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Fig. 1. Inkdrop simulated by Neural Flow Maps, a novel, high-fidelity simulation system built upon implicit neural representations. The le� panel juxtaposes

the ink (le�) and the underlying bundle of vortex filaments (right). The right panel shows the vorticity (magnitude) field from four di�erent angles, with the

camera-facing sections culled to reveal the sophisticated internal structures.

We introduce Neural Flow Maps, a novel simulation method bridging the

emerging paradigm of implicit neural representations with �uid simulation

based on the theory of �owmaps, to achieve state-of-the-art simulation of in-

viscid �uid phenomena. We devise a novel hybrid neural �eld representation,

Spatially Sparse Neural Fields (SSNF), which fuses small neural networks

with a pyramid of overlapping, multi-resolution, and spatially sparse grids,

to compactly represent long-term spatiotemporal velocity �elds at high

accuracy. With this neural velocity bu�er in hand, we compute long-term,

bidirectional �ow maps and their Jacobians in a mechanistically symmetric

manner, to facilitate drastic accuracy improvement over existing solutions.

These long-range, bidirectional �ow maps enable high advection accuracy

with low dissipation, which in turn facilitates high-�delity incompressible

�ow simulations that manifest intricate vortical structures. We demonstrate

the e�cacy of our neural �uid simulation in a variety of challenging simu-

lation scenarios, including leapfrogging vortices, colliding vortices, vortex
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reconnections, as well as vortex generation from moving obstacles and den-

sity di�erences. Our examples show increased performance over existing

methods in terms of energy conservation, visual complexity, adherence to

experimental observations, and preservation of detailed vortical structures.
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1 INTRODUCTION

Implicit neural representations (INR) have emerged as a remark-

able new class of data primitives in visual computing, as an at-

tractive alternative to traditional, explicit representations such as

grids, meshes, and particles, demonstrating its distinct advantages

in representing various categories of continuous �elds in appear-

ance modeling, geometry processing, and 3D reconstruction, just to

name a few. Instead of representing a �eld by storing a large number

of samples at discrete locations, an INR employs a continuous query

function in the form of neural networks that evaluates the �eld

at arbitrary input coordinates in the domain. Such an alternative

representation has proven to be uniquely advantageous in a variety

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



2 • Yitong Deng, Hong-Xing Yu, Diyang Zhang, Jiajun Wu, and Bo Zhu

of scenarios for being spatially adaptive, di�erentiable, agnostic to

topology and dimensionality, and memory e�cient; and it has em-

powered many state-of-the-art advances in 3D computer vision (e.g.,

Instant NGP [Müller et al. 2022]). One fundamental reason for this is

that INRs are highly e�cient and adaptive in memory, as it scales up

with the complexity of the signals instead of the resolution [Sitzmann

et al. 2019], hence allowing the high-�delity representation of high-

dimensional signals such as 5D Neural Radiance Fields [Mildenhall

et al. 2020]. In spite of its typical association with radiance �elds

in rendering and reconstruction tasks, INRs are developing into a

fundamentally general �eld representation paradigm whose virtues

promise to be leveraged in a plethora of other disciplines.

Physical simulation, on the other hand, is a discipline in which

�elds are �rst-class citizens. When devising a simulation algorithm,

a foundational �rst step is to design an appropriate representation

for the dynamical �elds: e.g., velocity, pressure, density, and temper-

ature, on which the numerical solving of PDEs can take place. While

the options are traditionally di�erent �avors of meshes and parti-

cles, the rapid development of INR elicits the curiosity of whether

the adoption of such a novel implicit paradigm can fundamentally

unlock new horizons of what physical simulation algorithms can

achieve. Unfortunately, the drop-in incorporation of INRs in the sim-

ulation pipeline has not yet been lucrative. A major reason for this

is that the principal advantage of INRs, i.e., their spatially adaptive,

dimensionality-agnostic, high memory e�ciency, does not exhibit

clear advantages in a typical physical simulation pipeline, which

operates on dense �elds with only spatial dimensions. Therefore, dy-

namical simulation using INRs has so far remained a “workable con-

cept” that nevertheless shows no concrete advantage over existing

paradigms. From our perspective, this conundrum is fundamentally

caused by the currentmismatch between the simulation algorithm’s

demands and the INR’s capacities. As with grids, meshes, and parti-

cles, an INR’s advantages and drawbacks need to be carefully aligned

with the simulation scheme to ful�ll its full potential.

In this work, we consolidate INRs’ potency in encoding spatiotem-

poral signals at a small memory footprint with �ow map-based �uid

advection, an accurate and non-dissipative advection scheme that

has been hindered by its intractable memory requirement [Sato et al.

2018]. To ful�ll the full potential of �ow map advection at a viable

memory cost, we propose Neural Flow Maps (NFM), a novel sim-

ulation method that realizes accurate, long-range �ow maps with

neural representations. The core component of NFM is the Spatially

Sparse Neural Fields (SSNF), a hybrid INR employing a pyramid

of multi-resolution, spatially sparse feature grids to maintain long-

range bu�ers of spatiotemporal velocity �elds. We show that for

this purpose, our SSNF o�ers improved accuracy, training speed,

and memory e�ciency compared to state-of-the-art representa-

tions (e.g., Instant NGP [Müller et al. 2022], K-Planes [Fridovich-Keil

et al. 2023], and SIREN [Sitzmann et al. 2020]), reducing the �t-

ting error by over 70%. Leveraging this e�ective neural structure,

we compute high-quality bidirectional �ow maps by marching the

SSNF forward and backward in time, and consolidate them with the

impulse-based �uid simulation method to drastically reduce simula-

tion errors by over 90% with respect to analytical solutions. In terms

of practicality, our neural method is still signi�cantly slower than

traditional methods like Stable Fluids [Stam 1999], typically by an

order of magnitude, rendering it unsuited for real-time applications,

albeit realistic for quality-focused applications, a realm in which our

method brings substantial advantages. These advantages are experi-

mentally validated in a variety of challenging scenarios including

leapfrogging vortices, vortex reconnections, and vortex generation

from obstacles and density di�erence, in which our method con-

sistently achieves the state-of-the-art level of energy conservation,

visual complexity, and recreation of real-world phenomena. Since

the cost of our cutting-edge results hinges on the e�ciency of neural

techniques, our method e�ectively reformulates a long-standing

simulation problem into a machine-learning one, thereby opening

up brand new avenues for the former that promise to leverage the

latter’s revolutionary advancements of late.

We summarize our main contributions as follows:

(1) We present Neural Flow Maps (NFM), the �rst INR-based

dynamic simulation method to achieve state-of-the-art per-

formance in terms of both visual quality and physical �delity.

(2) We propose Spatially Sparse Neural Fields (SSNF), a novel

hybrid INR that is fast to train, compact, and collision-free.

Our SSNF achieves higher �tting accuracy than the state-of-

the-art methods at a lower computational cost.

(3) We introduce a novel scheme for learning neural bu�ers

of long-term spatiotemporal signals, from streams of input

frames with variable durations.

(4) We introduce a novel �ow map advection scheme based on

the forward and backward marching of velocity bu�ers to

represent accurate and consistent bidirectional mappings and

their Jacobians to enable high-quality �uid simulations.

2 RELATED WORKS

2.1 Machine Learning for Fluids

Machine learning has been successfully applied to the study of �uids

in a number of directions, as we will brie�y survey. Readers can refer

to comprehensive surveys [Brunton et al. 2020; Chen et al. 2021;

Majchrzak et al. 2023; Sharma et al. 2023] for in-depth discussions.

Synthesis. Machine learning can synthesize visually appealing de-

tails from coarse simulations. For instance, Chu and Thuerey [2017]

adopt convolutional neural networks to enhance coarse smoke sim-

ulations with pre-computed patches; Kim et al. [2019b] synthesize

divergence-free �uid motion in a reduced space; Xie et al. [2018] and

Werhahn et al. [2019] use generative adversarial networks to per-

form �uid super-resolution, an approach adapted by Chu et al. [2021]

to enable user control. Roy et al. [2021] upsample particle-based

simulations by learning a deformation �eld using an architecture

adapted from FlowNet3D [Liu et al. 2019]. Physics-inspired syn-

theses of stylized �uid details have also been accomplished in the

Eulerian [Kim et al. 2019a] and Lagrangian [Kim et al. 2020] settings.

Inference. Another thread of research infers �uid properties from

captured videos. Earlier methods [Gregson et al. 2012; Hasino� and

Kutulakos 2007; Ihrke and Magnor 2004] infer density volumes from

videos without temporal treatments. More recent works further

infer velocity using physical priors [Gregson et al. 2014; Okabe et al.

2015], and allow joint optimization for velocity and density [Eckert

et al. 2018, 2019; Zang et al. 2020]. Franz et al. [2021] introduce a
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di�erentiable simulator to promote temporal consistency. Physics-

informed neural networks use soft constraints to infer velocity from

density [Raissi et al. 2019, 2020], to which Chu et al. [2022] combine

di�erentiable rendering to end-to-end infer �ow from videos.

Inverse and Control Problems. Learned �uid models can also ben-

e�t computational design and control tasks. Wandel et al. [2020]

control the vortex shedding frequency based on a learned physics-

informed network, which is extended by Nava et al. [2022] to control

a 2D soft swimmer. Li et al. [2018] learn particle-based simulators

with gradient-based trajectory optimization for �uid manipulation,

while Li et al. [2021a] learn 3D �uid scenes based on 2D observations

to enable gradient-free model-predictive control.

Acceleration. Data-driven simulators can emulate traditional sim-

ulators at a reduced time cost, by replacing expensive iterative

solvers with more e�cient operations like convolution [Tompson

et al. 2017] and message passing [Li and Farimani 2022], captur-

ing �ne-grain details on coarse resolutions [Kochkov et al. 2021;

Stachenfeld et al. 2021], learning reduced-order latent spaces [Kim

et al. 2019b; Wiewel et al. 2019, 2020], or lifting the timestep re-

striction by learning long-term state transitions across multiple

simulation timesteps with graph neural networks [Pfa� et al. 2020;

Sanchez-Gonzalez et al. 2020], spatial convolution [Ummenhofer

et al. 2020], or regression forests [Ladickỳ et al. 2015]. Thesemethods

enable numerical accuracy to be traded for computational savings.

Physical Accuracy. Machine learning can also enhance the accu-

racy of traditional methods, using data to supplement the insu�-

ciently modeled dynamics in, for instance, the Reynolds Averaged

Navier–Stokes (RANS) method [Majchrzak et al. 2023], correcting

the errors caused by the closure coe�cients and Reynolds stress

anisotropy with extended kernel regression [Tracey et al. 2013], ran-

dom forest [Wang et al. 2017], �eld inversion and machine learning

[Duraisamy et al. 2015], and neural networks [Singh et al. 2017].

2.2 Implicit Neural Representation

INRs have been used widely in visual computing applications includ-

ing geometry processing [Mescheder et al. 2019; Park et al. 2019],

image-based rendering [Sitzmann et al. 2019], and inverse render-

ing [Yu et al. 2023; Zhang et al. 2021], for being spatially adaptive,

resolution-agnostic, and memory e�cient. One seminal work is

Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] which repre-

sents a 5D radiance �eld with a neural network that only occupies a

few tens of megabytes. However, pure neural representations su�er

from their considerable time cost, and follow-up works have focused

on hybrid INRs featuring classical data structures like dense [Sun

et al. 2022] and sparse voxel grids [Chabra et al. 2020; Kim et al.

2022; Liu et al. 2020; Martel et al. 2021; Takikawa et al. 2021; Yu

et al. 2021]. Recently, plane-based data structures [Chen et al. 2022;

Fridovich-Keil et al. 2023] have also been leveraged to good e�ects.

Most relevant to our work is Instant NGP [Müller et al. 2022], which

uses multi-resolution hashing for fast training, but lacks both the

explicit treatment of hash collisions and temporal modeling. Recent

works have also used INRs to represent dynamic scenes, by learning

deformation [Park et al. 2021a,b; Pumarola et al. 2021] and scene

�ow �elds [Du et al. 2021; Li et al. 2022, 2021b; Xian et al. 2021].

Notation Type De�nition

Ĕ vector material point position at initial state

Į vector material point position at current state

Ī scalar time

č vector forward map

ć vector backward map

F matrix forward map gradients

T matrix backward map gradients

ī vector velocity

ģ vector impulse

N SSNF neural bu�er

ď scalar sizing �eld

Ĥ scalar reinitialization steps

Ă scalar activation threshold

Č scalar time multiplier

Table 1. Symbols and notations used in this paper.

2.3 Fluid Simulation

The pioneering works by Foster andMetaxas [1997] and Stam [1999]

lay the groundwork for �uid simulation in computer graphics with

the employment of uniform Marker-and-Cell (MAC) grids [Har-

low and Welch 1965], Chorin’s projection method [Chorin 1968],

and the semi-Lagrangian advection scheme [Robert 1981; Sawyer

1963]. Since then, researchers have developed upon this paradigm

on multiple fronts to improve on the e�ciency and accuracy.

Hierarchical Representation. Compared to uniform discretization,

hierarchical or multi-resolution discretizations can capture the intri-

cate details more e�ciently by biasing the computational resources

towards regions of interest, which has motivated researchers to de-

sign computational systems using nested layers of uniform grids [Jo-

hansen and Colella 1998; Martin et al. 2007; Martin and Cartwright

1996; Minion 1994; Setaluri et al. 2014], Chimera grids [English

et al. 2013; Henshaw 1994], and non-uniform grids like quadtrees

and octrees [Ando and Batty 2020; Batty 2017; Losasso et al. 2006a,

2004; Popinet 2003]. In addition, multi-resolution modeling has also

been achieved with wavelet [Deriaz and Perrier 2006; Kevlahan and

Vasilyev 2005; Schneider and Vasilyev 2010] and model-reduced

methods [Mercier and Nowrouzezahrai 2020].

Numerical Dissipation Reduction. The Stable Fluids method [Stam

1999] yields a signi�cant amount of numerical viscosity causing the

results to appear blurred and damped. Researchers have addressed

this artifact with error correction schemes [Kim et al. 2006; Selle et al.

2008], higher-order interpolation [Losasso et al. 2006b; Nave et al.

2009], improved backtracking schemes [Cho et al. 2018; Jameson

et al. 1981], particle-based advection [Fu et al. 2017; Jiang et al. 2015;

Zhu and Bridson 2005], energy-preserving integration, [Mullen et al.

2009], a posteriori vorticity correction [Fedkiw et al. 2001; Zhang

et al. 2015], re�ection [Narain et al. 2019; Strang 1968; Zehnder et al.

2018] and Lie advection [Nabizadeh et al. 2022]. Flow map methods

o�er another alternative option, as elaborated below.
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Flow Map Methods. The method of characteristic mapping (MCM)

proposed by Wiggert and Wylie [1976] pioneers in solving the �uid

equations on �ow maps, a technique introduced to the graphics

community by Tessendorf and Pelfrey [2011]. Tracking long-term

�ow maps instead of �uid quantities, MCM drastically reduces the

number of interpolations and hence the resulting numerical di�u-

sion. We refer to the work by Tessendorf [2015] for more in-depth

analyses and derivations onMCM. Earlier methods [Hachisuka 2005;

Sato et al. 2018, 2017; Tessendorf and Pelfrey 2011] compute �ow

maps by tracing virtual particles which leads to a demanding time

and memory cost. Qu et al. [2019] trade o� accuracy for e�ciency

by advecting the backward map in a semi-Lagrangian-like manner;

and bring in the forward map to realize the BFECC error compensa-

tion [Kim et al. 2006]. Nabizadeh et al. [2022] e�ectively combine

bidirectional �ow maps with impulse-based �uid dynamics [Buttke

1992; Feng et al. 2022; Oseledets 1989], using the mappings along

with their Jacobians to perform circulation-preserving advection.

3 PHYSICAL MODEL

3.1 Mathematical Foundation

Flow Map Preliminaries. We start by de�ning a spatiotemporal

velocity �eld ī (ħ, ă) in the �uid domain ¬ to specify the velocity

vector at location ħ and time ă . For a material point Ĕ ∈ ¬, the

corresponding forward �ow map č : ¬0 → ¬Ī is de�ned as:




ĉč (Ĕ , ă)

ĉă
= ī (č (Ĕ , ă), ă),

č (Ĕ , 0) = Ĕ ,

č (Ĕ , Ī) = Į,

(1)

in which Ĕ represents the material point’s position at time 0, and

Į speci�es the position of the same material point at time Ī . The

forward mapping from Ĕ to Į is determined by the trajectory of Ĕ ,

which is calculated by integrating ī within the time interval [0, Ī].

Similarly, we de�ne the backward �ow mapć : ¬Ī → ¬0 as:




ĉć (Į, ă)

ĉă
= ī (ć (Į, ă), ă),

ć (Į, Ī) = Į,

ć (Į, 0) = Ĕ .

(2)

Consequently, integrating ī reversely from time Ī to time 0 on the

temporal axis, starting from Į in the spatial domain, yields the

backward mapping from Į to Ĕ . Without causing confusion, in the

following discussion, we will abbreviate č (Ĕ , Ī) as č andć (Į, 0) as

ć . We can also use č andć interchangeably with Į and Ĕ .

As seen in Figure 2, intuitively, the mapping č sends a material

point to its current position at time Ī given its initial position; the

mappingć backtracks a material from its current position at time Ī

to its initial position.

We denote the spatial gradients (Jacobians) of č and ć with F

and T as:

F =

ĉč

ĉĔ
,

T =

ĉć

ĉĮ
.

(3)

Symbolically, F and T represent the deformation between the

initial and current reference frames. In continuum mechanics, F is

Forward in time

Backward in time

Fig. 2. The forwardmapč sendsĔ (blue square) to Į (red circle) by traveling

forward in time; the backward mapć sends Į to Ĕ by traveling backward

in time. The Jacobians F and T are calculated at Ĕ and Į respectively.

typically known as the deformation gradient. The equations of the

temporal evolution of F and T are given by:

ĀF

ĀĪ
= ∇ī F ,

ĀT

ĀĪ
= −T ∇ī .

(4)

Both equations are written in matrix form. We refer readers to the

book by Gonzalez and Stuart [2008] for a more detailed derivation.

FlowMaps for Fluid Simulation. Since the four �owmap quantities:

č ,ć , F and T can fully prescribe material transport, they can serve

as essential ingredients for accurate �uid simulations. To illustrate,

we consider the impulse form of the Euler equations for inviscid

�ow [Cortez 1995; Feng et al. 2022; Nabizadeh et al. 2022]:




Āģ

ĀĪ
= − (∇ī)Đ ģ,

∇2ą = ∇ ·ģ,

ī = ģ − ∇ą,

(5)

withģ and ī being �uid impulse and velocity, andą an intermediate

variable used only for projecting ģ to the divergence-free ī. The

impulse ģ is considered to contain more information than ī, as ī

can be reconstructed from ģ by solving the Poisson equation.

A �owmap-based solver for Equation 5 is introduced to the graph-

ics community by Nabizadeh et al. [2022], which solves the equation

by �rst computing the backward �ow map ć and its Jacobian T ,

and then reconstructing the impulse ģ by evaluating:

ģ(Į, Ī) = TĐ ģ(ć (Į), 0) . (6)

Intuitively, this equation computes ģ by 1) mapping the current

point Į back to its initial location Ĕ = ć (Į), 2) reading the initial

impulse at Ĕ , and 3) applying the deformation by multiplying with

TĐ . The mathematical derivation can be found in the work by

Cortez [1995] (see Proposition 3). The forward �ow map č and its

Jacobian F are also leveraged in their system in a similar fashion.

In particular, they evaluate:

ģ̄(Ĕ , 0) = FĐ ģ(č (Ĕ ), Ī), (7)

with ģ̄(Ĕ , 0) then being compared to ģ(Ĕ , 0) for BFECC error

compensation [Kim et al. 2006]. Their work’s successful employment

of č ,ć , F and T in a computer graphics simulation pipeline well-

demonstrates the promise of �ow map-based methods in building

high-�delity �uid solvers.
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3.2 The Perfect Flow Map, and its Numerical Fallibilities

Although the incorporation of F and T along with č andć has al-

ready led to a high level of simulation �delity, the prevalent method

used for solving these �ow map variables [Nabizadeh et al. 2022; Qu

et al. 2019; Yin et al. 2023] is error-prone and invites reconsideration,

as we will elaborate below.

The Perfect Flow Maps. In the absense of numerical inaccuracies,

ć , č , F and T should always have the following qualities:

Remark. A point undergoing, in sequence, a backward mapć and

then a forward map č should return to its original position. This

also holds for the reverse direction. In other words,
{
Ĕ = ć ◦ č (Ĕ ),

Į = č ◦ć (Į) .
(8)

Remark. A coordinate frame deformed, in sequence, by the back-

ward map Jacobian F and then by the forward map Jacobian T

should remain identical. This also holds for the reverse direction. In

matrix notation, {
ą = F T ,

ą = T F .
(9)

Numerical Fallibilities. Equations 8 and 9 prescribe two conse-

quential properties of �ow maps which are challenging to satisfy

numerically. Qu et al. [2019] and Nabizadeh et al. [2022] employ two

separate numerical paradigms to evolve the backward and forward

mappings. On one hand, the backward map ć is advected using

a semi-Lagrangian-based method, which involves a di�usive grid

interpolation at each step. On the other hand, the forward map č is

accurately solved by marching the map with a high-order Runge-

Kutta method, which is void of interpolation errors. The asymmetry

between both schemes leads to an inaccurate backward mapping and

an accurate forward mapping, which are bound to diverge (become

inconsistent) and fail to satisfy Equations 8 and 9 numerically.

3.3 Alternative: Bidirectional March

Driven by this observation, we propose a simple and natural alterna-

tive for solving č ,ć , F and T : bidirectional marching. Since the

forward and backward �ow maps essentially describe the temporal

integration of the velocity �eld forward and backward in time, we

can adopt the same, interpolation-free, Runge-Kutta scheme for

both the computation of (č , F ) and (ć , T ), using +�Ī for the former

and −�Ī for the latter. In particular, we solve for č with Equation 1,

F with Equation 4; and solve for ć and T using the exact same

procedures but with time reversed.

A Motivational Experiment. As shown in Figure 3, we conduct

a concrete numerical experiment for both strategies to vividly il-

lustrate the importance of symmetry in the computation of bidi-

rectional �ow maps. We de�ne a steady velocity �eld with a single

vortex in the center, as shown on the left panel. The upper �gure

plots the streamlines, and the lower �gure plots the angular veloc-

ity against the radial distance. We use this steady velocity �eld to

construct �ow map variables č ,ć , F and T for both methods, and

compare their adherence to Equations 8 and 9.

The two �gures on the top-right correspond to the solution

adopted by Qu et al. [2019] and Nabizadeh et al. [2022], where

DMC+
March

Bidirectional
March

Angular vel.

Streamlines

Steady Velocity Field Backward map ψ Forward map φ(ψ)

Fig. 3. Under the steady velocity field shown on the le� panel, a point

transported by its flow map should 1) retain in its original orbit, and 2)

return to its original position a�er the “roundtrip” of č ◦ć (Į ) . This means

that 1) the trajectories of the points should always be perfect circles, and

2) the solid circles should coincide with the hollow circles. It can be seen

that Bidirectional March satisfies these properties nicely, while DMC+March

yields significant errors.

a semi-Lagrangian-based scheme is used for solvingć (we use the

dual-mesh characteristics [Cho et al. 2018] for backtracking as sug-

gested by Qu et al. [2019]), and the 4th order Runge-Kutta scheme

for solving č . Both T and F are computed fromć and č using �nite

di�erence. The two �gures on the bottom-right correspond to our

proposed approach, where we solve for č andć with Equation 1, F

and T with Equation 4 (top) — all with 4
th order Runge-Kutta.

The middle column depicts the backward mappingć , where the

(input) current positions Į are highlighted with solid circles, and

the (backtracked) initial positions Ĕ = ć (Į) are highlighted with

hollow squares. The upper and lower plots in this column exhibit

signi�cantly di�erent behaviors: the lower one traces out stream-

lines that are perfectly circular, whereas the upper one traces out

streamlines that erroneously spiral inward, which are inconsistent

with the ground-truth streamlines shown on the top-left.

The right column depicts the forward mapping č originated from

the (backtracked) initial positions Ĕ = ć (Į). These are highlighted

with hollow squares, and the roundtrip positions Į̂ = č ◦ ć (Į)

are highlighted with hollow circles. As prescribed by Equation 8,

Į̂ = č ◦ć (Į) = Į , so the hollow circles (Į̂) should in theory coincide

with the solid circles (Į). On the upper plot, this is clearly not the case

with the presence of the radial drift that has previously occurred in

the solving ofć . On the lower plot, this requirement is well-ful�lled,

due to that the computations of the backward and forward �ow

maps are mechanistically symmetric.

The visual evidence is also supported numerically. The positional

error of č ◦ ć (Į) − Į is 0.3581 for DMC+March, and 1.904E-06

for Bidirectional March, showing that our proposed strategy better

satis�es Equation 8 than the existing strategy [Nabizadeh et al. 2022;

Qu et al. 2019] by 5 orders of magnitude. We further gauge both

strategies’ adherence to Equation 9 by calculating the Frobenius

norm of FT − I. DMC+March yields an error of 6.987, while Bidirec-

tional March yields an error of 1.937E-3, showing that our strategy

better satis�es Equation 9 by 3 orders of magnitude.
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Spatially-sparse Feature Grid Spatial Interp. Temporal Interp. Multi-channel Decoding Reconstructed  Vel. Field

Spatio-
temporal 
Feature 
Vector

tx,y

Cubic Lagrange Polynomial

Shallow NN Ensemble

MAC-Grid

Input

t = 1.0

t = 0.0

Fig. 4. Illustration of our Spatially Sparse Neural Fields (SSNF) in 2D. In our NFM simulation framework, we use SSNF to represent a continuous spatiotemporal

velocity field. To fetch the velocity given coordinates (G, ~, C ) , we first interpolate the multi-resolution, spatially sparse feature grid with (G, ~) to obtain one

feature vector for each resolution (the le� two columns). We reorganize these vectors into 4 temporal anchor vectors, and interpolate them with C to obtain

the final feature vector (middle column). Finally, we decode the feature vector with neural networks to get the velocity components (the right two columns).

3.4 Towards Perfect Flow Maps with INR

Current Conundrum. With the current �ow map-based methods,

the numerical inaccuracies of the �ow maps undermine the simu-

lation quality with the added 1) transportation error (e.g., warping

the value from the wrong initial location), and 2) interpolation er-

ror by the requirement for frequent reinitializations. To ful�ll the

full potential of low-di�usion, long-range �ow map advection, a

more accurate and symmetric method for computing the �ow maps

such as bidirectional marching would be desirable as it is proven

to radically increase the numerical accuracy and consistency of the

computed q ,k , F and T . However, the key hindrance to the adop-

tion of the bidirectional marching scheme is the intractable memory

requirements for storing the spatiotemporal velocity bu�er, which

is necessitated for marching the backward variablesk and T , as the

solution from previous steps cannot be reused.

Our Solution. Bridging such a conundrum faced by traditional

�uid simulation with the state-of-the-art developments of fast-to-

train, accurate, and memory-compact INRs in the machine learning

and computer vision community, we design Neural Flow Maps

(NFM), an impulse and �ow map-based �uid simulation method

which implements the accurate bidirectional marching scheme for

solving q ,k , F and T , at a small additional memory cost thanks to

our novel hybrid INR structure: Spatially Sparse Neural Fields

(SSNF), which is able to maintain long-range spatiotemporal velocity

bu�ers at a smaller memory footprint than a single velocity �eld

stored on a dense, uniform grid.

In Section 4, we �rst discuss the design and implementation of

SSNF. Then, in Section 5, we introduce our NFM simulation algo-

rithm which incorporates SSNF at its core. Then, in Section 6, we

validate the e�cacy of both SSNF as a high-performance neural

representation, and NFM as a state-of-the-art simulation algorithm.

4 SPATIALLY SPARSE NEURAL FIELDS

In this section, we introduce Spatially Sparse Neural Fields (SSNF),

which is the core component of our Neural Flow Maps simulator.

As illustrated in Figure 4, SSNF is a novel, general-purpose hybrid

INR for representing spatiotemporal signals. Speci�cally, in our

application of �uid simulation, SSNF represents a continuous spa-

tiotemporal velocity �eld. SSNF consists of 1) a multi-resolution,

spatially sparse data structure that maintains trainable feature vec-

tors, and 2) an ensemble of lightweight neural networks that decodes

the feature vectors to velocity �elds discretized on MAC grids.

Reading Figure 4 from left to right: with input coordinates (G,~, C),

we �rst query the feature grid with spatial coordinates (G,~) to fetch

one feature vector at each resolution level. Each feature vector is

split into 4 segments which are associated with 4 timestamps. The

segments are concatenated across all resolution levels to form 4

temporal anchor vectors, which will be interpolated with C to obtain

the �nal feature vector. After that, we use our ensemble of shallow

neural networks to decode this feature vector into the staggered G ,

~ (and I in 3D) velocity components.

4.1 Spatially Sparse Feature Grid

As shown on the left of Figure 4, we store feature vectors on a pyra-

mid of multi-resolution regular grids, whose spatial sparsity is im-

plemented with a bitmask. Our design is inspired by SPGrid [Setaluri

et al. 2014], a shallow, sparse structure for physical simulation that

is found to be more e�cient and convenient than deep, tree-based

structures. Unlike SPGrid which maintains a unique discretization of

the domain, our feature grids are overlapping, therefore allowing a

point in space to be included by cells on multiple levels and combine

information from multiple spatial frequencies. This overlapping,

multi-resolution design has been used to good e�ects by recent

methods [Müller et al. 2022; Takikawa et al. 2021].
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Fig. 5. Collision and reconnection of four vortices each forming right angles with its neighbors. Upon collision, the four vortices reconnect to form two larger

vortices shaped like four-pointed stars. They roam towards the le� and right walls until each splits into four vortex tubes.

Cell Activation. Our spatial sparsity is explicitly controlled with

a strategy similar to the octree division strategy proposed by Ando

and Batty [2020]. By default, the coarsest level is densely activated,

and a cell on a �ner level is activated only when the complexity of the

�ow at the region is found to exceed the characteristic expressiveness

of that level. The complexity is expressed with the sizing value (

computed from the Jacobian of the velocity �eld, as elaborated in

Appendix B; and the characteristic expressiveness is given by f · 1
3G

with activation threshold f being a scalar hyperparameter. Each cell

on each level ; computes the max sizing (max among all the voxels

it controls, and if (max > f · 1
3GĢ

, the cell becomes activated. As

seen in Figure 4, we activate the cell by activating all 4 (or 8 in 3D)

geometric nodes of the cell (the red dots). This process is carried out

independently on all levels, and it guarantees that a voxel activated

on one level is also activated on all the coarser levels.

Feature Lookup. On each level, we linearly interpolate a feature

vector from the 4 (or 8 in 3D) enclosing nodes, and concatenate

across all levels. If the interpolated location has no active nodes

nearby, a zero vector is returned. If the enclosing nodes are a blend

of active and inactive ones, we carry out the interpolation as usual

while assuming the inactive ones contain zero vectors. Such an

activation-agnostic lookup scheme requires no explicit case switch-

ing, and leads to the continuous transition between active and inac-

tive regions, which improves the �tting quality. Quadratic interpo-

lation has also been tested, but shows no signi�cant improvement.

Memory Management. We use the bitmasked SNode o�ered by

Taichi [Hu et al. 2019] to compose our data structure. Each bitmasked

entry contains a dense block of 42 (or 43 in 3D) nodes to amortize the

sparsity overhead. Each node stores in the AoS manner 1) a feature

vector of length 8 (or 16 in 3D), and 2) a serialized index used for

grid raveling. The gradients of the feature vectors are stored in a

juxtaposed array, so the overall layout can be considered as SoAoS.

Comparison with Existing Methods. Our SSNF is a collision-free

analog of Instant NGP [Müller et al. 2022], as both methods employ

multiple layers of multi-resolution, virtual dense grids, and concate-

nate the interpolated features. However, Instant NGP saves memory

by allowing multiple voxels to share the same parameters as as-

signed by a hashing function, and compete for dominance through

their contributions to the loss function. While this is reasonable for

neural rendering applications, where surface cells dominate far-�eld

and inner cells in the loss computation, it fails to disambiguate in

our application where each velocity vector contributes equally to

the loss. In comparison, we explicitly assign the parameters to the

high-frequency regions, giving them exclusive access. As shown in

the comprehensive numerical experiments in Subsection 6.1, such

explicit control acts to signi�cantly reduce noise and leads to better

�tting accuracy at lower parameter numbers and reduced training

time. In this sense, SSNF is also similar to NGLOD [Takikawa et al.

2021], a method for �tting SDFs that also uses a collision-free sparse

structure. In comparison, our overlapping grid-based design o�ers
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Fig. 6. The evolution of a pair of vortex rings colliding head-on. Upon collision, the two rings stretch in the ~I-plane while thinning in the G-direction. The

structure then destabilizes and splits into a set of smaller vortex rings reminiscent of a Ferris wheel.

implementational simplicity and the alleviation of the restriction

from surface octree to general-purpose, full-domain �elds. SSNF is

also comparable to NeuralVDB [Kim et al. 2022] as both employ

shallow structures rather than deep octrees for sparse representa-

tion, and both focus on compressing volumetric input data instead

of inferring from images, although unlike SSNF, NeuralVDB does

not currently support temporal information. Both methods’ design

intents are also fundamentally di�erent: NeuralVDB compresses

readily-generated simulation data, whereas SSNF is embedded in

the simulation loop to facilitate high-quality simulation.

4.2 Temporal Dimension

Our SSNF handles the temporal dimension by interpolating multiple

anchor feature vectors in time, similar to the method by Park et al.

[2023]. Each feature vector looked up in space is split into 4 segments

associated with timestamps 0, 1
3
, 2
3
, and 1 respectively. We use

the cubic Lagrange polynomial to interpolate these vectors given

any C ∈ [0, 1]. As validated in Subsection 6.1, we �nd that cubic

interpolation (instead of the linear interpolation found in existing

methods) is consequential to the �tting accuracy.

Dynamic Timestamp Normalization. The interpolation scheme

requires that the time of the stored sequence is within [0, 1]. For

typical dynamic-NeRF applications, this is trivially ful�lled by nor-

malizing the actual timestamps by the total timelapse. In our case,

this is challenging as the sequence is a stream of frames, each with

a variable duration that is not known in advance. In response, we

devise dynamic timestamp normalization to handle sequences with

an inde�nite number of frames or total timelapse. Essentially, we

always assume that the current frames occupy the range [0, 1], and

normalize the timestamps with the time multiplier _, which is the

reciprocal of the timelapse-so-far. As more of the sequence arrives,

_ decreases and the earlier frames are scaled down to accommodate

the later frames. Not only does this lift the requirement for a prede-

termined timelapse, in Subsection 6.1, we show that our strategy is

more e�ective even when the total timelapse is available.

4.3 Staggered Feature Decoder

After the successful interpolation of feature vectors with spatiotem-

poral coordinates, the SSNF will then reconstruct velocity �elds on

MAC grids using neural decoders. To obtain the staggered veloc-

ity components, we create one shallow neural network per spatial

dimension. Based on the shared feature grid, for each spatial dimen-

sion, feature vectors are queried at its associated face centers and

decoded with its proprietary neural network. Such a multi-branch

design cannot be replaced with a single decoder that recovers the G ,

~ (and I in 3D) components en masse, because treating the staggered

vector �eld as a scalar �eld leads to non-smooth signals.

4.4 Training Scheme

As an integral part of the Neural Flow Maps (NFM) simulation

loop, our SSNF is trained at each simulation step to incorporate the

latest update of the spatiotemporal velocity �eld produced by the

simulation (elaborated in Section 5). During this training process,

the input frame (the most recent velocity) must be properly stored

without losing track of the previously stored frames. However, the

ground truth data for the prior frames are already lost. To address

this, we maintain two copies of SSNF: N and N̂ , where the former

is our main velocity bu�er and the latter is an auxiliary bu�er for

memorizing the past. To better illustrate, suppose N has already

stored the sequence ī1, ī2, ī3. When ī4 arrives, we begin by hard-

copyingN to N̂ . To updateN for ī4, we assemble the training data

as if we have ī1, ī2, ī3, ī4 in hand and sample all frames with equal

priority — but in practice, all the samples from ī1, ī2, ī3 will be

queried from N̂ . We note that training recurrently in this way will

indeed accumulate errors. But as shown in Figure 11 (left 4 plots),

this is not signi�cant in practice as the errors exhibit only a minor

rising trend as the number of training sessions rises from 1 to 25.

Data Sampling. We train our SSNF using mini-batches sampled

from a discrete probability distribution @ computed as:

@� = U ·min(max
(

f ·
1

3GC
, (�

)

, f ·
1

3GF
), (10)

with � denoting the 2 or 3D grid index, 3G� and 3G� the spacings

of the coarsest and �nest levels, and U the normalization factor to

ensure that @ sums to 1. Such a distribution will bias the training

data towards regions with greater �ow complexity. The clipping

functions are invoked to handle the edge cases (e.g., without them, a

constant �eld with ( = 0 everywhere will leave U unde�ned). More

details regarding the sizing value ( can be found in Appendix B.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



Fluid Simulation on Neural Flow Maps • 9

Fig. 7. The evolution of a pair of oblique vortex rings. The two vortices a�ach

on the le� side, undergo multiple topological changes, and eventually morph

into three vortex rings.

Fig. 8. The temporal evolution of a vortex trefoil knot. The knot deforms,

self-collides, and breaks into two vortices of di�erent sizes, corresponding to

the experimental observation [Kleckner and Irvine 2013].

Encoder Growth. As discussed in Subsection 4.1, the encoder is

activated only for regions where the �ow is deemed complex enough.

However, a region that is simple at the beginning of a sequence

might become complex as the simulation proceeds. Hence, we grow

the encoder upon receiving a new frame by recomputing the sizing

value ( and activating any additional cells as needed.

Reinitialization. As will be elaborated in Section 5, our simula-

tion reinitializes every = steps where = is a hyperparameter whose

selection should consider both SSNF’s �tting capacity and NFM’s

accumulated errors from long-range �ow map marching (further

analysis can be found in Subsection 6.2). At reinitialization, we uni-

formly randomly reinitialize the feature grid following Müller et al.

[2022], and leave the decoder networks untouched. Additionally,

we also reinitialize the feature grid when the ratio of time multipli-

ers _Ī−1
_Ī

> 1.33 during dynamic timestamp normalization, because

when the timestamp assignment for the same frame changes signi�-

cantly between two training sessions, the previously learned anchor

vectors are often sub-optimal for initializing the current session.

Details. Each decoder is a shallow MLP with one hidden layer

of width 64. We use the ELU activation to avoid the dead ReLU

issue [Clevert et al. 2015]. We use AdamW [Loshchilov and Hutter

2017] with V = (0.9, 0.99) as the optimizer. The learning rate is set

to 0.01, and is scheduled to exponentially decay to 0.001 at iteration

1500. We employ the Mean Squared Error (MSE) as the loss function.

5 SIMULATION ON NEURAL FLOW MAPS

The Neural Flow Maps (NFM) simulation algorithm built upon our

SSNF velocity bu�er is outlined in Algorithm 1.

At the start of a simulation, the SSNF bu�er will be randomly

initialized — it serves purely as a data structure and hence does not

need any pre-training. Each simulation step starts by checking if the

current step count is a multiple of =. If so, we reinitialize by setting

the forward �ow map q and its Jacobian F to the identity mapping

id¬ and identity matrix ą respectively, and the initial velocity ī0 to

the current velocity ī. After that, we compute the current timestep

�C 9 ( 9 represents the step count since the last reinitialization), with

ī and the CFL condition. We maintain an array [�C0, . . . ,�C=−1] to

store the history of �C . Then, we compute the midpoint velocity

īmid using Algorithm 3, and store it with the SSNF N . Doing so

involves the encoder growth procedure and the utilization of the

auxiliary bu�er N̂ , which have been discussed in Subsection 4.4.

Once īmid is properly stored in the SSNF bu�erN , we compute q ,

k , F and T usingN . To do so, we resetk and its Jacobian T to the

identitymap and identitymatrix, andmarchwith the spatiotemporal

velocity �eld stored inN backward in time for a total of 9 steps. For

q and F , we reuse their solutions from the previous step and march

for a single step forward in time. The marching algorithm is further

elaborated in Subsection 5.1 and Algorithm 2.

Once q , k , F and T are obtained, we compute the advected

velocity ī̂ using the impulse-based �uid advection with BFECC.

The detailed scheme is given in Algorithm 4. If any external forces

are present, their integrals along the �uid streamlines need to be

computed and added to the velocity before projecting again by

solving the Poisson equation.

5.1 Bidirectional Flow Map Marching

As described in Subsection 3.3, we solve for q andk by marching

Equation 1 forward and backward in time; and solve for F and T

by marching Equation 4 (top) forward and backward in time.

All four quantities are temporally integrated with our custom

4th order Runge-Kutta (RK4) integration scheme, outlined in Al-

gorithm 2. The algorithm uses q and F for notation, but applies

directly to k and T by reversing time. We note that, to evolve F

and T using the RK4 scheme, the values mF
mC and mT

mC need to be
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Algorithm 1 Neural Flow Map Simulation

Initialize: ī to initial velocity; N , N̂ with random weights

1: for 8 in total steps do

2: 9 ← 8 (mod =);

3: if 9 = 0 then

4: q ← id¬ , F ← ą ;

5: ī0 ← ī;

6: Randomly initialize N ’s feature vectors;

7: end if

8: Compute �C 9 with ī and the CFL number;

9: Estimate midpoint velocity īmid according to Alg. 3;

10: if 8 + 1 (mod =) ≠ 0 then

11: Compute sizing �eld ( with īmid;

12: Grow N ’s feature grid with ( ;

13: Train N with īmid and N̂ ;

14: N̂ ← N ;

15: end if

16: k ← id¬ , T ← ą ;

17: Marchk,T with Alg. 2, using īmid and −�C 9 ;

18: for ; in 9 − 1 . . . 0 do

19: Query īmid,; from N using time
∑;−1
2=0 �C2 + 0.5�C; ;

20: Marchk,T with Alg. 2, using īmid,; and −�C; ;

21: end for

22: March q, F according to Alg. 2, using īmid and �C 9 ;

23: Reconstruct ī with (ī0,k,T , q, F ) as in Alg. 4;

24: if use external force then

25: ī̂ ← ī +
+ C

0
Ĝext (k (Į, g), g)3g ;

26: ī ← Poisson(ī̂);

27: end if

28: end for

estimated at C + 0.5�C and C + �C , which require the estimations of

q andk at these times. We manage this by evolving the maps and

the Jacobians in an interleaved manner, so that the estimations of q

andk at C + 0.5�C and C + �C can be recycled for updating F and T .

5.2 Midpoint Method

As outlined in Algorithm 3, we adopt the second-order, midpoint

method to e�ectively reduce the truncation error of the temporal

integration. To do so, we resetk and T to identity, perform a single

RK4 backtrack with the current velocity ī and 0.5 · �C , and carry

out the impulse-based advection to obtain īmid. We empirically �nd

that, for estimating īmid, neither the BFECC error compensation

nor the long-range �ow map makes a signi�cant di�erence to the

simulation results, hence they are ablated for the estimation of īmid.

5.3 Error-compensated Impulse Advection

As outlined in Algorithm 4, once we have successfully solved for

the quantities q ,k , F and T , we transport the initial velocity ī0 to

�nd the updated velocity ī using the impulse-based scheme [Cortez

1995; Nabizadeh et al. 2022], which is used in combination with the

BFECC error compensation [Kim et al. 2006; Qu et al. 2019].

Additional implementation details of our NFM simulation method

can be found in Appendix B.

INGPOurs

KPlanesSIREN

Our Feature Grid

Streamlines

Fig. 9. Fi�ing error in 2D. The benchmarks are noisy around the vortical

regions; our method achieves high fi�ing accuracy in these regions at a

smaller memory footprint due to its explicitly managed spatial sparsity.

6 VALIDATION

We validate the e�ectiveness of NFM in two parts. First, we conduct

a thorough comparison of SSNF with existing INR benchmarks in

terms of memory e�ciency, training speed, and �tting accuracy.

Then, we validate the advantage of employing SSNF for simulation,

by comparing NFM quantitatively and qualitatively with traditional

simulation methods, showcasing improved adherence to analytical

solutions, energy preservation, and phenomenological �delity.

6.1 Validation of SSNF

We compare SSNF to three benchmarks: Instant NGP (INGP) [Müller

et al. 2022], KPlanes [Fridovich-Keil et al. 2023], and SIREN [Sitz-

mann et al. 2020], in �tting spatiotemporal �elds in both 2D and 3D

(spatial-wise). These benchmarks are carefully selected to cover a

wide spectrum of INR paradigms. INGP and KPlanes are both hybrid

INRs combining feature vectors stored on traditional data structures

with small neural networks, a design adopted by our method. Be-

tween them, INGP achieves data compression by leveraging spatial

sparsity, as does our approach, whereas KPlanes is spatially dense

and achieves compression by spatial decomposition. SIREN, on the

other hand, is a pure INR that is fully implicit featuring much larger

neural networks. Detailed descriptions of each benchmark along

with our testing methodology can be found in Appendix C.

The testing results are presented in Table 2 and Figure 11. On the

left of Table 2, the computational cost of the 2D and 3D versions of

all 4 methods are given. On the right, the averaged errors are given.

Since the errors are natively computed on the MAC grid, we report

two errors: a scalar (component-wise) error with the Root Mean

Squared Error (RMSE), and a vector error with the Average End Point

Error (AEPE). The velocity vectors are reconstructed by aggregating

the face-centered velocity components at the cell centers. For each

metric, we present three numbers: the initial error, the �nal error,

and the averaged error. To elucidate the di�erence between these

errors, we remind that each test consists of 25 training sessions. The

initial session learns a single, static frame, while the �nal session

learns the entire sequence of 25 frames. Hence the initial error

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



Fluid Simulation on Neural Flow Maps • 11

Ground Truth SIREN KPlanes INGP Ours

Velocity Error

Vorticity

Fig. 10. Visualization of the fi�ing quality of a spatiotemporal sequence in 3D. Displayed is the 8th frame from the 24th training session. The top row shows

the vorticity field. It can be seen that our method yields the highest-quality compression with the lowest amount of smearing around the vortex tubes. The

bo�om row shows the velocity error compared to the ground truth, which confirms the improved accuracy of our method, especially near the vortical regions.

isolates the system’s capacity to resolve spatial details, while the

�nal error gauges its capacity to handle the long-range temporal

evolution. The average error measures the system’s consistency

throughout the 25 training sessions.

The left of Table 2 shows that, in 2D, SSNF is the most memory

e�cient and only trails INGP in terms of time cost by less than

10%. In 3D, SSNF is the most time e�cient and only trails SIREN in

terms of memory cost, albeit for a favorable tradeo� since SIREN

trains about 6× slower. The right of Table 2 shows that SSNF has a

clear advantage in terms of �tting accuracy. For instance, in 2D, our

method reduces the average RMSE by 73.7% from the best bench-

mark (KPlanes) and 91.1% from the worst benchmark (INGP). In 3D,

our method reduces the error by 73.5% from the best benchmark

(INGP) and 87.3% from the worst benchmark (SIREN). Similarly, in

Figure 11, it can be observed that our method consistently outper-

forms the benchmarks in all metrics.

Discussion. The reason behind our method’s e�ectiveness can be

probedwith Figure 9, inwhich the ground truth velocity is plotted on

the top left, and the �tting errors of all four methods are plotted on

the right. The feature grid discretization of our method is illustrated

on the lower left. We can see that for all the benchmarks, the error

is concentrated in the vortical regions with large velocity gradients.

These methods either lack the ability to adapt the DoFs towards

these regions (KPlanes), or rely on black-box schemes (INGP, SIREN)

which underperform for our application. In comparison, our method

explicitly assigns its DoFs to the regions where they are the most

needed, according to the domain-speci�c prior knowledge encoded

in the sizing function (Equation 12 of Appendix B). Despite SSNF

using the fewest parameters, the lower left of Figure 9 shows that

most of the parameters are clustered to densely cover the vortical

regions, which leads to a much greater local e�ective resolution and

therefore much smaller �tting errors.

The analogous 3D error visualization is given in Figure 10, in

which the vorticity �elds computed from the �tted velocity �elds

are depicted on the top row, and the �tting errors are visualized on

the bottom row. It can be observed that SSNF yields the highest-

�delity �tting result by a considerable margin, sharply carving out

high-frequency details near the trefoil knot, while the benchmarks

are visibly di�used around the knot, a sign of insu�cient storage

resolution. Our method achieves this by explicitly assigning most

of its parameters to express the knot structure, so that the e�ective

resolution is largely increased at a manageable cost.

In summary, experimental evidence suggests that our SSNF rep-

resentation is generally advantageous for cases where:

(1) The accuracy of compression is important, e.g., in scienti�c

computing;

(2) The memory budget is constrained and needs to be e�ciently

managed;

(3) The spatial sparsity is signi�cant and domain-speci�c knowl-

edge is available.

Therefore, suitable scenarios for SSNF include high-�delity �uid

simulations for computer graphics and computational �uid dynam-

ics, but they are also not con�ned to this application.

Ablation Studies. As shown in Table 3 and Figure 12, we conduct

2D and 3D comparisons with two ablated versions: [A] without

dynamic timestamp normalization (instead, normalize full timelapse

to [0, 1]), and [B] with linear time interpolation instead of the cubic
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Fig. 11. The fi�ing errors (RMSE and AEPE) for experiments in 2D (top) and 3D (bo�om). Our method consistently yields the lowest fi�ing error in comparison

to existing methods.

Computational Cost Performance

Num. Params. Time (s) RMSE (init.) AEPE (init.) RMSE (avg.) AEPE (avg.) RMSE (�nal) AEPE (�nal)

XY + T

INGP 90,562 0.49 24.91E-5 23.66E-5 36.89E-5 35.82E-5 34.33E-5 30.25E-5

KPlanes 105,262 0.64 15.00E-5 10.42E-5 12.55E-5 9.659E-5 13.51E-5 9.679E-5

SIREN 98,822 1.19 13.95E-5 16.11E-5 18.53E-5 21.16E-5 24.02E-5 26.89E-5

Ours 83,138 -

87,522

0.53 2.999E-5 1.960E-5 3.299E-5 2.439E-5 3.533E-5 2.536E-5

XYZ + T

INGP 2,148,147 4.26 51.36E-5 54.98E-5 36.12E-5 27.59E-5 42.13E-5 27.97E-5

KPlanes 2,335,107 2.99 54.43E-5 43.75E-5 51.48E-5 38.66E-5 58.60E-5 43.42E-5

SIREN 462,595 11.60 67.10E-5 84.89E-5 75.06E-5 82.54E-5 96.94E-5 103.6E-5

Ours 1,969,779 -

2,129,891

1.94 8.356E-5 9.323E-5 9.554E-5 10.01E-5 13.84E-5 12.46E-5

Table 2. Errors of our method compared to those of the three benchmarks in spatiotemporal signal fi�ing in 2D and 3D. The time reported reflects the training

time per 100 training iterations. Our method consistently yields the lowest fi�ing error at a highly competitive memory and time cost.

one. To facilitate [A], we create test sequences with a �xed per-step

duration, so that the total timelapse is known ahead of time. It can be

seen that both ablated versions are less e�ective than the full version,

which validates that our proposed techniques are well-motivated.

In�uence of Encoder’s Size. As shown in Figure 16 (right), we

analyze the in�uence of the activation threshold f and the encoder’s

e�ective resolution, which together control the encoder’s number of

parameters. We perform 2 experiment sets: 1) �xing f = 0.01 with

varying base resolutions (8, 32), (16, 64), (32, 128), and (64, 256)

(with 4 levels of re�nement), and 2) �xing base resolution (32, 128)

with varying f = 0.01, 0.02, 0.03, 0.04, and 0.05. For 1), a higher

resolution leads to more parameters, and for 2), a lower f leads

to more parameters. For both tests, we observe that the accuracy

quickly saturates once the encoder reaches a certain size, and a

larger model can even worsen the �tting accuracy, due to our limited

training iterations.

6.2 Validation of NFM Simulation

In this section, we validate the e�cacy of our NFM neural simulation

method in comparison with existing benchmarks. We begin with a

simple, 2D steady �ow to compare our method to the benchmarks

in retaining the steady state. We move on to complex 3D scenarios

without analytical solutions and compare in terms of the conser-

vation of energy. Finally, we qualitatively compare our method to

the benchmarks in terms of visual intricacy and the recreation of

real-world phenomena.

2D Analysis: Steady Point Vortex. An isolated point vortex in the

absence of viscosity or external forces is a steady state where the

velocity �eld remains constant over time. This is nevertheless chal-

lenging to satisfy for simulation methods due to numerical dissipa-

tion. Here, we compare NFM to BiMocq [Qu et al. 2019], CF+BiMocq

[Nabizadeh et al. 2022], and MC+R [Zehnder et al. 2018], three of the

advanced simulation methods recently proposed, in terms of their
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Fig. 12. Errors of the ablation tests corresponding to Table 3.

2D RMSE

(avg.)

2D RMSE

(�nal)

3D RMSE

(avg.)

3D RMSE

(�nal)

Ours 3.299E-5 3.533E-5 9.554E-5 13.84E-5

Ablated [A] 7.258E-5 5.562E-5 13.94E-5 15.91E-5

Ablated [B] 4.555E-5 5.408E-5 12.12E-5 14.78E-5

Table 3. Time-averaged ablation results. The reduced errors of our full

method validate that our design choices are well-motivated.

adherence to the steady state after long simulations. The mean ab-

solute error between the simulated velocity and the steady velocity

over 1300 frames is plotted in Figure 17 (right), and the �nal error

image is depicted in Figure 13 (right). It can be seen that CF+BiMocq

and MC+R both yield much reduced errors compared to BiMocq,

with MC+R being slightly better than CF+BiMocq. Our method

outperforms these two methods by an order of magnitude.

It is particularly interesting to note that, with the three methods

all built upon the premise of reduced interpolation errors with long-

range mapping, BiMocq and CF+BiMocq yield less accurate results

than the single-step MC+R method, while NFM yields a much more

accurate one than MC+R. This corroborates the argument that the

potential of �ow map-based advection can only be realized when

the �ow maps are simultaneously 1) long-range, and 2) accurate,

which reiterates the necessity of our bidirectional marching scheme.

3D Analysis: Vortex Rings. As shown in Figure 15, we set up the

leapfrogging vortex rings experiment and compare NFM to 4 bench-

marks: BFECC [Kim et al. 2006], MC+R [Narain et al. 2019], CF and

CF+BiMocq [Nabizadeh et al. 2022; Qu et al. 2019]. The time-varying

kinetic energy for all �ve methods are plotted in Figure 17 (left),

and it can be observed that our method conserved energy better

than its counterparts. It is known that in the conservative case, the

parallel vortex rings will remain separated and leap around each

other inde�nitely. As shown in Figure 15, our improved energy

conservation indeed translates to visibly better ful�llment of this

phenomenon, as NFM yields vortex rings that remain separate after

the �fth leap, while those from the other methods merge after at

most three leaps. As shown in Figure 13 (left), we also conduct an

analogous experiment in 2D and achieve similar results.

Our method’s reduction of numerical dissipation noticeably en-

hances the visual beauty of turbulent �uid simulation. For example,

in Figure 14, we compare the vortex ring reconnection simulated by

NFM to that by the benchmarks. It can be observed that, the most

di�usive method: BFECC creates damped, viscous bridges between

the rings that keep them from reconnecting. The modern solvers

CF+BiMocq

BiMocq MC+R

Ours CF+BiMocq

BiMocq MC+R

Ours

Fig. 13. Le�: leapfrogging vortices in 2D. Our method best preserves the

vortical structures. Right: absolute errors w.r.t. the steady-state field a�er

1300 frames. The mean absolute errors are 1.589E-4, 21.56E-4, 30.92E-4, and

488.9E-4 for NFM (ours), MC+R, CF+BiMocq, and BiMocq respectively.

Ours BFECC MC+R

CF CF + BiMocq

Fig. 14. The vortex reconnecting instant of the “four vortices” example. Our

method does not su�er from the numerical di�usion which manifests in

the viscous bridges between the two reconnected vortices.

(CF, MC+R and CF+BiMocq) lessen the numerical di�usion to e�ec-

tively thin these viscous bridges. NFM o�ers another step up with

its clean reconnection without the viscous bridges, which is more

in line with the reference simulation [Matsuzawa et al. 2022].

In�uence of Reinitialization Steps. As shown in Figure 16 (left), we

analyze the in�uence of the reinitialization step = on the simulation

accuracy by performing the aforementioned 2D steady-state test

with = = 1, 5, 9, 11, 13, 15, 17, 21, 25, 29, and 34. It can be seen that

the error exhibits a u-shaped trend, and minimizes at = = 17. A

small choice of = can su�er from the frequent interpolations, while

a large choice tends to su�er from the errors in long-range �ow map

marching. Currently, = is empirically selected for each simulation.

7 EXAMPLES

With our high-performance NFM simulator, we tackle a range of

complex simulation scenarios, including vortex ring reconnections,

vortex shedding from moving obstacles, and vortex development

from �uid density di�erence. A catalog of our examples can be found

in Table 5. In our examples, we assume the shorter edge to have

the unit length, and the setups are reported accordingly. We use

a workstation with AMD Ryzen Threadripper 5990X and NVIDIA

RTX A6000 to compute our examples.
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BFECC

MC+R

CF

CF+BiMocq

Ours

Fig. 15. Comparison of 3D leapfrogging vortices to the benchmarks. Our method simulates vortex rings that remain separate even a�er the fi�h leap, while

those simulated by the benchmarks merge a�er at most the third leap, showing improved correspondence to the expected phenomenon.

Fig. 16. Le�: simulation errors from di�erent choices of =. Right: fi�ing

errors for di�erent encoder sizes.

Fig. 17. Le�: the 3D kinetic energy plo�ed over time, which showcases the

improved energy conservation property of NFM. Right: mean absolute error

of NFM over time compared to the benchmarks in a steady 2D flow.

Leapfrogging Vortices (2D). As shown in Figure 13, we conduct

the classic 2D leapfrog experiment by placing four point vortices

centered at G = 0.25 and ~ = 0.26, 0.38, 0.62, and 0.74. The vortices

have the same strength (magnitude) of 0.005, with the upper two

being negative and the lower two being positive. The velocity �elds

are obtained from the point vortices using a molli�ed Biot-Savart

kernel with support 0.02. The leapfrogging vortices will hit the right

wall and separate into two vortex pairs that will return to the left.

Once these two pairs hit the left wall, they reassemble into the initial

con�guration and repeat the process. Our method is able to repeat

this cycle 3 times with the vortices still separated.

Leapfrogging Vortices (3D). As shown in Figure 19, we initialize

two parallel vortex rings with G = 0.16 and 0.29125. The major radius

is 0.21; the minor radius (the molli�cation support of the vortices)

is 0.0168. Our method remains separate after the 5th leap, while

existing benchmarks di�use and merge after at most the 3rd one.

Oblique Vortex Collision. As shown in Figure 7, we initialize two

vortex rings initially facing each other at the right angle. The center

of the vortex rings are o�set by 0.3 along the G-axis. The major

radius of both is 0.13; the minor radius is 0.02. Upon collision, the

vortices attach on the left side to form a single vortex ring, which

gets catapulted to the right and divides into three smaller vortices.

Headon Vortex Collision. As shown in Figure 6, we initialize two

opposing vortex rings that are o�set by 0.3 along the G-axis. The

major radius is 0.065; the minor radius is 0.016. Upon collision, the
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Fig. 18. Turbulent flow induced by a rotating and translating paddle. The smoke is juxtaposed with the vorticity field that shows intricate vortex filaments.

two vortices stretch rapidly along the~I-plane while thinning along

the G-axis, causing the structure to destabilize and break into a

ring of small, secondary vortices facing radially outward, which

resembles the experimental results by Lim and Nickels [1992].

Trefoil Knot. As shown in Figure 8, we reproduce with NFM the

classic trefoil knot setup by Kleckner and Irvine [2013]. We simulate

with the initialization �le open-sourced by Nabizadeh et al. [2022],

and observe that the knot structure correctly breaks into one larger

vortex and one smaller vortex.

Four Vortices Collision. As shown in Figure 5, we initialize four

colliding vortices following Matsuzawa et al. [2022] by placing

four vortex rings that each form right angles with its neighbors,

essentially outlining a square in the ~I-plane. The major radius is

0.13; the minor radius is 0.02. The collision causes the four vortex

rings to reconnect into two vortices shaped like four-pointed stars,

leaving behind intricate, turbulent patterns. Both vortex rings then

“crawl” towards the left and right walls, morphing their shapes. After

hitting the walls, the two vortices separate into four vortex tubes.

Moving Paddle. As shown in Figure 18, we initialize arrays of

smoke columns with zero initial velocity. A kinematic boundary

rotates around the I-axis while translating along the G-axis. The

translated position linearly interpolates between G = 0.5 and G = 1.7,

with a time-dependent fraction 0.5 · (1 + cos(0.5 · C)). The rotation

angle relates to time as 0.75 · C . The paddle is a cube with a width

and height of 0.54 and thickness of 0.05. The velocity di�erence

between the paddle and the surrounding �uid creates vortex sheets

that roll up into intricate vortex �laments. The vortical velocity �eld

disintegrates the initial smoke columns into a turbulent mixture.

Inkdrop. As shown in Figure 1, we initialize a vortex ring with

a major radius of 0.06 and minor radius of 0.016, centered at ~ =

1.85 facing the −~-direction. Without density di�erence, the vortex

would simply translate downward. However, we give the smoke

(which is similarly shaped as the vortex) a relative density of 1.7,

and apply a gravitational force of [0,−2, 0], which together elicits

the Rayleigh-Taylor instability that deforms the vortex ring and

evolves it into intricate vortex �laments.

8 DISCUSSION AND FUTURE WORKS

In this work, we propose Neural Flow Maps (NFM), an e�ective

simulation method based on our novel SSNF neural representation,

which bridges the mathematical models of characteristic mapping

and impulse �uid mechanics with the e�cacy of neural networks.

Leveraging SSNF’s cutting-edge accuracy, speed, and memory ef-

�ciency, we compute highly accurate bidirectional �ow maps at a

viable memory cost, to facilitate NFM’s exceptional computational

capabilities as demonstrated in a variety of challenging simulation

scenarios, showcasing state-of-the-art energy conservation, visual

complexity, and accurate recreation of real-world phenomena.

Our work represents a signi�cant step towards harnessing the

power of machine learning for high-�delity, �rst-principled simula-

tion. Leveraging the virtues of neural networks, our work presents
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Fig. 19. The evolving spatial discretization of our neural bu�er N’s spatially sparse feature grid, as the simulation proceeds.

Average Time Cost per Step

Method BFECC MC+R CF CF+BiMocq Ours

Time cost 0.509s 0.539s 0.525s 0.539s 9.01s

Timing Breakdown of a Step

Project Advect Advect-T Advect-N Train I/O & etc.

0.312s 3.67s 0.381s 3.29s 4.83s 0.196s

Table 4. The top compares our method’s wall time to those of the benchmarks; the bo�om breaks down the time

cost into the di�erent subroutines. Advect-T and Advect-N correspond to the traditional and neural aspects of the

advection. The timings are obtained with a laptop with Intel Core i7-12700H and NVIDIA RTX 3070 Ti. Fig. 20. Time cost breakdown.

a general approach for e�ciently storing high-dimensional �elds,

which unlocks a myriad of algorithmic designs that were previously

unattainable, and highlights the immense potential of using INRs as

data primitives in physics-based simulation. On a higher level, our

method di�erentiates from prior neural simulation methods that

focus on the emulation of non-neural methods, by leveraging neural

techniques to extend the frontier attained by existing schemes into

new, unknown territories. It thereby o�ers a new perspective on the

incorporation of machine learning in numerical simulation research

for computer graphics and computational sciences alike.

Our work is subject to several limitations. First, despite SSNF’s

state-of-the-art e�ciency, our neural advection scheme still incurs

a major performance bottleneck compared to traditional methods.

As shown in Table 4 and Figure 20, compared to BFECC, MC+R, and

CF, our neural method increases the overall wall time by one order

of magnitude, with over 90% spent on neural-related operations. To

better handle larger-scale simulations, future research might further

reduce the INR’s training time, or devise time integration schemes

that train more sporadically. Furthermore, our algorithm currently

only treats smoke simulation. To extend it for water simulation, addi-

tional bu�ering techniques and advanced interface representations

are called for to handle viscosity and surface tension respectively.

Beyond �uid systems, our �ow map method’s potential in simulat-

ing solids and multi-physics systems might also be investigated to

open up an even broader range of applications.
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A ADDITIONAL PSEUDOCODE

In this section, we provide additional pseudocodes to supplement

Section 5.

Algorithm 2 details the procedure for our custom RK4 integra-

tion scheme for evolving the �ow maps and �ow map Jacobians,

Algorithm 3 outlines the second-order, midpoint method, and Algo-

rithm 4 describes the error-compensated impulse advection scheme.

Algorithm 2 Interleaved RK4 for q and F

Input: ī, q , F , �C

Output: qnext, Fnext

1: (ī1,∇ī |1) ← Interpolate(ī, q);

2:
mF
mC |1 ← ∇ī |1F ;

3: q1 ← q + 0.5 · �C · ī1;

4: F1 ← F + 0.5 · �C ·
mF
mC |1;

5: (ī2,∇ī |2) ← Interpolate(ī, q1);

6:
mF
mC |2 ← ∇ī |2F1;

7: q2 ← q + 0.5 · �C · ī2;

8: F2 ← F + 0.5 · �C ·
mF
mC |2;

9: (ī3,∇ī |3) ← Interpolate(ī, q2);

10:
mF
mC |3 ← ∇ī |3F2;

11: q3 ← q + �C · ī3;

12: F3 ← F + �C ·
mF
mC |3;

13: (ī4,∇ī |4) ← Interpolate(ī, q3);

14:
mF
mC |4 ← ∇ī |4F3;

15: qnext ← q + �C · 1
6
· (ī1 + 2 · ī2 + 2 · ī3 + ī4);

16: Fnext ← F + �C ·
1
6
· ( mFmC |1 + 2 ·

mF
mC |2 + 2 ·

mF
mC |3 +

mF
mC |4);

Algorithm 3Midpoint Method

Input: ī

Output: īmid

1: Resetk,T to identity;

2: Marchk,T with ī and −0.5�C using Alg. 2;

3: ģmid ← T
) ī (k );

4: if use external force then

5: ģmid ← ģmid + 0.5 · �C · Ĝext;

6: end if

7: īmid ← Poisson(ģmid);

Algorithm 4 Error-compensated Impulse Advection

Input: ī0,k , T , q , F

Output: ī

1: ģ̄ ← T) ī0 (k );

2: ģ̄0 ← F
) ģ̄(q);

3: ě ← 0.5 · (ģ̄0 − ī0);

4: ě̄ ← T) ě(k );

5: ģ̂ ← ģ̄ − ě̄;

6: ģ ← Clamp(ģ̂);

7: ī ← Poisson(ģ);

B IMPLEMENTATION DETAILS FOR NFM

MAC Grid Stencil. We use the standard MAC grid [Harlow and

Welch 1965] for storing the velocity components, and we evolve

�ow maps and �ow map Jacobians on face centers. To carry out

impulse-based advection, the matrix multiplication T) ī needs to

be evaluated, which can be rewritten as [
mk
mG · ī,

mk
m~ · ī,

mk
mI · ī]

) .

As a result, for faces storing īG , instead of storing the full Jacobian

matrix T , we only need to store its �rst column
mk
mG . Similarly, for

faces with ī~ , we store
mk
m~ ; for faces with īI , we store

mk
mI . The

situation is analogous for q and F as well.

As a result, in our implementation, the T and F matrices are

always stored as columns at the staggered face centers. And the

Algorithm 2 is applied to evolve each column individually.

Interpolating ī and ∇ī. We approximate the velocity ī and ve-

locity Jacobian ∇ī at subgrid points using the MPM interpolation

scheme [Jiang et al. 2016] with the quadratic kernel:

# (G) =




3
4
− |G |2 0 f |G | < 1

2
,

1
2
( 3
2
− |G |)2 1

2
f |G | < 3

2
,

0 3
2
f |G |.

(11)

Empirically, we �nd the quadratic kernel to perform the best, as the

linear kernel leads to numerical instabilities due to its discontinuous

gradient and the cubic kernel leads to numerical di�usion due to its

larger support size. Alternatively, automatic di�erentiation can be

used to directly query velocity gradients from the SSNF bu�er N .

In practice, however, this leads to signi�cant noise in the gradient

computation, and makes the simulation unstable.

Sizing Function. We compute the sizing value ( as the Frobenius

norm of the velocity Jacobian:

( =

√√√√ 3∑

8=1

3∑

9=1

����
mī8

mě 9

����
2

. (12)

Activating the feature grid of N using ( computed in this way can

lead to sharp level transitions. Our computational scheme handles

these sharp transitions naturally, but they nevertheless undermine

the �tting accuracy. To encourage a smooth transition between

levels, we dilate the sizing function for 1024 iterations as follows:

(:+18, 9 = max((:8,9 , 0.25 · ((
:
8−1, 9 + (

:
8+1, 9 + (

:
8,9−1 + (

:
8,9+1)) . (13)

In other words, we allow the sizing value in a voxel to di�use to

neighboring voxels without decreasing its original value.

Gravity and Buoyancy. For the realization of density di�erence-

driven e�ects, we apply a Boussinesq buoyancy force Ĝext = 2 · d · ĝ.

We assume d remains constant during �ow paths, so the integration

for this term can be trivially computed by multiplying with the total

timelapse. We note that such a force integral should be added to

the velocity ī instead of the impulse ģ. The raw velocity after this

addition will be projected again to obtain the �nal velocity.

Solid Boundaries and Obstacles. Our NFM simulation system natu-

rally supports moving, voxelized boundaries. Since our neural bu�er

N stores spatiotemporal velocity �elds that respect the moving

boundary’s geometry and kinematics, a path obtained by marching
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N will be valid and will not penetrate the boundary as long as N

has stored the velocity accurately, which ensures that our advection

scheme will work in this case just like in the boundary-free cases.

With this being said, it is indeed more challenging forN to learn

the velocity �eld when obstacles are present, as they lead to sharp

transitions in the velocity pro�le near the edges. We opt to smooth

out these sharp velocity transitions by extrapolating the �uid veloc-

ity into the boundary, and letting N learn the extrapolated version,

which signi�cantly improves the convergence performance. We

note that for the purpose of �ow map-marching, modifying the

solid velocity does not sacri�ce the physical integrity, because a

valid path makes no use of the solid velocity anyways, so it would

not be a�ected by such a modi�cation; a path that penetrates into

the boundary would be invalid to begin with, and in that case, it

can only bene�t from such a modi�cation as the marched �ow map

would be more smooth, which makes the simulation more stable.

For Poisson solving, we make no modi�cations to the velocity.

Additionally, with a moving, voxelized boundary inside all Neu-

mann walls, the total numerical divergence can deviate from 0,

causing the Poisson solver to not converge. We compensate for

this deviation by o�setting the divergence of each �uid voxel by a

constant value so that the divergence �eld sums to 0.

C SETUP DETAILS FOR SUBSECTION 6.1

Experimental Setup. We set up the benchmarking experiment

by generating o�ine a 25-frame sequence of MAC grid velocity

�elds for both 2D and 3D. In 2D, we use the leapfrog setup; in 3D,

we use the trefoil knot setup. For all four methods, we adjust the

hyperparameters so that the parameter count is about the same. For

fairness of comparison, all three benchmarks are extended with the

multi-branch decoder in our method, one for each spatial dimension.

All methods are trained for 2000 iterations with the same optimizer

and learning rate scheduler. In 2D, all methods are trained with a

batch size of 25000; in 3D, all methods are trained with a batch size

of 120000.

INGP. For the 2D test, INGP uses 16 scales from min resolution

[16, 16, 2] to max resolution [256, 256, 24] (the last dimension is

time). The max number of parameters for each level is set to 2600.

For the 3D test, INGP uses 16 scales from min resolution [8, 8, 8,

2] to max resolution [256, 256, 256, 24] with the max number of

parameters being 87880 per level. In both 2D and 3D, we use an

ensemble of MLP decoders with a depth of 2 and a width of 64.

KPlanes. For the 2D test, KPlanes uses 3 scales from min resolu-

tion [16, 16, 8] to max resolution [64, 64, 8] (the last dimension is

time), using no multi-resolution for the time axis as suggested by

Fridovich-Keil et al. [2023]. The feature length is set to 12, which is

smaller than the paper’s suggested number to stay within a com-

parable budget. For the 3D test, KPlanes uses 3 scales from [32, 32,

32, 8] to [128, 128, 128, 8], and a feature length of 32. The decoders

used for KPlanes are the same as those for INGP.

SIREN. For the 2D test, SIREN uses an MLP with a depth of 4

and a width of 180. For the 3D test, SIREN uses an MLP with a

depth of 8 and a width of 256. Both MLPs have sinusoidal activation

functions. Following the approach by Sitzmann et al. [2020], we

employ a frequency multiplier of l0 = 30 to boost up the networks’

characteristic frequency. We perform this for the spatial axes only

to ensure temporal smoothness.

In order to fairly compare the computation time, we implement all

four methods using PyTorch for neural networks and optimization,

and Taichi [Hu et al. 2019] for e�cient feature vector storage.

The training procedure in this test mimics the actual simulation

scenario, where our “dynamic scene”, a 25-frame velocity sequence,

is not presented to the INRs all at once, but rather as a stream of

frames. Each model is only presented with the newest frame, and

the prior frames must be read from its auxiliary bu�er N̂ .
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