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ABSTRACT

Private heavy-hitters is a data-collection task where multiple clients
possess private bit strings, and data-collection servers aim to iden-
tify the most popular strings without learning anything about the
clients’ inputs. In this work, we introduce PLASMA: a private ana-
lytics framework in the three-server setting that protects the pri-
vacy of honest clients and the correctness of the protocol against a
coalition of malicious clients and a malicious server.

Our core primitives are a verifiable incremental distributed point
function (VIDPF) and a batched consistency check, which are of in-
dependent interest. Our VIDPF introduces new methods to validate
client inputs based on hashing. Meanwhile, our batched consistency
check uses Merkle trees to validate multiple client sessions together
in a batch. This drastically reduces server communication across
multiple client sessions, resulting in significantly less communica-
tion compared to related works. Finally, we compare PLASMA with
the recent works of Asharov et al. (CCS’22) and Poplar (S&P’21)
and compare in terms of monetary cost for different input sizes.
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1 INTRODUCTION

In today’s technology-driven world, companies are constantly col-
lecting user data to perform analysis, compute statistics, expose
patterns in user behaviors, and apply them to improve their prod-
ucts [16, 26, 31, 34, 40]. Common analysis practices resort to his-
tograms, where client data are aggregated together in predefined
and non-overlapping buckets. Each bucket may represent a quan-
titative range (e.g., salary) or a categorical value (e.g., profession).
The resulting histogram displays the frequencies of each bucket
based on multiple aggregated participant responses.

Private Histograms. When computing histograms, it is crucial to
maintain client privacy, such as preventing data collection servers
from inferring additional information about the clients. Existing
solutions for privacy-preserving histograms solve this problem
efficiently [6, 10, 19], given a relatively small number of buckets.
Nevertheless, histograms are resource-intensive on the server side
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when the goal is to find popular entries among the clients’ inputs.
For instance, assume clients that hold GPS coordinates of their
location and servers aiming to discover crowded areas without
compromising client privacy. The naive solution of creating a his-
togram over all possible inputs results in sparsely populated sets,
which wastes server-side computational power due to sparse inputs.
Conversely, in an optimal solution, the server computation should
scale with the most popular inputs, instead of all possible ones.

Private Heavy-Hitters. This problem is addressed by the concept
of “heavy hitters”. 7-heavy hitters allow computing the 7~ most
popular responses (for a given threshold 7°) among clients’ inputs
and have a broad range of applications: from finding popular web-
sites that users visit or malicious URLSs that cause browsers to crash
[10, 30], to discovering commonly used passwords [39], learning
new words typed by users and identifying frequently used emojis
[27], to name a few. Private heavy-hitters allow computing these
results while also preserving client privacy. Existing protocols (such
as [2, 8, 10, 39]) only focus on the “popular” inputs and disregard
other inputs that appear less than 7~ times (i.e., they are pruned by
the protocol). This renders private heavy hitters a suitable candi-
date for finding the most common client entries, such as computing
crowded areas using client-provided GPS coordinates.

Different Approaches. The literature considers the setting where
two or more servers collect client inputs and run the private heavy-
hitters protocol. A notable approach based on differential privacy
(DP) is [2] (we discuss DP-based solutions in Section 1.2). While
these protocols are computationally fast, they are limited to DP-
based privacy guarantees for the client. Likewise, MPC-based solu-
tions [8] employ general-purpose secure computation frameworks
(e.g., MP-SPDZ [33], SCALE-MAMBA [1], Sharemind [7]), so these
methods fall short in terms of practicality. Thus, recent works in-
troduced custom MPC-based techniques for private heavy-hitters
[4, 32]. The underlying protocols perform secure sorting of client
inputs under MPC [4, 32] and then aggregate the sorted data, guar-
anteeing that private inputs remain hidden when a majority of the
servers are honest. However, the communication of all aforemen-
tioned solutions is linearly dependent on the number of clients,
resulting in high server-to-server communication costs.
Distributed point functions (DPFs) [12] offer an alternative ap-
proach for private histograms. Informally, DPFs allow a client to
send succinct shares of a point function corresponding to their pri-
vate inputs to two or more servers. The servers then use these shares
to locally evaluate the function over the entire input space and add
the resulting outputs to obtain additive shares of a histogram.
Poplar [10] builds upon the DPF approach by introducing incre-
mental DPFs (IDPF), detailed in Appendix A. It provides an IDPF-
based solution for private heavy-hitters in the two-server setting,
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Table 1: Threat model comparisons, client input validation, and server-to-server communication.

Correctness & Privacy Against Malicious Corruption . Low
Protocol Client Input Server-to-Server No. of
Clients Server Server & Clients Validation .. Servers
Communication
DPF [12, 13, 29] o O O @) O 2+
Poplar (IDPF) [10] o Ot O o O 2
Bucketization (DP) [2] o O O o O 2-3
MPC-based [8] O O O O O 3
Sorting-based [4, 32] o o o o O 3
PLASMA (this work) o o o o [ 3

* These works only preserve privacy against a malicious server but not correctness.
% [8] is susceptible to data poisoning attacks by malicious clients or malicious servers. Privacy of honest clients is preserved.

and their server-to-server communication depends on the input
string length in semi-honest security. For security against malicious
clients, the servers validate every client’s input so that malformed
inputs are preemptively discarded from the computation. This is
referred to as client input validation and it prevents malicious clients
from causing an abort in the protocol. To do so, Poplar requires
additional checks, which cause the server-to-server communication
to scale linearly with the total number of clients. As a result, their
concrete server-to-server communication is large. Sabre [43] uses
multi-verifier MPC-in-the-head that attests to the well-formedness
of DPFs but does not focus on heavy hitters. The concurrent work of
Doplar also introduced a “Verifiable IDPF (VIDPF)” similar to ours,
which guarantees the same security properties. However, their con-
structions, namely Doplar and Prio3, rely on multiple Fully-Linear
Proofs (FLPs) [21] to verify that the client’s input is valid, resulting
in significant communication overheads. Moreover, their approach
does not consider malicious servers.

Motivation. Since all aforementioned solutions incur server-to-
server communication that scales linearly with the number of
clients (with large concrete communication costs), they are prohibi-
tive for most real-world applications that require millions of clients
for data collection. The concrete server-to-server communication
should be low, even for a large number of clients. Likewise, neither
Poplar nor the DP-based solutions [2] tolerate additive attacks from
a malicious server, which results in incorrect outputs when one of
the servers does not follow the protocol steps. More formally, they
fail to provide both correctness and privacy against the collusion
of a malicious server and malicious clients. In this regard, we ask
the following motivating question:

Can we obtain a private heavy-hitters protocol with low concrete

server-to-server communication that is secure against malicious

clients and a malicious server?

1.1 Our Contributions

We answer the aforementioned question with PLASMA, a frame-
work for private statistics that provides security against a malicious
server and malicious clients. Our contributions are as follows:

Verifiable incremental DPF (VIDPF). First, we introduce our
VIDPF primitive, which builds upon incremental DPFs (IDPF) [10]
and verifiable DPFs (VDPF) [22]. VIDPF allows us to verify that
clients’ inputs are valid by relying on hashing while preserving the
client’s input privacy. We also propose a novel way to verify that
IDPF keys are “one-hot” - i.e., they have a single non-zero evaluation

path (containing the same value along the path) by solely relying on
hashing. This is of independent interest and can be used to improve
earlier results in [10, 20, 21]. Previous protocols solved this problem
using FLPs [9, 21] or expensive sketching that involves information-
theoretic MACs [10, 11, 20]. More specifically, [21] uses FLPs in
each level to verify that the client’s input is one-hot, resulting in
significant communication overhead as each FLP entails a large
proof. Conversely, our checks for one-hot vectors do not require
field multiplications, only additions and hashes which allow us to
batch-verify multiple inputs together.

Batched Consistency Check. Next, we introduce a novel batched
consistency check that allows us to drastically reduce server-to-
server communication. At a high level, we validate the inputs of ¢
clients using a Merkle tree and identify the malformed ones using
logarithmic (in the total number of clients denoted as £) commu-
nication. This optimization reduces the dependency of our server-
to-server communication on the total number of clients from O(¢)
to O(¢’ (log, %)) number of hashes where there are £’ malicious
clients, yielding a concrete improvement over the state-of-the-art
(as reported in our experiments), even in the presence of malicious
clients. Here, ¢’ is the number of corrupt clients who provide mal-
formed inputs during the protocol execution and it does not need to
be a priori bounded. In case £’ = 0, then our servers only exchange
a pair of hashes. Our communication cost remains low even when
a constant fraction (e.g., 10%) of the clients are malicious.

PLASMA framework. We combine these new primitives to con-
struct PLASMA, a protocol for private histograms and heavy hitters
in the three-server setting that guarantees security against a mali-
cious server and malicious clients while maintaining low server-to-
server communication. PLASMA relies only on efficient hashing
and cheap field additions rather than expensive general-purpose
MPC or field multiplications. Due to our novel VIDPF primitive,
PLASMA outperforms Poplar with regard to runtime by a factor of
5 — 10x over WAN for 7~ = 1% of the clients. In the same setting,
our batched consistency check optimization enables us to drasti-
cally outperform both Poplar and the sorting-based protocol of
[4] in terms of server-to-server communication by a factor of 35x
and 45X, respectively. For these conditions, we further analyzed the
monetary cost of PLASMA, [4], and Poplar and report that PLASMA
is more than 2.5X and 4x cheaper respectively.

Applications. We evaluate PLASMA for two applications: a) detect-
ing frequently visited URLSs, and b) identifying popular coordinates.
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Popular URLs. A prominent application (discussed both in [4] and
[10]) is identifying which URLSs crash the clients’ browsers more
frequently. Each client has a string of n bits that represents the
last URL that crashed their browser. In our evaluations (Section 6),
we consider n = 256 bits, which is sufficient for standard domain
names, and compute the heavy hitter URLs that caused more than
1% of client browsers to crash. We perform the task over WAN in
approximately 5 minutes for 10° clients, while incurring less than
1 GB of server-to-server communication (less than $1 in total cost).

Popular GPS coordinates. We demonstrate a new application
where PLASMA identifies popular geographic locations without
sacrificing user privacy. This can be beneficial with traffic avoidance,
restaurant recommendations, as well as advertising (e.g., businesses
may identify crowded shopping areas and target their marketing
efforts), while ensuring the GPS coordinates of the users remain
private to the servers. Likewise, ride-sharing services can enhance
vehicle distribution in busy areas and proactively dispatch more dri-
vers during rush hour. This is possible by encoding GPS coordinates
as 64-bit strings using plus codes [35]. We compute the heavy hitter
plus codes for a threshold 7~ = 1% in under 2 minutes over WAN
across 10° clients, while incurring very minimal server-to-server
communication with $0.3 in total monetary costs.

Extensions. We also discuss how to extend PLASMA to obtain
fairness against a malicious adversary that corrupts one server and
an arbitrary number of clients. PLASMA is the first work to consider
different thresholds for heavy hitters based on pre-agreed prefixes
by the servers, allowing for more elaborate private statistics, such
as the GPS application, where different coordinates (e.g. highways
and suburban roads) have different congestion thresholds.

1.2 Related Work

We now discuss relevant works for private heavy hitters. They can
be classified into four main groups: those based on DPFs, those
based on differential privacy (DP), those based on MPC sorting, and
finally those based on general-purpose MPC. A comparison of our
protocol with related works can be found in Table 1.

DPF-based. Distributed point functions [12] offer a straightfor-
ward solution for private histograms but they fail for heavy hitters
due to the blowup in key size, as the client would need to send new
DPF keys for each level, resulting in O(n) DPF keys for n levels.
This was addressed by Poplar [10], which uses two non-colluding
servers and introduces the notion of IDPFs to allow efficient eval-
uation of strings based on prefixes by reusing the same DPF key.
Poplar’s threat model is robust against malicious clients but remains
susceptible to additive attacks by a malicious server. Therefore, as
the servers reconstruct the output, a malicious server can add ar-
bitrary noise to the result without the honest server realizing it.
The recent works of [21, 38] propose a framework for secure data
aggregation and they improve the clients’ consistency checks in
Poplar and Prio [19]. However, their threat model does not address
additive attacks from a malicious server either. Adding such se-
curity using zero-knowledge [15, 45] is interesting future work.
In contrast, PLASMA provides security against both a malicious
server and malicious clients by adding one additional server. Also,
Poplar still leaks some information about the heavy hitter prefixes
to the servers as they reconstruct the roots of the paths before they
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prune them. PLASMA performs a secure comparison and either
keeps the node with its subtree if 7 > count, or prunes the subtree.

DP-based. There is also a body of work based on local DP and
randomized responses for heavy hitters [5, 41, 46]. These tech-
niques use a single server to collect data from clients. Therefore,
this method introduces a trade-off between utility and privacy, as
it leaks some information about clients’ private data to the server.
In contrast, other methods that provide stronger privacy guaran-
tees require at least two non-colluding servers. Notably, secure
computation-based solutions can be modified to achieve DP either
by using local DP or by adding a smaller amount of noise in MPC
and achieving higher data utility while maintaining privacy.

Likewise, bucketization [2] computes approximate statistics on
a permuted version of the clients’ data combined with dummy
data that are sampled as differentially private noise. Bucketization
ensures security against malicious clients, and similarly to Poplar,
it can only guarantee privacy without correctness in the presence of
a malicious server. In contrast, PLASMA focuses on exact statistics
and provides both correctness and privacy against both malicious
clients and one malicious server. Note that PLASMA is compatible
with DP as we describe in Appendix F.

Sorting-based. Recent works that rely on secure sorting algorithms
construct private heavy-hitter protocols [4, 32] or private ad attri-
bution measurement [16] based on the sorted data. They provide
security against malicious servers and clients in the three-server
setting, where one of the servers can be malicious. These proto-
cols are computationally fast over LAN. However, they perform
secure sorting under MPC, and as a result, they incur heavy com-
munication overheads and their performance degrades significantly
over realistic WAN networks. Notably, PLASMA achieves a 45x
improvement in server-to-server communication compared to [4]
as shown in Fig. 12 for 7~ = 1%. Moreover, our PLASMA protocol
allows different thresholds for heavy hitters based on pre-agreed
prefixes (allowing for more elaborate statistics), this is not possible
for sorting-based heavy-hitter protocols.

General MPC-based. One could use generic MPC in the honest
majority [18, 28] or dishonest majority setting [33, 44] to compute
heavy hitters, but an efficient representation of the heavy-hitters
problem in terms of addition and multiplication gates is not known.
In fact, the work by Bohler and Kerschbaum [8] provides a generic
MPC-based protocol for computing differentially private heavy
hitters. They use MPC frameworks like MP-SPDZ [33] and SCALE-
MAMBA [1] to achieve semi-honest and malicious security, but
their solution suffers from high communication and slow runtime.

3-Party Computation based. Multiple customized 3-party proto-
cols [4, 32] aim to solve the problem of heavy-hitters. These works
consider a third server to exploit the faster computation guarantees
in the honest majority. Using a third server is a realistic setup and
it is widely considered both in the industry and academia as it
ensures practical deployments with malicious security. Notable ex-
amples include the Interoperable Private Attribution (IPA) proposal
by Meta and Mozilla [16], JP Morgan’s PrimeMatch [40], NTT’s
heavy-hitters protocol [4], protocols for private advertisement mea-
surement [37], Duoram [42], Sabre [43], and others. The servers are
meant to run across different organizations; for example, they can
be hosted by companies and non-profit organizations as mentioned
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in Google-Apple’s Covid Exposure system [3]. Table 1 compares
our work with state-of-the-art results.

2 PRELIMINARIES

Threat Model. Our threat model assumes three non-colluding
servers (Sp, S1, S2) that run the histogram/heavy-hitters protocol,
as well as ¢ clients. The clients provide inputs to the servers and the
servers do not have any private input. We assume that an adversary
A maliciously corrupts one of the servers and ¢’ < ¢ clients.

Clients. Malicious clients may try to deviate from the protocol to
disproportionally influence the result or even corrupt the output
of the protocol. PLASMA is robust against malicious clients and
PLASMA servers preemptively reject any malformed client input
before incorporating it into the computation. PLASMA preserves
the privacy of honest clients when one of the servers is corrupt
along with any number of clients.

Servers. Similarly, a malicious server may try to deviate from the
protocol and attempt to learn private user inputs; PLASMA always
protects input privacy against one malicious server. Another pos-
sible attack for a malicious server would be to over-influence or
corrupt the protocol result. The semi-honest model does not protect
correctness against a malicious server, which is problematic in real-
world applications, like advertisement measurements [16] between
two companies, where one company may benefit from reporting
inflated measurements by introducing undetectable errors. Mali-
cious security ensures that such behaviors are caught and parties
are forced to behave honestly, fostering a transparent environment
for computation. Poplar has this limitation while PLASMA protects
correctness. Hence, PLASMA is robust against a malicious server,
since it protects both correctness and privacy. Note that in all DPF-
based approaches, the servers learn the heavy prefixes, which can
be beneficial in some cases (e.g., for detection of a heavy-hitting
web domain that contains multiple non-heavy hitting URL errors)
but can also be viewed as leakage. However, PLASMA preserves
the exact counts of the prefixes.

Notation. We denote the computational and statistical security pa-
rameters by k and p, respectively. Let PRG : {0, 1} — {0, 1)2(k+1)
be a pseudorandom generator and Convert : {0,1} — G be a
map converting a k-bit string to a pseudorandom group element of

additive group G (where |G| > £). We use := for assignment, <D
for sampling from distribution D, = for checking equality, and || for
concatenation. For histograms, wedefine a public set X with m n-bit
strings as X = {x1, X2, ..., xn } where the ith string is denoted as
x; for i € [m] and the jth bit in x; € {0, 1}" is denoted as x; j for
Jj € [n]. We denote the first L bits of x; as x; <f, == (xi1,%i2,...%i)
for L < n.Let Sy, denote the bth server, for b € {0, 1, 2}; we consider
b+1:=(b+1) mod3andb+2 := (b+2) mod 3. We assume
¢ clients, each denoted as C; for i € [¢]. For an n-bit string a we
represent its bit decomposition as ay, . . ., an € {0, 1}. In histograms,
each client C; has an n-bit input string o; € X, for i € [£], while
a; € {0, 1}" in the case of heavy-hitters. We use «; 1, . .. @i, € {0, 1}
to denote the bit representation of the client’s input «;.

Distributed Point Functions (DPF). Function secret sharing (FSS)

[12] enables splitting the output of a function f into additive shares,
where each share of the function is represented by a separate key.
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Each key allows the owner to efficiently generate an additive share
of the output f(x) on a given input x. DPFs are a special case
of FSS where f is a point function f; g(x) = fif x = a, 0r 0
otherwise. A DPF consists of two algorithms: Gen and Eval. The
Gen algorithm takes as input the function f; g and outputs two
keys key, and key;. The Eval algorithm evaluates an input x such
that Eval(0, key,, x) + Eval(1,key;,x) = B for x = a, and 0 for
x # a. Privacy ensures (q, ) remains hidden from an adversary
in possession of one of the keys (but not both). We discuss DPF,
IDPF [10] and VDPF [22] in Appendix A for completeness.

3 TECHNICAL OVERVIEW

We recall the histogram and heavy-hitters protocol by Poplar [10]
in Section 3.1. Then, we briefly describe our histogram protocol in
Section 3.2 as a stepping stone to our heavy-hitters protocol, which
we describe in Sections 3.3 and 3.4.

3.1 Histogram Protocol of Poplar

Poplar first considers the problem of computing private subset his-
tograms. Each client holds an n-bit string « and the servers Sp and
S have a small set X := {x1,x9,..., %, } of m n-bit strings. Each
client secret shares their input & € X using a DPF as (key, key,) :=
DPF.Gen(1%, &, 1,G). The client sends key, to Sp and key; to Sj.
Upon receiving the client key, each server Sj, evaluates the DPF on
all m strings of X as y;, := {DPF.Eval(b, keyy, x;) }x,ex and com-
putes a vector of output shares y;, € F™, for some large enough
finite field F and m = |X|. The servers repeat this for multiple
clients and aggregate the y; vectors in a counter vector Y. Finally,
the servers exchange Y and Y7 to compute the output histogram
as Y := Yj + Y;. This protocol requires the client to communicate
one key to each server and the server-to-server communication is
independent of the number of clients since Y and Y; are aggregated
values. This protocol preserves client privacy.

However, a malicious client can double vote by generating the
DPF keys maliciously such that it contains more than one non-zero
point or the DPF output at « is greater than 1. To tackle this, Poplar
introduces a malicious sketching protocol to ensure that the client
inputs are well-formed. It also preserves the client’s privacy against
a malicious server. However, Poplar allows a malicious server to
add an error to its shares of the output without the honest server
realizing it. For instance, say Sy is malicious and introduces additive
errors (e.g., 6 € F™)in Y, := Yy + §. That way, the output Y of the
histogram would be biased by § as Y := Yj + Y1 = Y + Y1 + 6. The
honest server S; cannot detect such an additive attack, leading
to an error in the correctness of the protocol. Moreover, Poplar’s
server-to-server communication scales linearly with O(¢) due to
the malicious sketching protocol.

3.2 Our Basic Histogram Protocol

We address Poplar’s limitations by (1) introducing one additional
server, (2) building upon the primitive of verifiable DPF [22] (Ap-
pendix A), and (3) introducing novel consistency checks in the
three-party setting. We claim the following benefits over Poplar:

(a) Robustness against a collusion of a malicious server and
malicious clients,
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(b) Lightweight consistency checks for malicious behavior (us-
ing only symmetric operations and field additions),

(c) Server-to-server communication depends logarithmically on
the total number of clients.

Our work provides the first maliciously secure protocol whose
server-to-server communication is logarithmic in the total number
of clients £. Our servers communicate O(¢’(log, 7[,)) hashes for
consistency checks, where ¢’ is the number of corrupt clients. Simi-
lar to Poplar, we ensure input validation against malicious clients
(i.e., honest servers preemptively detect inconsistent inputs and dis-
card them). We present the ideas of our histogram protocol, which
are crucial for our heavy-hitters protocol in Section 3.4.2.

Robustness Against a Malicious Server. The histogram protocol
of Poplar is not robust against a malicious server. We consider
a third server Sy to allow an honest majority to obtain security
against one malicious server with improved efficiency. Each client
runs three DPF sessions, one between each pair of servers, with
independent randomness, but the same input « (i.e., the pairwise
evaluation of the DPF keys on point « outputs secret shares of one).

However, adding a third server significantly complicates things
as we need to ensure consistency between the three sessions. For in-
stance, we need to check that a malicious client submitted the same
input « to all three sessions without revealing it. The client sends
the DPF keys for the sessions to the servers and each server obtains
two keys. Upon obtaining the DPF keys, each server evaluates the
DPF on all input points in X. It is ensured that if the client behaved
honestly then at least one of the three sessions will be evaluated
honestly since two of the servers are honest. After aggregating all
the clients’ inputs, the output histogram is reconstructed across
the three sessions. If the output is the same between each pair of
servers then the servers behaved honestly and that is considered as
the output. If the output is inconsistent across a pair of servers then
one of the servers behaves maliciously (by launching an additive
attack) and the honest servers abort, which provides robustness
against the malicious server.

Reducing Server-to-Server Latency. We empirically observed
that the server-to-server latency increases if there is pairwise com-
munication between the three servers for consistency checks. There
are three server-to-server sessions for each client, and the third
server Sy is involved in two of the three sessions: specifically, ses-
sions S1 — Sz and Sz — So. The client generates (key g 1), keyq ¢y)
for session Sy — Sy, (keY(Lz), key(z’l)) for session S; — S, and
(key(q,2), key (z,0)) for session Sy — So. Sp receives key g ;) and
keY(o,z) from the client for sessions So—S1 and S2—Sp, respectively.
Sy receives key (4 g) for session S — 1 and key (4 5 for S1 - Sa,
while S; receives key , ;) and key ;) for sessions S — S and
Sy — 8o, respectively.

In our optimization, instead of running two sessions in each
server, we run all three sessions between Sy and S; and use S; as
the attestation server. By doing that, we significantly reduce the
latency due to the synchronization overhead of the three servers.
To enable that, our protocol instructs the client to send key 5 ;) to
server Sy and key ;o) to server Si respectively. The key distribu-
tion process by the client is illustrated in Fig. 1.

Our optimization allows Sy to replicate the computation of Sz in
session S — Sy (because they both have key(z)l)) and S; acts as an
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ke‘/((),l)’ ker,z)» ke‘/(z,l)
So

keY(m)’ keYu,z)’ keY(zm
S
ke‘/(z,l)* keYLZ,ﬂ) S,

Figure 1: Distribution of session keys by client C;.

attestator by just sending hashes to Sy for the same messages that
Sp should send. These hashes prevent Sy from acting maliciously.
Similar protocol steps are run by Sy to attest the Sz — Sy session
and prevent Sy (who is replicating Sz) from acting maliciously. This
optimization, shown in Fig. 2, allows us to batch-verify all three
sessions as a single session between Sy and S; using hashes.

key(o1y  (So— S1) session  key(y

So keypqy (81— 8z) session  key () S

keywvz) (S; — Sp) session key(zvo)
hashes for hashes for
(82 = So) Sz (S1-82)

Figure 2: Session keys and attestation by S;.

Client Input Validation. The above protocol assumes that the
client computes the DPF evaluation keys honestly and sends them
to the servers. A malicious client could construct malformed DPF
keys such that the client’s input gets counted more than once. To
prevent this class of attacks, we propose a novel consistency check
that only relies on inexpensive symmetric operations, like hashing.
We first ensure that the DPF output is non-zero only at a single
point. The work of [22] introduces the primitive of verifiable DPF
(VDPF), which we summarize in Appendix A. This is a stronger
notion of DPF, where the servers obtain a correctness proof 7 upon
evaluating a pair of DPF keys on a given input point. The two
servers obtain the same proof x if the client generates the DPF keys
honestly (i.e., the DPF output is non-zero only at a single point a).
Multiple proofs corresponding to different evaluation points are
batch-verified. Next, we ensure that the DPF output value at the
non-zero point is indeed 1. Our protocol instructs the servers to
sum up all the output shares (corresponding to each point in X) of
the client and reconstruct the output. If the reconstructed output is
not well-formed (i.e., is not 1), then the client’s input is discarded.
If the output is 1 (i.e., the client behaved honestly), then the DPF
output shares are aggregated by the server in the histogram share.

Client Input Consistency Across Sessions. A malicious client
can provide inconsistent inputs across the three server sessions
by providing DPF keys for different points a1, a2, and a3 in each
session respectively. The verifiability of the VDPF fails to detect
this attack since each individual VDPF in each session is valid.

To address the challenge, we propose a novel consistency check
that relies on a single hash verification. Let us denote Y1), Y(0,2),
and Y(31) be the output of the VDPF evaluation by Sy on keys
key o1y, key(q,z), and key 5 1y corresponding to sessions So — S1,
So — Sz, and S; — Sy, respectively. Similarly, let us denote Y (4 ),
Y (2,0)> and Yy 5y be the output of the VDPF evaluation by S; on
keys key 1 g), key(5,9), and key ; 5) corresponding to sessions So —
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81, S0 — 82, and Sy — 81, respectively. By definition, reconstructing
each pair of secret shared outputs (e.g., Y(q,1), Y(1,0)) results in a
vector of zeros except a single location. Note that the client has also
sent key (3 1) to So and key , ) to Sy respectively. Server Sp sends
hash h = H(Y(O,l) - Y(O,Z) I Y(sz) - Y(le)) to 81, who verifies
that h = H(Y(5,0) — Y(1,0) Il Y(1,2) = Y(2,0))- The verification of the
hash h ensures that the client’s input is consistent between: (1) the
sessions Sy — 81 and Sy — Sy, as well as (2) the sessions Sy — Sz
and Sy — &;1. By transitivity, all three sessions are consistent if
the hash verification succeeds. Observe that if the servers acted
honestly, Y(O,l) + Y(l,O) = Y(O,Z) + Y(2,0) = Y(l,z) + Y(2,1) and thus,
Yo,1) ~ Y(0,2) = Y(2,0) — Y(1,0) and Y(02) = Y(2,1) = Y(1,2) — Y(2,0)-
Our novel check requires additions (without any multiplications)
and a cheap hash computation. The communication cost is one hash
of size k bits. This leads to O(kf) server-server communication
for ¢ clients, but it is optimized to logarithmic communication by
applying batched client verification, described in Section 5. We
present the histogram protocol in Appendix H.

3.3 Heavy-Hitters from 7 -Prefix Count

Poplar reduced the problem of computing heavy hitters to the
problem of computing prefix count queries for a prefix p € {0, 1}*
over client inputs. Then, they implemented prefix count queries by
relying on IDPFs (summarized in Appendix A). However, they leak
the count of strings that contain the 7~ heavy-hitting prefix p due to
the reliance on a prefix-count query oracle that outputs the count.
To mitigate this leakage, we introduce the notion of 7 -threshold
prefix-count queries that return 1 if at least 7 of clients’ input
strings contain p, otherwise, it returns 0. We define it as:

DEFINITION 1 (7 -PREFIX-COUNT QUERY ORACLE Qg o, (P, T)).
Return 1 (on input prefix p € {0,1}*) if prefix p appears at least T
times in the clients’ input strings ay, &, . .., ap € {0, 1}* where client
C; has input string a; fori € [£], otherwise, return 0.

7 -Heavy hitters. The 7 -heavy hitters algorithm (for threshold
T) is provided with oracle Qg, . «,(p, 7) for computing 7 -prefix
count for prefix p over the client input strings a1, . . ., a,. The initial
prefix is the empty string €. At each level k, it considers the heavy-
hitter prefixes p € {0, 1}k of length k in set HHk, which contains
the list of k-bit strings that appear at least 7~ times. The algorithm
performs a breadth-first search of the prefix tree. It includes k +1 bit
length strings p || 0 in HHX*1 if p || 0 occurs at least 7~ times in the
input strings (o, . . ., ar), otherwise it gets pruned along its subtree.
This is performed by querying the oracle Qq,,.. o, (p || 0, 7). The
same process is repeated for p || 1. The algorithm repeats this for
all k-bit strings in HHX (which updates HH**1 based on the search
and pruning of set HHX). At the end of the breadth-first search and
pruning, the algorithm outputs the set of strings that are 7 -heavy
hitters. Our formal algorithm is presented in Fig. 3.

Cost Analysis. There are ¢ input strings in total. For any string of
length k, there are at most ¢/7 candidate heavy hitter strings. At
each level k, the algorithm makes at most one oracle query per
heavy hitter string. Hence, the algorithm makes at most /7 prefix-
count oracle queries for n levels. If we set the threshold to be a
constant fraction of all input strings (e.g., 7 = 0.01¢), then the
number of prefix-count queries are independent of the number of
input strings (e.g., "*/7 = " fo.o1e = 100n).
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PARAMETERS: Threshold 7~ € N and string length n € N.
InpuTs: The algorithm has no explicit input. It has access to ¢-prefix count query
oracle Qu; . ay (p, t) for securely computing ¢-prefix-count queries over prefix p
for strings a1, . . ., ap.
OuTtpruTs: The set of 7-heavy-hitter strings in a3, ay, . . ., ap.
ALGORITHM:
o Init. HHS" := {HH®, HH!,...HH"} := {{€},0,..., 0}, where HH®

contains empty string € and HH!, ... HH" are empty sets.
For each prefix p € HH¥ of length k-bits in set HH¥ (where
k=0,1,2...n-1)andb € {0,1}:

If Qo ey (p | b, T) = 1, then HHF*! = HHF*L U {p || b}.
Output 7-heavy hitters HH<" = {HH®, HH!, ... HH"}.

Figure 3: Algorithm for computing 7 -heavy hitters.

3.4 7 -Prefix Count Queries Oracle from VIDPF

We realize the 7 -Prefix Count Query Oracle Q (-, 7°) from Def. 1 by
relying on a new verifiable incremental DPF (VIDPF) primitive and
using an ideal functionality Fcmp (Fig. 7) for secure comparison.

3.4.1  Verifiable Incremental DPF (VIDPF). A DPF allows a client
to succinctly share a vector of size 2" with a single non-zero point.
Meanwhile, an incremental DPF (introduced by Poplar and denoted
as IDPF) allows the client to succinctly secret share a path in the
binary tree (used for representing 2" leaves in binary format) and
each node in the path can hold non-zero values. Our novel VIDPF
primitive offers strong integrity guarantees over IDPFs since the
evaluation of the client keys also provides proofs (ry, ..., ) to
the servers ensuring that the VIDPF output is non-zero along a
single path in the binary tree. It also allows incremental evaluation
of the VIDPF over an input x € {0, 1}k, given state stllj_1 and proof
ﬁ]b‘_l, corresponding to VIDPF evaluation of the first k — 1 bits of
x. The incremental evaluation enables the party possessing key,,
to process one level and obtain the secret sharing of output f(x),
a new state stlg , and a new proof né‘ corresponding to the VIDPF
evaluation of the path involving x. More formally, we capture the
high-level ideas of VIDPF using the following two algorithms:

e Gen(1%,1%, a, (B, ﬁz, ..., G) — (key, key;) : Given
security parameter k, input size n, input string « € {0, 1}",
and values B',..., f7, the key generation algorithm outputs
two VIDPF keys key, and key;.

e EvalPref(b, keyy, x, st];_l, Jrll;_l) — (stk, Yps Jr]b‘) : Given a
VIDPF key key; and an input string x € {0, 1}% of length
k < nbits, this algorithm outputs an internal state stk , secret-
shared value y;, € G, and a proof ”l]; e {0, 1}".

Correctness of the VIDPF ensures that for all input points a €
{0,1}", output values B,..., " € G, VIDPF keys generated as
(keyg, key;) < Gen(a, ﬁl,ﬁz, ..., ", G) and all values x € {0, 1}k,
where k < n, the following holds for all k < n:
ki x is a prefix of ,
ﬂ(l)c - ”{C andy = (yo +y1) = {‘([)3, otherwis:

where (stlg, Yo, rr(l)c) :=EvalPref(0, key, x, stlg_l, ng_l) and (stk, Y1,
71{‘) :=EvalPref(1, key,, x, st’f‘l, ﬂ{‘_l). For security guarantees, we
require two additional properties from the VIDPF primitive:

e Input Privacy. The security of VIDPF guarantees that an
adversarial evaluator in possession of either key, or key,
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(but not both), does not learn anything about the input a or
the outputs 1, ..., " of the client.

o Verifiability. This property states that if two proofs (e.g., n{f
and n{c ) are the same, then there is at most one path of length
k in the binary tree whose evaluation with (key,, key;) out-
puts (8%, 82 ..., B5). More formally, for any k € [n] there
exists a single k-bit string x € {0, l}k such that if Jr(]f = nf ,
then the following holds:

(stlg, Yo, n(]f) := EvalPref(0, key,, z, stlg_l, n(/f_l)
(st]f, Y1, nf) := EvalPref(1, keyy, z, st’f_l, r[f_l)

. Brifz =X,

o+y1 =

PTI =00 2 = {0,135\ (7},
{C_l are obtained by recur-
sively running the EvalPref algorithm on k — 1 bits of z.
The evaluators initialize stg = st(l) =0and 71'8 = n? =01t
}k—l

where stlg_l,n{;_l and st]f_l,rr

also implicitly captures the requirement that x € {0, 1
is a prefix of ¥ € {0, 1}¥ for k € [n].

We provide a construction of VIDPF in Figs. 14 and 15 (Appendix B)
based on length doubling PRG in the random oracle model. Next,
we outline our protocol for securely implementing 7 -prefix count
queries using VIDPF and the comparison functionality #cmp.-

3.4.2 Implementing T -Prefix Count Queries. Each client gener-
ates three pairs of VIDPF keys, one for each pair of servers, with
independent randomness but the same input point & and output
values (1,...,1). The client sends the keys for the sessions to the
respective servers (Fig. 1) as in our histogram protocol.

Basic Protocol. As depicted in Fig. 2, S; replicates Sz in the S;—Sp
session and Sz behaves as an attestator for S; by sending hashes
of the messages that S; should send. The hash prevents S; from
acting maliciously corresponding to the Sz — Sy session. Similar
protocol steps are run by Sz for the session 81 —Ss, where Sy sends
hashes to S1. Hence, Sy and Sy run three sessions, and Sy runs
two of those sessions in parallel. Next, we describe the protocol to
compute a 7 -prefix count query on a string p || 0 € {0, 1} (note,
the same process can be repeated for p || 1). Sp and S; evaluate the
VIDPF keys for the three sessions on p || 0 and obtain a secret share
of the output y? 10 and proof 7. For an honest client, y? 10 should
be ﬁk = 1. However, a malicious client can construct malformed
keys such that the client’s input gets counted more than once.

Client Input Validation. We introduce the following consistency
checks to validate a client’s input. Checks 1-3 ensure that the VIDPF
keys are “one-hot”, i.e., they have a single non-zero evaluation path
(containing 1 in this case, along the path), and check 4 ensures that
the client input is consistent across the sessions:

Check 1: The servers Sy and Sy first verify that the proofs 7 are
the same for all three sessions. This ensures that there is at
most one path in the binary tree that is non-zero.

Check 2: For the root level (i.e., k = 0), the servers evaluate the
VIDPF keys on the empty string € and verify it is 1.

Check 3: Finally, at the kth level, the servers need to verify that
yP 10 i either 0 or 1, without reconstructing the output. We
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perform this check by observing that the output of the par-
ent p should be the sum of the outputs of p || 0 and p || 1.
The servers evaluate the VIDPF keys on the parent string
p and sibling (of p || 0) string p || 1 to obtain secret shares
of the output of y? and y” I respectively. The servers re-
construct y? — (yPI0 + yPlI') and verify that it is 0. The
first check ensures that at most one of y?/l° or y?/I! is non-
zero. Combining the two checks, we can conclude that either
(yP10 = 0,421 = 1) or (4?19 = 1,y?I1 = 0), since at most
one child can equal 1 when the parent holds a value of 1.
Tterating this for all k levels ensures that y?1° = 1 iff yP = 1
and yPII! = 0, else y?!l° = 0. The servers also verify (using
check 1) the corresponding proofs 7 generated during the
VIDPF evaluation along the path, to ensure there is at most
one non-zero path in the entire binary tree.

Check 4: The servers also need to ensure that the client input is
consistent across the sessions. This is ensured by comput-
ing the difference of the reconstructed outputs across the
sessions and verifying that they are equal to 0 by matching
their hash values. For more details, we defer to Section 4.

Output Phase. Once the client’s VIDPF output y? 10 s verified,
the secret shares of y? 10 are aggregated into counter cnt? 0 The
servers repeat the above steps for all the clients in parallel to obtain
secret shares of cnt?l%. The servers invoke the comparison func-
tionality Fcmp (Fig. 7) with the secret shares of cnt and threshold
7. Fcmp reconstructs cnt and it outputs 1 if cnt > 77, otherwise, it
outputs 0. This is returned by the servers as the output of the 7 -
prefix count oracle query response to the string p || 0. Similar steps
are run for p || 1. The comparison functionality Fcmp is securely
implemented using the state-of-the-art protocol of Rabbit [36].

Robustness Against a Malicious Server. Note that the above
validation check assumes that both servers are honest. Otherwise,
malicious behaviour is detected as described next. The third server
ensures that if the client behaves honestly then at least one of the
three sessions will be evaluated correctly since two of the servers are
honest. After aggregating all the client’s inputs, cnt is reconstructed
across the three sessions by Fcmp. If cnt is inconsistent across any
pair of servers then Fcmp returns L indicating that one of the
servers behaved maliciously by launching an additive attack. This
causes the honest servers to abort, providing robustness against
the malicious server. We observe that our protocol satisfies fairness
(which is a stronger security notion than selective abort) if Fcmp
is implemented using a fair protocol. We discuss this in Sec. 7.

Batched Client Verification. In our final protocol, we verify mul-
tiple client inputs at each level in one batch. We batch all the clients’
VIDPF evaluations using a Merkle tree that has ¢ leaves for ¢ clients.
First, the servers check the equality of ¢ leaves by asserting that the
Merkle roots are the same. If the roots match then the leaves are
the same, while if they differ then the servers recursively repeat
the same process for each of the two children of the parent node.
Proceeding this way, the servers identify the malformed leaves on
which the two trees differ. This reduces the dependency of our
server-to-server communication to O(¢’(log, %)), for ¢’ malicious
clients, instead of O(¢), while when ¢’ = 0 our communication is
down to O(1). Formal details can be found in Section 5.
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4 PRIVATE HEAVY HITTERS

We provide the ideal functionality Fjy1y for heavy-hitters between
three servers and ¢ clients in Fig. 4. Adversary ‘A maliciously cor-
rupts any one of the servers and multiple clients. Note that this
corruption can easily happen; if A has maliciously corrupted a
server, then A can spawn multiple malicious clients. Additionally,
if A controls a server, it can instruct Fyy to discard an honest
client’s input. It can also instruct the functionality to abort at a par-
ticular level k + 1. In this case, A and the honest servers receive the
set of all (that have not been discarded by A) k-bit heavy-hitting
prefixes as output, and the functionality instructs the honest servers
to abort. We remark that ¥y never leaks an honest client’s inputs.

PARAMETERS: Servers Sy, S1, Sy. £ clients C; for i € [£]. Sy, S1, Sz agree on:
e A bound ¢ on the number of client submissions.
e Abound 7 on the threshold for heavy hitters.
INPUTS: Servers Sy, S1, Sz do not have any input. Clients C;: A point
a; € {0,1}" for i € [£]. a;; represents the jth bit of a;.
OurpuTs: Init. HH=" := {HH, HH!, ... HH"} := {{€},0,..., 0}. For
k € [0,...,n — 1] and for each prefix p € HH¥, update
HHR = HHF U (p || b) if B |(aicker = (p 1 B))] 2 T, for b € {0,1}.
Ftin outputs the following:
o Servers Sy, S1, Sz: Set of T-heavy hitters HH=".
o Clients C;: No output for i € [£].
CORRUPTION: Adversary A maliciously corrupts one server and multiple clients
together. A can perform the following:
If A instructs the functionality to discard the jth client’s input, then Fyy
discards @j from the output computation.
If A instructs the functionality to abort at level k + 1 by sending (L, k + 1), then
Frn returns HH= to A and the honest servers; additionally, i instructs the
honest servers to abort by sending L.

Figure 4: The ideal iy functionality for 7 -heavy hitters.

Our detailed protocol wyy that implements ¥y appears in Figs.
5 and 6, while high-level ideas of our protocol can be found in
Sections 3.3 and 3.4. Our 7y protocol privately computes all the
7 -heavy-hitting strings (and their heavy-hitting prefixes) given the
input data of ¢ clients, while protecting the privacy of the individual
data points. 71y runs on three servers (Sp, S1, S2) that utilize our
verifiable incremental DPF (VIDPF) protocol to privately aggregate
the clients’ data points. Specifically, 7y runs three VIDPF sessions,
which guarantees security against a malicious server. Our protocol
proceeds in three phases: a client computation phase, a server
computation phase, and an output phase.

Client Computation. During the client computation phase, each
client C prepares three pairs of VIDPF keys for their private data
point & € {0,1}", and output value (B',..., ") = (1,...,1) along
the path to «, using independent randomness for each key gener-
ation. Employing three pairs of keys essentially allows us to run
three separate VIDPF sessions. Sg and S; each have one key for
each of the three sessions, while Sy acts as a consistency check-
ing server and shares one key with each of the other two servers.
More specifically, the client generates (key g ), key g 5)) for So,
(key (1,0)> key (1,2)) for S1, and (key 5 1), key (5 9)) for Sa. The client
sends (key (g 1), key g ), key 5 1)) to So, (key 1 g), key (1 2), key (2.0))
to Sy, and (key(, 1), key (3 )) to Sz as shown in Fig. 1.

Server Computation. Each server initializes a set of sets for heavy-
hittersas HH=" := {HH®, HH!,...,HH"} := {{€},0,...,0}, where
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HH? is a set with the empty string €, HH!, ..., HH" are empty sets
and HHK corresponds to the kth level. The servers start accepting
VIDPF keys from the clients. As in our histogram protocol, Sz acts
as an attesting server for the sessions involving keys key , 5) and
key(,,1) by sending hashes (depicted in Fig. 2). Next, for k € [n]
the servers perform the following:

Initialization. For each k-bit heavy-hitting prefix p € HHX, the
servers initialize to 0 a cnt? !l (resp. cnt? ||1) variable for each session
to count the frequency of prefix p || 0 (resp. p || 1). Each server
aggregates for each of the three sessions their additive shares of each
frequency in their local cnt variables and uses them for pruning.

VIDPF Evaluation. Next, the servers retrieve from memory the
states for VIDPF evaluation in all three sessions corresponding to
prefix p € {0,1}* for each client. These states are used to incre-
mentally evaluate the VIDPF on prefix strings y € {p || 0, p || 1} for
every client in all three sessions. For each client, the servers obtain
new evaluation states (corresponding to prefix y), VIDPF output for
prefix string y, and proof strings. The states are stored in memory
for future VIDPF evaluations ony || 0 and y || 1 in the (k +1)* h level.
More formally, the servers compute a secret shared vector y)(/bl’ by)

Y
and a hash T by.by)

on the verifiability property of the VIDPF. Next, the servers validate
the client’s input. If k = 1, then the servers reconstruct y° + y! for
each client to verify that y° + y' = 1 (i.e., the non-zero root value
is 1). If k # 1, then the servers reconstruct y? — (y?1° + y2II1) and
verify that it is 0, asserting that the parent value is propagated to the
children correctly. Note that in either of the above cases, nothing
is leaked about the client’s input, apart from the fact that it is a
valid submission (i.e., 1 at the root layer and correct propagation).
This ensures that the subtrees involving p || 0 and p || 1 are valid.
The servers also need to ensure that the client has provided consis-
tent input across the three sessions. This is ensured by computing
the difference of the reconstructed outputs across the sessions and
verifying that they equal 0 by matching their hash values with the
other servers’ hash in Step 2e of Fig. 5.

Batch-Verification. The servers need to check: (1) that the hashes
they possess for a client are equal, and (2) that y? = (y?ll0 + y?lI1).
Both these checks are reduced to checking the equality of a string
(corresponding to each client) held by servers. Let u (resp. v) be the
list of ¢ (one for each client) strings held by the first (resp. second)
server. Then, the servers perform a batch verification of u and v
strings by invoking the subprotocol 7¢peck (u, v) in Fig. 8. If the two
lists u and v are equal then m¢peck returns ver = 1, else it returns
ver = 0 and a list L containing the indices of elements where the
lists differ. This is performed for all three sessions. Sy also attests
to the sessions that it is involved in. This is performed using batch-
verification, yielding output lists L’ and L. Finally, the servers
identify the list of bad clients as L = LU L’ U L”” and their VIDPF
output is ignored. The servers consider the rest of the clients as
“validated"” and they are moved to the aggregation phase.

Aggregation. Once a client’s VIDPF output yY is validated for
vy € {p 11 0,p || 1}, it is aggregated into cnt’ = cnt¥ + yY. This
is locally performed by each server (for all three sessions) using
the secret shares of yY since it only involves addition. The servers
perform this over every validated client output, and at the end of

that is used for consistency checking by relying
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Input: Each client C; has an input point ; € X for i € [£].
Output: The servers Sp, (for b € {0, 1,2}) output the set of 7-heavy hitters HH=" := Fy (¢, T, {i }icpe))-
Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. Hy, H, : {0,1}* — {0, 1} are random oracles.

Client C Computation. (Repeated for ¢ clients, each of which has their own private input «)

1) Client C with input « prepares three pairs DPF keys with independent randomness u, v, w L 0,1}*, as follows:

P prep: p Y P
(key (g,1)- key(1,0)) = Gen(1,1%, @, (1,...,1),G), (key(y 5), key (5 1)) = Gen(1, 1", a, (1,...,1),C), (key(y), key(gz)) = Gen(1%,1",a, (1,...,1),G)

(2) The client sends (key (g1, key gz), key(51)) to So, (key 1), key(y 2y, key(z0)) to S1and (key(, ), key(5)) to Sa.
Server Computation.
Each server Sj, initializes HH;" = {HHY, HHZ, ...HHZ} = {{e}, 0,..., 0}. Repeat the following steps for length of k bits, where k € [0,...,n—1]:

(1) Initialization. For prefix p € HHk servers initialize the aggregation variables for prefixes y € {p || 0,p || 1} as follows:

Sy sets Cnt(01) = Cnt(oz) = cnt(2 K =0, S sets cnt(lz) = cnt(lo) = cnt(2 0" =0, S, sets Cnt(zo) = cnt(2 y
(2) VIDPF Evaluation. For preﬁx pe HHE , Server Sp computes: (Repeated for ¢ clients)
(0 — o0 e 0 ) — 0 V) ) 0 — o0 —
(a) If (p 0): then Sy sets st(m)@ Tony = Stz = Tz = St(z‘l) =) 0, Sy sets St(lz) Tigy = St(l.ﬂ) =gy Sty (20) = 0. S; sets
st =0 =t = = 0.
ta0) = o0y = Sty = Ty

If (p # 0): then S, retrieves the state from memory corresponding to the internal states of 7yippr for prefix p: Sy retrieves (st(0 1 y(0 1 nﬁ) n) (st(o 2y yﬁ] 2y
(02)) and (st (21)° (21), 71'<21 ). S retrieves (st(1 2 y‘o1 12 1,2)) st(1 o)’ y‘”1 0’ 10)) and (stQO) y(zo)’ T[(zo)) S, retrieves (stpzo), yf“), 71'(20) ) and (stfz 1’
yfz,l)’ f’z’l))'
(b) Each server S, evaluates the VIDPF on the prefixes y € {p || 0, p || 1} as follows and stores them in memory:

Sy sets (st(m), y(01), 2/01)) = EvalPref(0, key 0,1y, ¥ sf:‘f0 1 k, n'p()l)) (st(02>, y(oz)’ (02)) = EvalPref(1, key (0,2)> ¥ sf:‘?0 2 ,71'(%2>) and stores them in memory.
S sets (st(1 2 y(1 2 T, 2)) = EvalPref(0, key (1), ¥ st‘:)1 2),k lr(p”)), (St(l,O)’ y(l,o)’ﬂ(l,o)) = EvalPref(1, key (1,0)> ¥ st‘;’1 0 k, lr(p10>) and stores them in memory.
S, and S set (St(zo)’ y(zo)’ (20)) = EvalPref(0, key(zo) Y, stf2 0 k, ”{)20)) and store them in memory.

S, and Sy set (st(2 1 y(2 e, 1)) = EvalPref(1, key (1) Vs st(2 " k, 7er 1)) and store them in memory.
(c) If k =1 : Servers compute the proof that the VIDPF evaluation at the root layer sums up to 1:

0 1 0 ._ 0 1 0 1 0 ._ 0 1
Sy sets h(0 y = =H;(0,1- Yoy ~ y(o1)) and h(o.z) = H; (0, Yoz * y(o,z)’)’ S sets h(1 2 = =H;(0,1- Yz ~ 9(1,2)) and h(w) = H; (0, Yoy * y(l,O))’
S, and S set h(zo) =H;(0,1- y[(]z,o) - yzz,o))’ S, and S set h?z,n =H;(0, y((’M) - yzm)).
(d) Ifk # 1 : Servers compute proof that (VIDPF output on prefix p) = (VIDPF output on prefix p || 0) + (VIDPF output on prefix p || 1):
p p p
P llo [ [lo |\1
So sets hi 1) = Hi (o) = Yo ~ Yon) and Ky = Hi(p =y, = Yoy yfoZ)
P i1 — Hl
Susets hf, = Hi(p. uf,,) =yl = uliy)) and B, o= Hi(p.=(ul ) = vl = uily)
P P rlo it HO Hl
Sy and Sj set h(z,o) =H; (p, Yooy ~ y(2 0~ Y U)) S, and Sy set h(z y = =H; (p,— (ypz 1) yfz D yfz Dy
(e) So and Sy ensure that the client input is consistent across the three sessions by computing the following hashes.

710 0 0 0 0 T 1 1 1 1
So computes kP10 = Hy (51, = yhhy  yhhy) = yha ) and keI = Hy (yf) ) = yfhy ) = o))

TS 0 0 0 0 Toll 1 1 1 1
St computes kP10 = Hi (50 = yf10) yPl) = yho)) and keI = Hy () = Pl yPl = bl )

(f) Client State Accumulation: The servers accumulate their local state for each client session as follows:

LP10 Pl llo [}

So SetSR«n) =H, HpeHHk ph (01>’ (0,1)? (01))) andR(oz) =H, ”peHHk p> (oz)’”(’i)z)’”(’i)z)))
— llo I lo le

S SetSRmz) = HZ(HpeHHk(P h(lz)’”ﬁZ)’”ﬁz))) andR(lO) =H ”peHHk P> (10)’”?10)’ (10)))

”pl\o ”pl\l

0
S2 51 SetRzo) = H(| 0 Ty ), and S, So SetR(u) =Hy ||pEHHk p.H (21)’ 1 )

peHHk P’ (20)’ (2,0)° (2,0

Figure 5: Private 7 -Heavy Hitters Protocol myy (continues in Fig. 6).

this phase, the servers possess a secret share of the frequency of o If Fcmp returns L, then one of the servers behaved mali-

plloand p || 1 as cnt? 10 and cnt? 1, ciously and the honest servers abort. This occurs if the ma-

Pruning. The servers proceed to pruning and invoke Fcmp (Fig. 7) licious server has provided an incorrect threshold as input

on the secret shares of cntY (fory € {p||0, p|| 1}) for all sessions and (condition 1 in Fcmp) or it provided incorrect client output

threshold 7. Based on the output of Fcpmp the following occurs: shares as input (condition 4 in Fcmp).

This computation is performed in parallel for all (k + 1)-bit prefixes

e Fcmp returns 1if entY > 7 (ie., y is a heavy-hitter string). in consideration, and after the pruning phase, HHX*! contains the

In this case, the prefix y is added to the list of k + 1-bit heavy- list of (k + 1)-bit heavy hitter strings. Next, the above computation

hitter set (i.e., HHA*1 .= HHA+1 U V) is repeated for (k+1)-bit strings to compute (k+2)-bit heavy hitters,

e Fcmp returns 0 if ent? < 7 (i.e., y is a non heavy-hitter until we reach k = n — 1. As already mentioned, Fcmp is securely
string). In this case, the prefix y is ignored. implemented using the state-of-the-art protocol of Rabbit [36].
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Server Computation (Continued from Fig. 5) Repeat the following steps for length of k bits, where k € [n]:
(3) Batch-Verification. The servers batch Verify the client inputs for all three sessions and across the three sessions by invoking 7check (Fig. 8):
(@) Sp sets u; = {(Rfo,l)’ (0.2)° (2 N hP”O hPHl) values for client i € [£] } Sy sets v; = {(R(lo) 0 (1 2),hPH0 hPII) values for client i € [[]} Sy sets
u = {u; }ic[¢) and Si sets v := {0; }ie[]. So and S; batch-verify all the client inputs by computing the bit ver and list L (comprising of invalid client inputs) by
running Mcheck With inputs u and v respectively: (ver,L) = mcheck (U, v) :

) v (RE

ver := 0 if 3 a client whose (R(0 n#* R )V (RK )V (hT"”\0 + hrloy v (hjﬂTl # hpl1), and

k
(1,0) (0, Z) (20) (2, 1) (1,2)
List L := {list of invalid clients’ since they failed to pass the above check}. If ver = 1, then all the clients’ inputs are valid.

(b) S, possesses R(z 0’ R{‘z 1 values for each client. S, verifies that S’s version ofR(2 " matches with Sy’s version ofR(Z - S, also attests that Sy’s version ofR(Z 0)
matches with Sy’s version ofR(0 2) by computing (ver’,L’) = ”check({R(z " (2 0) }Ye clients of Sz, {R(2 " (0 2) }e clients of So)-
(c) S, verifies that Sy’s version ofR(2 0) matches with S;’s version ofR(2 0) S, also attests that Sy’s version ofR(2 " matches with S;’s version ofR(1 2) by
computing (Ver”, L”) = Teheck ( {R(Z,O)’ (2,1) }l‘ clients Of S, {R(Z,O)’ (12) }(’ clients Of So)
After batch verification, the servers identify the list of bad clients as L := L U L” U L”. The servers ignore the inputs of all clients in L.
(4) Aggregation. Aggregate the VIDPF outputs for prefixes y € {p || 0,p || 1} as follows: (Repeated for all validated clients in [£] \ L)
S sets cnt(on = cnt(m) + y(U 1),cnt(0 2) = cnt(“) + y(oz)’ and cn'f(2 1) = cnt(21) + y(ﬂ)
S sets Cntuz) nt(l 2) + y(1 2)’C"t(10) = C”t(lo) + y(lo), and C”t(zo) t(z,o) + y(m)
S, sets cnt(zo) = Cnt(zo) + y(zo) and cnt(“) = cnt(N) + y(zl)

The servers have aggregated the VIDPF evaluations (over all the ¢ clients) for all candidate (k + 1)-bit strings.
(5) Pruning. For every (k + 1)-bit string y, the servers invoke Fcmp functionality (Fig. 7) with the additive shares of the node frequency.

S, invokes Femp(ent? 0, ent’ ent? | ent!

(01)’ (02)’ T), 8 invokes %Mp(cnt(lo),cntuz),o cnt(lz),cnt(zo),’f) S, invokes Fcmp (0, Cnt(z1)’cnt(zo)’ 0,0,7)

(21
The servers abort if Fcmp aborts. If Femp outputs 1 set HHk*! .= HHA Y y. Otherwise, the servers ignore y since it is non-heavy hitter.
Servers have successfully computed the HH**! set. Servers repeat “Server Computation” steps (starting from Step 2b) on k + 1 bit prefixes.

(02)°

Output Phase. The servers output HH=" as the set of 7-heavy hitter strings.

Figure 6: Private 7 -Heavy Hitters Protocol 7y (continuing from Fig. 5).

INpUTS: Party Py has input (ao, bo, co, do, €0, ), Party P1 has input va}en the servers verify the VIDPF proF)fs. If the chest pass, then
(a1, by, c1,dy, e, T7), and Party P, has input (ag, by, ¢z, da, €2, 7). it is ensured that the VIDPF keys provided by the client are valid.

OuTtputs: Compute a := ag + a1, b == by + by, ¢ = co + ¢z,

d = dy+dy,e = e + ez, and proceed as follows: Client VIDPF input is malformed. Next, a malicious client can

(1) If not 75 = 77 = 2, then Femp aborts. Else, set 7 := 7. try to double-vote on an input point, say p || 0 € {0, l}kJr1 by
2) Ifa=b=c=d= da < T th tput 0. . PN iy

23; Ifazb-c—d=candas T then Zﬁtﬁﬁt 1. constructing the VIDPF on (p || 0, %), i.e., f(p || 0) = p*, where
(4) Else, Fcmp aborts (ie. a, b, ¢, d, or e strings are not equal). Bk > 1, instead of (p || 0, 1). This is detected by the honest servers

CORRUPTION: Adversary A maliciously corrupts one server. If A instructs the

S oS since they perform a local subtree verification by reconstructing
functionality to abort, the functionality instructs the honest servers to abort.

the value y? — (y? /19 — yPII') and verifying that it equals 0 for all
k > 0. For k = 0, the servers verify that y© = 1.

Figure 7: The ideal Fcpmp functionality for comparison.
VIDPF input is inconsistent across sessions. Finally, a malicious
client can try to provide different VIDPF keys in different sessions.

Outlput Phase. At the end, the servgrs output HH S.n = {HHO’ For example, it constructs VIDPF keys for (a1, 1) for session So—S1,
HHY, ..., HH"} as the set of 7 -heavy hitter strings. This completes (az, 1) for session Si — Sy, and (a3, 1) for session Sy — So, where
the description of my (Figs. 5, 6). ai, az, a3 € {0,1}" and might be different. To ensure the input

is consistent across sessions, the servers match the difference of
the reconstructed output of Sy — S;1 and Sz — S session, and the
difference of the reconstructed output of So — Sp and S; — S
session, to verify that they are all 0. By transitivity, it is ensured
that the VIDPF evaluation is the same across the sessions if and only
if the checks pass, ensuring that a; = @z = a3. This is performed

THEOREM 1. Assuming VIDPF is a verifiable incremental DPF and
Hi, Hy are random oracles, Fcpp is a secure comparison functionality
(Fig. 7), and H (in mepecr) is collision-resistant, then myy (Figs. 5
and 6) implements Fyypy in the (random oracle, Fcpp)-model against
malicious corruption of one server and ¢’ < ¢ clients.

Proof Sketch. Security of our protocol is captured in Theorem 1 by computing hPI” and h# 1! hashes.

and proven in Appendix C. Below we provide a security sketch. The A malicious server can collude with malicious clients. Observe
adversary is allowed to corrupt ¢/ < ¢ clients and one of the servers. that the honest clients’ inputs are always hidden from the adversary
The other two servers are honest. A malicious client attempts to due to input privacy of VIDPF. Next, a malicious server could in-
inject an error and is detected in the following ways: corporate an erroneous VIDPF evaluation (from a malformed client

input key) or inject additive errors into the output. We show how

Client VIDPF keys are malformed. A malicious client can provide
this is tackled in the protocol based on the server corruption:

malformed VIDPF keys that are non-zero in more than one path

in the tree. This gets detected in the session involving the honest 8o is corrupt. In this case, the session between S; — S, is honest.

servers due to the verifiable property of the VIDPF at each level So runs this session with Sy since it obtained key ;) from the
13
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client. However, S; behaves as an attestator by sending hashes
of the messages that Sy is supposed to send. This forces Sy to
act honestly in the S; — S, otherwise, it leads to an abort. An-
other way a malicious Sy can behave badly is by colluding with
a malicious client. The client can provide malformed inputs in
So — 81/82 — Sp session or inconsistent inputs across the three ses-
sions. In such a case, a malicious Sy could compute an incorrect hash

’ ’ ’ ’

pollo — H, (yPHO ypo\lg) ,ypllo ypHO)) and ppI = Hl(ypol\i)
1’ 1/ 1 0 0’ 1/

oz Yoo ‘yfz)”n yfo”n a2 Vo) Yoo
rect. This allows Sy to introduce an additive error mto the frequency
for p || 0 and p || 1 (for the Sp — 81 and Sz — Sy sessions) by incor-
porating the client’s malformed input. However, this gets detected
when the output count is secretly reconstructed by Fcmp for all
three sessions. The reconstructed count will not match and the
ideal functionality would return a 1 message detecting that one
of the servers behaved maliciously, leading to an abort in the 7.
The case where Sy is corrupt is symmetrical.

) where are incor-

Sy is corrupt. In this case, the session between Sy — Sy is honest.
If S behaves as a malicious attestator by sending incorrect hashes
for the 81 — Sy or Sy — Sy sessions then the honest servers abort. A
malicious Sy can also collude with a malicious client, and the latter
can provide malformed inputs in the three sessions. If this happens
in the Sp — S session then it gets detected due to verifiability of the
VIDPF and the local subtree verification, since both Sy and S; are
honest. If the client provides malformed (e.g., double voting) VIDPF
keys key;z,o) and key22,1) to 81 and Sy for the sessions involving

Sy, it again gets detected since Sy computes the hashes k10 and
hPIIt honestly and S; verifies them honestly.

Round Complexity. Next, we analyze the round complexity of our
heavy-hitters protocol. The Server computation is performed for n
levels (k € [0, ...,n — 1]), where each level involves “VIDPF Evalu-
ation”, “Batch Verlﬁcatlon” “Aggregation”, and “Pruning” phases.
The VIDPF evaluation and aggregation steps are performed locally
by each server. Each batch-verification step requires [log, £] + 1
rounds in the worst case (when there are malformed client inputs
at each level) and a single round in the best case (when all the
clients are honest). However, all verification steps for level k are
performed in parallel and are batched. We further elaborate on
this in Section 5. In the pruning phase, the servers run a proto-
col that implements Fcpmp for each prefix, which is performed in
parallel for all prefixes at the same level. Instantiating Fcpmp with
Rabbit [36] involves log, |G| rounds, where the frequency count is
performed over G. Summing up, the best case round complexity of
PLASMA is n- (1+log, |G|) and the worst case round complexity is
n-([log, £1+1+log, |G|). For benchmarking, we implement group
G using a 64-bit ring to exploit native CPU ring optimizations.

5 BATCHED CONSISTENCY CHECK

We now present our batched consistency check 7¢peck that enables
two parties, Pg and P, to verify the equality of lists u and v con-
taining ¢ strings using Merkle trees. If the two lists are equal then
Tcheck returns ver = 1, else it returns ver = 0 and a list L containing
the indices of elements where the lists differ. Correctness follows
from the collision resistance property of the hash function H.
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InpuUTs: Party Py has ¢ input strings u = {u; },—E[,]. Party P; has ¢ input strings
v = {0i }ie[r]
OUTPUTS: Tcheck OUtputs (ver, L) as follows:
e Ifu=vthenver:=1andL = 0,
o If u# vthenver:=0andL = {i}y;z0; for ic[e]-
ver = 1 denotes that the Merkle roots of u and v are equal. L is a list of indices
where u and v differ.
ParaMETERs: H: {0,1}* — {0, 1}* is a collision-resistant hash. K = [log, £]
denotes number of levels in the Merkle tree for £ leaves.
ALGORITHM:
Root Computation: Party Py (resp. P1) locally computes the Merkle Ry (resp. Ry) on
u (resp. v). For b € {0, 1}, party Pj, performs:
e If b =0 then set N(')< = {Ng’i}iglll] = {H(K, i, u;) }ice as the list of leaf
nodes in the Merkle tree containing u.
e If b =1 then set N}f = {N1KJ. Yiere] = {H(K, i, 0;) }ier as the list of leaf
nodes in the Merkle tree containing v.
Initialize £’ := £ as the number of nodes in level K.
Forlevelk € {K—-1,K-2,...,1}:
- Sett = [%,] as the number of nodes in level k.
- For i € [£'] : Compute list of nodes at level k by hashing the nodes at
k ._ Nk k+1 Nk+1
level k + 1 as Ny =Ny U H(k, Nb b Nb 2”1)
e Set Merkle Ry, = N}).

Root Verification: Parties Py and Py exchange Ry and Ry. If Ry = Ry then set
ver == 1, L := 0, and output (ver, L). Else, set ver := 0 and continue.
Unequal Leaf Identification: For b € {0, 1}, party Pj sets N}, = Rp, as the unequal

—k—
node at level 1. For level k € {2,...,K}: For each unequal node n € N, ! at level

k — 1, parties identify unequal nodes at level k:
e Party Py, fetches left and right child of n as childlL7 and chillej.
e Parties exchange childy, child, child}, and child®, and perform the
following for b € {0,1}:
Nj = Nj U child} if child} # child:
Nb = Nh U Chlldb 1fchlldU # chlldR

Py, possesses Nb as list of unequal leaf nodes Py, sets L as the list of indices of Nh

w.r.t. initial leaf nodes Nz asLi=LU{i: Nb’,- = bei }. Party Pp, outputs (ver, L).

Figure 8: mpeck for equality verification of ¢ strings between
two parties and identification of unequal strings.

As summarized in Fig. 8, 7cpeck requires K + 1 rounds of com-
munication, where K = [log, ¢]. The total communicated hashes
are roughly 4¢’(log, % + 2), where u and v differ on ¢’ elements.
It can be further optimized to 2¢’(log, % + 2), where only one of
the parties sends its hashes instead of both. We provide a detailed
analysis of the protocol in Appendix D. In case £’ = 0, then our
communication is a pair of hashes.

6 EXPERIMENTAL EVALUATIONS

We implement our heavy-hitters protocol 7 in Rust and use the
tarpc framework by Google for asynchronous Remote Procedure
Calls (RPC).! PLASMA is fully parallelized: all sessions in each
server run in parallel and we employ parallel iterators to process
multiple client requests concurrently. (We apply the same paral-
lelization for benchmarking Poplar.) We instantiate the PRG for
VIDPF using the AES-NI hardware instructions for AES encryption
with a seed of k = 128 bits. We used rings in PLASMA (instead of
fields) since our checks rely on the security of VIDPF (i.e., XOR-
collision resistant property that is provided by the random oracle).
Conversely, the security of Poplar relies on a statistical check for
the client’s input validation. This check relies on the underlying

10ur code is available at https://github.com/TrustworthyComputing/plasma.
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group size and needs 62 bits for the statistical failure probability to
be 2790 for intermediate levels; for the leaves, we use the default
size of a finite field of 2k = 256 bits as mentioned in Poplar.

Experiment Details. Our experiments vary the number of clients
between ¢ = 103 and ¢ = 10° with two different bit-string sizes,
n = 64 and n = 256 bits. We configured the threshold 7~ to be 1% of
the clients’ strings, and we report the client and server costs, while
empirically comparing with Poplar. Then, we compute the total
monetary costs (due to runtime and communication) incurred by
PLASMA servers, and we compare it with [4] (since the code of [4]
is not open-source) based on the monetary cost.

Experimental Setup. We performed both LAN and WAN? exper-
iments on AWS EC2 machines (c5.9xlarge) each with 36 vCPUs
at 3.60 GHz. PLASMA is compiled using Rust 1.74, and client-side
experiments are carried out using a standard laptop with an Intel
i7-8650U CPU (1.90 GHz).

Performance Evaluation. In our experiments, our goal is to an-
swer the following questions:

o How efficient is PLASMA for each client and server?

e How does PLASMA compare with similar works (such as
Poplar) that leverage DPFs?

e How does PLASMA compare with the related works that
provide similar security guarantees, such as [4]?

Client costs. The PLASMA client generates three pairs of DPF
keys. Meanwhile, the Poplar client generates two pairs of DPF keys
but also computes a malicious sketching operation. As a result, both
PLASMA and Poplar clients are extremely fast, running in the order
of 20 — 24 microseconds on 256-bit inputs. A detailed comparison
of client runtime can be found in Fig. 9 (a).

— 40 —@— PLASMA °

%) 100 —@— PLASMA 4
2 Poplar ;-; Poplar
g 30 = 75
= 4 1S
g 20 / 8 50 =
4
E /. E /
210 > 5 25 /
= &
o ./ s
32 64 128 256 512 32 64 128 256 512

Bit-string size (n) Bit-string size (n)

(a) Client Runtime (b) Client Communication

Figure 9: Comparisons of client costs for PLASMA and Poplar
(KB is Kilobytes and s is microseconds).

In terms of client communication, PLASMA transmits eight DPF
keys, whereas Poplar transmits four DPF keys plus the correlated
randomness for the sketching operation. As shown in Fig. 9 (b), we
observed that the clients in both protocols incur the same commu-
nication overhead, roughly around 55 KB for 256 bits.

Server costs. In this experiment, we run PLASMA with randomly
distributed malicious clients and compare it with Poplar. We set
the malicious clients ¢’ to be a 0, 0.01, 0.1, and 0.3 fraction of the
total clients £. We observe that running with ¢/ = 0.01¢ has slightly

2We used one server in Oregon, one in Ohio, and one in N. Virginia. For Poplar, we
used one in Oregon and the other one in N. Virginia.
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faster performance than 0.1¢, while 0.3¢ exhibits slightly worse per-
formance than 0.1¢. Still, these differences are marginal compared
to the total runtime,® so we opt for reporting the 0 and 0.1¢ to make
the figures more clear.

LAN Server Runtime. PLASMA outperforms Poplar in terms of
server runtime by 2.7x (64 bits) and 5x (256 bits) for £ = 10° clients
and 7 = 1% of the clients. This improvement is largely attributed
to our efficient VIDPF-based client input validation. Although the
presence of malicious clients has an impact on PLASMA’s perfor-
mance, it still remains significantly faster than Poplar as presented
in Fig. 10. Meanwhile, Poplar servers validate clients’” inputs using
an expensive malicious secure sketching protocol.

103 104
—e— PLASMA ' = —8— PLASMA (' =
i
= 102 W PLASMAL=0.1f G103 T® PLASMALI=0.1t
§ Poplar/,/ % Poplar P
-~ - P>
@ o1 o @ 102 x/
€ gt £ ;
£ € x_———'x"/
2 100 2 10!
107! 10°
103 10* 10° 10° 10° 104 10° 106

Number of clients (£) Number of clients (£)

(a) Bit-string size (n = 64) (b) Bit-string size (n = 256)

Figure 10: Server runtime over LAN.

WAN Server Runtime. We benchmark PLASMA and Poplar over
WAN for n = 64 and 256 bits and report our findings in Fig. 11. While
the total latency is increased for both frameworks, we observe that
the server WAN runtime for PLASMA increased by roughly 5-10%
compared to server LAN runtime, whereas for Poplar the runtime
increases by roughly 50%. We observe almost 5 — 10X improvement
in terms of server WAN runtime for PLASMA compared to Poplar
since PLASMA incurs significantly less communication for 7~ = 1%.
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S P =1
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10! 10t

103 104 10° 106 103 104 10° 106

Number of clients (£) Number of clients (£)

(a) Bit-string size (n = 64) (b) Bit-string size (n = 256)

Figure 11: Server runtime over WAN.

Server-to-Server Communication. We compare the total commu-
nication costs incurred by all servers for an increasing number of
clients, 7 = 1%, and n = 256 in Fig. 12. Poplar servers incur 35 GB
of communication, whereas, PLASMA servers communicate less
than 1 GB of data when considering ¢’ = 0 and 0.1¢ corrupt clients,
hence yielding a 35X improvement over Poplar. The implementa-
tion of [4] is not open-source so we estimate the communication
cost of [4] in Appendix G. The protocol of [4] communicates 45 GB
of data to compute heavy-hitters over 10° client submitted 256-bit
inputs. This yields a 45x improvement of PLASMA over [4].

3Performance is impacted by expanding the Merkle tree which happens if there is at
least one malicious client.
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Figure 12: Comparisons with Poplar [10] and the sorting-
based approach of [4] in terms of total server-to-server com-
munication (in GB).

Server Monetary Cost. To obtain fair comparisons between Poplar,
[4], and PLASMA, we perform cumulative monetary cost analysis
for a varying number of clients, assuming $0.05/GB and $1.53/hour.
To estimate monetary costs, we run PLASMA and Poplar in a similar
setup as [4] and compare it with the runtime provided in [4, Table
7.3] (which only considers 100k-400k clients over LAN). Note that
Poplar runs two servers while PLASMA runs three. The monetary
cost incurred by Poplar is two times the cost incurred by a single
Poplar server, while for PLASMA it’s three times a single PLASMA
server.
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105  2x10° 4x10° 10° 10°  2x10° 4x10° 10°

Number of clients (£) Number of clients (£)

(a) Bit-string size n = 64 (b) Bit-string size n = 256

Figure 13: Comparisons with Poplar and the sorting-based
approach of [4] in terms of total monetary cost (in USD).

We present our findings in Fig. 13 for 7 = 1% of the clients.
Computing the 7~ most popular strings among 1 million clients
with n = 256 bit strings, costs $4.7 with Poplar, while PLASMA
incurs $0.6-$0.9 costs for 0 to 0.1¢ malicious clients. Meanwhile,
[4] costs at least $2.2 to perform the same task, so PLASMA yields
a 2.5 — 3.5X improvement over [4] despite having a 15X runtime
slowdown. This is largely due to the communication incurred by
[4] for performing secure sorting under MPC. When considering
input strings of smaller size, like n = 64, PLASMA is 4X cheaper
than Poplar and 2x cheaper than [4]. Lastly, Vogue [32] is not open
source and it benchmarks 100k-400k clients over LAN. It claims a
6x improvement over Poplar, whereas [4] claims an improvement
of over 100x%; therefore we focused on comparing with [4].
Applications. We discuss two realistic applications:

Popular URLs. Each URL is represented as a 256-bit string and
10000 most popular URLs are computed among 1 million client-
submitted URLs, assuming 7~ = 1%. Server runtimes of PLASMA
and Poplar are reported in Figs. 10 (b) and 11 (b), while the client
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communication costs in Figs. 9 (a) and (b) for n = 256. This bench-
mark is completed in under 5 minutes with less than 1 GB of data
of communication for PLASMA, while Poplar servers incur more
than 5x additional runtime costs and communicate 35 GB.

Popular GPS coordinates. We employ plus codes [35] to efficiently
encode the client GPS coordinates using 64 bits. This approach uses
a grid system aligned on top of the world map, assigning specific
codes to each area. Areas with similar codes are located in proximity
to each other and a code that is a prefix of another encompasses
the area of the latter. For instance, code 87 represents the North
East US region, while code 87G8 represents a part of New York City.
PLASMA uses plus codes to compute the most popular locations
(submitted by more than 7~ = 1% of the clients) among a set of
client-provided inputs using 64-bit strings in roughly 2 minutes for
10° clients, as shown in Fig. 11 (a). Client cost is shown in Fig. 9.

7 FURTHER EXTENSIONS

We discuss two interesting extensions of PLASMA and compare
them with the state-of-the-art protocol of [4]:

Fairness: The notion of fairness ensures that if an adversary
receives an output then the honest parties also receive the correct
output. If the adversary aborts then the honest parties also abort.
In our case, we observe that the count is secret shared between the
servers and based on the output of Fcmp in the pruning phase, the
servers compute the heavy-hitting prefix set. As a result, PLASMA is
fair if the pruning phase is fair. This happens if Fcpmp functionality
is implemented using a three-party subprotocol [17] that guarantees
fairness against one malicious party. Hence, PLASMA can satisfy
a stronger notion of security as compared to Poplar or [4], which
only satisfies security with selective abort.

Heavy-Hitters over Multiple Thresholds: PLASMA enables com-
puting heavy-hitters over multiple thresholds (77, 72, . . .) based on
some pre-agreed strings by the servers. This enables new applica-
tions like traffic avoidance, since different roads may have different
traffic densities (e.g., highways are busier than smaller suburban
roads). The servers consider that during evaluation and use higher
values of 7~ for highways with more vehicles and lower values for
smaller roads. Conversely, it is unclear how to extend [4] to support
this feature. Protocol details are in Appendix E.

8 CONCLUDING REMARKS

In this work, we present PLASMA: a framework to privately iden-
tify the most popular strings — or heavy hitters — among a set
of client inputs without revealing the client data points. Previous
works for private heavy hitters, such as Poplar, consider security
against malicious clients and were prone to additive attacks by a
malicious server, compromising the correctness of the protocol. To
address this challenge, PLASMA introduces a novel hash-based
primitive, called verifiable incremental distributed point functions,
which allows the servers to validate client inputs using inexpensive
operations. Additionally, we introduce a new batched consistency
check that uses Merkle trees to validate multiple client sessions
in a batch. This drastically reduces the concrete server-to-server
communication, incurred during the heavy-hitters computation.
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APPENDIX

A VARIANTS OF DISTRIBUTED POINT
FUNCTIONS

Incremental and Verifiable DPF (IDPF and VDPF). The IDPF [10] and
VDPF [22] build on standard DPFs to secret share the weights of
a tree w.r.t. a single non-zero path. IDPFs perform this task with
linear cost in the number of bits n for strings that share common
prefixes [10], whereas using standard DPFs this cost would grow to
O(n?). IDPFs rely on expensive malicious secure sketching checks
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to ensure that an IDPF key is not malformed. Meanwhile, the work
of [22] considers efficient hashing-based verifiable properties to
ensure that a DPF (not IDPF) key is well-formed. Moreover, [22]
enables a batched verification procedure with communication pro-
portional to the security parameter. However, VDPFs work only for
DPF and not IDPF. We present the VDPF algorithms below:

e VDPF.Gen(1%, f;, g) — (key,, key;). Given the security pa-
rameter 1* and a function f, output keys key,, key;.

e VDPF.BatchEval(b, key,,X) — (Yp,mp) : For b € {0,1},
batch verifiable evaluation takes a set X = {x1,x2,...,Xm},
where each x; € {0,1}". Outputs Yy, = {yp 1, Yp2,- - -» Yb,m}-

Correctness ensures that Yo + Y1 = f, (X). Privacy ensures that
an adversary in possession of one of the keys (but not both) does
not obtain any information about the function f. The verifiability
property of VDPF ensures that the proofs m and 7 are the same
if and only if they have been generated from valid keys key, and
key, of a point function.

B VERIFIABLE INCREMENTAL DPF

We present the VIDPF construction, denoted as my|ppF, in Figs. 14
and 15. Our VIDPF construction is obtained by adding verifiability
(steps 15-17 from Fig. 14) on top of the IDPF construction of Poplar.
We have underlined the lines that focus on verifiability in these two

figures. The Convert takes the corrected seed §l§i) for level i, runs

PRG"” and outputs k bit seed sl(yi) for level i and value Wb(i). This
occurs at the intermediate levels and is performed by executing the
“else” part of Convert. Wb(i) comes from G since it generates the
output Wey, based on intermediate f3;. At the leaves, the “if” part of
Convert is executed where only Wb(i) is generated. The security of
our protocol is summarized in Theorem 2.

THEOREM 2. Assuming (PRG, PRG’, PRG"") are pseudorandom
generators, PRG is k-collision resistant and (Hy, Hy) are random or-
acles then myippr = (Gen, EvalPref) in Figs. 14 and 15 is a VIDPF.

We define k-collision resistant PRG as follows:

DEFINITION 2 (k-COLLISION RESISTANT PRG). We say that a
PRG : {0, 1} — {0,1}%*2 is k-collision resistant if a PPT adversary
cannot output sy and sy such that

(Ao I To Il Bo Il Ty) = PRG(s0),
(A1 I T3 | B1 | T)) = PRG(s1),
andBo = B],

where Ay, A1, By, B1 € {0,1}* and Tp, TO” Ti, Tl/ € {0,1}.

We recall the notion of XOR-collision resistance from [22] below
for our security proof.

DEFINITION 3 (XOR-COLLISION RESISTANCE [22]). We say a func-
tion family ¥ is XOR-collision resistant if no PPT adversary given a
randomly sampled f € F can find four values xo, x1, x2, x3 € {0,1}*
such that (xo, x1) # (x2,x3), (x0,x1) # (x3,x2), and f(x0)®f (x1) =
f(x2) ® f(x3) # 0, except with negligible probability in security pa-
rameter K.
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It can be implemented by assuming the function f is a random
oracle. Next, we proceed to the proof of Thm. 2.

Proof. Input privacy of our VIDPF follows from the input privacy of
the underlying IDPF protocol from Poplar, which in turn relies on
the pseudorandomness of PRG. Adding cs() in steps 16-17 (Fig. 14)
does not affect the input privacy of the client in the random oracle
model since cs) = 7\ @ 771(i) is an XOR of two random oracle

0
outputs. Each server will know the preimage of either 77(5 D or the

preimage of 771( 0 by evaluating the given VIDPF key. The server
breaks input privacy if it computes both preimages. However, to
compute the other preimage it needs to invert the random oracle
on 7~rl(l_)b, (assuming it obtained the preimage of 71'(,1)
the VIDPF key).

A malicious client breaks the verifiability property if there are
two non-zero paths, say u and v in the evaluation tree such that the
client still passes the verification check performed by the servers

by evaluating

on csD for i € [n]. We prove this via two steps:

e At most one non-zero value at each level i: We prove this
via contradiction. Assume a client generates VIDPF keys
that evaluate to two non-zero values at level i. It means the
servers obtain s(i)(u), st (u), s(")(v) and si(v) from Step 11 of
EvalNext (Fig. 15) by evaluating on u and v such that the
following holds:

s(i)(u) # si(u) and s(i)(v) # si (v)

es® =70 w) e 7V (w) = 7 (0) @ 7 (),

where 7" (u) = Hi(u,s)(w) and 7" (v) := Hy (0.5} (0))
for b € {0, 1}. However, this is not possible in the random or-
acle model since it breaks the XOR-collision-resistance prop-
erty of the random oracle H;. The adversary cannot find
such a set ofs(i)(u), s{ (u), sé(u) and si (v) values. Lemma 3 of
[22] captures the formal details of the reduction. In addition,
the servers also check multiple proofs by iteratively hashing
them together using Hy in step 12 of the EvalNext algorithm.
So, we also rely on the collision resistance property of Hy to
argue that it suffices to check the equality of the hash values
computed using Hy to ensure that the preimages are equal.
o Non-zero value at level i+1 is a child of non-zero value at level

i: We prove this via contradiction. Assume a client generates
VIDPF keys that evaluate to a non-zero value at level i on
prefix u € {0, 1} and a non-zero value at level i + 1 on prefix
v € {0,1}"*! such that the non-zero node at level i is not the
parent of the non-zero value at level i + 1, ie., u # 0=i. This
means that s(i)(v) = s} (v) and sé(u) # s% (u) since there can
be at most one pair of non-zero s values at each level. Next,
consider the inputs to the EvalNext algorithms for evaluation
on input prefix v in Fig. 15. We consider the following two
cases:

— st' is same for both servers: In this case both s(i)(u) = s% (v)
and té(v) = tl1 (v). Here the input of the server to EvalNext
is the same except for the value b. Hence, the evaluation
algorithm of the servers on prefix v will be identical except

(i+1)

in step 10 where server b obtains y,~  values such that
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yél+1) +y
this case.
— st' is different for both servers: In this case, s(i)(v) = s% (v)
but té(v) * t{ (v). For this to happen there exists s(i)’l (v),
té_l (v), si_l (v), ti"1(v) such that (sé(u), té (v)) _and (si (v),
tl1 (v)) are obtained by computing PRG on s(l)_l(v) and

ilﬂ) = 0. So, the output cannot be non-zero in

si’l (v) respectively and applying Step 4 of EvalNext based

on té‘l (v) and ti_l(v) values.

- Ifositl = 4 =71 then sé_l (v) = sé_l(u) and si_l(v) =
si_l (u). But we know that s(i)(u) # si (u). We also know
that sl’j(u) and sz(v) is generated from the same state
st;;’l by server b where only u; # v;, which is x; in
EvalNext. In this case, steps 1-5 are the same for the
evaluation of u; and v;. Assume u; = 0 and v; = 1
without loss of generality. This means that sOL # sf and

R L

sy = sf, where s, and sf are computed by server b by

evaluating the PRG on sé’l and then XORing the output

with ¢(=1 . Scw- This breaks the collision resistance of
PRG since s5! # s~ but (Ao || To||B|T)) = PRG(s5 1)
and (Ao || To | B|| Ty) := PRG(s)™?) where Ao, A1, B,B €
{0,1}* and Ty, TO’, T1, Tl’ € {0,1}.
- vagi—l #u=""1: then s (v) = 57! (v) and )71 (v) #
ti_l (v) and we apply our argument recursively for i — 2
e _

and so on until we get the previous case where u* = v

for £ € [i—1].

[m]

We note that we do not need collision resistance from the PRG

since we do not require that the non-zero values lie on the same

path. We only need that each level contains a single non-zero node

and for that the XOR-collision resistance property suffices. This

property is implemented by assuming that (Hy, Hz) are random
oracles.

C HEAVY-HITTERS PROTOCOL 7y PROOF

In this section, we formally prove Theorem 1. Security of our pro-
tocol relies on the correctness of 7¢heck- Zcheck 1S @ protocol where
two honest parties commit to their inputs using Merkle-tree-based
commitments and then they decommit based on whether the root
commitments match or not. Correctness of 7cpeck follows straight-
forwardly from the binding property of the Merkle-tree commit-
ment, which in turn follows from the collision-resistance property
of the hash function used in 7cpeck-

Next, we prove the security of our protocol in the real-ideal world
paradigm of Canetti [14]. Let A denote the real-world adversary
corrupting one of the servers and ¢’ clients maliciously in the real-
world execution of the protocol. Let REAL g ,,,, denote A’s view
after participating in the real-world execution. Let simulator Sim
be the ideal-world adversary, which given access to the algorithm
of A and functionality ¥y, produces the ideal world adversarial
View as IDEALgjm oy,

We prove that our protocol 7y securely implements Fyy func-
tionality by providing an ideal world PPT simulator Sim for all PPT
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Notation: We denote the private n-bit string « and its bit decomposition as
ar, ..., an € {0,1}

Primitives: PRG : {0,1} — {0, 1}?**? is a pseudorandom generator.
H;: {0,1}* x {0,1}* — {0,1}%¢ and H, : {0,1}? — {0, 1}~ are
random oracles.

Gen(1%,1", a, (f1, 2, - - - Bn), G):

1: Sample SLO) < {0,1}* forb € {0,1}

2: Let téo) = 0and tl(o) =1

3: fori:=1tondo

> Generate DPF keys.

> Secret seeds.

> For each bit of .
4: si I ti I sg I tf = PRG(sélil)) for b € {0,1} > Parse the output of PRG
as a sequence of (x || 1 || x || 1) bits.

5:  if a; = 0 then Diff := L, Same := R > Set right children to be equal.

6: else Diff := R, Same := L > Set left children to be equal.

70 Sew = sga"‘e @ sfame

8: tCLW = t({“ (2] tlL Da; ®1 > Left control bits not equal if o; = 0.

9: tgv = t§ ® th ® a; > Right control bits not equal if a; = 1.
10: 52” = s'bjiff @ téi_l) - sew for b € {0,1} > Correction.

1 o =D @Y D for b € {0,1)
I Wb(l) = Convert(§;l)) forb € {0,1}

> Correction.
. (i)
12: S
i (1) . )
3wl = 0B -w T w]
14 owl® = sy || tch [ tﬁ, I M/C(“I;)
15: E;,l) =H(ax; || S;,l))

> Output correction.

> Correction word for level i.

16: s = 775” @ ﬁfi).

17: keyy = (52 [lew® [|... lew™ [les® | | est™) for b € {0,1}> Key
for party b.

18: return key,, for b € {0,1}

—

Convertg (s):

1: Letu « |G|

2: if u = 2" for an integer m then:

3:  Return the group element represented by PRG’(s) mod u,
4:  where PRG’ : {0,1} — {0,1}™.

5: else:

6: Letn = [log,u] +«.

7:  Return the group element represented by PRG” (s) mod u,
8:  where PRG” : {0,1}* — {0,1}".

Figure 14: Protocol ny|ppf for Verifiable Incremental DPF
(continues in Fig. 15).

adversaries A, and show that the real and ideal world view are in-
distinguishable, i.e., REAL 7 ., < IDEALgjm, 7, - We Use a sequence
of hybrids (i.e., HYBg - HYBy) to prove indistinguishability.

Proof. We first consider the case where A corrupts server S along
with ¢’ clients. Then, we consider the case where A corrupts either
Sp or 87 along with ¢’ clients.

Sy is corrupt. We provide the formal simulator in Fig. 16 and
argue indistinguishability as follows.

HYB, : The real world execution of the protocol.

HYB; : Same as HYBy, except Sim aborts if a malicious client i
has provided inconsistent u; and v; inputs to Sy and S;
and yet passed the batched consistency check m¢peck. The
two hybrids are indistinguishable due to the correctness of
Tcheck-

HYB; : Same as HYB, except the Sim extracts the corrupt client’s
inputs using the three pairs of DPF keys. Then Sim runs Step
3c of simulated Batch-Verification, i.e., Sim aborts if 1) the
client’s input «; is k-bits heavy-hitting, 2) @; || 0 or o || 1 is

20

EvalNext (b, i, st=D cw(D) (D) =i 7T):
1: Parse stU=1) as (s71 || #171).
2 seu || 2y 1128, | W& o= ow!
3: §L || £ ]| $R || #R := PRG(s*"D)) » Parse the output of PRG as a sequence of
(k]| 1] x| 1) bits.
s o= GE NN ERER) @ (L9 - [sew Il 5 Nl sew 11ERD)
cshol el | sR )R = (D)

> Evaluate x;.

> Parse correction word.

> Parse 79,
t(@ = 4L > Keep left path.

selse 5 = sR - p(D) = R

> Keep right path.
: s | w® = Convert(51)
st = 5 || 40
10: y® = (=1)b - (WO 41D W]
11: 7D = Hy (x=7 || sD).
12: 1= @Hy(m @ (7D @t . csD)).
13: return (st@, y(i),n)

4
5
6: if x; = 0 then §0 = gL
7
8 > New seed and output for level i.
9 > Save the state.

> Compute output at level i.

EvalPref (b, key,x € {0,1}", std-1) g 7): > Evaluate one public bitstring x on
all its bits x; for i € [n].
1: Parse key as s || ew™ |[... lew™ || esM || ... || est),
party b.
if d # 1 then parse st(@~1) ag (s(@=1) || £(d-1),
else (0 = b, st = 5O || O
fori:=dtondo

(st(i), y(i), ) = EvalNext(b, i, st=D cwl, st x=E, ).

> Parse key for

> For each bit of x.

A AN E L Y

return (st(™, y("), )

Figure 15: Protocol 7y ppf for Verifiable Incremental DPF
(continuing from Fig. 14).

invalid, and 3) client evaded the Batch-Verification check for
the sessions run between honest servers. The two hybrids are
indistinguishable due to the verifiability property of VIDPF
in the random oracle model. This occurs when the client
successfully evades the input extraction process of VIDPF by
providing malformed VIDPF keys and yet passes the batch
verification checks.

HYB3 : Same as HYB3, except Sim invokes F1jy with the extracted
inputs to obtain the HH=" set and simulates Fcpmp based on
whether a prefix y is in HH=" or not. The two hybrids are
indistinguishable against a corrupt server Sy in the Fcmp-
model.

HYB, : Same as HYB3, except Sim simulates the DPF key gener-
ation for the honest clients with input (e, (f1,...,6n)) =
(1,(1,...,1)) and sets the counters to Os in the aggrega-
tion step. Indistinguishable due to VIDPF input privacy. The
0-valued counters in the aggregation step are identically
distributed to the actual aggregation counters since HYB3
and HYBy are in the Fcpmp-model. This is the ideal world
execution of the protocol, completing our simulation.

Either Sy or S is corrupt. Next, we consider the case where either
8o or Sy is corrupt along with ¢’ clients. We provide the simulator
in Fig. 17 and argue indistinguishability as follows. (This case is
similar to the case where Sj is corrupt along with ¢’ clients.)

HYB : The real world execution of the protocol.

HYB; : Same as HYB, except Sim aborts if a malicious client i pro-
vided values (RI(CZ,O)’RIEZ,I)) to Sz and values (R,(Cz,o)’ RI(Cl,Z))

to 81 such that they are not equal, and yet client i passed
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Simulator Sim for maliciously corrupt £ number of clients and server S,

Corruption: Server S; and ¢ number of clients are maliciously corrupt. The rest £ — ¢’ clients and servers (Sp, S1) are simulated by simulator Sim.
Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. Hy, H, : {0,1}* — {0, 1} are random oracles.

Client C Computation. (Repeated for ¢ clients)
(1) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1,...,1).
(key(o,l), key<1,0)) = Gen(1%,1",1,(1,...,1),G), (key(lxz), key(m)) = Gen(15,1"%,1,(1,...,1),G),
(key (20), key(g2)) = Gen(1%,1",1,(1,...,1),G)
Sim sends (key g 1), key g 2). key(51)) to So, (key (), key(12), key(z4)) to Siand (key(, ), key ;) to Sz on behalf of the client.
(2) Ifthe client is corrupt: Client sends (key o1y, key g z), key(51)) to So, (key (1), key(q2), key(yq)) to S1 and (key(, 1), key(z)) to Sa.
Server Computation. (Simulator Sim initializes a list Lext = {} and Linp = {}, and simulates Sy and S1)
For each corrupt client i, the simulator performs the following for input extraction: (Repeated for ¢’ corrupt clients)
(1) Sim extracts the corrupt client’s input (a}, ﬁ;’l, e ﬁ;n) from the three pairs of DPF keys - key 1y and key ; o), key o) and key ), and key , ;) and key ; 5),
provided by client i. If the extracted values differ, then Sim takes the necessary steps below.
(2) If the corrupt client has not provided a valid input at level j, i.e., 1) 3j € [n] s.t. ﬁ'} # 1 (for the smallest j), or 2) the extracted inputs a; (from the three sessions) in the
: ;'j’
and updates Lext = Lext U Lé;tl to denote that the ith client’s input is valid only till level j — 1.
(3) Sim stores the extracted input (after necessary truncation) a; for client i in a list Linp as Linp = Linp U {i,a;}.

then Sim truncates the extracted input of client i to the first j bits of a; as a; = @j <j-1. Sim sets ot =7ty {i,j-1}

previous step differ in the jth bit, i.e., & ext ext

After running the above extraction process for all corrupt clients, Sim invokes ¥y with the input list L, to obtain the output set of 7-heavy hitting prefixes as HH=". The
functionality Fpy waits for further instructions from the ideal world adversary Sim.
Repeat the following steps for length of k bits, where k € [0,...,n—1]:

(1) Initialization. For prefix p € HH¥, Sim initialize server Sy’s and S;’s aggregation variables for prefixes y € {p || 0, p || 1} as follows:

Simulated Sy sets cnt{ﬂxl) = cnt{o’z) = cnt(yzﬁl) =0, Simulated S sets cnt{lﬁz) = cnt(w) = cnt{z’o) = 0.

(2) VIDPF Evaluation. For prefix p € HH=K, Sim simulates Sy and S; by running the original protocol steps. (Repeated for ¢ clients)
(3) Batch-Verification.
(a) Sim simulates Sy and S; by computing u and v following the original steps of the protocol and Sim adds the ith client to the list L of discarded clients if u; # v;. If
client i is not detected as bad by running the original protocol steps of 7check on u and v then Sim aborts.
(b) Sim runs the honest protocol steps to simulate the interaction between Sy — Sy and S, — S to obtain the update list L.
(c) Sim aborts if 3 client i s.t. 1) its input is k-bits heavy-hitting (i.e., a; € HHK),2) a; || 0 or @; || 1 is not valid, i.e., {i,k} € L
check, ie., i ¢ L.
If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes Fi to discard the parties from the output computation of k + 1-bit heavy-hitting
prefixes. Sim obtains an updated HH=" set from Fij.

k

oxt> 3) client i evaded the consistency

(4) Aggregation. Sim simulates this step for prefixes y € {p || 0, p || 1} as follows: (Repeated for all validated clients in [¢] \ L)
Simulated Sy sets cnt{oyl) = Cnt}((o‘z) = cntrz'l) =0, Simulated S sets cnt(YLz) = cnt(ylyo) = Cnt(yz,o) = 0.
(5) Pruning. For every (k + 1)-bit string y, Sim simulates the pruning step as follows:

o Ify e HH**1 then Sim invokes the simulator of Fcmp with output 1 s.t. Fcmp returns 1 as output to the servers, s.t. y is included in the list of heavy-hitting strings.
o Ify¢ HH**1 then Sim invokes the simulator of Fcmp with output 0 s.t. Fcmp returns 0 as output to the servers, s.t. y gets pruned.
If the simulator of Fcmp aborts, then Sim instructs Fryy to abort at level (L, k + 1) and Sim aborts this simulated execution.
Sim has successfully simulated the HH¥*! set. Sim repeats “Server Computation” steps (starting from Step 2b) on k + 1 bit prefixes.
Output Phase. Sim outputs HH=" as the set of 7-heavy hitter strings on behalf of simulated Sy and S, and instructs Fijy to send output to the honest servers Sy and Sj.

Figure 16: Simulation Algorithm against malicious corruption of server S; and ¢’ clients.

the batched consistency check 7 peck. The two hybrids are hybrids are indistinguishable against a corrupt server Sy in
indistinguishable due to the correctness of 7cpeck- the Fcmp-model.

HYB; : Same as HYBj, except Sim extracts the corrupt client’s in- HYB, : Same as HYBs3, except Sim simulates the key generation
puts following the extraction algorithm using the pair of DPF for the honest clients with (e, (f1,...,fn)) = (1, (1,...,1))
keys. Then Sim runs Step 3d of simulated Batch-Verification, as input and sets the counters to 0s in the aggregation step.
ie., Sim aborts if 1) the client’s input «; is k-bits heavy- Indistinguishable due to VIDPF input privacy. The 0-valued
hitting, 2) «; || 0 or a1 || 1 is invalid, and 3) client evaded counters in the aggregation step are identically distributed
the Batch-Verification check for the sessions run between to the actual aggregation counters since HYB3 and HYB4
honest servers. The two hybrids are indistinguishable due are in the Fcpmp-model. This is the ideal world execution of
to the verifiability property of VIDPF in the random ora- the protocol, completing our simulation algorithm.
cle model. This occurs when a malicious client successfully o

evades the input extraction process of VIDPF by providing
malformed VIDPF keys and yet passes the batch verification D ANALYSIS OF BATCHED CONSISTENCY
checks performed on the VIDPF proofs. CHECK

HYB3 : Same as HYBg, except Sim invokes Fjy with the extracted
inputs to obtain HH=" set and simulates the Fcpp function-
ality based on whether a prefix y is in HH=" or not. The two

We recall the batched consistency check in Fig. 8. Py and Py hash

their leaves and verify the equality of their Merkle tree roots Ry and

R;. If the roots are equal then all the leaves are equal. Otherwise,
21
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Simulator Sim for maliciously corrupt £ number of clients and server S,

Corruption: ¢ number of clients and server Sy are maliciously corrupt. The rest £ — £’ clients and servers (Si, Sz) are simulated by simulator Sim. Without loss of generality,
we will assume that Sy is corrupt; the case where Sj is corrupt is symmetric.

Primitive: VIDPF := (Gen, EvalPref, EvalNext) is a verifiable incremental DPF. Hy, H, : {0,1}* — {0, 1}* are random oracles.

Client C Computation. (Repeated for ¢ clients)

(1) If the client is honest: Sim simulates the client by preparing three pairs of DPF keys with input 1 and output values (1,...,1).
(key(oyl), key<1‘0)) = Gen(1%,1",1,(1,...,1),G), (key(lyz), key(m)) = Gen(15,1%,1,(1,...,1),G),
(key(zm, keY(o,:z)) = Gen(1%,1",1,(1,...,1),G)
Sim sends (key (o.1), key g 2), key(31)) to So, (key(q 9y, key(i2), key(59)) to Sy and (key(, 1y, key(y)) to Sz on behalf of the client.
(2) Ifthe client is corrupt: Client sends (key o1y, key g ), key(51)) to So, (key 1), key(q2), key(yq)) to S1 and (key(y 1), key(z)) to Sa.
Server Computation. (Simulator Sim initializes a list Lexy = {} and Linp = {}, and simulates Sy and S;)
For each corrupt client i, the simulator performs the following for input extraction:
(1) Sim extracts the corrupt client’s input (a;, §; ;. . . ., B; ,) from the pair of DPF keys - key; ,) and key, 1), provided by client i.
(2) If the corrupt client has not provided a valid input at level j, i.e., 3j € [n] s.t. ﬁ; # 1 (for the smallest j), then Sim truncates the extracted input of client i to the first j

bits of a; as a; = @j,<j-1. Sim sets Lé;l = Lﬁ;l U {i, j — 1} and updates Lext = Lext U Lé;l to denote that the ith client’s input is valid only till level j — 1.

(3) Sim stores the extracted input (after necessary truncation) a; for client i in a list Linp as Linp = Linp U {i,a;}.

(Repeated for ¢’ corrupt clients)

After running the above extraction process for all corrupt clients, Sim invokes ¥ with the input list Li, to obtain the output set of 7-heavy hitting prefixes as HH=". The
functionality Fry waits for further instructions from the ideal world adversary Sim.

Repeat the following steps for length of k bits, where k € [0,...,n—1]:

(1) Initialization. For prefix p € HHX, Sim initialize server S;’s and S,’s aggregation variables for prefixes y € {p || 0, p || 1} as follows:
Simulated Sy sets Cnt{Lz) = Cnt)(/m) = Cnt)(/zyo) =0, Simulated S, sets Cnt(yz,o) = Cntz’m) = 0.
(2) VIDPF Evaluation. For prefix p € HH=K, Sim simulates S; and S, by running the original protocol steps.
(3) Batch-Verification.
(a) Sim simulates the interaction between corrupt server Sy and honest server S; by following the protocol steps to update list L.
(b) Sim simulates the interaction between corrupt server Sy and honest server S by following the protocol steps to update list L.
(c) For each client i: Sim verifies that Sy’s version of (R{CZ 0y R{‘Z 1)) matches with S;’s version of (R:‘2 0y’ Ré‘l 2))A If they don’t match then Sim adds ith client to the list
L of discarded clients. If client i is not detected as bad by running the original protocol steps of 7check between S; and S, then Sim aborts.
(d) Sim aborts if 3 client i s.t. 1) its input is k-bits heavy-hitting (i.e., a&; € HHX), 2) a;; || 0 or @; || 1 is not valid, i.e., {i,k} € L(]:X[,
check, ie., i ¢ L.
If Sim did not abort then for all corrupt parties in list L at level k, Sim invokes #nn to discard the parties from the output computation of k + 1-bit heavy-hitting
prefixes. Sim obtains an updated HH=" set from Fyjp.

(4) Aggregation. Sim simulates this step for prefixesy € {p || 0,p || 1} as follows: (Repeated for all validated clients in [¢] \ L)

(Repeated for ¢ clients)

3) client i evaded the consistency

Simulated S sets Cnt(y1,2) = Cnt)(/m) = Cnt(yz,o) =0, Simulated S, sets cnt{z’o) = Cnt{zg) = 0.
(5) Pruning,. For every (k + 1)-bit string y, Sim simulates the pruning step as follows:
o Ify e HHX*1 then Sim invokes the simulator of Fcmp with output 1 s.t. Fcmp returns 1 as output to the servers, s.t. y is included in the list of heavy-hitting strings.
o Ify¢ HHX*1 then Sim invokes the simulator of Femp with output 0 s.t. Fcmp returns 0 as output to the servers, s.t. y gets pruned.
If the simulator of Fcmp aborts, then Sim instructs Ffyy to abort at level (L, k + 1) and Sim aborts this simulated execution.
Sim has successfully simulated the HHA*T set. Sim repeats “Server Computation” steps (starting from Step 2b) on k + 1 bit prefixes.
Output Phase. Sim outputs HH=" as the set of 7-heavy hitter strings on behalf of simulated S; and Sy, and instructs Fijjy to send output to the honest servers Sy and S;.

Figure 17: Simulation Algorithm against malicious corruption of server Sy and ¢’ clients.

the parties verify the equality of the left and the right children The total communicated hashes are as follows:
of the root node. If the left (resp. right) children are equal across
the parties then the left (resp. right) subtrees are equal. If the left
(resp. right) children are different, then the parties apply the above =2+4x(1+2+...2M00 0T Ly p v 10
algorithm to the left (resp. right) subtree. Proceeding iteratively

Lo . —K
down the tree, the parties identify the malformed leaves as N and

2+4x (min(2°,¢') +... +min(2/1°% 1 ¢"))

<2+4x (2t + x([log, £] - [log, £'7))

~ 8" + 4’ (log, £ —log, t') = 4¢’ (log, & +2).
=K
N; where the two trees differ. Then they match them with their 2 2 2t

initial lists of input sets u and v to identify the indices where they We obser\;e that the current version of 7icheck communicates rougi]lly
’ . P ’
differ and then store those indices in L. 4¢’ (log, 7 +2) hashes. This can be ﬁ.lrther optimized to 2¢” (log, 7 +
Teheck Tequires K + 1 rounds of communication, where K = 2) where only one server communicates at each level.

[log, £]. Next, we demonstrate that if £’ out of ¢ leaves differ, then
the total communication is O(¢’ (log, %)) hashes. The Root Com- E HEAVY HITTERS WITH DIFFERENT
putation is local and Root Verification communicates two hashes. THRESHOLDS

During Leaf Identification, the parties communicate 4 hashes for
each unequal node. At the root layer, only the roots are different.
At the next layer, both children can differ. More generally, at layer
k € [K], there can be at most min(2, ¢’) unequal nodes.

Our protocol allows us to consider different heavy hitter thresholds

7i based on some pre-agreed strings x; € X by the servers. This can

be beneficial for traffic avoidance since different roads may have

different traffic densities. For example, highways are busier than
22
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Different Threshold Heavy Hitters from 7 -prefix count queries

PARAMETERS: Threshold 7; € N, for string x; € X where |X| = m, and string
length n € N.
InpuTs: The algorithm has no explicit input. It has access to t-prefix count query
oracle Qg o, (p, t) for securely computing ¢-prefix-count queries over prefix p
for strings ay, . . ., a.
OuTtpurTs: The set of heavy-hitter strings in a3, ay, . .
ALGORITHM:

o Initialize HHS™ = {HH®, HH!, .. .HH"} := {{€}, 0,..., 0}, where

HHO contains empty string € and HH!, ... HH" are empty sets.

e Set 7 = min(71, 72, ... Tm).
For each prefix p € HHF of length k-bits in set HHX (where
k=0,1,2,...n-2):
If Qo (p |0, T) = 1, then HH**! == HH**1 U {p || 0}.
If Qu, oy (p | 1, T) = 1, then HHF*! = HH**1 U {p || 1}.
For each prefix p € HH™!, perform the following:
If 3x; € Xsuch that (p || 0) = x; and Qg e, (p |1 0, 77) = 1, then
HH™ := HH" U (p || 0).
If 3x; € Xsuchthat (p || 1) = x; and Qg (p || 1, 7i) = 1, then
HH™ := HH" U (p || 1).
Output T-heavy hitters HHS" := {HH®, HH',... HH"}.

7%

Figure 18: Algorithm for computing heavy hitters with dif-
ferent thresholds from 7 -prefix count queries.

smaller suburban roads. The servers can take that into consideration
during evaluation, and use higher 7s for highways (since there are
more vehicles), and lower thresholds for smaller roads.

We present our algorithm to compute heavy-hitters with differ-
ent thresholds 7; for string x; € X from 7 -prefix oracle query in
Fig. 18. The prefix oracle query with different thresholds can be
computed using a simple modification to protocol xp, where the
pruning at the leaf layer is performed based on the threshold 7; for
a given string x; € X instead of a fixed threshold 7.

F SUPPORTING DIFFERENTIAL PRIVACY

It is straightforward to complement PLASMA with e-differential
privacy techniques and ensure that the presence or absence of a
single client does not reveal anything about their data [24]. In this
case, running two instances of PLASMA, one with ¢ — 1 clients
and another just by adding client C, should protect the private
data of the new client from anyone observing the outputs of the
two protocols. Additionally, honest clients should not be able to be
identified when a malicious server attempts to ignore honest client
data to infer their inputs based on the protocol output. Therefore,
PLASMA is directly compatible with the well-studied techniques
from [23, 25] and can adopt a similar approach as Poplar to bound
the amount of information that an adversary A can deduce from
PLASMA’s output. Like Poplar, we need to ensure that the outputs
of these prefix-count oracle queries are differentially private, which
can be achieved by introducing noise on the oracle’s output with
parameter 1/€ from a Laplace distribution.

G COMMUNICATION COST OF ASHAROV ET
AL. [4]

We analyze the total server-to-server communication cost for the

sorting-based protocol of Asharov et al. [4] (considering that its

implementation is not open-source). We start from the optimized

semi-honest communication cost from Appendix A.3 of [4], shown
below: mn(% + 32||R||) + 3m||R|| + 2m||R’|| bits.
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We ignore the R’ term since it is a payload. For malicious se-
curity, the protocol requires two times the semi-honest protocol,
and additionally, the ring needs to be a field of size 2 size for 27%
failure probability. This leads us to the optimized malicious sorting
protocol communication cost of: 2mn(% + %K) + 3mk.

The heavy hitters protocol requires the following for each item
out of the total m items:

e Compute two secure comparisons over n bits. Assuming the
state-of-the-art secure comparison protocol of Rabbit [36,
Fig. 6], we get > 4mnlogn from LTBits and BitAdder as
well as mn to open the values.

e One secure multiplication over two secret shared n-bit vari-
ables: For m values it would be at least mn bits.

o Secure shuffling over and n-bit secret shared value, where the
semi-honest shuffling takes 2m field element communication.

Asharov et al. [4] considers the compiler of Chida et al. [18] that
converts a semi-honest protocol to a malicious protocol. However,
this results in increased communication cost (i.e., 2X the semi-
honest cost): 2(4mnlogn + mn + 2mn) = 8mn - logn + 6mn. The
per-server communication cost for their maliciously secure heavy-
hitters protocol is at least:

7 32 .
Zmn(g +5 K) + 3mk + 8mnlog n + 6mn bits.

Setting the security parameter k to 60 bits, the number of items
m to 10°, and the number of bits of each item n to 256 bits we get
that the communication cost should be at least:

7 32
2-106~256(§+;-60)+3-106-60

+(8-10% - 256 - log 256 + 6 - 10° - 256) = 14.96 gigabytes

Therefore, the total server-server communication cost is at least
14.96-3 ~ 45 gigabytes for computing the heavy hitters over 256-bit
keys between three servers for 10° clients.

H PRIVATE HISTOGRAM PROTOCOL

We present our histogram protocol st in Fig. 19 for the sake of
completeness. The histogram protocol is a building block for our
heavy-hitters protocol and is not our final protocol. It suffers from
the limitation that the client’s input should lie in the subset X that
the servers evaluate, i.e., a; € X for i € [£]. This leaks whether
the client’s input lies in X or not based on whether the evaluated
DPF output in the consistency check is 0 or not. This issue can be
addressed by using techniques from Section 3.4, mainly replacing
the VDPF with a VIDPF, and using the four consistency checks
discussed in Section 3.4.
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Private Histogram st

We denote a vector Y € F™ component-wise as Y := {y1, Y2, ..., Ym }, where y; € Ffor j € [m].

- Input: Each client C; has an input point a; € X fori € [¢] and m = |X].

- Output: Sy, S;, S output a histogram of the ¢ clients’ data. If the servers abort then it denotes a malicious server involvement.
- Primitive: VDPF := (Gen, BatchEval) is a verifiable distributed point function. H : {0,1}* — {0, 1}* is a random oracle.

1: Client C Computation. (Repeated for ¢ clients, each of which has their own private input )
(a) Client C with input a prepares three pairs of DPF keys with independent randomness u, v, w <z {0, 1}*, as follows:
(key(oxl), key(LU)) = Gen(1%, a, 1,G), (key(l’z), key(zyl)) = Gen(1%,a,1,G), (key(z‘o), key(g,z)) = Gen(1%,a, 1,G)
(b) The client sends (key g 1), key(q2), key(z 1)) to So, (key (), key (1 ), key(50)) to Sy and (key 51, key ;) to S.
2: Server Computation.
If this is the first client, each server Sy, initializes HIST (4, 541) and HIST 41,5 for b € {0,1,2} as follows:
Sy initializes HIST (o) = 0", HIST (g2 = 0, and HIST 51y = 0"
Sy initializes HIST (1) = 0", HIST(10) := 0", and HIST(50) := 0™, S, initializes HIST(3) := 0™ and HIST(31) := 0™
(a) VDPF Evaluation: Each server Sy, computes Y p,p41) and Y p,p42) for b € {0, 1,2} as follows: (Repeated for ¢ clients)
So computes Y (o1, 7(g,1) = VDPF.BatchEval(0, key (g1 X) and Y (q,2), 7(0,2) = VDPF.BatchEval(1, key g ,), X)
S, computes Y (13), 7(1,2) = VDPF.BatchEval(0, key (1,2) X) and Y(1,0), 77(1,0) := VDPF.BatchEval(1, key (1,0)> X)
Sp and S compute Y(51), 77(2,1) = VDPF.BatchEval(1, key a1y, X)
81 and S; compute Y (), 7(20) = VDPF.BatchEval(0, key(zyo), X)
Each server Sj, computes 7(p, p+1) and 7(p p42) for b € {0,1,2} as follows:
So parses Y1) = {y(m)‘], Y(0,1),25 - - +» y(o,l),m} and computes 7(q,1) = Z;nzl Y(0,1),j
So parses Y(o.2) = {Y(0,2),1 Y(0.2),2: - - -» Y(0,2),m } and computes (o) = X7, Y(02),j
S parses Y(12) = {Y(1,2),1> Y(1,2),2> - - - » Y(1,2),m } and computes 7(13) = 25":1 Y(1,2),j
S parses Y(1,0) = {Y(1,0),1> Y(1,0).2: - - -» Y(1,0),m } and computes 7(1 ) = 371 Y(1,0),5
Si and S; parse Y(20) = {Y(20),1> Y(20).2: - - -» Y(2,0),m } and compute 7(z0) = X7L; Y(20).;
Sp and S; parse Y(51) = {y(z,l),l, Y21),2-- > Y(2,1),m } and compute T(21) = Zj"il Y(21),j
Sy computes hy == H(Y(01) = Y(0,2) | Y(02) = Y(2,1)) and Sy computes by := H(Y(20) — Y(1,0) Il Y(1,2) = Y(2,0))-
(b) Batch-Verification. The servers batch-verify the client inputs for all three sessions and across the three sessions by invoking 7cpeck (Fig. 8):
(i) Sosetsu; = {(H(O'D, T(0,2)5 T(2,1)5 T(0,1)> T(0,2)> T(2,1)» Mo) Values for client i € [t’]} S sets v; = {(71'(1,0), (2,005 T(1,2)s 1 = T(1,0)s 1 = T(2,0)> 1 = T(1,2)> A1) values for

clienti € [f]} S sets u == {u; }ie[,] and Sy sets v := {0; }je[¢]. So and S; batch-verify all the client inputs by computing the bit ver and list L (comprising of invalid
client inputs) by running 7zcpeck with inputs u and v respectively: (ver, L) := mcheck (U, V) :
ver := 0 if there exists a client such that : (7(01) # 7(1,0)) V (7(02) # 7(20)) V (7(21) # 7(12))V
(1) +7(10) # DV (T02) + 720) 1) V (T2) + 712) # 1) V (ho # 1)
and L := {list of invalid clients’ that failed to pass the above checks}. If ver = 1, then all the clients’ inputs are valid.
(i) Sy possesses 7(2,0), (2,1)> T(2,0)> T(2,1) Values for each client. S verifies that Sy’s version of 71(31, T(5,1) matches with Sy’s version of /(3 1), 7(2,1). Sz also attests that

Sy’s version of R{‘Z 0) matches with Sy’s version of 7(q2), 7(0,2) by computing (ver’, L) as follows:

(ver', L") = ﬂcheck({ﬂ'(z,l), T(2,1)> 71(2,0)> T(2,0) }e clients of S, {ﬂ(z,l)s T(2,1)> 77(0,2)» T(0,2) }e clients of So).
(iii) S; verifies that S’s version of 77(3), 7(2,0) matches with S;’s version of 75 ), 7(20). Sz also attests that Sy’s version of (5 1), 7(2,1) matches with S;’s version of
7(1,2)> T(1,2) by computing (ver”,L”) as follows:
(VEF'/, L//) = ”check({”(Z,U)’ T(2,0)> 7T(2,1)> T(2,1) }e clients of S, {”(2,0), T(2,0)> 7T(1,2)> T(1,2) }e clients of So).
After batch verification, the servers identify the list of bad clients as L := L U L” U L”. The servers ignore the inputs of all clients in L.
The servers locally perform the following computation:
The servers aggregate all correct client inputs into the histogram as follows: (Repeated for all validated clients in [£] \ L)
8o updates HIST(o1) = HIST(g1) + Y(q,1), HIST(02) = HIST(g) + Y(g2) and HIST(31) := HIST(31) + Y (1)
Si updates HIST 1 2y = HIST (1.9 + Y(1.2), HIST(1,0) := HIST(10) + Y(1,0) and HIST50) := HIST (20 + Y(20)
S, updates HIST (3,0 = HIST(50) + Y(2,0) and HIST(51) == HIST(21) + Y(21)
3: Output Phase.
(a) Each two servers Sy, and Spy; exchange H(HIST (4, p.41), 7(5,6+1)) and H(HIST (41,), "(b+1,6)) for random r(p p41), 7 (b4+1,5) < {0, 1}*.
(b) Sy sends (H[ST(OJ), HIST (g,2), HIST(2,1), 7(0,1)» r(o,z)) to S;. S; sends (H|ST(L2), HIST 1,0y, HIST (2,0), 7(1,2)» r(lyo)) to Sy. S, broadcasts (r(z,o), r(2,1>).
(c) Sp and Sy verify the above hashes. If any of the hashes fail then the servers abort. Else, they perform the following:
S and S compute HISTy := HIST(g1y + HIST (1), HIST; := HIST(1 5 + HIST(5.1), and HIST, := HIST (5,0) + HIST(0.5)
(d) So and S; abort if HISTy # HIST; or HIST; # HIST,. Else, they output HIST where HIST = HIST, = HIST; = HIST,.

Figure 19: Private Histogram Protocol mysT.
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