ∥1
(0,2)

))
S1 sets 𝑅𝑘

(1,2) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(1,2) , 𝜋
𝑝 ∥0
(1,2) , 𝜋

𝑝 ∥1
(1,2)

))
and 𝑅𝑘

(1,0) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(1,0) , 𝜋
𝑝 ∥0
(1,0) , 𝜋

𝑝 ∥1
(1,0)

))
S2, S1 set 𝑅𝑘

(2,0) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(2,0) , 𝜋
𝑝 ∥0
(2,0) , 𝜋

𝑝 ∥1
(2,0)

))
, and S2, S0 set 𝑅𝑘

(2,1) B H2

(����
𝑝∈HH𝑘

(
𝑝,ℎ

𝑝

(2,1) , 𝜋
𝑝 ∥0
(2,1) , 𝜋

𝑝 ∥1
(2,1)

))
Figure 5: Private T -Heavy Hitters Protocol 𝜋HH (continues in Fig. 6).

this phase, the servers possess a secret share of the frequency of

𝑝 ∥ 0 and 𝑝 ∥ 1 as cnt𝑝 ∥0 and cnt
𝑝 ∥1

.

Pruning. The servers proceed to pruning and invoke FCMP (Fig. 7)

on the secret shares of cnt
𝛾
(for𝛾 ∈ {𝑝 ∥0, 𝑝 ∥1}) for all sessions and

threshold T . Based on the output of FCMP the following occurs:

• FCMP returns 1 if cnt
𝛾 ≥ T (i.e., 𝛾 is a heavy-hitter string).

In this case, the prefix 𝛾 is added to the list of 𝑘 + 1-bit heavy-
hitter set (i.e., HH

𝑘+1 B HH
𝑘+1 ∪ 𝛾).

• FCMP returns 0 if cnt
𝛾 < T (i.e., 𝛾 is a non heavy-hitter

string). In this case, the prefix 𝛾 is ignored.

• If FCMP returns ⊥, then one of the servers behaved mali-

ciously and the honest servers abort. This occurs if the ma-

licious server has provided an incorrect threshold as input

(condition 1 in FCMP) or it provided incorrect client output

shares as input (condition 4 in FCMP).

This computation is performed in parallel for all (𝑘 + 1)-bit prefixes
in consideration, and after the pruning phase, HH

𝑘+1
contains the

list of (𝑘 + 1)-bit heavy hitter strings. Next, the above computation

is repeated for (𝑘+1)-bit strings to compute (𝑘+2)-bit heavy hitters,
until we reach 𝑘 = 𝑛 − 1. As already mentioned, FCMP is securely

implemented using the state-of-the-art protocol of Rabbit [36].

12

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

Server Computation (Continued from Fig. 5) Repeat the following steps for length of 𝑘 bits, where 𝑘 ∈ [𝑛]:
(3) Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three sessions by invoking 𝜋check (Fig. 8):

(a) S0 sets 𝑢𝑖 B
{
(𝑅𝑘
(0,1) , 𝑅

𝑘
(0,2) , 𝑅

𝑘
(2,1) , ℎ̂

𝑝 ∥0, ℎ̂𝑝 ∥1) values for client 𝑖 ∈ [ℓ]
}
. S1 sets 𝑣𝑖 B

{
(𝑅𝑘
(1,0) , 𝑅

𝑘
(2,0) , 𝑅

𝑘
(1,2) , ℎ

𝑝 ∥0, ℎ𝑝 ∥1) values for client 𝑖 ∈ [ℓ]
}
. S0 sets

u B {𝑢𝑖 }𝑖∈[ℓ] and S1 sets v B {𝑣𝑖 }𝑖∈[ℓ] . S0 and S1 batch-verify all the client inputs by computing the bit ver and list L (comprising of invalid client inputs) by

running 𝜋check with inputs u and v respectively: (ver, L) B 𝜋check (u, v) :

ver B 0 if ∃ a client whose (𝑅𝑘
(0,1) ≠ 𝑅𝑘

(1,0)) ∨ (𝑅
𝑘
(0,2) ≠ 𝑅𝑘

(2,0)) ∨ (𝑅
𝑘
(2,1) ≠ 𝑅𝑘

(1,2)) ∨ (ℎ̂𝑝 ∥0 ≠ ℎ𝑝 ∥0) ∨ (ℎ̂𝑝 ∥1 ≠ ℎ𝑝 ∥1), and
List L B {list of invalid clients’ since they failed to pass the above check}. If ver = 1, then all the clients’ inputs are valid.

(b) S2 possesses 𝑅𝑘
(2,0) , 𝑅

𝑘
(2,1) values for each client. S2 verifies that S2’s version of 𝑅𝑘

(2,1) matches with S0’s version of 𝑅𝑘
(2,1) . S2 also attests that S2’s version of 𝑅𝑘

(2,0)
matches with S0’s version of 𝑅𝑘

(0,2) by computing (ver′, L′) B 𝜋check ({𝑅𝑘
(2,1) , 𝑅

𝑘
(2,0) }ℓ clients of S2, {𝑅

𝑘
(2,1) , 𝑅

𝑘
(0,2) }ℓ clients of S0) .

(c) S2 verifies that S2’s version of 𝑅𝑘
(2,0) matches with S1’s version of 𝑅𝑘

(2,0) . S2 also attests that S2’s version of 𝑅𝑘
(2,1) matches with S1’s version of 𝑅𝑘

(1,2) by

computing (ver′′, L′′) B 𝜋check ({𝑅𝑘
(2,0) , 𝑅

𝑘
(2,1) }ℓ clients of S2, {𝑅

𝑘
(2,0) , 𝑅

𝑘
(1,2) }ℓ clients of S0) .

After batch verification, the servers identify the list of bad clients as L B L ∪ L
′ ∪ L

′′
. The servers ignore the inputs of all clients in L.

(4) Aggregation. Aggregate the VIDPF outputs for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows: (Repeated for all validated clients in [ℓ] \ L)
S0 sets cnt𝛾(0,1) B cnt

𝛾

(0,1) + 𝑦
𝛾

(0,1) , cnt
𝛾

(0,2) B cnt
𝛾

(0,2) + 𝑦
𝛾

(0,2) , and cnt
𝛾

(2,1) B cnt
𝛾

(2,1) + 𝑦
𝛾

(2,1)

S1 sets cnt𝛾(1,2) B cnt
𝛾

(1,2) + 𝑦
𝛾

(1,2) , cnt
𝛾

(1,0) B cnt
𝛾

(1,0) + 𝑦
𝛾

(1,0) , and cnt
𝛾

(2,0) B cnt
𝛾

(2,0) + 𝑦
𝛾

(2,0)

S2 sets cnt𝛾(2,0) B cnt
𝛾

(2,0) + 𝑦
𝛾

(2,0) and cnt
𝛾

(2,1) B cnt
𝛾

(2,1) + 𝑦
𝛾

(2,1)
The servers have aggregated the VIDPF evaluations (over all the ℓ clients) for all candidate (𝑘 + 1)-bit strings.

(5) Pruning. For every (𝑘 + 1)-bit string 𝛾 , the servers invoke FCMP functionality (Fig. 7) with the additive shares of the node frequency.

S0 invokes FCMP (cnt𝛾(0,1) , 0, cnt
𝛾

(0,2) , cnt
𝛾

(2,1) , cnt
𝛾

(0,2) , T), S1 invokes FCMP (cnt𝛾(1,0) , cnt
𝛾

(1,2) , 0, cnt
𝛾

(1,2) , cnt
𝛾

(2,0) , T), S2 invokes FCMP (0, cnt𝛾(2,1) , cnt
𝛾

(2,0) , 0, 0, T)

The servers abort if FCMP aborts. If FCMP outputs 1 set HH
𝑘+1 B HH

𝑘+1 ∪ 𝛾 . Otherwise, the servers ignore 𝛾 since it is non-heavy hitter.

Servers have successfully computed the HH
𝑘+1

set. Servers repeat “Server Computation" steps (starting from Step 2b) on 𝑘 + 1 bit prefixes.
Output Phase. The servers output HH

≤𝑛
as the set of T-heavy hitter strings.

Figure 6: Private T -Heavy Hitters Protocol 𝜋HH (continuing from Fig. 5).

Inputs: Party P0 has input (𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑒0, T0) , Party P1 has input

(𝑎1, 𝑏1, 𝑐1, 𝑑1, 𝑒1, T1) , and Party P2 has input (𝑎2, 𝑏2, 𝑐2, 𝑑2, 𝑒2, T2) .
Outputs: Compute 𝑎 B 𝑎0 + 𝑎1, 𝑏 B 𝑏1 + 𝑏2, 𝑐 B 𝑐0 + 𝑐2,
𝑑 B 𝑑0 + 𝑑1, 𝑒 B 𝑒1 + 𝑒2 , and proceed as follows:

(1) If not T0 = T1 = T2 , then FCMP aborts. Else, set T B T0 .
(2) If 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 and 𝑎 < T then output 0.

(3) If 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 and 𝑎 ≥ T then output 1.

(4) Else, FCMP aborts (i.e. 𝑎, 𝑏, 𝑐 , 𝑑 , or 𝑒 strings are not equal).

Corruption: Adversary A maliciously corrupts one server. If A instructs the

functionality to abort, the functionality instructs the honest servers to abort.

Figure 7: The ideal FCMP functionality for comparison.

Output Phase. At the end, the servers output HH
≤𝑛 = {HH0,

HH
1, . . . ,HH𝑛} as the set of T -heavy hitter strings. This completes

the description of 𝜋HH (Figs. 5, 6).

Theorem 1. Assuming VIDPF is a verifiable incremental DPF and

H1,H2 are random oracles, FCMP is a secure comparison functionality

(Fig. 7), and H (in 𝜋check) is collision-resistant, then 𝜋HH (Figs. 5

and 6) implements FHH in the (random oracle, FCMP)-model against

malicious corruption of one server and ℓ ′ ≤ ℓ clients.

Proof Sketch. Security of our protocol is captured in Theorem 1

and proven in Appendix C. Below we provide a security sketch. The

adversary is allowed to corrupt ℓ ′ ≤ ℓ clients and one of the servers.

The other two servers are honest. A malicious client attempts to

inject an error and is detected in the following ways:

Client VIDPF keys are malformed. A malicious client can provide

malformed VIDPF keys that are non-zero in more than one path

in the tree. This gets detected in the session involving the honest

servers due to the verifiable property of the VIDPF at each level

when the servers verify the VIDPF proofs. If the checks pass, then

it is ensured that the VIDPF keys provided by the client are valid.

Client VIDPF input is malformed. Next, a malicious client can

try to double-vote on an input point, say 𝑝 ∥ 0 ∈ {0, 1}𝑘+1 by

constructing the VIDPF on (𝑝 ∥ 0, 𝛽𝑘), i.e., 𝑓 (𝑝 ∥ 0) = 𝛽𝑘 , where

𝛽𝑘 > 1, instead of (𝑝 ∥ 0, 1). This is detected by the honest servers

since they perform a local subtree verification by reconstructing

the value 𝑦𝑝 − (𝑦𝑝 ∥0 − 𝑦𝑝 ∥1) and verifying that it equals 0 for all

𝑘 > 0. For 𝑘 = 0, the servers verify that 𝑦𝜖 = 1.

VIDPF input is inconsistent across sessions. Finally, a malicious

client can try to provide different VIDPF keys in different sessions.

For example, it constructs VIDPF keys for (𝛼1, 1) for sessionS0−S1,
(𝛼2, 1) for session S1 − S2, and (𝛼3, 1) for session S2 − S0, where
𝛼1, 𝛼2, 𝛼3 ∈ {0, 1}𝑛 and might be different. To ensure the input

is consistent across sessions, the servers match the difference of

the reconstructed output of S0 − S1 and S2 − S0 session, and the

difference of the reconstructed output of S2 − S0 and S1 − S2
session, to verify that they are all 0. By transitivity, it is ensured

that the VIDPF evaluation is the same across the sessions if and only

if the checks pass, ensuring that 𝛼1 = 𝛼2 = 𝛼3. This is performed

by computing ℎ̂𝑝 ∥0 and ℎ̂𝑝 ∥1 hashes.

A malicious server can collude with malicious clients. Observe

that the honest clients’ inputs are always hidden from the adversary

due to input privacy of VIDPF. Next, a malicious server could in-

corporate an erroneous VIDPF evaluation (from a malformed client

input key) or inject additive errors into the output. We show how

this is tackled in the protocol based on the server corruption:

S0 is corrupt. In this case, the session between S1 −S2 is honest.
S0 runs this session with S1 since it obtained key(2,1) from the

13

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

client. However, S2 behaves as an attestator by sending hashes

of the messages that S0 is supposed to send. This forces S0 to

act honestly in the S1 − S2, otherwise, it leads to an abort. An-

other way a malicious S0 can behave badly is by colluding with

a malicious client. The client can provide malformed inputs in

S0 −S1/S2 −S0 session or inconsistent inputs across the three ses-

sions. In such a case, amaliciousS0 could compute an incorrect hash

ℎ̂𝑝 ∥0 B H1 (𝑦𝑝 ∥0(0,1)
′
−𝑦𝑝 ∥0(0,2)

′
, 𝑦

𝑝 ∥0
(0,2)

′
−𝑦𝑝 ∥0(2,1)) and ℎ̂

𝑝 ∥1 B H1 (𝑦𝑝 ∥1(0,1)
′
−

𝑦
𝑝 ∥1
(0,2)

′
, 𝑦

𝑝 ∥1
(0,2)

′
−𝑦𝑝 ∥1(2,1)) where𝑦

𝑝 ∥0
(0,1)

′
, 𝑦

𝑝 ∥0
(0,2)

′
, 𝑦

𝑝 ∥1
(0,1)

′
, 𝑦

𝑝 ∥1
(0,2)

′
are incor-

rect. This allowsS0 to introduce an additive error into the frequency
for 𝑝 ∥ 0 and 𝑝 ∥ 1 (for the S0 − S1 and S2 − S0 sessions) by incor-

porating the client’s malformed input. However, this gets detected

when the output count is secretly reconstructed by FCMP for all

three sessions. The reconstructed count will not match and the

ideal functionality would return a ⊥ message detecting that one

of the servers behaved maliciously, leading to an abort in the 𝜋HH.

The case where S1 is corrupt is symmetrical.

S2 is corrupt. In this case, the session between S0 −S1 is honest.
If S2 behaves as a malicious attestator by sending incorrect hashes

for the S1 −S2 or S2 −S0 sessions then the honest servers abort. A

malicious S2 can also collude with a malicious client, and the latter

can provide malformed inputs in the three sessions. If this happens

in the S0−S1 session then it gets detected due to verifiability of the

VIDPF and the local subtree verification, since both S0 and S1 are
honest. If the client provides malformed (e.g., double voting) VIDPF

keys key
′
(2,0) and key

′
(2,1) to S1 and S0 for the sessions involving

S2, it again gets detected since S0 computes the hashes ℎ̂𝑝 ∥0 and

ℎ̂𝑝 ∥1 honestly and S1 verifies them honestly.

Round Complexity.Next, we analyze the round complexity of our

heavy-hitters protocol. The Server computation is performed for 𝑛

levels (𝑘 ∈ [0, . . . , 𝑛 − 1]), where each level involves “VIDPF Evalu-

ation”, “Batch Verification”, “Aggregation”, and “Pruning” phases.

The VIDPF evaluation and aggregation steps are performed locally

by each server. Each batch-verification step requires ⌈log
2
ℓ⌉ + 1

rounds in the worst case (when there are malformed client inputs

at each level) and a single round in the best case (when all the

clients are honest). However, all verification steps for level 𝑘 are

performed in parallel and are batched. We further elaborate on

this in Section 5. In the pruning phase, the servers run a proto-

col that implements FCMP for each prefix, which is performed in

parallel for all prefixes at the same level. Instantiating FCMP with

Rabbit [36] involves log
2
|G| rounds, where the frequency count is

performed over G. Summing up, the best case round complexity of

PLASMA is 𝑛 · (1+ log
2
|G|) and the worst case round complexity is

𝑛 · (⌈log
2
ℓ⌉ + 1+ log

2
|G|). For benchmarking, we implement group

G using a 64-bit ring to exploit native CPU ring optimizations.

5 BATCHED CONSISTENCY CHECK

We now present our batched consistency check 𝜋
check

that enables

two parties, P0 and P1, to verify the equality of lists u and v con-

taining ℓ strings using Merkle trees. If the two lists are equal then

𝜋
check

returns ver = 1, else it returns ver = 0 and a list L containing

the indices of elements where the lists differ. Correctness follows

from the collision resistance property of the hash function H.

Inputs: Party P0 has ℓ input strings u = {𝑢𝑖 }𝑖∈[ℓ] . Party P1 has ℓ input strings

v = {𝑣𝑖 }𝑖∈[ℓ] .
Outputs: 𝜋check outputs (ver, L) as follows:

• If u = v then ver B 1 and L B ∅,
• If u ≠ v then ver B 0 and L B {𝑖 }𝑢𝑖≠𝑣𝑖 for 𝑖∈[ℓ] .

ver = 1 denotes that the Merkle roots of u and v are equal. L is a list of indices

where u and v differ.

Parameters: H : {0, 1}𝜅 → {0, 1}𝜅 is a collision-resistant hash. K = ⌈log
2
ℓ ⌉

denotes number of levels in the Merkle tree for ℓ leaves.

Algorithm:

Root Computation: Party P0 (resp. P1) locally computes the Merkle R0 (resp. R1) on

u (resp. v). For 𝑏 ∈ {0, 1}, party P𝑏 performs:

• If 𝑏 = 0 then set N
K

0
B {NK

0,𝑖
}𝑖∈[ℓ] B {H(K, 𝑖,𝑢𝑖) }𝑖∈ℓ as the list of leaf

nodes in the Merkle tree containing u.
• If 𝑏 = 1 then set N

K

1
B {NK

1,𝑖
}𝑖∈[ℓ] B {H(K, 𝑖, 𝑣𝑖) }𝑖∈ℓ as the list of leaf

nodes in the Merkle tree containing v.
• Initialize ℓ′ B ℓ as the number of nodes in level K.

• For level 𝑘 ∈ {K − 1,K − 2, . . . , 1} :
– Set ℓ′ B ⌈ ℓ′

2
⌉ as the number of nodes in level 𝑘 .

– For 𝑖 ∈ [ℓ′] : Compute list of nodes at level 𝑘 by hashing the nodes at

level 𝑘 + 1 as N𝑘
𝑏
B N

𝑘
𝑏
∪ H(𝑘,N𝑘+1

𝑏,2𝑖
,N𝑘+1

𝑏,2𝑖+1) .
• Set Merkle R𝑏 B N

1

𝑏
.

Root Verification: Parties P0 and P1 exchange R0 and R1 . If R0 = R1 then set

ver B 1, L B ∅, and output (ver, L) . Else, set ver B 0 and continue.

Unequal Leaf Identification: For 𝑏 ∈ {0, 1}, party P𝑏 sets N

1

𝑏 B R𝑏 as the unequal

node at level 1. For level 𝑘 ∈ {2, . . . ,K}: For each unequal node 𝑛 ∈ N𝑘−1
𝑏 at level

𝑘 − 1, parties identify unequal nodes at level 𝑘 :

• Party P𝑏 fetches left and right child of 𝑛 as child
L

𝑏
and child

R

𝑏
.

• Parties exchange child
L

0
, child

L

1
, child

R

0
, and child

R

1
, and perform the

following for 𝑏 ∈ {0, 1}:
N

𝑘

𝑏 B N

𝑘

𝑏 ∪ child
L

𝑏
if child

L

0
≠ child

L

1

N

𝑘

𝑏 B N

𝑘

𝑏 ∪ child
R

𝑏
if child

R

0
≠ child

R

1

P𝑏 possesses N

K

𝑏 as list of unequal leaf nodes. P𝑏 sets L as the list of indices of N

K

𝑏

w.r.t. initial leaf nodes N
K

𝑏
as L B L ∪ {𝑖 : NK

𝑏,𝑖 = N
K

𝑏,𝑖
}. Party P𝑏 outputs (ver, L) .

Figure 8: 𝜋check for equality verification of ℓ strings between

two parties and identification of unequal strings.

As summarized in Fig. 8, 𝜋
check

requires K + 1 rounds of com-

munication, where K = ⌈log
2
ℓ⌉. The total communicated hashes

are roughly 4ℓ ′(log
2

ℓ
ℓ′ + 2), where u and v differ on ℓ ′ elements.

It can be further optimized to 2ℓ ′(log
2

ℓ
ℓ′ + 2), where only one of

the parties sends its hashes instead of both. We provide a detailed

analysis of the protocol in Appendix D. In case ℓ ′ = 0, then our

communication is a pair of hashes.

6 EXPERIMENTAL EVALUATIONS

We implement our heavy-hitters protocol 𝜋HH in Rust and use the

tarpc framework by Google for asynchronous Remote Procedure

Calls (RPC).
1
PLASMA is fully parallelized: all sessions in each

server run in parallel and we employ parallel iterators to process

multiple client requests concurrently. (We apply the same paral-

lelization for benchmarking Poplar.) We instantiate the PRG for

VIDPF using the AES-NI hardware instructions for AES encryption

with a seed of 𝜅 = 128 bits. We used rings in PLASMA (instead of

fields) since our checks rely on the security of VIDPF (i.e., XOR-

collision resistant property that is provided by the random oracle).

Conversely, the security of Poplar relies on a statistical check for

the client’s input validation. This check relies on the underlying

1
Our code is available at https://github.com/TrustworthyComputing/plasma.

14

https://github.com/TrustworthyComputing/plasma

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

group size and needs 62 bits for the statistical failure probability to

be 2
−60

for intermediate levels; for the leaves, we use the default

size of a finite field of 2𝜅 = 256 bits as mentioned in Poplar.

Experiment Details. Our experiments vary the number of clients

between ℓ = 10
3
and ℓ = 10

6
with two different bit-string sizes,

𝑛 = 64 and 𝑛 = 256 bits. We configured the threshold T to be 1% of

the clients’ strings, and we report the client and server costs, while

empirically comparing with Poplar. Then, we compute the total

monetary costs (due to runtime and communication) incurred by

PLASMA servers, and we compare it with [4] (since the code of [4]

is not open-source) based on the monetary cost.

Experimental Setup. We performed both LAN and WAN
2
exper-

iments on AWS EC2 machines (c5.9xlarge) each with 36 vCPUs

at 3.60 GHz. PLASMA is compiled using Rust 1.74, and client-side

experiments are carried out using a standard laptop with an Intel

i7-8650U CPU (1.90 GHz).

Performance Evaluation. In our experiments, our goal is to an-

swer the following questions:

• How efficient is PLASMA for each client and server?

• How does PLASMA compare with similar works (such as

Poplar) that leverage DPFs?

• How does PLASMA compare with the related works that

provide similar security guarantees, such as [4]?

Client costs. The PLASMA client generates three pairs of DPF

keys. Meanwhile, the Poplar client generates two pairs of DPF keys

but also computes a malicious sketching operation. As a result, both

PLASMA and Poplar clients are extremely fast, running in the order

of 20 − 24 microseconds on 256-bit inputs. A detailed comparison

of client runtime can be found in Fig. 9 (a).

32 64 128 256 512
Bit-string size (n)

10

20

30

40

Cl
ie

nt
 R

un
tim

e
(μ

s.) PLASMA
Poplar

(a) Client Runtime

32 64 128 256 512
Bit-string size (n)

25

50

75

100

Cl
ie

nt
 C

om
. (

KB
) PLASMA

Poplar

(b) Client Communication

Figure 9: Comparisons of client costs for PLASMA and Poplar

(KB is Kilobytes and 𝜇𝑠 is microseconds).

In terms of client communication, PLASMA transmits eight DPF

keys, whereas Poplar transmits four DPF keys plus the correlated

randomness for the sketching operation. As shown in Fig. 9 (b), we

observed that the clients in both protocols incur the same commu-

nication overhead, roughly around 55 KB for 256 bits.

Server costs. In this experiment, we run PLASMA with randomly

distributed malicious clients and compare it with Poplar. We set

the malicious clients ℓ ′ to be a 0, 0.01, 0.1, and 0.3 fraction of the

total clients ℓ . We observe that running with ℓ ′ = 0.01ℓ has slightly

2
We used one server in Oregon, one in Ohio, and one in N. Virginia. For Poplar, we

used one in Oregon and the other one in N. Virginia.

faster performance than 0.1ℓ , while 0.3ℓ exhibits slightly worse per-

formance than 0.1ℓ . Still, these differences are marginal compared

to the total runtime,
3
so we opt for reporting the 0 and 0.1ℓ to make

the figures more clear.

LAN Server Runtime. PLASMA outperforms Poplar in terms of

server runtime by 2.7× (64 bits) and 5× (256 bits) for ℓ = 10
6
clients

and T = 1% of the clients. This improvement is largely attributed

to our efficient VIDPF-based client input validation. Although the

presence of malicious clients has an impact on PLASMA’s perfor-

mance, it still remains significantly faster than Poplar as presented

in Fig. 10. Meanwhile, Poplar servers validate clients’ inputs using

an expensive malicious secure sketching protocol.

103 104 105 106

Number of clients (ℓ)

10−1

100

101

102

103

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(a) Bit-string size (𝑛 = 64)

103 104 105 106

Number of clients (ℓ)

100

101

102

103

104

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(b) Bit-string size (𝑛 = 256)

Figure 10: Server runtime over LAN.

WAN Server Runtime.We benchmark PLASMA and Poplar over

WAN for𝑛 = 64 and 256 bits and report our findings in Fig. 11.While

the total latency is increased for both frameworks, we observe that

the server WAN runtime for PLASMA increased by roughly 5-10%

compared to server LAN runtime, whereas for Poplar the runtime

increases by roughly 50%. We observe almost 5− 10× improvement

in terms of server WAN runtime for PLASMA compared to Poplar

since PLASMA incurs significantly less communication for T = 1%.

103 104 105 106

Number of clients (ℓ)

101

102

103

Ru
nt

im
e

(s
ec

.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(a) Bit-string size (𝑛 = 64)

103 104 105 106

Number of clients (ℓ)

101

102

103

104
Ru

nt
im

e
(s

ec
.)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar

(b) Bit-string size (𝑛 = 256)

Figure 11: Server runtime over WAN.

Server-to-Server Communication. We compare the total commu-

nication costs incurred by all servers for an increasing number of

clients, T = 1%, and 𝑛 = 256 in Fig. 12. Poplar servers incur 35 GB

of communication, whereas, PLASMA servers communicate less

than 1 GB of data when considering ℓ ′ = 0 and 0.1ℓ corrupt clients,

hence yielding a 35× improvement over Poplar. The implementa-

tion of [4] is not open-source so we estimate the communication

cost of [4] in Appendix G. The protocol of [4] communicates 45 GB

of data to compute heavy-hitters over 10
6
client submitted 256-bit

inputs. This yields a 45× improvement of PLASMA over [4].

3
Performance is impacted by expanding the Merkle tree which happens if there is at

least one malicious client.

15

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

103 104 105 106

Number of clients (ℓ)

10−3

10−2

10−1

100

101

102

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size 𝑛 = 64

103 104 105 106

Number of clients (ℓ)

10−2

10−1

100

101

102

To
ta

l C
om

. (
GB

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size 𝑛 = 256

Figure 12: Comparisons with Poplar [10] and the sorting-

based approach of [4] in terms of total server-to-server com-

munication (in GB).

Server Monetary Cost. To obtain fair comparisons between Poplar,

[4], and PLASMA, we perform cumulative monetary cost analysis

for a varying number of clients, assuming $0.05/GB and $1.53/hour.

To estimate monetary costs, we run PLASMA and Poplar in a similar

setup as [4] and compare it with the runtime provided in [4, Table

7.3] (which only considers 100k-400k clients over LAN). Note that

Poplar runs two servers while PLASMA runs three. The monetary

cost incurred by Poplar is two times the cost incurred by a single

Poplar server, while for PLASMA it’s three times a single PLASMA

server.

105 2 × 105 4 × 105 106

Number of clients (ℓ)

10−2

10−1

100

101

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(a) Bit-string size 𝑛 = 64

105 2 × 105 4 × 105 106

Number of clients (ℓ)

10−1

100

101

Co
st

 (U
SD

)

PLASMA ℓ 0 = 0
PLASMA ℓ 0 = 0.1ℓ
Poplar
Sorting-based

(b) Bit-string size 𝑛 = 256

Figure 13: Comparisons with Poplar and the sorting-based

approach of [4] in terms of total monetary cost (in USD).

We present our findings in Fig. 13 for T = 1% of the clients.

Computing the T most popular strings among 1 million clients

with 𝑛 = 256 bit strings, costs $4.7 with Poplar, while PLASMA

incurs $0.6-$0.9 costs for 0 to 0.1ℓ malicious clients. Meanwhile,

[4] costs at least $2.2 to perform the same task, so PLASMA yields

a 2.5 − 3.5× improvement over [4] despite having a 15× runtime

slowdown. This is largely due to the communication incurred by

[4] for performing secure sorting under MPC. When considering

input strings of smaller size, like 𝑛 = 64, PLASMA is 4× cheaper

than Poplar and 2× cheaper than [4]. Lastly, Vogue [32] is not open

source and it benchmarks 100k-400k clients over LAN. It claims a

6× improvement over Poplar, whereas [4] claims an improvement

of over 100×; therefore we focused on comparing with [4].

Applications. We discuss two realistic applications:

Popular URLs. Each URL is represented as a 256-bit string and

10000 most popular URLs are computed among 1 million client-

submitted URLs, assuming T = 1%. Server runtimes of PLASMA

and Poplar are reported in Figs. 10 (b) and 11 (b), while the client

communication costs in Figs. 9 (a) and (b) for 𝑛 = 256. This bench-

mark is completed in under 5 minutes with less than 1 GB of data

of communication for PLASMA, while Poplar servers incur more

than 5× additional runtime costs and communicate 35 GB.

Popular GPS coordinates.We employ plus codes [35] to efficiently

encode the client GPS coordinates using 64 bits. This approach uses

a grid system aligned on top of the world map, assigning specific

codes to each area. Areas with similar codes are located in proximity

to each other and a code that is a prefix of another encompasses

the area of the latter. For instance, code 87 represents the North

East US region, while code 87G8 represents a part of New York City.

PLASMA uses plus codes to compute the most popular locations

(submitted by more than T = 1% of the clients) among a set of

client-provided inputs using 64-bit strings in roughly 2 minutes for

10
6
clients, as shown in Fig. 11 (a). Client cost is shown in Fig. 9.

7 FURTHER EXTENSIONS

We discuss two interesting extensions of PLASMA and compare

them with the state-of-the-art protocol of [4]:

Fairness: The notion of fairness ensures that if an adversary

receives an output then the honest parties also receive the correct

output. If the adversary aborts then the honest parties also abort.

In our case, we observe that the count is secret shared between the

servers and based on the output of FCMP in the pruning phase, the

servers compute the heavy-hitting prefix set. As a result, PLASMA is

fair if the pruning phase is fair. This happens if FCMP functionality

is implemented using a three-party subprotocol [17] that guarantees

fairness against one malicious party. Hence, PLASMA can satisfy

a stronger notion of security as compared to Poplar or [4], which

only satisfies security with selective abort.

Heavy-Hitters over Multiple Thresholds: PLASMA enables com-

puting heavy-hitters over multiple thresholds (T1, T2, . . .) based on

some pre-agreed strings by the servers. This enables new applica-

tions like traffic avoidance, since different roads may have different

traffic densities (e.g., highways are busier than smaller suburban

roads). The servers consider that during evaluation and use higher

values of T for highways with more vehicles and lower values for

smaller roads. Conversely, it is unclear how to extend [4] to support

this feature. Protocol details are in Appendix E.

8 CONCLUDING REMARKS

In this work, we present PLASMA: a framework to privately iden-

tify the most popular strings – or heavy hitters – among a set

of client inputs without revealing the client data points. Previous

works for private heavy hitters, such as Poplar, consider security

against malicious clients and were prone to additive attacks by a

malicious server, compromising the correctness of the protocol. To

address this challenge, PLASMA introduces a novel hash-based

primitive, called verifiable incremental distributed point functions,

which allows the servers to validate client inputs using inexpensive

operations. Additionally, we introduce a new batched consistency

check that uses Merkle trees to validate multiple client sessions

in a batch. This drastically reduces the concrete server-to-server

communication, incurred during the heavy-hitters computation.

16

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

ACKNOWLEDGMENTS

D. Mouris and N.G. Tsoutsos would like to acknowledge the sup-

port of the National Science Foundation (Award 2239334), and the

Electrical & Computer Engineering department at the University

of Delaware. P. Sarkar conducted the research at Boston University

and he was supported by NSF Awards 1931714, 1414119, and the

DARPA SIEVE program.

REFERENCES

[1] Abdelrahaman Aly, K Cong, D Cozzo, M Keller, E Orsini, D Rotaru, O Scherer, P

Scholl, N Smart, T Tanguy, et al. 2021. Scale–mamba v1. 12: Documentation.

[2] Erik Anderson, Melissa Chase, F. Betul Durak, Esha Ghosh, Kim Laine, and

Chenkai Weng. 2021. Aggregate Measurement via Oblivious Shuffling. Cryptol-

ogy ePrint Archive, Report 2021/1490. https://eprint.iacr.org/2021/1490.

[3] Apple and Google. 2021. Exposure Notification Privacy-preserving Analytics

(ENPA) white paper. , 13 pages.

[4] Gilad Asharov, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Ariel Nof, Benny Pinkas,

Katsumi Takahashi, and Junichi Tomida. 2022. Efficient Secure Three-Party

Sorting with Applications to Data Analysis and Heavy Hitters. In ACM CCS 2022:

29th Conference on Computer and Communications Security, Heng Yin, Angelos

Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM Press, Los Angeles, CA, USA,

125–138. https://doi.org/10.1145/3548606.3560691

[5] Raef Bassily, Kobbi Nissim, Uri Stemmer, and Abhradeep Guha Thakurta. 2017.

Practical locally private heavy hitters. Advances in Neural Information Processing

Systems 30 (2017), 1–32.

[6] James Bell, Adrià Gascón, Badih Ghazi, Ravi Kumar, Pasin Manurangsi, Mariana

Raykova, and Phillipp Schoppmann. 2022. Distributed, Private, Sparse Histograms

in the Two-Server Model. In ACM CCS 2022: 29th Conference on Computer and

Communications Security, Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine

Shi (Eds.). ACM Press, Los Angeles, CA, USA, 307–321. https://doi.org/10.1145/

3548606.3559383

[7] Dan Bogdanov, Sven Laur, and Jan Willemson. 2008. Sharemind: A Framework

for Fast Privacy-Preserving Computations. In ESORICS 2008: 13th European Sym-

posium on Research in Computer Security (Lecture Notes in Computer Science,

Vol. 5283), Sushil Jajodia and Javier López (Eds.). Springer, Heidelberg, Germany,

Málaga, Spain, 192–206. https://doi.org/10.1007/978-3-540-88313-5_13

[8] Jonas Böhler and Florian Kerschbaum. 2021. Secure Multi-party Computation

of Differentially Private Heavy Hitters. In ACM CCS 2021: 28th Conference on

Computer and Communications Security, Giovanni Vigna and Elaine Shi (Eds.).

ACM Press, Virtual Event, Republic of Korea, 2361–2377. https://doi.org/10.1145/

3460120.3484557

[9] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs.

In Advances in Cryptology – CRYPTO 2019, Part III (Lecture Notes in Computer

Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio (Eds.). Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 67–97. https://doi.org/10.1007/

978-3-030-26954-8_3

[10] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2021. Lightweight Techniques for Private Heavy Hitters. In 2021 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, San Francisco, CA, USA,

762–776. https://doi.org/10.1109/SP40001.2021.00048

[11] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. 2023.

Arithmetic Sketching. In Advances in Cryptology – CRYPTO 2023, Part I (Lecture

Notes in Computer Science). Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 171–202. https://doi.org/10.1007/978-3-031-38557-5_6

[12] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2015. Function Secret Sharing. In

Advances in Cryptology – EUROCRYPT 2015, Part II (Lecture Notes in Computer

Science, Vol. 9057), Elisabeth Oswald andMarc Fischlin (Eds.). Springer, Heidelberg,

Germany, Sofia, Bulgaria, 337–367. https://doi.org/10.1007/978-3-662-46803-

6_12

[13] Elette Boyle, Niv Gilboa, and Yuval Ishai. 2016. Function Secret Sharing: Im-

provements and Extensions. In ACM CCS 2016: 23rd Conference on Computer and

Communications Security, Edgar R. Weippl, Stefan Katzenbeisser, Christopher

Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press, Vienna, Austria,

1292–1303. https://doi.org/10.1145/2976749.2978429

[14] Ran Canetti. 2000. Security and Composition of Multiparty Cryptographic Proto-

cols. Journal of Cryptology 13, 1 (Jan. 2000), 143–202. https://doi.org/10.1007/

s001459910006

[15] Ran Canetti, Pratik Sarkar, and Xiao Wang. 2022. Triply Adaptive UC NIZK. In

Advances in Cryptology – ASIACRYPT 2022, Part II (Lecture Notes in Computer

Science, Vol. 13792), Shweta Agrawal and Dongdai Lin (Eds.). Springer, Heidelberg,

Germany, Taipei, Taiwan, 466–495. https://doi.org/10.1007/978-3-031-22966-

4_16

[16] Benjamin Case, Richa Jain, Alex Koshelev, Andy Leiserson, Daniel Masny, Ben

Savage, Erik Taubeneck, Martin Thomson, and Taiki Yamaguchi. 2023. Interop-

erable Private Attribution: A Distributed Attribution and Aggregation Protocol.

Cryptology ePrint Archive, Report 2023/437. https://eprint.iacr.org/2023/437.

[17] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-

TRA: High Throughput 3PC over Rings with Application to Secure Prediction.

In ACM SIGSAC CCSW@CCS 2019. ACM, London, UK, 81–92.

[18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi, Yehuda

Lindell, and Ariel Nof. 2018. Fast Large-Scale Honest-Majority MPC for Malicious

Adversaries. In Advances in Cryptology – CRYPTO 2018, Part III (Lecture Notes in

Computer Science, Vol. 10993), Hovav Shacham and Alexandra Boldyreva (Eds.).

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 34–64. https://doi.org/

10.1007/978-3-319-96878-0_2

[19] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In Proceedings of the 14th USENIX Conference

on Networked Systems Design and Implementation (Boston, MA, USA) (NSDI’17).

USENIX Association, USA, 259–282.

[20] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. 2022. Waldo:

A Private Time-Series Database from Function Secret Sharing. In 2022 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, San Francisco,

CA, USA, 2450–2468. https://doi.org/10.1109/SP46214.2022.9833611

[21] HannahDavis, Christopher Patton,Mike Rosulek, and Phillipp Schoppmann. 2023.

Verifiable Distributed Aggregation Functions. Proceedings on Privacy Enhancing

Technologies 2023, 4 (July 2023), 578–592. https://doi.org/10.56553/popets-2023-

0126

[22] Leo de Castro and Antigoni Polychroniadou. 2022. Lightweight, Maliciously

Secure Verifiable Function Secret Sharing. In Advances in Cryptology – EURO-

CRYPT 2022, Part I (Lecture Notes in Computer Science, Vol. 13275), Orr Dunkelman

and Stefan Dziembowski (Eds.). Springer, Heidelberg, Germany, Trondheim, Nor-

way, 150–179. https://doi.org/10.1007/978-3-031-06944-4_6

[23] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and

Moni Naor. 2006. Our Data, Ourselves: Privacy Via Distributed Noise Generation.

In Advances in Cryptology – EUROCRYPT 2006 (Lecture Notes in Computer Science,

Vol. 4004), Serge Vaudenay (Ed.). Springer, Heidelberg, Germany, St. Petersburg,

Russia, 486–503. https://doi.org/10.1007/11761679_29

[24] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In TCC 2006: 3rd Theory

of Cryptography Conference (Lecture Notes in Computer Science, Vol. 3876), Shai

Halevi and Tal Rabin (Eds.). Springer, Heidelberg, Germany, New York, NY, USA,

265–284. https://doi.org/10.1007/11681878_14

[25] Tariq Elahi, George Danezis, and Ian Goldberg. 2014. PrivEx: Private Collection

of Traffic Statistics for Anonymous Communication Networks. In ACM CCS

2014: 21st Conference on Computer and Communications Security, Gail-Joon Ahn,

Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ, USA, 1068–1079.

https://doi.org/10.1145/2660267.2660280

[26] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In ACM CCS 2014:

21st Conference on Computer and Communications Security, Gail-Joon Ahn,

Moti Yung, and Ninghui Li (Eds.). ACM Press, Scottsdale, AZ, USA, 1054–1067.

https://doi.org/10.1145/2660267.2660348

[27] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. 2016. Building a RAPPOR with the

Unknown: Privacy-Preserving Learning of Associations and Data Dictionaries.

Proc. Priv. Enhancing Technol. 2016, 3 (2016), 41–61.

[28] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-

Throughput Secure Three-Party Computation for Malicious Adversaries and

an Honest Majority. In Advances in Cryptology – EUROCRYPT 2017, Part II

(Lecture Notes in Computer Science, Vol. 10211), Jean-Sébastien Coron and Jes-

per Buus Nielsen (Eds.). Springer, Heidelberg, Germany, Paris, France, 225–255.

https://doi.org/10.1007/978-3-319-56614-6_8

[29] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-

tions. In Advances in Cryptology – EUROCRYPT 2014 (Lecture Notes in Computer

Science, Vol. 8441), Phong Q. Nguyen and Elisabeth Oswald (Eds.). Springer, Hei-

delberg, Germany, Copenhagen, Denmark, 640–658. https://doi.org/10.1007/978-

3-642-55220-5_35

[30] Justin Hsu, Sanjeev Khanna, and Aaron Roth. 2012. Distributed Private Heavy

Hitters. In Proceedings of the 39th International Colloquium Conference on Au-

tomata, Languages, and Programming - Volume Part I (Warwick, UK) (ICALP’12).

Springer-Verlag, Berlin, Heidelberg, 461–472. https://doi.org/10.1007/978-3-642-

31594-7_39

[31] Mihaela Ion, Ben Kreuter, Ahmet ErhanNergiz, Sarvar Patel, Shobhit Saxena, Karn

Seth, Mariana Raykova, David Shanahan, and Moti Yung. 2020. On Deploying

Secure Computing: Private Intersection-Sum-with-Cardinality. In EuroS&P. IEEE,

Genoa, Italy, 370–389.

[32] Pranav Jangir, Nishat Koti, Varsha Bhat Kukkala, Arpita Patra, Bhavish Raj Gopal,

and Somya Sangal. 2022. Vogue: Faster Computation of Private Heavy Hitters.

Cryptology ePrint Archive, Report 2022/1561. https://eprint.iacr.org/2022/1561.

17

https://eprint.iacr.org/2021/1490
https://doi.org/10.1145/3548606.3560691
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1145/3548606.3559383
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1145/3460120.3484557
https://doi.org/10.1145/3460120.3484557
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1007/978-3-030-26954-8_3
https://doi.org/10.1109/SP40001.2021.00048
https://doi.org/10.1007/978-3-031-38557-5_6
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1145/2976749.2978429
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/s001459910006
https://doi.org/10.1007/978-3-031-22966-4_16
https://doi.org/10.1007/978-3-031-22966-4_16
https://eprint.iacr.org/2023/437
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1007/978-3-319-96878-0_2
https://doi.org/10.1109/SP46214.2022.9833611
https://doi.org/10.56553/popets-2023-0126
https://doi.org/10.56553/popets-2023-0126
https://doi.org/10.1007/978-3-031-06944-4_6
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11681878_14
https://doi.org/10.1145/2660267.2660280
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-55220-5_35
https://doi.org/10.1007/978-3-642-31594-7_39
https://doi.org/10.1007/978-3-642-31594-7_39
https://eprint.iacr.org/2022/1561

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

[33] Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Com-

putation. In ACM CCS 2020: 27th Conference on Computer and Communications

Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM

Press, Virtual Event, USA, 1575–1590. https://doi.org/10.1145/3372297.3417872

[34] Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Karn Seth, and Ni Trieu. 2021.

Private Join and Compute from PIR with Default. In Advances in Cryptology –

ASIACRYPT 2021, Part II (Lecture Notes in Computer Science, Vol. 13091), Mehdi

Tibouchi and Huaxiong Wang (Eds.). Springer, Heidelberg, Germany, Singapore,

605–634. https://doi.org/10.1007/978-3-030-92075-3_21

[35] Google LLC. 2019. Open Location Code. https://github.com/google/open-location-

code.

[36] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.

Rabbit: Efficient Comparison for Secure Multi-Party Computation. In FC 2021:

25th International Conference on Financial Cryptography and Data Security, Part I

(Lecture Notes in Computer Science, Vol. 12674), Nikita Borisov and Claudia Díaz

(Eds.). Springer, Heidelberg, Germany, Virtual Event, 249–270. https://doi.org/

10.1007/978-3-662-64322-8_12

[37] Dimitris Mouris, Daniel Masny, Ni Trieu, Shubho Sengupta, Prasad Bud-

dhavarapu, and BenjaminMCase. 2024. Delegated Private Matching for Compute.

Proceedings on Privacy Enhancing Technologies 2024, 2 (July 2024), 1–24.

[38] Dimitris Mouris, Christopher Patton, Hannah Davis, Pratik Sarkar, and Nek-

tarios Georgios Tsoutsos. 2024. Mastic: Private Weighted Heavy-Hitters and

Attribute-Based Metrics. Cryptology ePrint Archive, Paper 2024/221. https:

//eprint.iacr.org/2024/221 https://eprint.iacr.org/2024/221.

[39] Moni Naor, Benny Pinkas, and Eyal Ronen. 2019. How to (not) Share a Password:

Privacy Preserving Protocols for FindingHeavyHitters withAdversarial Behavior.

In ACM CCS 2019: 26th Conference on Computer and Communications Security,

Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).

ACM Press, London, UK, 1369–1386. https://doi.org/10.1145/3319535.3363204

[40] Antigoni Polychroniadou, Gilad Asharov, Benjamin E. Diamond, Tucker Balch,

Hans Buehler, Richard Hua, Suwen Gu, Greg Gimler, and Manuela Veloso. 2023.

Prime Match: A Privacy-Preserving Inventory Matching System. , 400 pages.

[41] Zhan Qin, Yin Yang, Ting Yu, Issa Khalil, Xiaokui Xiao, and Kui Ren. 2016. Heavy

Hitter Estimation over Set-Valued Data with Local Differential Privacy. In ACM

CCS 2016: 23rd Conference on Computer and Communications Security, Edgar R.

Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi (Eds.). ACM Press, Vienna, Austria, 192–203. https://doi.org/10.1145/

2976749.2978409

[42] Adithya Vadapalli, Ryan Henry, and Ian Goldberg. 2023. Duoram: A Bandwidth-

Efficient Distributed ORAM for 2- and 3-Party Computation. In 32nd USENIX

Security Symposium (USENIX Security 23). USENIX Association, Anaheim, CA,

3907–3924. https://www.usenix.org/conference/usenixsecurity23/presentation/

vadapalli

[43] Adithya Vadapalli, Kyle Storrier, and Ryan Henry. 2022. Sabre: Sender-

Anonymous Messaging with Fast Audits. In 2022 IEEE Symposium on Security

and Privacy. IEEE Computer Society Press, San Francisco, CA, USA, 1953–1970.

https://doi.org/10.1109/SP46214.2022.9833601

[44] Yongqin Wang, Pratik Sarkar, Nishat Koti, Arpita Patra, and Murali Annavaram.

2023. CompactTag: Minimizing Computation Overheads in Actively-Secure

MPC for Deep Neural Networks. IACR Cryptol. ePrint Arch. (2023), 1729. https:

//eprint.iacr.org/2023/1729

[45] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. QuickSilver:

Efficient and Affordable Zero-Knowledge Proofs for Circuits and Polynomials

over Any Field. In ACM CCS 2021: 28th Conference on Computer and Communica-

tions Security, Giovanni Vigna and Elaine Shi (Eds.). ACM Press, Virtual Event,

Republic of Korea, 2986–3001. https://doi.org/10.1145/3460120.3484556

[46] Wennan Zhu, Peter Kairouz, Brendan McMahan, Haicheng Sun, and Wei Li. 2020.

Federated Heavy Hitters Discovery with Differential Privacy. In Proceedings of

the Twenty Third International Conference on Artificial Intelligence and Statistics

(Proceedings of Machine Learning Research, Vol. 108), Silvia Chiappa and Roberto

Calandra (Eds.). PMLR, Online, 3837–3847. https://proceedings.mlr.press/v108/

zhu20a.html

APPENDIX

A VARIANTS OF DISTRIBUTED POINT

FUNCTIONS

Incremental and Verifiable DPF (IDPF and VDPF). The IDPF [10] and

VDPF [22] build on standard DPFs to secret share the weights of

a tree w.r.t. a single non-zero path. IDPFs perform this task with

linear cost in the number of bits 𝑛 for strings that share common

prefixes [10], whereas using standard DPFs this cost would grow to

𝒪(𝑛2). IDPFs rely on expensive malicious secure sketching checks

to ensure that an IDPF key is not malformed. Meanwhile, the work

of [22] considers efficient hashing-based verifiable properties to

ensure that a DPF (not IDPF) key is well-formed. Moreover, [22]

enables a batched verification procedure with communication pro-

portional to the security parameter. However, VDPFs work only for

DPF and not IDPF. We present the VDPF algorithms below:

• VDPF.Gen(1𝜅 , 𝑓𝛼,𝛽) → (key0, key1). Given the security pa-

rameter 1
𝜅
and a function 𝑓 , output keys key

0
, key

1
.

• VDPF.BatchEval(𝑏, key𝑏 ,X) → (Y𝑏 , 𝜋𝑏) : For 𝑏 ∈ {0, 1},
batch verifiable evaluation takes a set X B {𝑥1, 𝑥2, . . . , 𝑥𝑚},
where each 𝑥𝑖 ∈ {0, 1}𝑛 . Outputs Y𝑏 B {𝑦𝑏,1, 𝑦𝑏,2, . . . , 𝑦𝑏,𝑚}.

Correctness ensures that Y0 + Y1 = 𝑓𝛼,𝛽 (X). Privacy ensures that

an adversary in possession of one of the keys (but not both) does

not obtain any information about the function 𝑓 . The verifiability

property of VDPF ensures that the proofs 𝜋0 and 𝜋1 are the same

if and only if they have been generated from valid keys key
0
and

key
1
of a point function.

B VERIFIABLE INCREMENTAL DPF

We present the VIDPF construction, denoted as 𝜋VIDPF, in Figs. 14

and 15. Our VIDPF construction is obtained by adding verifiability

(steps 15-17 from Fig. 14) on top of the IDPF construction of Poplar.

We have underlined the lines that focus on verifiability in these two

figures. The Convert takes the corrected seed 𝑠
(𝑖)
𝑏

for level 𝑖 , runs

PRG
′′
and outputs 𝜅 bit seed 𝑠

(𝑖)
𝑏

for level 𝑖 and value𝑊
(𝑖)
𝑏

. This

occurs at the intermediate levels and is performed by executing the

“else” part of Convert.𝑊
(𝑖)
𝑏

comes from G since it generates the

output𝑊cw based on intermediate 𝛽𝑖 . At the leaves, the “if” part of

Convert is executed where only𝑊
(𝑖)
𝑏

is generated. The security of

our protocol is summarized in Theorem 2.

Theorem 2. Assuming (PRG, PRG′, PRG′′) are pseudorandom

generators, PRG is 𝜅-collision resistant and (H1,H2) are random or-

acles then 𝜋VIDPF = (Gen, EvalPref) in Figs. 14 and 15 is a VIDPF.

We define 𝜅-collision resistant PRG as follows:

Definition 2 (𝜅-Collision Resistant PRG). We say that a

PRG : {0, 1}𝜅 → {0, 1}2𝜅+2 is 𝜅-collision resistant if a PPT adversary

cannot output 𝑠0 and 𝑠1 such that

(𝐴0 ∥ 𝑇0 ∥ 𝐵0 ∥ 𝑇 ′0) B PRG(𝑠0),
(𝐴1 ∥ 𝑇1 ∥ 𝐵1 ∥ 𝑇 ′1) B PRG(𝑠1),

and 𝐵0 = 𝐵1,

where 𝐴0, 𝐴1, 𝐵0, 𝐵1 ∈ {0, 1}𝜅 and 𝑇0,𝑇
′
0
,𝑇1,𝑇

′
1
∈ {0, 1}.

We recall the notion of XOR-collision resistance from [22] below

for our security proof.

Definition 3 (XOR-Collision Resistance [22]). We say a func-

tion family F is XOR-collision resistant if no PPT adversary given a

randomly sampled 𝑓 ∈ F can find four values 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ {0, 1}𝜅
such that (𝑥0, 𝑥1) ≠ (𝑥2, 𝑥3), (𝑥0, 𝑥1) ≠ (𝑥3, 𝑥2), and 𝑓 (𝑥0)⊕ 𝑓 (𝑥1) =
𝑓 (𝑥2) ⊕ 𝑓 (𝑥3) ≠ 0, except with negligible probability in security pa-

rameter 𝜅.

18

https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1007/978-3-030-92075-3_21
https://doi.org/10.1007/978-3-662-64322-8_12
https://doi.org/10.1007/978-3-662-64322-8_12
https://eprint.iacr.org/2024/221
https://eprint.iacr.org/2024/221
https://eprint.iacr.org/2024/221
https://doi.org/10.1145/3319535.3363204
https://doi.org/10.1145/2976749.2978409
https://doi.org/10.1145/2976749.2978409
https://www.usenix.org/conference/usenixsecurity23/presentation/vadapalli
https://www.usenix.org/conference/usenixsecurity23/presentation/vadapalli
https://doi.org/10.1109/SP46214.2022.9833601
https://eprint.iacr.org/2023/1729
https://eprint.iacr.org/2023/1729
https://doi.org/10.1145/3460120.3484556
https://proceedings.mlr.press/v108/zhu20a.html
https://proceedings.mlr.press/v108/zhu20a.html

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

It can be implemented by assuming the function 𝑓 is a random

oracle. Next, we proceed to the proof of Thm. 2.

Proof. Input privacy of our VIDPF follows from the input privacy of

the underlying IDPF protocol from Poplar, which in turn relies on

the pseudorandomness of PRG. Adding cs
(𝑖)

in steps 16-17 (Fig. 14)

does not affect the input privacy of the client in the random oracle

model since cs
(𝑖) = 𝜋

(𝑖)
0
⊕ 𝜋
(𝑖)
1

is an XOR of two random oracle

outputs. Each server will know the preimage of either 𝜋
(𝑖)
0

or the

preimage of 𝜋
(𝑖)
1

by evaluating the given VIDPF key. The server

breaks input privacy if it computes both preimages. However, to

compute the other preimage it needs to invert the random oracle

on 𝜋
(𝑖)
1−𝑏′ (assuming it obtained the preimage of 𝜋

(𝑖)
𝑏′

by evaluating

the VIDPF key).

A malicious client breaks the verifiability property if there are

two non-zero paths, say 𝑢 and 𝑣 in the evaluation tree such that the

client still passes the verification check performed by the servers

on cs
(𝑖)

for 𝑖 ∈ [𝑛]. We prove this via two steps:

• At most one non-zero value at each level i: We prove this

via contradiction. Assume a client generates VIDPF keys

that evaluate to two non-zero values at level 𝑖 . It means the

servers obtain 𝑠𝑖
0
(𝑢), 𝑠𝑖

1
(𝑢), 𝑠𝑖

0
(𝑣) and 𝑠𝑖

1
(𝑣) from Step 11 of

EvalNext (Fig. 15) by evaluating on 𝑢 and 𝑣 such that the

following holds:

𝑠𝑖
0
(𝑢) ≠ 𝑠𝑖

1
(𝑢) and 𝑠𝑖

0
(𝑣) ≠ 𝑠𝑖

1
(𝑣)

cs
(𝑖) = 𝜋

(𝑖)
0
(𝑢) ⊕ 𝜋 (𝑖)

1
(𝑢) = 𝜋

(𝑖)
0
(𝑣) ⊕ 𝜋 (𝑖)

1
(𝑣),

where 𝜋
(𝑖)
𝑏
(𝑢) B H1 (𝑢, 𝑠𝑖

0
(𝑢)) and 𝜋

(𝑖)
𝑏
(𝑣) B H1 (𝑣, 𝑠𝑖

0
(𝑣))

for 𝑏 ∈ {0, 1}. However, this is not possible in the random or-

acle model since it breaks the XOR-collision-resistance prop-
erty of the random oracle H1. The adversary cannot find

such a set of 𝑠𝑖
0
(𝑢), 𝑠𝑖

1
(𝑢), 𝑠𝑖

0
(𝑣) and 𝑠𝑖

1
(𝑣) values. Lemma 3 of

[22] captures the formal details of the reduction. In addition,

the servers also check multiple proofs by iteratively hashing

them together using H2 in step 12 of the EvalNext algorithm.

So, we also rely on the collision resistance property of H2 to

argue that it suffices to check the equality of the hash values

computed using H2 to ensure that the preimages are equal.

• Non-zero value at level i+1 is a child of non-zero value at level

i: We prove this via contradiction. Assume a client generates

VIDPF keys that evaluate to a non-zero value at level 𝑖 on

prefix 𝑢 ∈ {0, 1}𝑖 and a non-zero value at level 𝑖 + 1 on prefix

𝑣 ∈ {0, 1}𝑖+1 such that the non-zero node at level 𝑖 is not the

parent of the non-zero value at level 𝑖 + 1, i.e., 𝑢 ≠ 𝑣 ≤𝑖 . This
means that 𝑠𝑖

0
(𝑣) = 𝑠1

1
(𝑣) and 𝑠𝑖

0
(𝑢) ≠ 𝑠1

1
(𝑢) since there can

be at most one pair of non-zero 𝑠 values at each level. Next,

consider the inputs to the EvalNext algorithms for evaluation

on input prefix 𝑣 in Fig. 15. We consider the following two

cases:

– st𝑖 is same for both servers: In this case both 𝑠𝑖
0
(𝑣) = 𝑠1

1
(𝑣)

and 𝑡𝑖
0
(𝑣) = 𝑡1

1
(𝑣). Here the input of the server to EvalNext

is the same except for the value 𝑏. Hence, the evaluation

algorithm of the servers on prefix 𝑣 will be identical except

in step 10 where server 𝑏 obtains 𝑦
(𝑖+1)
𝑏

values such that

𝑦
(𝑖+1)
0

+ 𝑦 (𝑖+1)
1

= 0. So, the output cannot be non-zero in

this case.

– st𝑖 is different for both servers: In this case, 𝑠𝑖
0
(𝑣) = 𝑠1

1
(𝑣)

but 𝑡𝑖
0
(𝑣) ≠ 𝑡𝑖

1
(𝑣). For this to happen there exists 𝑠𝑖−1

0
(𝑣),

𝑡𝑖−1
0
(𝑣), 𝑠𝑖−1

1
(𝑣), 𝑡𝑖−1

1
(𝑣) such that (𝑠𝑖

0
(𝑣), 𝑡𝑖

0
(𝑣)) and (𝑠𝑖

1
(𝑣),

𝑡1
1
(𝑣)) are obtained by computing PRG on 𝑠𝑖−1

0
(𝑣) and

𝑠𝑖−1
1
(𝑣) respectively and applying Step 4 of EvalNext based

on 𝑡𝑖−1
0
(𝑣) and 𝑡𝑖−1

1
(𝑣) values.

- If 𝑣 ≤𝑖−1 = 𝑢≤𝑖−1: then 𝑠𝑖−1
0
(𝑣) = 𝑠𝑖−1

0
(𝑢) and 𝑠𝑖−1

1
(𝑣) =

𝑠𝑖−1
1
(𝑢). But we know that 𝑠𝑖

0
(𝑢) ≠ 𝑠𝑖

1
(𝑢). We also know

that 𝑠𝑖
𝑏
(𝑢) and 𝑠𝑖

𝑏
(𝑣) is generated from the same state

st
𝑖−1
𝑏

by server 𝑏 where only 𝑢𝑖 ≠ 𝑣𝑖 , which is 𝑥𝑖 in

EvalNext. In this case, steps 1-5 are the same for the

evaluation of 𝑢𝑖 and 𝑣𝑖 . Assume 𝑢𝑖 = 0 and 𝑣1 = 1

without loss of generality. This means that 𝑠𝐿
0
≠ 𝑠𝐿

1
and

𝑠𝑅
0
= 𝑠𝑅

1
, where 𝑠𝐿

𝑏
and 𝑠𝑅

𝑏
are computed by server 𝑏 by

evaluating the PRG on 𝑠𝑖−1
𝑏

and then XORing the output

with 𝑡 (𝑖−1) · 𝑠cw. This breaks the collision resistance of

PRG since 𝑠𝑖−1
0

≠ 𝑠𝑖−1
1

but (𝐴0 ∥𝑇0 ∥B∥𝑇 ′
0
) B PRG(𝑠𝑖−1

0
)

and (𝐴0 ∥𝑇0 ∥B ∥𝑇 ′
0
) B PRG(𝑠𝑖−1

0
) where𝐴0, 𝐴1, 𝐵, 𝐵 ∈

{0, 1}𝜅 and 𝑇0,𝑇
′
0
,𝑇1,𝑇

′
1
∈ {0, 1}.

- If 𝑣 ≤𝑖−1 ≠ 𝑢≤𝑖−1: then 𝑠𝑖−1
0
(𝑣) = 𝑠𝑖−1

1
(𝑣) and 𝑡𝑖−1

0
(𝑣) ≠

𝑡𝑖−1
1
(𝑣) and we apply our argument recursively for 𝑖 − 2

and so on until we get the previous case where 𝑢ℓ = 𝑣ℓ

for ℓ ∈ [𝑖 − 1].

□
We note that we do not need collision resistance from the PRG

since we do not require that the non-zero values lie on the same

path. We only need that each level contains a single non-zero node

and for that the XOR-collision resistance property suffices. This

property is implemented by assuming that (H1,H2) are random
oracles.

C HEAVY-HITTERS PROTOCOL 𝜋HH PROOF

In this section, we formally prove Theorem 1. Security of our pro-

tocol relies on the correctness of 𝜋
check

. 𝜋
check

is a protocol where

two honest parties commit to their inputs using Merkle-tree-based

commitments and then they decommit based on whether the root

commitments match or not. Correctness of 𝜋
check

follows straight-

forwardly from the binding property of the Merkle-tree commit-

ment, which in turn follows from the collision-resistance property

of the hash function used in 𝜋
check

.

Next, we prove the security of our protocol in the real-ideal world

paradigm of Canetti [14]. Let A denote the real-world adversary

corrupting one of the servers and ℓ ′ clients maliciously in the real-

world execution of the protocol. Let realA,𝜋HH
denote A’s view

after participating in the real-world execution. Let simulator Sim

be the ideal-world adversary, which given access to the algorithm

of A and functionality FHH, produces the ideal world adversarial

view as ideal
Sim,FHH .

We prove that our protocol 𝜋HH securely implements FHH func-

tionality by providing an ideal world PPT simulator Sim for all PPT

19

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

Notation: We denote the private 𝑛-bit string 𝛼 and its bit decomposition as

𝛼1, . . . , 𝛼𝑛 ∈ {0, 1}𝑛 .
Primitives: PRG : {0, 1}𝜅 → {0, 1}2𝜅+2 is a pseudorandom generator.

H1 : {0, 1}∗ × {0, 1}𝜅 → {0, 1}2𝜅 and H2 : {0, 1}2𝜅 → {0, 1}2𝜅 are

random oracles.

Gen(1𝜅 , 1𝑛, 𝛼, (𝛽1, 𝛽2, . . . 𝛽𝑛),G) : ⊲ Generate DPF keys.

1: Sample 𝑠
(0)
𝑏

𝑟←− {0, 1}𝜅 for 𝑏 ∈ {0, 1} ⊲ Secret seeds.

2: Let 𝑡
(0)
0
B 0 and 𝑡

(0)
1
B 1

3: for 𝑖 B 1 to 𝑛 do ⊲ For each bit of 𝛼 .

4: 𝑠𝐿
𝑏
∥ 𝑡𝐿

𝑏
∥ 𝑠𝑅

𝑏
∥ 𝑡𝑅

𝑏
B PRG(𝑠 (𝑖−1)

𝑏
) for 𝑏 ∈ {0, 1} ⊲ Parse the output of PRG

as a sequence of (𝜅 ∥ 1 ∥ 𝜅 ∥ 1) bits.
5: if 𝛼𝑖 = 0 then Diff B 𝐿, Same B 𝑅 ⊲ Set right children to be equal.

6: else Diff B 𝑅, Same B 𝐿 ⊲ Set left children to be equal.

7: 𝑠cw B 𝑠Same

0
⊕ 𝑠Same

1

8: 𝑡𝐿
cw
B 𝑡𝐿

0
⊕ 𝑡𝐿

1
⊕ 𝛼𝑖 ⊕ 1 ⊲ Left control bits not equal if 𝛼𝑖 = 0.

9: 𝑡𝑅
cw
B 𝑡𝑅

0
⊕ 𝑡𝑅

1
⊕ 𝛼𝑖 ⊲ Right control bits not equal if 𝛼𝑖 = 1.

10: 𝑠
(𝑖)
𝑏
B 𝑠Diff

𝑏
⊕ 𝑡 (𝑖−1)

𝑏
· 𝑠cw for 𝑏 ∈ {0, 1} ⊲ Correction.

11: 𝑡
(𝑖)
𝑏
B 𝑡Diff

𝑏
⊕ 𝑡 (𝑖−1)

𝑏
· 𝑡Diff

cw
for 𝑏 ∈ {0, 1} ⊲ Correction.

12: 𝑠
(𝑖)
𝑏
∥𝑊 (𝑖)

𝑏
B Convert(𝑠 (𝑖)

𝑏
) for 𝑏 ∈ {0, 1}

13: 𝑊
(𝑖)
cw
B (−1)𝑡

(𝑖)
1 · [𝛽𝑖 −𝑊 (𝑖)

0
+𝑊 (𝑖)

1
] ⊲ Output correction.

14: cw
(𝑖) B 𝑠cw ∥ 𝑡𝐿cw ∥ 𝑡𝑅cw ∥𝑊

(𝑖)
cw

⊲ Correction word for level 𝑖 .

15: 𝜋
(𝑖)
𝑏

= H1 (𝛼≤𝑖 ∥ 𝑠 (𝑖)𝑏
)

16: cs
(𝑖) = 𝜋

(𝑖)
0
⊕ 𝜋 (𝑖)

1
.

17: key𝑏 B (𝑠
(0)
𝑏
∥ cw(1) ∥ . . . ∥ cw(𝑛) ∥ cs(1) ∥ . . . ∥ cs(𝑛)) for 𝑏 ∈ {0, 1}⊲ Key

for party 𝑏.

18: return key𝑏 for 𝑏 ∈ {0, 1}

ConvertG (𝑠) :
1: Let 𝑢 ← |G |.
2: if 𝑢 = 2

𝑚
for an integer𝑚 then:

3: Return the group element represented by PRG
′ (𝑠) mod 𝑢,

4: where PRG
′
: {0, 1}𝜅 → {0, 1}𝑚 .

5: else:

6: Let 𝑛 = ⌈log
2
𝑢 ⌉ + 𝜅 .

7: Return the group element represented by PRG
′′ (𝑠) mod 𝑢,

8: where PRG
′′
: {0, 1}𝜅 → {0, 1}𝑛 .

Figure 14: Protocol 𝜋VIDPF for Verifiable Incremental DPF

(continues in Fig. 15).

adversaries A, and show that the real and ideal world view are in-

distinguishable, i.e., realA,𝜋HH

𝑐≈ ideal
Sim,FHH . We use a sequence

of hybrids (i.e., HYB0 - HYB4) to prove indistinguishability.

Proof. We first consider the case whereA corrupts server S2 along
with ℓ ′ clients. Then, we consider the case whereA corrupts either

S0 or S1 along with ℓ ′ clients.
S2 is corrupt. We provide the formal simulator in Fig. 16 and

argue indistinguishability as follows.

HYB0 : The real world execution of the protocol.

HYB1 : Same as HYB0, except Sim aborts if a malicious client 𝑖

has provided inconsistent 𝑢𝑖 and 𝑣𝑖 inputs to S0 and S1
and yet passed the batched consistency check 𝜋

check
. The

two hybrids are indistinguishable due to the correctness of

𝜋
check

.

HYB2 : Same as HYB1, except the Sim extracts the corrupt client’s

inputs using the three pairs of DPF keys. Then Sim runs Step

3c of simulated Batch-Verification, i.e., Sim aborts if 1) the

client’s input 𝛼𝑖 is k-bits heavy-hitting, 2) 𝛼𝑖 ∥ 0 or 𝛼1 ∥ 1 is

EvalNext(𝑏, 𝑖, st(𝑖−1) , cw(𝑖) , cs(𝑖) , 𝑥≤𝑖 , 𝜋): ⊲ Evaluate 𝑥𝑖 .

1: Parse st
(𝑖−1)

as (𝑠𝑖−1 ∥ 𝑡𝑖−1) .
2: 𝑠cw ∥ 𝑡𝐿cw ∥ 𝑡𝑅cw ∥𝑊

(𝑖)
cw
B cw

𝑖 ⊲ Parse correction word.

3: 𝑠𝐿 ∥ 𝑡𝐿 ∥ 𝑠𝑅 ∥ 𝑡𝑅 B PRG(𝑠 (𝑖−1)) ⊲ Parse the output of PRG as a sequence of

(𝜅 ∥ 1 ∥ 𝜅 ∥ 1) bits.
4: 𝜏 (𝑖) B (𝑠𝐿 ∥ 𝑡𝐿 ∥ 𝑠𝑅 ∥ 𝑡𝑅) ⊕ (𝑡 (𝑖−1) · [𝑠cw ∥ 𝑡𝐿cw ∥ 𝑠cw ∥ 𝑡𝑅cw])
5: 𝑠𝐿 ∥ 𝑡𝐿 ∥ 𝑠𝑅 ∥ 𝑡𝑅 B 𝜏 (𝑖) ⊲ Parse 𝜏 (𝑖) .

6: if 𝑥𝑖 = 0 then 𝑠 (𝑖) B 𝑠𝐿 , 𝑡 (𝑖) B 𝑡𝐿 ⊲ Keep left path.

7: else 𝑠 (𝑖) B 𝑠𝑅 , 𝑡 (𝑖) B 𝑡𝑅 ⊲ Keep right path.

8: 𝑠 (𝑖) ∥𝑊 (𝑖) B Convert(𝑠 (𝑖)) ⊲ New seed and output for level 𝑖 .

9: st
(𝑖) B 𝑠 (𝑖) ∥ 𝑡 (𝑖) ⊲ Save the state.

10: 𝑦 (𝑖) B (−1)𝑏 · [𝑊 (𝑖) + 𝑡 (𝑖) ·𝑊cw] ⊲ Compute output at level 𝑖 .

11: 𝜋 (𝑖) = H1 (𝑥≤𝑖 ∥ 𝑠 (𝑖)) .
12: 𝜋 = 𝜋 ⊕ H2 (𝜋 ⊕ (𝜋 (𝑖) ⊕ 𝑡 (𝑖) · cs(𝑖))) .
13: return (st(𝑖) , 𝑦 (𝑖) , 𝜋)

EvalPref (𝑏, key, 𝑥 ∈ {0, 1}𝑛, st(𝑑−1) , 𝑑, 𝜋) : ⊲ Evaluate one public bitstring 𝑥 on

all its bits 𝑥𝑖 for 𝑖 ∈ [𝑛].
1: Parse key as 𝑠 (0) ∥ cw(1) ∥ . . . ∥ cw(𝑛) ∥ cs(1) ∥ . . . ∥ cs(𝑛) . ⊲ Parse key for

party 𝑏.

2: if 𝑑 ≠ 1 then parse st
(𝑑−1)

as (𝑠 (𝑑−1) ∥ 𝑡 (𝑑−1)) ,
3: else 𝑡 (0) B 𝑏, st

(0) B 𝑠 (0) ∥ 𝑡 (0) .
4: for 𝑖 B 𝑑 to 𝑛 do ⊲ For each bit of 𝑥 .

5: (st(𝑖) , 𝑦 (𝑖) , 𝜋) B EvalNext(𝑏, 𝑖, st(𝑖−1) , cw𝑖 , cs𝑖 , 𝑥≤𝑖 , 𝜋) .
6: return (st(𝑛) , 𝑦 (𝑛) , 𝜋)

Figure 15: Protocol 𝜋VIDPF for Verifiable Incremental DPF

(continuing from Fig. 14).

invalid, and 3) client evaded the Batch-Verification check for

the sessions run between honest servers. The two hybrids are

indistinguishable due to the verifiability property of VIDPF

in the random oracle model. This occurs when the client

successfully evades the input extraction process of VIDPF by

providing malformed VIDPF keys and yet passes the batch

verification checks.

HYB3 : Same asHYB2, except Sim invokes FHH with the extracted

inputs to obtain the HH
≤𝑛

set and simulates FCMP based on

whether a prefix 𝛾 is in HH
≤𝑛

or not. The two hybrids are

indistinguishable against a corrupt server S2 in the FCMP-

model.

HYB4 : Same as HYB3, except Sim simulates the DPF key gener-

ation for the honest clients with input (𝛼, (𝛽1, . . . , 𝛽𝑛)) =
(1, (1, . . . , 1)) and sets the counters to 0s in the aggrega-

tion step. Indistinguishable due to VIDPF input privacy. The

0-valued counters in the aggregation step are identically

distributed to the actual aggregation counters since HYB3

and HYB4 are in the FCMP-model. This is the ideal world

execution of the protocol, completing our simulation.

EitherS0 orS1 is corrupt.Next, we consider the case where either
S0 or S1 is corrupt along with ℓ ′ clients. We provide the simulator

in Fig. 17 and argue indistinguishability as follows. (This case is

similar to the case where S1 is corrupt along with ℓ ′ clients.)

HYB0 : The real world execution of the protocol.

HYB1 : Same asHYB0, except Sim aborts if a malicious client 𝑖 pro-

vided values (𝑅𝑘(2,0) , 𝑅
𝑘
(2,1)) to S2 and values (𝑅𝑘(2,0) , 𝑅

𝑘
(1,2))

to S1 such that they are not equal, and yet client 𝑖 passed

20

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S2
Corruption: Server S2 and ℓ′ number of clients are maliciously corrupt. The rest ℓ − ℓ′ clients and servers (S0, S1) are simulated by simulator Sim.

Primitive: VIDPF B (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}𝜅 are random oracles.

Client C Computation. (Repeated for ℓ clients)

(1) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1, . . . , 1) .
(key(0,1) , key(1,0)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G), (key(1,2) , key(2,1)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G),

(key(2,0) , key(0,2)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G)
Sim sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 on behalf of the client.

(2) If the client is corrupt: Client sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 .
Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S0 and S1)
For each corrupt client 𝑖 , the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt clients)

(1) Sim extracts the corrupt client’s input (𝛼′𝑖 , 𝛽′𝑖,1, . . . , 𝛽′𝑖,𝑛) from the three pairs of DPF keys - key(0,1) and key(1,0) , key(0,2) and key(2,0) , and key(2,1) and key(1,2) ,
provided by client 𝑖 . If the extracted values differ, then Sim takes the necessary steps below.

(2) If the corrupt client has not provided a valid input at level 𝑗 , i.e., 1) ∃ 𝑗 ∈ [𝑛] s.t. 𝛽′𝑗 ≠ 1 (for the smallest 𝑗), or 2) the extracted inputs 𝛼′𝑖 (from the three sessions) in the

previous step differ in the 𝑗𝑡ℎ bit, i.e., 𝛼′𝑖,𝑗 , then Sim truncates the extracted input of client 𝑖 to the first 𝑗 bits of 𝛼𝑖 as 𝛼𝑖 B 𝛼𝑖,≤ 𝑗−1 . Sim sets L
𝑗−1
ext

= L
𝑗−1
ext
∪ {𝑖, 𝑗 − 1}

and updates Lext = Lext ∪ L
𝑗−1
ext

to denote that the 𝑖th client’s input is valid only till level 𝑗 − 1.
(3) Sim stores the extracted input (after necessary truncation) 𝛼𝑖 for client 𝑖 in a list Linp as Linp B Linp ∪ {𝑖, 𝛼𝑖 }.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain the output set of T-heavy hitting prefixes as HH
≤𝑛 . The

functionality FHH waits for further instructions from the ideal world adversary Sim.

Repeat the following steps for length of 𝑘 bits, where 𝑘 ∈ [0, . . . , 𝑛 − 1]:
(1) Initialization. For prefix 𝑝 ∈ HH𝑘

, Sim initialize server S0’s and S1’s aggregation variables for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows:
Simulated S0 sets cnt𝛾(0,1) B cnt

𝛾

(0,2) B cnt
𝛾

(2,1) B 0, Simulated S1 sets cnt𝛾(1,2) B cnt
𝛾

(1,0) B cnt
𝛾

(2,0) B 0.

(2) VIDPF Evaluation. For prefix 𝑝 ∈ HH≤𝑘 , Sim simulates S0 and S1 by running the original protocol steps. (Repeated for ℓ clients)

(3) Batch-Verification.

(a) Sim simulates S0 and S1 by computing u and v following the original steps of the protocol and Sim adds the 𝑖th client to the list L of discarded clients if 𝑢𝑖 ≠ 𝑣𝑖 . If

client 𝑖 is not detected as bad by running the original protocol steps of 𝜋check on u and v then Sim aborts.

(b) Sim runs the honest protocol steps to simulate the interaction between S2 − S0 and S2 − S1 to obtain the update list L.

(c) Sim aborts if ∃ client 𝑖 s.t. 1) its input is 𝑘-bits heavy-hitting (i.e., 𝛼𝑖 ∈ HH𝑘
), 2) 𝛼𝑖 ∥ 0 or 𝛼𝑖 ∥ 1 is not valid, i.e., {𝑖, 𝑘 } ∈ L𝑘ext , 3) client 𝑖 evaded the consistency

check, i.e., 𝑖 ∉ L.

If Sim did not abort then for all corrupt parties in list L at level 𝑘 , Sim invokes FHH to discard the parties from the output computation of 𝑘 + 1-bit heavy-hitting
prefixes. Sim obtains an updated HH

≤𝑛
set from FHH .

(4) Aggregation. Sim simulates this step for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows: (Repeated for all validated clients in [ℓ] \ L)
Simulated S0 sets cnt𝛾(0,1) B cnt

𝛾

(0,2) B cnt
𝛾

(2,1) B 0, Simulated S1 sets cnt𝛾(1,2) B cnt
𝛾

(1,0) B cnt
𝛾

(2,0) B 0.

(5) Pruning. For every (𝑘 + 1)-bit string 𝛾 , Sim simulates the pruning step as follows:

• If 𝛾 ∈ HH𝑘+1
then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers, s.t. 𝛾 is included in the list of heavy-hitting strings.

• If 𝛾 ∉ HH
𝑘+1

then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers, s.t. 𝛾 gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, 𝑘 + 1) and Sim aborts this simulated execution.

Sim has successfully simulated the HH
𝑘+1

set. Sim repeats “Server Computation" steps (starting from Step 2b) on 𝑘 + 1 bit prefixes.
Output Phase. Sim outputs HH

≤𝑛
as the set of T-heavy hitter strings on behalf of simulated S0 and S1 , and instructs FHH to send output to the honest servers S0 and S1 .

Figure 16: Simulation Algorithm against malicious corruption of server S2 and ℓ ′ clients.

the batched consistency check 𝜋
check

. The two hybrids are

indistinguishable due to the correctness of 𝜋
check

.

HYB2 : Same as HYB1, except Sim extracts the corrupt client’s in-

puts following the extraction algorithm using the pair of DPF

keys. Then Sim runs Step 3d of simulated Batch-Verification,

i.e., Sim aborts if 1) the client’s input 𝛼𝑖 is k-bits heavy-

hitting, 2) 𝛼𝑖 ∥ 0 or 𝛼1 ∥ 1 is invalid, and 3) client evaded

the Batch-Verification check for the sessions run between

honest servers. The two hybrids are indistinguishable due

to the verifiability property of VIDPF in the random ora-

cle model. This occurs when a malicious client successfully

evades the input extraction process of VIDPF by providing

malformed VIDPF keys and yet passes the batch verification

checks performed on the VIDPF proofs.

HYB3 : Same asHYB2, except Sim invokes FHH with the extracted

inputs to obtain HH
≤𝑛

set and simulates the FCMP function-

ality based on whether a prefix 𝛾 is in HH
≤𝑛

or not. The two

hybrids are indistinguishable against a corrupt server S0 in
the FCMP-model.

HYB4 : Same as HYB3, except Sim simulates the key generation

for the honest clients with (𝛼, (𝛽1, . . . , 𝛽𝑛)) = (1, (1, . . . , 1))
as input and sets the counters to 0s in the aggregation step.

Indistinguishable due to VIDPF input privacy. The 0-valued

counters in the aggregation step are identically distributed

to the actual aggregation counters since HYB3 and HYB4

are in the FCMP-model. This is the ideal world execution of

the protocol, completing our simulation algorithm.

□

D ANALYSIS OF BATCHED CONSISTENCY

CHECK

We recall the batched consistency check in Fig. 8. P0 and P1 hash

their leaves and verify the equality of their Merkle tree roots R0 and

R1. If the roots are equal then all the leaves are equal. Otherwise,

21

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

Simulator Sim for maliciously corrupt ℓ′ number of clients and server S0
Corruption: ℓ′ number of clients and server S0 are maliciously corrupt. The rest ℓ − ℓ′ clients and servers (S1, S2) are simulated by simulator Sim. Without loss of generality,

we will assume that S0 is corrupt; the case where S1 is corrupt is symmetric.

Primitive: VIDPF B (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. H1,H2 : {0, 1}∗ → {0, 1}𝜅 are random oracles.

Client C Computation. (Repeated for ℓ clients)

(1) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1, . . . , 1) .
(key(0,1) , key(1,0)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G), (key(1,2) , key(2,1)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G),

(key(2,0) , key(0,2)) B Gen(1𝜅 , 1𝑛, 1, (1, . . . , 1),G)
Sim sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 on behalf of the client.

(2) If the client is corrupt: Client sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 .
Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates S1 and S2)
For each corrupt client 𝑖 , the simulator performs the following for input extraction: (Repeated for ℓ′ corrupt clients)

(1) Sim extracts the corrupt client’s input (𝛼′𝑖 , 𝛽′𝑖,1, . . . , 𝛽′𝑖,𝑛) from the pair of DPF keys - key(1,2) and key(2,1) , provided by client 𝑖 .

(2) If the corrupt client has not provided a valid input at level 𝑗 , i.e., ∃ 𝑗 ∈ [𝑛] s.t. 𝛽′𝑗 ≠ 1 (for the smallest 𝑗), then Sim truncates the extracted input of client 𝑖 to the first 𝑗

bits of 𝛼𝑖 as 𝛼𝑖 B 𝛼𝑖,≤ 𝑗−1 . Sim sets L
𝑗−1
ext

= L
𝑗−1
ext
∪ {𝑖, 𝑗 − 1} and updates Lext = Lext ∪ L

𝑗−1
ext

to denote that the 𝑖th client’s input is valid only till level 𝑗 − 1.
(3) Sim stores the extracted input (after necessary truncation) 𝛼𝑖 for client 𝑖 in a list Linp as Linp B Linp ∪ {𝑖, 𝛼𝑖 }.

After running the above extraction process for all corrupt clients, Sim invokes FHH with the input list Linp to obtain the output set of T-heavy hitting prefixes as HH
≤𝑛 . The

functionality FHH waits for further instructions from the ideal world adversary Sim.

Repeat the following steps for length of 𝑘 bits, where 𝑘 ∈ [0, . . . , 𝑛 − 1]:
(1) Initialization. For prefix 𝑝 ∈ HH𝑘

, Sim initialize server S1’s and S2’s aggregation variables for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows:
Simulated S1 sets cnt𝛾(1,2) B cnt

𝛾

(1,0) B cnt
𝛾

(2,0) B 0, Simulated S2 sets cnt𝛾(2,0) B cnt
𝛾

(2,1) B 0.

(2) VIDPF Evaluation. For prefix 𝑝 ∈ HH≤𝑘 , Sim simulates S1 and S2 by running the original protocol steps. (Repeated for ℓ clients)

(3) Batch-Verification.

(a) Sim simulates the interaction between corrupt server S0 and honest server S1 by following the protocol steps to update list L.

(b) Sim simulates the interaction between corrupt server S0 and honest server S2 by following the protocol steps to update list L.

(c) For each client 𝑖 : Sim verifies that S2’s version of (𝑅𝑘
(2,0) , 𝑅

𝑘
(2,1)) matches with S1’s version of (𝑅𝑘

(2,0) , 𝑅
𝑘
(1,2)) . If they don’t match then Sim adds 𝑖th client to the list

L of discarded clients. If client 𝑖 is not detected as bad by running the original protocol steps of 𝜋check between S1 and S2 then Sim aborts.

(d) Sim aborts if ∃ client 𝑖 s.t. 1) its input is 𝑘-bits heavy-hitting (i.e., 𝛼𝑖 ∈ HH𝑘
), 2) 𝛼𝑖 ∥ 0 or 𝛼𝑖 ∥ 1 is not valid, i.e., {𝑖, 𝑘 } ∈ L𝑘ext , 3) client 𝑖 evaded the consistency

check, i.e., 𝑖 ∉ L.

If Sim did not abort then for all corrupt parties in list L at level 𝑘 , Sim invokes FHH to discard the parties from the output computation of 𝑘 + 1-bit heavy-hitting
prefixes. Sim obtains an updated HH

≤𝑛
set from FHH .

(4) Aggregation. Sim simulates this step for prefixes 𝛾 ∈ {𝑝 ∥ 0, 𝑝 ∥ 1} as follows: (Repeated for all validated clients in [ℓ] \ L)
Simulated S1 sets cnt𝛾(1,2) B cnt

𝛾

(1,0) B cnt
𝛾

(2,0) B 0, Simulated S2 sets cnt𝛾(2,0) B cnt
𝛾

(2,1) B 0.

(5) Pruning. For every (𝑘 + 1)-bit string 𝛾 , Sim simulates the pruning step as follows:

• If 𝛾 ∈ HH𝑘+1
then Sim invokes the simulator of FCMP with output 1 s.t. FCMP returns 1 as output to the servers, s.t. 𝛾 is included in the list of heavy-hitting strings.

• If 𝛾 ∉ HH
𝑘+1

then Sim invokes the simulator of FCMP with output 0 s.t. FCMP returns 0 as output to the servers, s.t. 𝛾 gets pruned.

If the simulator of FCMP aborts, then Sim instructs FHH to abort at level (⊥, 𝑘 + 1) and Sim aborts this simulated execution.

Sim has successfully simulated the HH
𝑘+1

set. Sim repeats “Server Computation" steps (starting from Step 2b) on 𝑘 + 1 bit prefixes.
Output Phase. Sim outputs HH

≤𝑛
as the set of T-heavy hitter strings on behalf of simulated S1 and S2 , and instructs FHH to send output to the honest servers S0 and S1 .

Figure 17: Simulation Algorithm against malicious corruption of server S0 and ℓ ′ clients.

the parties verify the equality of the left and the right children

of the root node. If the left (resp. right) children are equal across

the parties then the left (resp. right) subtrees are equal. If the left

(resp. right) children are different, then the parties apply the above

algorithm to the left (resp. right) subtree. Proceeding iteratively

down the tree, the parties identify the malformed leaves as N

K

0
and

N

K

1
where the two trees differ. Then they match them with their

initial lists of input sets u and v to identify the indices where they

differ and then store those indices in L.

𝜋
check

requires K + 1 rounds of communication, where K =

⌈log
2
ℓ⌉. Next, we demonstrate that if ℓ ′ out of ℓ leaves differ, then

the total communication is 𝒪(ℓ ′(log
2

ℓ
ℓ′)) hashes. The Root Com-

putation is local and Root Verification communicates two hashes.

During Leaf Identification, the parties communicate 4 hashes for

each unequal node. At the root layer, only the roots are different.

At the next layer, both children can differ. More generally, at layer

𝑘 ∈ [K], there can be at most min(2𝑘 , ℓ ′) unequal nodes.

The total communicated hashes are as follows:

2 + 4 × (min(20, ℓ ′) + . . . +min(2 ⌈log2 ℓ ⌉ , ℓ ′))

= 2 + 4 × (1 + 2 + . . . 2 ⌈log2 ℓ
′⌉ + ℓ ′ + ℓ ′ + . . . + ℓ ′)

≤ 2 + 4 × (2ℓ ′ + ℓ ′ × (⌈log
2
ℓ⌉ − ⌈log

2
ℓ ′⌉))

≈ 8ℓ ′ + 4ℓ ′(log
2
ℓ − log

2
ℓ ′) = 4ℓ ′(log

2

ℓ
ℓ′ + 2) .

Weobserve that the current version of𝜋
check

communicates roughly

4ℓ ′(log
2

ℓ
ℓ′ +2) hashes. This can be further optimized to 2ℓ ′(log

2

ℓ
ℓ′ +

2) where only one server communicates at each level.

E HEAVY HITTERS WITH DIFFERENT

THRESHOLDS

Our protocol allows us to consider different heavy hitter thresholds

T𝑖 based on some pre-agreed strings 𝑥𝑖 ∈ X by the servers. This can

be beneficial for traffic avoidance since different roads may have

different traffic densities. For example, highways are busier than

22

PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries Proceedings on Privacy Enhancing Technologies 2024(3)

Different Threshold Heavy Hitters from T-prefix count queries

Parameters: Threshold T𝑖 ∈ N, for string 𝑥𝑖 ∈ X where |X | =𝑚, and string

length 𝑛 ∈ N.
Inputs: The algorithm has no explicit input. It has access to 𝑡 -prefix count query

oracle Ω𝛼
1
,...,𝛼ℓ

(𝑝, 𝑡) for securely computing 𝑡 -prefix-count queries over prefix 𝑝

for strings 𝛼1, . . . , 𝛼ℓ .

Outputs: The set of heavy-hitter strings in 𝛼1, 𝛼2, . . . , 𝛼ℓ .

Algorithm:

• Initialize HH
≤𝑛 = {HH0,HH1, . . .HH𝑛 } B {{𝜖 }, ∅, . . . , ∅}, where

HH
0
contains empty string 𝜖 and HH

1, . . .HH𝑛
are empty sets.

• Set T B min(T1, T2, . . . T𝑚) .
• For each prefix 𝑝 ∈ HH𝑘

of length 𝑘-bits in set HH
𝑘
(where

𝑘 = 0, 1, 2, . . . 𝑛 − 2):
If Ω𝛼

1
,...,𝛼ℓ

(𝑝 ∥ 0, T) = 1, then HH
𝑘+1 B HH

𝑘+1 ∪ {𝑝 ∥ 0}.
If Ω𝛼

1
,...,𝛼ℓ

(𝑝 ∥ 1, T) = 1, then HH
𝑘+1 B HH

𝑘+1 ∪ {𝑝 ∥ 1}.
• For each prefix 𝑝 ∈ HH𝑛−1

, perform the following:

If ∃𝑥𝑖 ∈ X such that (𝑝 ∥ 0) = 𝑥𝑖 and Ω𝛼
1
,...,𝛼ℓ

(𝑝 ∥ 0, T𝑖) = 1, then

HH
𝑛 B HH

𝑛 ∪ (𝑝 ∥ 0) .
If ∃𝑥𝑖 ∈ X such that (𝑝 ∥ 1) = 𝑥𝑖 and Ω𝛼

1
,...,𝛼ℓ

(𝑝 ∥ 1, T𝑖) = 1, then

HH
𝑛 B HH

𝑛 ∪ (𝑝 ∥ 1) .
• Output T-heavy hitters HH

≤𝑛 B {HH0,HH1, . . .HH𝑛 }.

Figure 18: Algorithm for computing heavy hitters with dif-

ferent thresholds from T -prefix count queries.

smaller suburban roads. The servers can take that into consideration

during evaluation, and use higher T s for highways (since there are
more vehicles), and lower thresholds for smaller roads.

We present our algorithm to compute heavy-hitters with differ-

ent thresholds T𝑖 for string 𝑥𝑖 ∈ X from T -prefix oracle query in

Fig. 18. The prefix oracle query with different thresholds can be

computed using a simple modification to protocol 𝜋HH, where the

pruning at the leaf layer is performed based on the threshold T𝑖 for
a given string 𝑥𝑖 ∈ X instead of a fixed threshold T .

F SUPPORTING DIFFERENTIAL PRIVACY

It is straightforward to complement PLASMA with 𝜖-differential

privacy techniques and ensure that the presence or absence of a

single client does not reveal anything about their data [24]. In this

case, running two instances of PLASMA, one with ℓ − 1 clients

and another just by adding client C, should protect the private

data of the new client from anyone observing the outputs of the

two protocols. Additionally, honest clients should not be able to be

identified when a malicious server attempts to ignore honest client

data to infer their inputs based on the protocol output. Therefore,

PLASMA is directly compatible with the well-studied techniques

from [23, 25] and can adopt a similar approach as Poplar to bound

the amount of information that an adversary A can deduce from

PLASMA’s output. Like Poplar, we need to ensure that the outputs

of these prefix-count oracle queries are differentially private, which

can be achieved by introducing noise on the oracle’s output with

parameter 1/𝜖 from a Laplace distribution.

G COMMUNICATION COST OF ASHAROV ET

AL. [4]

We analyze the total server-to-server communication cost for the

sorting-based protocol of Asharov et al. [4] (considering that its

implementation is not open-source). We start from the optimized

semi-honest communication cost from Appendix A.3 of [4], shown

below:𝑚𝑛(7
3
+ 32

9
| |𝑅 | |) + 3𝑚 | |𝑅 | | + 2𝑚 | |𝑅′ | | bits.

We ignore the 𝑅′ term since it is a payload. For malicious se-

curity, the protocol requires two times the semi-honest protocol,

and additionally, the ring needs to be a field of size 2
𝜅
size for 2

−𝜅

failure probability. This leads us to the optimized malicious sorting

protocol communication cost of: 2𝑚𝑛(7
3
+ 32

9
𝜅) + 3𝑚𝜅.

The heavy hitters protocol requires the following for each item

out of the total𝑚 items:

• Compute two secure comparisons over 𝑛 bits. Assuming the

state-of-the-art secure comparison protocol of Rabbit [36,

Fig. 6], we get ≥ 4𝑚𝑛 log𝑛 from LTBits and BitAdder as

well as𝑚𝑛 to open the values.

• One secure multiplication over two secret shared 𝑛-bit vari-

ables: For𝑚 values it would be at least𝑚𝑛 bits.

• Secure shuffling over and𝑛-bit secret shared value, where the

semi-honest shuffling takes 2𝑚 field element communication.

Asharov et al. [4] considers the compiler of Chida et al. [18] that

converts a semi-honest protocol to a malicious protocol. However,

this results in increased communication cost (i.e., 2× the semi-

honest cost): 2(4𝑚𝑛 log𝑛 +𝑚𝑛 + 2𝑚𝑛) = 8𝑚𝑛 · log𝑛 + 6𝑚𝑛. The

per-server communication cost for their maliciously secure heavy-

hitters protocol is at least:

2𝑚𝑛(7
3

+ 32

9

· 𝜅) + 3𝑚𝜅 + 8𝑚𝑛 log𝑛 + 6𝑚𝑛 bits.

Setting the security parameter 𝜅 to 60 bits, the number of items

𝑚 to 10
6
, and the number of bits of each item 𝑛 to 256 bits we get

that the communication cost should be at least:

2 · 106 · 256(7
3

+ 32

9

· 60) + 3 · 106 · 60

+ (8 · 106 · 256 · log 256 + 6 · 106 · 256) = 14.96 gigabytes

Therefore, the total server-server communication cost is at least

14.96 ·3 ≈ 45 gigabytes for computing the heavy hitters over 256-bit

keys between three servers for 10
6
clients.

H PRIVATE HISTOGRAM PROTOCOL

We present our histogram protocol 𝜋HIST in Fig. 19 for the sake of

completeness. The histogram protocol is a building block for our

heavy-hitters protocol and is not our final protocol. It suffers from

the limitation that the client’s input should lie in the subset X that

the servers evaluate, i.e., 𝛼𝑖 ∈ X for 𝑖 ∈ [ℓ]. This leaks whether
the client’s input lies in X or not based on whether the evaluated

DPF output in the consistency check is 0 or not. This issue can be

addressed by using techniques from Section 3.4, mainly replacing

the VDPF with a VIDPF, and using the four consistency checks

discussed in Section 3.4.

23

Proceedings on Privacy Enhancing Technologies 2024(3) Dimitris Mouris, Pratik Sarkar, and Nektarios Georgios Tsoutsos

Private Histogram 𝜋HIST

We denote a vector Y ∈ F𝑚 component-wise as Y B {𝑦1, 𝑦2, . . . , 𝑦𝑚 }, where 𝑦 𝑗 ∈ F for 𝑗 ∈ [𝑚].
– Input: Each client C𝑖 has an input point 𝛼𝑖 ∈ X for 𝑖 ∈ [ℓ] and𝑚 B |X |.
– Output: S0 , S1 , S2 output a histogram of the ℓ clients’ data. If the servers abort then it denotes a malicious server involvement.

– Primitive: VDPF B (Gen,BatchEval) is a verifiable distributed point function. H : {0, 1}∗ → {0, 1}𝜅 is a random oracle.

1: Client C Computation. (Repeated for ℓ clients, each of which has their own private input 𝛼 .)

(a) Client C with input 𝛼 prepares three pairs of DPF keys with independent randomness 𝑢, 𝑣, 𝑤
𝑟←− {0, 1}𝜅 , as follows:

(key(0,1) , key(1,0)) B Gen(1𝜅 , 𝛼, 1,G), (key(1,2) , key(2,1)) B Gen(1𝜅 , 𝛼, 1,G), (key(2,0) , key(0,2)) B Gen(1𝜅 , 𝛼, 1,G)
(b) The client sends (key(0,1) , key(0,2) , key(2,1)) to S0 , (key(1,0) , key(1,2) , key(2,0)) to S1 and (key(2,1) , key(2,0)) to S2 .

2: Server Computation.

If this is the first client, each server S𝑏 initializes HIST(𝑏,𝑏+1) and HIST(𝑏+1,𝑏) for 𝑏 ∈ {0, 1, 2} as follows:
S0 initializes HIST(0,1) B 0

𝑚,HIST(0,2) B 0
𝑚, and HIST(2,1) B 0

𝑚

S1 initializes HIST(1,2) B 0
𝑚,HIST(1,0) B 0

𝑚, and HIST(2,0) B 0
𝑚, S2 initializes HIST(2,0) B 0

𝑚
and HIST(2,1) B 0

𝑚

(a) VDPF Evaluation: Each server S𝑏 computes Y(𝑏,𝑏+1) and Y(𝑏,𝑏+2) for 𝑏 ∈ {0, 1, 2} as follows: (Repeated for ℓ clients)

S0 computes Y(0,1) , 𝜋 (0,1) B VDPF.BatchEval(0, key(0,1) ,X) and Y(0,2) , 𝜋 (0,2) B VDPF.BatchEval(1, key(0,2) ,X)
S1 computes Y(1,2) , 𝜋 (1,2) B VDPF.BatchEval(0, key(1,2) ,X) and Y(1,0) , 𝜋 (1,0) B VDPF.BatchEval(1, key(1,0) ,X)

S0 and S2 compute Y(2,1) , 𝜋 (2,1) B VDPF.BatchEval(1, key(2,1) ,X)
S1 and S2 compute Y(2,0) , 𝜋 (2,0) B VDPF.BatchEval(0, key(2,0) ,X)

Each server S𝑏 computes 𝜏 (𝑏,𝑏+1) and 𝜏 (𝑏,𝑏+2) for 𝑏 ∈ {0, 1, 2} as follows:
S0 parses Y(0,1) = {𝑦 (0,1),1, 𝑦 (0,1),2, . . . , 𝑦 (0,1),𝑚 } and computes 𝜏 (0,1) B

∑𝑚
𝑗=1 𝑦 (0,1), 𝑗

S0 parses Y(0,2) = {𝑦 (0,2),1, 𝑦 (0,2),2, . . . , 𝑦 (0,2),𝑚 } and computes 𝜏 (0,2) B
∑𝑚

𝑗=1 𝑦 (0,2), 𝑗
S1 parses Y(1,2) = {𝑦 (1,2),1, 𝑦 (1,2),2, . . . , 𝑦 (1,2),𝑚 } and computes 𝜏 (1,2) B

∑𝑚
𝑗=1 𝑦 (1,2), 𝑗

S1 parses Y(1,0) = {𝑦 (1,0),1, 𝑦 (1,0),2, . . . , 𝑦 (1,0),𝑚 } and computes 𝜏 (1,0) B
∑𝑚

𝑗=1 𝑦 (1,0), 𝑗
S1 and S2 parse Y(2,0) = {𝑦 (2,0),1, 𝑦 (2,0),2, . . . , 𝑦 (2,0),𝑚 } and compute 𝜏 (2,0) B

∑𝑚
𝑗=1 𝑦 (2,0), 𝑗

S0 and S2 parse Y(2,1) = {𝑦 (2,1),1, 𝑦 (2,1),2, . . . , 𝑦 (2,1),𝑚 } and compute 𝜏 (2,1) B
∑𝑚

𝑗=1 𝑦 (2,1), 𝑗
S0 computes ℎ0 B H(Y(0,1) − Y(0,2) ∥ Y(0,2) − Y(2,1)) and S1 computes ℎ1 B H(Y(2,0) − Y(1,0) ∥ Y(1,2) − Y(2,0)) .

(b) Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three sessions by invoking 𝜋check (Fig. 8):

(i) S0 sets 𝑢𝑖 B
{
(𝜋 (0,1) , 𝜋 (0,2) , 𝜋 (2,1) , 𝜏 (0,1) , 𝜏 (0,2) , 𝜏 (2,1) , ℎ0) values for client 𝑖 ∈ [ℓ]

}
. S1 sets 𝑣𝑖 B

{
(𝜋 (1,0) , 𝜋 (2,0) , 𝜋 (1,2) , 1 − 𝜏 (1,0) , 1 − 𝜏 (2,0) , 1 − 𝜏 (1,2) , ℎ1) values for

client 𝑖 ∈ [ℓ]
}
. S0 sets u B {𝑢𝑖 }𝑖∈[ℓ] and S1 sets v B {𝑣𝑖 }𝑖∈[ℓ] . S0 and S1 batch-verify all the client inputs by computing the bit ver and list L (comprising of invalid

client inputs) by running 𝜋check with inputs u and v respectively: (ver, L) B 𝜋check (u, v) :
ver B 0 if there exists a client such that : (𝜋 (0,1) ≠ 𝜋 (1,0)) ∨ (𝜋 (0,2) ≠ 𝜋 (2,0)) ∨ (𝜋 (2,1) ≠ 𝜋 (1,2))∨

(𝜏 (0,1) + 𝜏 (1,0) ≠ 1) ∨ (𝜏 (0,2) + 𝜏 (2,0) ≠ 1) ∨ (𝜏 (2,1) + 𝜏 (1,2) ≠ 1) ∨ (ℎ0 ≠ ℎ1)
and L B {list of invalid clients’ that failed to pass the above checks}. If ver = 1, then all the clients’ inputs are valid.

(ii) S2 possesses 𝜋 (2,0) , 𝜋 (2,1) , 𝜏 (2,0) , 𝜏 (2,1) values for each client. S2 verifies that S2’s version of 𝜋 (2,1) , 𝜏 (2,1) matches with S0’s version of 𝜋 (2,1) , 𝜏 (2,1) . S2 also attests that

S2’s version of 𝑅𝑘
(2,0) matches with S0’s version of 𝜋 (0,2) , 𝜏 (0,2) by computing (ver′, L′) as follows:

(ver′, L′) B 𝜋check ({𝜋 (2,1) , 𝜏 (2,1) , 𝜋 (2,0) , 𝜏 (2,0) }ℓ clients of S2, {𝜋 (2,1) , 𝜏 (2,1) , 𝜋 (0,2) , 𝜏 (0,2) }ℓ clients of S0) .
(iii) S2 verifies that S2’s version of 𝜋 (2,0) , 𝜏 (2,0) matches with S1’s version of 𝜋 (2,0) , 𝜏 (2,0) . S2 also attests that S2’s version of 𝜋 (2,1) , 𝜏 (2,1) matches with S1’s version of

𝜋 (1,2) , 𝜏 (1,2) by computing (ver′′, L′′) as follows:
(ver′′, L′′) B 𝜋check ({𝜋 (2,0) , 𝜏 (2,0) , 𝜋 (2,1) , 𝜏 (2,1) }ℓ clients of S2, {𝜋 (2,0) , 𝜏 (2,0) , 𝜋 (1,2) , 𝜏 (1,2) }ℓ clients of S0) .

After batch verification, the servers identify the list of bad clients as L B L ∪ L
′ ∪ L

′′
. The servers ignore the inputs of all clients in L.

The servers locally perform the following computation:

The servers aggregate all correct client inputs into the histogram as follows: (Repeated for all validated clients in [ℓ] \ L)
S0 updates HIST(0,1) B HIST(0,1) + Y(0,1) ,HIST(0,2) B HIST(0,2) + Y(0,2) and HIST(2,1) B HIST(2,1) + Y(2,1)
S1 updates HIST(1,2) B HIST(1,2) + Y(1,2) ,HIST(1,0) B HIST(1,0) + Y(1,0) and HIST(2,0) B HIST(2,0) + Y(2,0)

S2 updates HIST(2,0) B HIST(2,0) + Y(2,0) and HIST(2,1) B HIST(2,1) + Y(2,1)
3: Output Phase.

(a) Each two servers S𝑏 and S𝑏+1 exchange H(HIST(𝑏,𝑏+1) , 𝑟 (𝑏,𝑏+1)) and H(HIST(𝑏+1,𝑏) , 𝑟 (𝑏+1,𝑏)) for random 𝑟 (𝑏,𝑏+1) , 𝑟 (𝑏+1,𝑏)
𝑟←− {0, 1}𝜅 .

(b) S0 sends (HIST(0,1) ,HIST(0,2) ,HIST(2,1) , 𝑟 (0,1) , 𝑟 (0,2)) to S1 . S1 sends (HIST(1,2) ,HIST(1,0) ,HIST(2,0) , 𝑟 (1,2) , 𝑟 (1,0)) to S0 . S2 broadcasts (𝑟 (2,0) , 𝑟 (2,1)) .
(c) S0 and S1 verify the above hashes. If any of the hashes fail then the servers abort. Else, they perform the following:

S0 and S1 compute HIST0 B HIST(0,1) + HIST(1,0) ,HIST1 B HIST(1,2) + HIST(2,1) , and HIST2 B HIST(2,0) + HIST(0,2)
(d) S0 and S1 abort if HIST0 ≠ HIST1 or HIST1 ≠ HIST2 . Else, they output HIST where HIST = HIST0 = HIST1 = HIST2 .

Figure 19: Private Histogram Protocol 𝜋HIST.

24

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Preliminaries
	3 Technical Overview
	3.1 Histogram Protocol of Poplar
	3.2 Our Basic Histogram Protocol
	3.3 Heavy-Hitters from T-Prefix Count
	3.4 T-Prefix Count Queries Oracle from VIDPF

	4 Private Heavy Hitters
	5 Batched Consistency Check
	6 Experimental Evaluations
	7 Further Extensions
	8 Concluding Remarks
	References
	A Variants of Distributed Point Functions
	B Verifiable Incremental DPF
	C Heavy-Hitters Protocol ΠHH Proof
	D Analysis of Batched Consistency check
	E Heavy Hitters with different Thresholds
	F Supporting Differential Privacy
	G Communication Cost of Asharov et al. AHI+22
	H Private Histogram Protocol

