Archive for Mathematical Logic (2024) 63:679-702

https://doi.org/10.1007/s00153-024-00916-7 Mathematical Loglc

®

Check for
updates

Cohesive powers of structures

Valentina Harizanov! - Keshav Srinivasan'

Received: 30 March 2023 / Accepted: 22 February 2024 / Published online: 28 March 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

A cohesive power of a structure is an effective analog of the classical ultrapower of a
structure. We start with a computable structure, and consider its effective power over
a cohesive set of natural numbers. A cohesive set is an infinite set of natural numbers
that is indecomposable with respect to computably enumerable sets. It plays the role
of an ultrafilter, and the elements of a cohesive power are the equivalence classes
of certain partial computable functions determined by the cohesive set. Thus, unlike
many classical ultrapowers, a cohesive power is a countable structure. In this paper we
focus on cohesive powers of graphs, equivalence structures, and computable structures
with a single unary function satisfying various properties, which can also be viewed
as directed graphs. For these computable structures, we investigate the isomorphism
types of their cohesive powers, as well as the properties of cohesive powers when they
are not isomorphic to the original structure.

Keywords Cohesive power - Computable structure - Graph - Equivalence structure -
Partial injection structure - Two-to-one structure

Mathematics Subject Classification Primary 03C57; Secondary 03D45

1 Introduction and preliminaries

The classical ultraproduct construction is one of the major tools for constructing new
models of theories, such as nonstandard models of arithmetic and analysis. The con-
struction has found important and elegant applications in logic and other areas of
mathematics. For example, the compactness theorem for the first-order logic can be
established directly using an ultraproduct construction. Given a family of structures
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680 V. Harizanov, K. Srinivasan

(Aj)ier for the same first-order language L, indexed by a set I, with the domains
(A;)ier, the ultraproduct is defined using an ultrafilter on I.

More precisely, a filter F over I is a nonempty set of subsets of I such that F is
closed under the intersection of two (hence finitely many) sets and under the superset
relation. A filter over I is proper if it is not equal to the power set of I. A filter U is
an ultrafilter if for every subset X of I, either X or its complement I — X belongs to
U. It follows that an ultrafilter is a maximal proper filter.

Given an ultrafilter U over I, two functions f, g € Il;c;A; are U-equivalent if
the set of all inputs on which their values are equal belongs to U. The elements of
the ultraproduct ITy.4; are the corresponding equivalence classes [ f]. The ultrafilter
is also used to give interpretations of the symbols in L. For each atomic formula
a(xy, ..., x,) that has at most one symbol from L, by definition, ([ fil, ..., [fa])
holds in Iy .A; if and only if the set {i : A; = a(f1(i),..., fu())} belongs to U.
Using the properties of an ultrafilter we can show that the ultraproduct structure is
well-defined.

Eo§’s theorem, the fundamental theorem of ultraproducts, establishes the satisfi-
ability of a first-order formula of an arbitrary complexity in an ultraproduct Iy .4;
given similarly as in the above definition (see [7]). If all structures .4; are the same
structure 4, then the ultraproduct is the ultrapower Tl A. We say that two structures
for the same language are elementarily equivalent if they satisfy the same first-order
sentences (i.e., have the same first-order theory). An important consequence of £.0§’s
theorem is that a structure and its ultrapower are elementarily equivalent.

An ultrafilter is principal if it contains a singleton. It follows that a non-principal
ultrafilter over an infinite / contains all co-finite subsets of I. If U is a principal
ultrafilter such that {ip} € U, then[] v Ai isisomorphic to A;,. Hence the construction
of nontrivial ultraproducts requires non-principal ultrafilters. The existence of non-
principal ultrafilters cannot be proved in ZF (see [2]). However, the axiom of choice
proves not just the existence of a non-principal ultrafilter over a given infinite 7, but
a stronger statement known as the ultrafilter lemma. The ultrafilter lemma says that
every proper filter on [ is contained in an ultrafilter on /. The ultrafilter lemma is
strictly weaker than the axiom of choice.

In this paper, we will consider an effective product (called cohesive product) of
structures, a computability-theoretic analog of the ultraproduct construction, which
does not depend on the axiom of choice. That is, a cohesive product is based on a more
constructive approach by using, instead of an ultrafilter on the index set w, the set of
all supersets of a cohesive set, where cohesive sets come naturally in computability
theory. A cohesive set is an infinite set of natural numbers, which is indecomposable
with respect to computably enumerable sets. There are continuum many cohesive sets.
Some cohesive sets (countably many of them) are the complements of maximal sets.
Maximal sets are co-atoms in the lattice £* of computably enumerable sets modulo
finite sets. Cohesive and maximal sets have been studied extensively (see [8, 32]).

Starting with infinite countable structures, the classical ultraproduct construction
typically produces an uncountable structure. An ultrafilter is countably complete if
it is closed under countable intersections. An ultrafilter is countably incomplete if
it has a countable subset of sets the intersection of which is empty, or equivalently
it is not countably complete. While the principal ultrafilters are countably complete,
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the existence of non-principal countably complete ultrafilters is a strong axiom of
infinity which is not provable in ZFC. In particular, there is no countably complete
non-principal ultrafilter on w. Frayne, Morel and Scott [22] proved that if U is a
countably incomplete ultrafilter, then IT;.A; is either finite or of cardinality at least
2%0_ Hence such an ultraproduct [T A4; is never countably infinite. However, cohesive
product construction always produces a countable structure. That is, we start with a
uniformly computable sequence of structures for the same computable language, and
in their direct product consider only partial computable sequences modulo a fixed
cohesive set. In some cases partial computable functions can be replaced by (total)
computable functions.

The motivation for effective powers dates back to Skolem’s construction of a count-
able non-standard model of arithmetic, where instead of building a structure from all
functions on natural numbers he used only arithmetical functions (see also [14]).
Skolem’s idea was further developed in the study of models of fragments of arithmetic
by Feferman, Scott, and Tennenbaum [20], Lerman [26], Hirschfeld [24], Hirschfeld
and Wheeler [25], and McLaughlin [28-30]. Nelson [31] investigated recursive sat-
uration of effective ultraproducts (see also [17]). While for a countable language,
ultrapowers over countably incomplete ultrafilters are 8 -saturated, cohesive powers
of decidable (that is, strongly constructive) structures are recursively saturated.

Dimitrov [10, 12] discovered an effective power construction of fields while work-
ing on a long-standing open problem posed by Downey and Remmel in [19]. The
problem is to find natural orbits under automorphisms of the lattice £* of computably
enumerable vector spaces over a computable field, modulo finite subspaces. Maximal
vector spaces play an important role in the study of this lattice. In particular, Dimitrov
[12] used the effective powers of the field Q of rational numbers to characterize princi-
pal filters determined by maximal vector spaces over (). In [11], Dimitrov introduced
the notion of a cohesive power of a computable structure in general, and established a
restricted version of £o§’s theorem for cohesive powers. Although a cohesive power
of a computable structure .4 may not even be elementarily equivalent to .4, additional
decidability in the structure A plays a significant role in increasing preservation of
satisfiability of more complex sentences in the cohesive power (see [17]). In [15],
Dimitrov and Harizanov found further applications of cohesive powers of (Q to the
automorphisms of the lattice £*.

The cohesive power construction allows us to obtain countable models with inter-
esting properties. While the ultrapowers of isomorphic structures over a fixed ultrafilter
are isomorphic, it is possible for isomorphic computable structures to have cohesive
powers, over a fixed cohesive set, which are not even elementarily equivalent. How-
ever, if C is a cohesive set, and computable structures .4; and .4, are computably
isomorphic, then ITc.A; = M. Az (see [11, 17]). A computable structure A is called
computably categorical if every computable isomorphic structure is computably iso-
morphic to A. For example, the usual ordered set of natural numbers, (@, <), is a
computable structure that is not computably categorical. Let w also stand for the order
type of natural numbers, let ¢ stand for the order type of integers, and » for the order
type of rational numbers. It was shown in [17, 18] that if a computable A is com-
putably isomorphic to (w, <), then for any cohesive set C, the cohesive power I1¢. A
is a linear ordering of order type w -+ ¢ 1. On the other hand, if C is a cohesive set with a
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computably enumerable complement, then there is a computable isomorphic copy M
of (w, <) such that IT¢.M is of order type w + 5. It was shown in [17] that many more
order types can be obtained as cohesive powers of computable isomorphic copies of
(w, <). In this paper, we will focus on cohesive powers of computable structures from
several other classes that were studied in computable structure theory, in particular, in
the context of computable categoricity and categoricity at higher levels of arithmetical
hierarchy.

We will next state precise definitions and some properties of the relevant notions
from computability theory and computable structure theory, many of which were
mentioned above.

Cohesive sets. The complement of a set X C w is denoted by X. We write * for
inclusion up to finitely many elements. By c.e. we abbreviate computably enumerable.

A set C C w is cohesive if C is infinite and for every c.e. set W, either W N C or
W N C is finite. Hence if W N C is infinite, then C C* W, and if W N C is infinite,
then C C* W.

Clearly, an infinite subset of a cohesive set is cohesive. It follows that if a cohesive
set C is contained in the union of finitely many c.e. sets, up to finitely many elements,
then it is contained in one of them, up to finitely many elements. That is, because C
must have an infinite intersection with at least one of the finitely many c.e. sets in the
union. It can be shown that every infinite set of natural numbers has a cohesive subset.
Hence there are 2%0 cohesive sets. Some cohesive sets are the complements of c.e.
sets.

A set E C w is maximal iff E is c.e. and E is cohesive.

Computable structures. If L is the language of a structure A with domain A, then
L 4 is the language L expanded by adding a constant symbol for every @ € A, and
A = (A, a)geq is the corresponding expansion of A to L 4. The atomic diagram of
A is the set of all atomic and negations of atomic sentences of L 4 true in .4,4.

A countable structure A for a computable language L is computable if its domain A
is a computable set and its atomic diagram is computable or, equivalently, its functions
and relations are uniformly computable.

The elementary diagram (or complete diagram) of A, denoted by D¢ (.A), is the set
of all first-order sentences of L 4 that are true in A4. A ):,? diagram of A is the set
of all ):,? sentences in D¢ (A). A structure is decidable (or strongly constructive) if its
doman is computable and its elementary diagram is computable.

A structure is n-decidable if its domain is computable and its ):,? diagram is com-
putable. In particular, computable structures are the same as 0-decidable structures.
Cohesive powers. We will first give a definition of the cohesive product of computable
structures, which was introduced in [13]. By ~ we denote the equality of partial
functions.

Definition 1 Let L be a computable language. Let (A;); <, be a uniformly computable
sequence of computable structures in L, with uniformly computable sequence of
domains (A;);c;. Let C C w be a cohesive set. The cohesive product B of A; over
C, in symbols B = [ [ A;, is a structure defined as follows.

l.Let D ={¢ | ¥ : ®© - |J;, Ai, ¥ is a partial computable function, C C*
dom(yr), and if ¥ (i) | then ¥ (i) € A;}. For ¢, Y2 € D, let yry =¢ Ynpiff C C*
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{i : ¥1(i) = ¥2(i) |}. The domain of [ [ A; is the quotient set D/_. and we
will denote it here by B.

2. If f € L is an n-ary function symbol, then f B isan n-ary function on B such that
for every [Yr1], ..., [{,] € B, we have

Bl ) = W (Vi € 0) [W ) = fA W@, ¥ @)

3. If R € L is an m-ary relation symbol, then RBisan m-ary relation on B such that
forevery [y1], ..., [¥m] € B,

RE(ynl, ... [ymDiffC C* {i € @ | RA W), ..., Ym(@)).
4. If ¢ € L is a constant symbol, then B is the equivalence class (with respect to

=¢) of the computable function g : @ — |J._ A; such that g(i) = cAi , for each
i €w.

1Ew

If A; = Aforeveryi € w, then [| A; is called the cohesive power of A over C
and is denoted by [ ] A.

If C is co-c.e., then for every [{] € ] A; there is a computable function f such
that [ f] = [¢]. Thatis, for (a;); € I1; A; whichis a fixed computable sequence, define

f(l.)=|v‘f(f) ify@) | fist,

a; 1if i is enumerated into C first.

An embedding of a structure 4 into a structure B is an isomorphism between .4 and a
substructure of B. A structure A naturally embeds into its cohesive power B = [ [~ A.
For a € A let [c,] € B be the equivalence class of the constant function ¢, such that
cq(i) = a for every i € w. The functiond : A — B such that d(a) = [c,] is called
the canonical embedding of A into B. If A is a finite structure, then [ [~ A = A since
for every element [yr] from IT¢.A, the partial function v is eventually constant on C.

In [13, 17] the authors provide variants of £.o§’s theorem for cohesive products
of uniformly computable and more generally uniformly n-decidable structures. For
example, every Eg 3 sentence true in an n-decidable structure is also true in its cohe-
sive powers. In particular, we have the following theorem for cohesive powers of
computable structures.

Theorem 2 (Dimitrov [11]) Let B = [] A be a cohesive power of a computable
structure A. Let C be a cohesive set.

1. Ifoisa Hg (or Eg) sentencein L, then B = o iff A = o.

2. Ifoisa Hg sentence in L, then B |= o implies A = o. By contrapositive, if o is
a Eg sentence in L, then A |= o implies B = o.

The converse of part (2) in the previous theorem does not hold. The first such
counterexample was produced by Feferman, Scott and Tennenbaum in their result in
[20] that no cohesive power of the standard model of arithmetic is a model of Peano
arithmetic. There is a l'lg sentence (involving Kleene’s T predicate) that is true in
the standard model of arithmetic A/ but is false in every cohesive power of A (see
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[26]). More recently, in [17], the authors produced natural examples of such sentences
concerning linear orders. On the other hand, if .4 is a decidable structure, then .4 and
l_[c A i.e., they are elementarily equivalent (see [11, 31]).

An equivalence structure 4 = (A, E A) consists of a set A with a binary relation

E* that is reflexive, symmetric, and transitive. An equivalence structure A is com-
putable if A is a computable set and EAisa computable relation. An application
of Theorem 2 is that if A is a computable equivalence structure, then [ A is also
an equivalence structure. That is because the theory of equivalence structures is l'I‘l)-
axiomatizable. Similarly, a cohesive power of a computable field is a field. In [16],
Dimitrov, Harizanov, Miller, and Mourad investigated cohesive powers of the field ()
of rational numbers over co-maximal sets. For example, they proved that two cohesive
powers of () over co-maximal sets are isomorphic iff the maximal sets have the same
many-one degree.
Computable formulas. A computable (infinitary) language is more expressive than the
usual finitary first-order language. For acomputable ordinal &, Ash defined computable
Xy and I1, formulas of L, recursively and simultaneously and together with their
Godel numbers. For the natural numbers we roughly have the following classifica-
tion of formulas. Computable X and I'lj formulas are just the finitary quantifier-free
formulas. For n > 1, a computable I1, formula is a c.e. conjunction of formulas
Yu ¢ (x, u), where ¢ is a computable 2, formula for some m < n. Dually, a com-
putable ¥, formulais ac.e. disjunction of formulas 3v 6 (y, v), where 8 is a computable
IT,, formula for some m < n.

For more on computability theory see [8, 32] and on computable structure theory
see [1, 21].

By (k, n) we will denote a computable bijection from ? onto w, which is strictly
increasing with respect to each coordinate and such that k,n < (k, n). For a set
P C o?, let (P) = {(k,n) : (k,n) € P}.

This paper is a greatly expanded version of the preliminary work in [23] to appear
in the proceedings following the Fall Western Sectional Meeting of the AMS dur-
ing October 23-24, 2021. There, we studied cohesive powers of certain graphs and
equivalence structures. For example, we showed that every computable graph can be
embedded into a cohesive power of a strongly locally finite graph. Here, we also inves-
tigate cohesive powers of computable structures with a single unary function satisfying
various properties, called injection structures, two-to-one structures, and (2,0)-to-one
structures. We further study cohesive powers of partial injection structures viewed as
relational structures. We characterize the isomorphism types of cohesive powers of
these computable structures, and use computable (infinitary) language to describe the
properties of cohesive powers when they are not isomorphic to the original structure.

2 Cohesive powers of graphs

A graph (or undirected graph) (V, E) is anonempty set V of vertices with a symmetric
binary relation E (also called the edge relation), so it can be axiomatized by the
following universal sentence:

VxVy[E(x,y) = E(y, x)].
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Hence, by Theorem 2 a cohesive power of a graph is a graph.

If (x, y) € E, then vertices x and y are adjacent to each other. The degree of a
vertex is the number of vertices it is adjacent to. A graph G is called locally finite
if the degree of each vertex in G 1is finite. A graph G is strongly locally finite if all
connected components of G are finite. In [9], a criterion was obtained for computable
categoricity of certain strongly locally finite computable graphs.

The disjoint union of graphs (Vi, E1) and (V2, E2) where ViNV, = @ is a
graph (V1 U V,, E1 U E3). Hence there are no edges between V; and V2. We write
(V1, E1) LI (V,, E») and also view it as a decomposition into a disjoint union. If
V1N V2 = &, then a union of graphs G; = (Vi, E1) and G, = (V3, E7) is any graph
G=WViUV,,E)ysuchthat EyUE; C Eand E [ (V; x V;) = E; fori =1,2. We
simply write G = G U G».

The following result demonstrates the universal feature with respect to embeddabil-
ity into cohesive powers of certain computable graphs.

Theorem 3 Let G be a computable graph. Let C be a cohesive set. Then there is a
computable, strongly locally finite graph A such that I1¢ A is isomorphic to the union
G U H for some graph H or H = &.

Proof If G is finite, then G is strongly locally finite and G = I'l¢G.

Let Nt = w — {0}. Now, assume that a graph G = (V, R) is infinite and fix a
computable enumeration f of its vertices V = { f(n) : n € N*}. Using this enumer-
ation we will build a computable graph A with domain N* and edge set E. Consider
vertices a, b € N*. If a, b can be written as a = @ +mand b = @ + n for
some k,m,nsuchthat 1 <m,n <k + 1, then let

(a,b) € E & (f(m), f(n)) € R.

If there are no k, m, n as above, thenlet (a, b) ¢ E. Note that k—@ =142+ -4k,
so the idea is to divide the natural numbers into segments of lengths 1, 2, .. .. Clearly,
A is a computable, strongly locally finite graph.

For n € Nt we define functions v, by ¥, (x) = ﬂj%ll + n. Hence each [v,]
is an element of the cohesive power I1¢.A. Consider the subgraph § of A with the
vertex set {[¥,] : n € NT}. Consider a function p : {[¥,] : n € Nt} — V defined by
p([¥,]) = f(n). Then we can show that p is a graph isomorphism (see [23]), so & is
isomorphic to G. Hence I1¢.A4 is isomorphic to the union G U H for some graph H. O

If a computable graph G is locally finite, we have a stronger result.

Theorem 4 Let G be an infinite computable graph that is locally finite. Let C be a
cohesive set. Then there is a computable, strongly locally finite graph A such that
I A is isomorphic to the disjoint union G U H for some graph H.

Proof Let G = (V, R). Let f, A, ¥, p be defined as in the proof of the previous
theorem. Let ¢ be a partial computable function such that[¢] € ITc A and E ([¢], [¥m])
forsomem > 1.ThenC C* {i € w : ¢(i) | A (¢(i), ¥n(i)) € E}. Since G islocally
finite, wehave that{i € @ : ¢ (i) | A (¢(i), ¥m(i)) € E}isthefollowing finite disjoint
union of c.e. sets: o

W pomrronti € @ 9(i) = 52 + nwhere 1 <m,n <i+1}.
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Since C is cohesive, there 1is some ng such that

CC{i:p@) = l(%l +no} € {i @ (i) L= Yny (D}
Hence [¢] = [¥n,]. Thus, IT¢ A is isomorphic to the disjoint union GU(ITe A—{[¥rm] :
m > 1}). o

3 Cohesive powers of equivalence structures
Let A= (A E A) be an equivalence structure A. The equivalence class of a € A is
eqvA(a) ={xeA :xE'Aa}.

We generally omit the superscript when it can be inferred from the context.
Definition 5 (i) Let .A be an equivalence relation. The character of A is the set
x(A) = {{k,n): n,k > 0and A has at leastn equivalence classes of size k}.
(ii) We say that A has bounded character if there is some finite k such that all finite
equivalence classes of .4 have size at most k.

Clearly, two countable equivalence structures are isomorphic if they have the same
character and the same number of infinite equivalence classes.
For a set X, by card(X) or | X| we denote the size of X. Let

InfA = {a : equ*(a) is infinite} and Fin* = {a : eqv*(a) is finite}.

The following lemma from [4] gives us some important complexities.

Lemma 6 For any computable equivalence structure A:

(a) {(k,a): card(eqvA(a)) <k}isa H? set, and {{k, a) : card(eqvA(a))} =>kis
a E(I) set;

(b) Ian isa Hg set, and Fintisa Eg set;

(c) x(A)isa Eg set.

We say that a subset K of w is a character if there is some equivalence structure
with character K. This is the same as saying that K C ((w — {0}) x (o — {0})), and
foralln > 0 and k,

(k,n+1) e K = (k,n) € K.

It was shown in [4] that for any Eg character K, there is a computable equivalence
structure .4 with character K, which has infinitely many infinite equivalence classes
while Fin“ is a I19 set.

Theorem 7 [4] Let A be a computable equivalence structure. The structure A is com-
putably categorical iff it is one of the following types:
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1. A has only finitely many finite equivalence classes;
2. A has finitely many infinite classes, bounded character, and at most one finite k
such that there are infinitely many classes of size k.

Hence if A is an equivalence structure as in the previous theorem and D is a
computable structure isomorphic to .4, then for any cohesive set C we have [T¢c.A =
IeD.

Proposition 8 Let A be a computable equivalence structure. Let C be a cohesive set
and let B = T¢ A.

(a) Then x(B) = x(A).

(b) If A has infinitely many infinite equivalence classes, then B has infinitely many
infinite equivalence classes. If A has exactly n infinite equivalence classes, then
B has at least n infinite equivalence classes.

(c) If A has infinitely many infinite equivalence classes, then TIc A = A.

(d) If Ahasfinitely many finite equivalence classes and no infinite equivalence classes,

thenTIc A = A.

Proof (a) The character of an equivalence structure is definable by a Eg sentence (see
[41).

(b) This holds since there is an embedding of .4 into B.

(c) This follows from (a) and (b). That is, if .4 has infinitely many infinite equivalence
classes, then I1¢.A also has infinitely many infinite equivalence classes, and since
A and I¢.A have the same character, they are isomorphic.

(d) This is true since .4 is a finite structure.

m]

Theorem9 Let A = (A, E) be a computable equivalence structure. Let C be a
cohesive set. If A has a bounded character, then T1c A = A.

Proof Since the character of 4 is bounded, if it is nonempty, let k € w be the largest
size of a finite equivalence class of .A. If the character of .4 is empty, let k = 0. Recall
that 4 and IT¢.A have the same character. If A has infinitely many infinite equivalence
classes, then A and IT¢.A are isomorphic. Thus, assume that .4 has at most finitely
many infinite equivalence classes.

If A has no infinite equivalence classes, then A4 satisfies the following l'I‘l) sentence,
saying that there are no k 4 1 pairwise distinct elements that are equivalent:

=@x1) - Gxe DA 1<i < jeis1 Ki # xj A X Ex;j)]

Since [T A satisfies the same sentence, it has no infinite equivalence classes, so A
and IT¢.A are isomorphic.

Thus, assume that .4 has m infinite equivalence classes, where m € w and m > 0.
Hence A4 satisfies the following Eg sentence, saying that there are exactly m equiva-
lence classes with at least k + 1 elements, hence infinite. We will use notation x! for
variables.
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@x) - Axfy) - G- A DY) DA <j e O #
l=i<j=k+1
I IE i . . Ev: E i
xjf\xl. xj)A(Algi4j5k+l (yx?&yjf’\y: )’J)=}’VI=1‘..,,myl xl)]

Hence IT¢ A satisfies the same sentence, so it has exactly m infinite equivalence classes,
s0 it is isomorphic to A. o

Theorem 10 Let A = (A, E) be a computable equivalence structure. Let C be a
cohesive set. If A has an unbounded character, then Tl ¢ A has infinitely many infinite
equivalence classes.

Hence if A has an unbounded character and finitely many (possibly zero) infinite
equivalence classes, then [1c A 2 A.

Proof Without loss of generality, we will assume that A = . Hence we can order
the elements in A by the usual ordering of the natural numbers. Let B = I1..4, and
B = (B, Ep). Choose a computable sequence of elements in A :

a(0),a(l),a(2),a(3),...
such that they all belong to distinct equivalence classes, and for every k, the equivalence
class of a(k) has > k elements. Since E is computable and the character of A is
unbounded, such a sequence can be obtained by enumerating A and checking the
conditions. We can think of a({m, i}) as a representative of the equivalence class in
A where a partial function ¥, . might take its i*" coordinate value (for i = 0). That
is, define partial computable functions ¥, (i), form,i > 0 and n > 1, as follows:

. Cn Cp is the n'" element in eqv(a(m, i)) if it exists;

Ymn i) = I + otherwise.
Every Y., is defined for all except possibly finitely many initial values, so C C*
dom(yYr,, ). Hence [V, »] € B.

Fixm. Letn # ny. Then we have that [, », ] # [V,.4,] since [equ(a((m,i))| >
(m,i) > i, so starting with some i, eqv(a(m, i)) will have the n{" and the n%" ele-
ments and they will be distinct. Also, [, 1EB[V¥m,n,] since the values of v, 5, and
WY, n,» When defined, are from the same equivalence class in .A. Hence the equivalence
class of [y, 1] is infinite.

Now, let m; # mj. Then =([V¥m, 11Eg[¥m,,1]) since the values of ¥, 1 and
W¥m,.1, when defined, are from different equivalence classes in A. 0

Corollary 11 Let A = (A, E) be a computable equivalence structure. Let C be a
cohesive set. Then Tlc A = A iff A has a bounded character or infinitely many
infinite equivalence classes.

It was shown in [3] that the following model-theoretic result holds for the equiv-
alence structures. Let the formulas y; (x) state that the equivalence class of x has at
least k elements, where k& € w — {0}. Then the language of equivalence relations { £’}
expanded with unary predicates {y; : k = 1} has quantifier elimination; i.e., every
first-order formula in the original language is logically equivalent to a quantifier-free
formula in the new language. Since the formulas y;(x) are E? formulas, it follows
that a computable equivalence structure .4 and its cohesive powers satisfy the same
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first-order sentences. However, in some cases, the distinction can be made by using
computable (infinitary) sentences.

Corollary 12 Let A = (A, E) be a computable equivalence structure with unbounded
character and no infinite equivalence classes. Let C be a cohesive set. Then there is a
computable infinitary X sentence « such that [1c A = « and A = —a.

Proof We have that [T¢.A has an infinite equivalence class, while .A does not. Let «
be the sentence saying that there is an infinite equivalence class:

dx Anew [Ay1--- Ty /\15;‘43‘5;;()’:' # Y AxEy;)].
Hence « is a computable X3 sentence true in IT¢.A but false in A. 0

4 Cohesive powers of injection structures

We will now study structures with a single unary function. An injection structure
A = (A, f) consists of a non-empty set A with a one-to-one function f : A — A.
Let fo(a) =4ef a. Givena € A, the orbit of a under f is defined as

Of@)={beA:@ncw)lfa)=hbv f*b) =all.

We have that the size of an orbit Of(a) is & > 1 if and only if f¥@) = a and
(¥t < k)[f"(a) # a]. Hence the property that card(Of(a)) = k is computable.

By analogy with the character of an equivalence structure, we define the character
X (A) of an injection structure A4 as follows:

x(A) ={lk,n): n,k >0and .4 has at least n orbits of size k}.

Hence (k, n) € x (A) if and only if

@x1) - @) (Aly card(© (i) =k A AV < LF (i) # %1)

By ran(f) we denote the range of f, ran(f) = f(A). An injection structure
(A, f) may have two types of infinite orbits: Z-orbits, which are isomorphic to (Z, §)
and in which every element is in ran( f), and w-orbits, which are isomorphic to (@, §)
and have the form O¢(a) = {f"(a) : n € w} for some a ¢ ran(f). Thus, injection
structures are characterized by the number of orbits of size k for each finite k, and by
the number of orbits of types Z and of type w.

For every computable injection structure A = (A, f), we have the following arith-
metic complexity of important relations:

(@) {(k,a):a €ran(fY)}isa ) set,

(b) {(a,k) : card(Of(a)) > k}isa A set,
(c) {a : Of(a) is infinite} is a 19 set,

(d) {a : Of(a) has type Z} is a T} set,

(e) {a:Ojp(a) hastype w}is a X set, and
(f) x(A)isa E? set.
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It was shown in [5] that for any c.e. character K, there is a computable injection
structure .4 = (w, f) with character K and any specified finite or countably infinite
number of orbits of types @ and Z and for which ran(f) is computable and {a :
O¢(a) is finite} is computable.

Theorem 13 [5] A computable injection structure A is computably categorical if and
only if A has finitely many infinite orbits.

Hence if A is an injection structure with finitely many infinite orbits and D is a
computable structure isomorphic to .4, then for any cohesive set C we have I[1¢c.A =
IeD.

By f -1 (b) we will denote the unique a such that f(a) = b if it exists, in symbols
FL(b) | = a; otherwise f~!(b) is not defined which we also denote by £~ (b) 4.
For n > 1, we denote by f " a partial function (£~ 1)".

Since the injection structures have the following axiom

VaVy[f(x) = f(y) = x =y,
we have that a cohesive power of a computable injection structure is an injection
structure. We would like to determine the isomorphism types of such cohesive powers.

Proposition 14 Let A = (A, f) be a computable injection structure. Let C be a
cohesive set, and B = T¢ A.

(a) Then x(B) = x(A).
(b) The structures A and B have the same number of w-orbits.
(c) If A has bounded character and no infinite orbits, then A = B.

Proof (a) The character of a computable injection structure is definable by a E?
sentence.

(b) Letn € w — {0}. We can say that there are > n many w-orbits by the following
%9 sentence o, (3x1) - -+ @x) YV Aj<icjen Xi # Xj ANi<ica Xi # FO.
Thus, having < n many w-orbits can be expressed by a l'lg sentence, —o,. Hence
if A has no w-orbits, B has no w-orbits; and if .4 has exactly » many w-orbits,
B has exactly n many w-orbits. If A has infinitely many w-orbits, then for every
n > 1, AF o, and hence B F o,, so B has infinitely many w-orbits. The last
conclusion also follows from the fact that .A can be embedded into B.

(c) Since the character of A is bounded, let k € @ — {0} be the largest size of a finite
orbit of A.

Since A has no infinite orbits, A satisfies the following l'lcl' sentence, saying that

there are no orbits of size k + 1:

=@ <ipsr £12) # x1.
Thus, B satisfies the same sentence and, since B has the same character as A, it is
isomorphic to A. o

Theorem 15 Let A be a computable injection structure with unbounded character.
Let C be a cohesive set, and B = T1¢A. Then B has infinitely many Z-orbits.
Hence if A has unbounded character and finitely many Z-orbits, then A % T¢ A.
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Proof Without loss of generality, we will assume that A = @. Choose a computable
sequence of elements in A :

a(0),a(l),a(2),a(3),...
such that they all belong to distinct finite orbits, and for every k, the orbit of a(k)
has > k elements. Since f is computable and the character of .4 is unbounded, such
a sequence can be obtained by simultaneously enumerating the elements of A and
checking the conditions.

For every natural number m and an integer z € Z, we will define a computable
function v, ; as follows:

Vm,z(i)) = f*(a({m,1))).

Each [, ;] 1s in B. Fix m. Let integers z1, z2 be such that z; # z». Starting with
some ig, the orbit of a({m, i)) will be so large that for i > ip, we will have

fa((m, i) # f2(a((m,i))),
hence [{n,z;] 7 [V¥m.z,]- In addition, [V, ;] and [, -, ] belong to the same orbit in
B since f2 1 ([Yy.2,]1) = [¥im.2,]- Hence the set {[¥, .] : z € Z} forms a Z-orbit.
On the other hand, if m # m3, then for every i, (m1,i) # (m2,i),so a({my,i)) and
a({ma,i}) belong to different orbits. Hence [{,,,0] and [v,,,0] belong to different
orbits in B, so there are infinitely many Z-orbits. ]

Theorem 16 Let A be a computable injection structure with an infinite orbit. Let C
be a cohesive set, and B = T1¢c . A. Then B has infinitely many Z-orbits.

Hence if A has an infinite orbit, but has at most finitely many Z-orbits, then A 2
McA.

Proof Assume that .4 has an infinite orbit. Let a be an element of such an infinite
orbit. For every natural number m and every integer z, we define a partial computable
function ¥y, , by Y (n) = fm@r+D+n=1424) Since the domain of each V¥ is
co-finite, we have that [y, ;] € B. For any m and z;, z; such that z; # z;, we
have that {n : ¥, ,, (n) |= ¥, ;,(n) |} = & since the orbit of a is infinite; hence
[¥m,z,] # [¥m,z,]. We also have that f([Vm :]) = [f © ¥m,;] = [¥m,z+1]. Hence for
every m we have a Z-orbit {[{m ;] : z € Z} = O([Ym.0])-

Now, assume that m1 7# mj. Since for any k € w, we have fk([t,ffml,u]) # [V¥m,,0],
it follows that O([Y¥'m,,0]) # O([Ym,,0]). Hence B has infinitely many Z-orbits. 0O

Corollary 17 Let A = (A, f) be a computable injection structure. Let C be a cohesive
set. Then Tlc A = A iff A has a bounded character and no infinite orbits, or A has
infinitely many Z-orbits.

It was shown in [5] that the following model-theoretic result holds for the injection
structures. Let the formulas y (x) state that (3y)[ f k (y) = x]. Then in the language of
injection structures { f} expanded with unary predicates {yx : k = 1} we have quan-
tifier elimination; i.e., every first-order formula in the original language is logically
equivalent to a quantifier-free formula in the new language. Since the formulas y; (x)
are E? formulas, it follows that a computable injection structure .4 and its cohesive
powers satisfy the same first-order sentences. However, in some cases, the distinction
can be made by using computable (infinitary) sentences.
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Corollary 18 If A is a computable injection structure with an unbounded character
and no infinite orbits, then there is a computable (infinitary) o sentence a such that
BFaand A¥ a.

Proof Let & say that there is an infinite orbit:

Ax Apeo [ F O (x) # x1. o

5 Cohesive powers of two-to-one structure

We will now investigate cohesive powers of two-to-one structures that were introduced
and studied in [6] from the computability-theoretic point of view with focus on the
complexity of isomorphisms between these structures.

Definition 19 A two-to-one structure A = (A, f) consists of a non-empty domain
A with a single unary function f : A — A such that for every a € A we have
card(f Ya)) = 2.

We will also denote a two-to-one structure as 2:1 structure, and often identify it
with its directed graph G_4 with vertex set A and edges (a, f(a)) fora € A.

Definition 20 For a € A, the orbit of a is:
Of(@)={xeA:(En,mew)[f"(x)=f")]}

That is, the orbit of a is the set of elements of A, which belong to the same connected
component of G 4 to which a belongs.

Let B be a full binary tree with its nodes pointing toward the root. We can show that
there are two types of orbits in a 2:1 structure: Z-chains, and k-cycles for k = 1. A
Z-chain consists of a directed one-to-one basic sequence of nodes ordered as integers,
with a tree B attached to every node of the basic sequence as follows: there is a
connecting edge, which is not part of the basic sequence but points toward the sequence,
to which the root of B is attached. A k-cycle is a directed one-to-one cycle of size k
such that a tree B is attached to each node of the cycle via a connecting edge, which
is not part of the cycle but points toward the cycle, to which the root of B is attached.
Hence all tree edges point toward the cycle. For pictures illustrating orbits see Sect. 1
in [6].

Lemma 21 [6] (i) The predicate “O f(a) is a k-cycle” is E?.
(ii) The predicate “0 f(a) is a Z-chain™ is l'Icl'.

Two countable 2:1 structures are isomorphic if they have the same number of k-
cycles for every k > 1, and the same number of Z-chains.

2:1 structures have the following axioms:

Vydxi3xalxr #x2 A fx1) =y A fx2) = ]

Vi VaVxs[(f(x1) = f(x2)A f(x2) = f(x3)) = (x1 = x2Vx] = x3Vx = x3)].
Hence a cohesive power of a computable 2:1 structure is a 2:1 structure. We would
like to determine the isomorphism types of these cohesive powers.
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Theorem 22 Let A be a computable 2 : 1 structure. Let C be a cohesive set, and
B=TlcA.

(i) The cohesive power B has the same number of k-cycles, for any k > 1, as A does.
(ii) The cohesive power I3 has infinitely many Z-chains.

Hence if A has at most finitely many Z-chains, then A 2 I1¢ A.

Proof (i) The property thata2:1 structure has at least n many k-cycles, wheren, k > 1
can be expressed by an existential sentence 6, i:

@x) - @)l N\ ) =xm A C/\ FGm) # xm))

l=m=n 1=<l<k

A A Fle) # x)1.

(I=i<j=n)&(1=l<k)

Hence both A and its cohesive power B satisfy the same such sentences, so they

have the same number of k-cycles.

(i1) Fix a natural ordering on the domain A. We will “abuse” the notation and by f -1
denote the unary function on A, which for every a chooses the smaller of the two
elements that f maps into a. Hence f~* will be defined for every integer z where,
as usual, fo(a) =a.

Since .4 always contains a full binary tree component 7", we can define a computable
function g : @ — A, which chooses elements g(n) on 7 that are spaced apart so
that f?(g(n)) where |z|] < n do not “interfere” for different n’s. More precisely, if
ny # ny Or 71 # 22, then f<1(g(n1)) # f*(g(n2)) where |z1| < n; and |z2] < n2.
Equivalently,

|f2(g(): —n <z <nA0<n<m} =(m+1)>
Our goal is to use this property to define partial computable functions 1, , for natural
numbers m and integers z, such that v, ,’s witness that there are infinitely many
Z-chains.

A partial function v, ; : @ — A is defined as follows:

“(g((m, x))) if |z| < (m, x);

Vm,o(x) = I I 4 otherwise.

It follows that [y, -] € B for every m, z. Furthermore, f([Vm ;1) = [¥m z+1], s0

{[¥im.z] : z € Z} is a subset of a Z-chain. For any pair of natural numbers rn; and
my such that my # m, and arbitrary ki, k2, we have f* ([rm,.0) # 2 ([Ymy.00),

80 [¥m,,0] and [, 0] belong to different Z-chains. Hence B has infinitely many

Z-chains. O

Corollary 23 Let A be a computable 2 : 1 structure. Let C be a cohesive set. Then
A = ¢ A iff A has infinitely many Z-chains.

Corollary 24 Let A be a computable 2 : 1 structure with no Z-chains. Let C be a

cohesive set, and B = [ [ A. Then there is a computable (infinitary) X, sentence o
such that BF a and A ¥ «.
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Proof Let « say that there is a Z-chain:
3x Arzoak=o(f 10 # 1)) O

6 Cohesive powers of (2,0):1 structures

We will now investigate the class of (2,0):1 structures, which includes 2:1 structures.
They were introduced and studied in [6] from the computability-theoretic point of
view with focus on the complexity of isomorphisms between these structures.

Definition 25 A (2, 0) : 1 structure is a structure with a single unary function, A =
(A, f)where f : A — A, such thatforevery a € A, wehave card(f!(a)) € {0, 2}.

As usual, a (2,0):1 structure A is often identified with its directed graph G(A, f),
and the orbit of a is defined to be the set of all points in A which belong to the connected
component of G(A, f) containing a. The orbits of (2,0):1 structures can be k-cycles
for k = 1, Z-chains, or w-chains. A k-cycle consists of a directed one-to-one cycle
of size k such that for each node of the cycle there is a connecting edge, which is not
part of the cycle and pointing toward the cycle, to which the root of a binary tree is
attached with all tree edges pointing toward the cycle. Here, a tree can be finite or
infinite and it satisfies the condition that card (f ~!(a)) € {0, 2}.

A Z-chain consists of a directed one-to-one basic sequence of nodes ordered as
integers, with a binary tree attached to every node of the basic sequence as follows:
there is a connecting edge, which is not part of the basic sequence but points toward
the sequence, to which the root of a tree is attached. Hence each element of a k-cycle
or a Z-chain also has a binary branching tree attached to it as its root and with all
edges directed toward the root. An w-chain consists of a directed basic sequence of
nodes ordered as natural numbers such that for every node except the first one there is
a binary branching tree attached as above, with connecting edge pointing toward the
basic sequence and the tree edges pointing toward the root. Hence the first node of the
basic sequence does not belong to the range of f. For pictures illustrating orbits see
Sect.1 in [6].

Let (A, f) be a (2,0):1 structure and a € A. The length of a is defined as:

I(a) =sup{n+1: |{a, fa), f*a,..., f”(a)}|= n+1}.

It is the longest “non-cycling” directed path starting with a. It can be finite or infinite.

Definition 26 Let A = (A, f) be a (2,0) : 1 structure. We will assume below that
k,n € w— {0}
(a) The cycle character of A is

Xeyele(A) = {(k,n) : A has > n many k-cycles}.
(b) The path character of A is
Xparh(A) = {{k,n) : Ahas > n many a such that I(a) = k}.
(c) The endpath character of A is
Xendpath (A) = {(k,n) : Ahas > n many a ¢ f(A) such that/(a) = k}.

@ Springer



Cohesive powers of structures 695

We say that a character is bounded if there is an upper bound on k.

(2,0):1 structures have the following axioms:

VyVx3z[f(x) #y V (z #x A f(z) = y)] and

Vx Vo Vas[(f (x1) = fFx)A f(x2) = f(x3)) = (x1 = x2 VX = x3Vxp = x3)].
Hence a cohesive power of a computable (2,0):1 structure is a (2,0):1 structure.

Proposition 27 Let A be a computable (2,0) : 1 structure. Let C be a cohesive set,
and let B =[] A. Then A and B have tha same cycle character, path character, and
endpath character.

Proof Letk,n > 1. Then (k, n) € Xcycie(A) can be expressed by a E? sentence as in
the proof of Theorem 22 (i).

Furthermore, (k, n) € xpatn(A) can be expressed by the following E? sentence:

@x1) - G IA r<men (Nozi<s <k £1Cm) # £ Gm)A

Vi<rak (FEGom) = FL @A A <icjen i # X1

Finally, (k, n) € Xendparn(A) can be expressed by the following Eg sentence:

@) - @A 1zmen (Nozi<s <k [1Om) # @A

Vigra(F5Gm) = F10m) A YD G) # X)) A Ni<icjan®i # X

By Theorem 2, it follows that .4 and B satisfy the same sentences above for every
pair (k, n), so A and B have the same characters. O

Theorem 28 Let C be a cohesive set.

(i) Let A be a computable (2,0) : 1 structure with bounded path character and no
infinite orbits. Then TIc. A = A.

(ii) Let A be a computable (2,0) : 1 structure with unbounded path character or with
an infinite orbit. Then I ¢ A has infinitely many Z-chains.

Hence if a computable (2, 0) : 1 structure A has unbounded path character and only
finitely many (including zero) Z-chains, we have A 2 T¢ A

Proof (i) Let B = Ilc.A. Let M € w be the least upper bound for the length of
(finite) paths in .A. Since .A does not have infinite orbits, it satisfies the following
1'[? sentence: (Vx) VOSmﬂsM(f”’ (x) = f™(x)). By Theorem 2, B also satisfies
this sentence, which implies that B has no infinite orbits. Since we can completely
describe finite orbits by Eg sentences, it follows that .4 and B are isomorphic.

(i1) Fix a natural ordering on the domain A. We will denote by f la partially
computable unary function on A, which for every a chooses the smaller of
the two elements that f maps into a, if card(f ~1(a)) = 2, and is undefined
otherwise. Hence we have f~? for every integer z, where f%(a) = a. By
the assumption about A, we can define a computable function g : @ — A,
which chooses elements g(n) in A such that for every m € w, we have
{f2(g(m)) : f2(g(m) } AD<n <mA—n <z <n}| = (m+1)>. Wenow pro-
ceed similarly as in (ii) in the proof of Theorem 22 to show that there are infinitely
many Z-chains.

m]

The following theorem focuses on w-chains.
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Theorem 29 Let C be a cohesive set. Let A be a computable (2,0) : 1 structure with
bounded endpath character and with finitely many (including 0) elements in A — f(A)
of infinite length. Then [ [ A and A have the same number of w-chains.

Proof Let B =TIl¢c.A. Let M € w be the least upper bound for the endpath character

of A; thatis, M = max{k : (k, n) € Xendparn (A)}.

Suppose that in B we choose [{] € B — f(B) such that [{] is an element of
an w-chain. We will show that [yr] belongs to the range of the canonical embedding
function of .4 info B.

Consideraco-ce.set W ={i € w: ¥ (i) 1 v I(¥(i)) > M}, which is infinite. We
claim that C €* W. To establish the claim, assume otherwise, hence C C* W. We
havethat W = {i € w : ¥ (i) | A I(¥(i)) < M} so it is a finite union of c.e. sets Y;
for j € {1,..., M} where

Yj=Upsr-jli €0 : 9@ I AfT@E) I= FX@6) 4 A

Nozmenzj ImQW@) L 1) 1.

Hence, since C is cohesive, for some j, kg such that j; > k; we have that
CcHicew: Y@ I AfPWE) 4= W) | A
Nozmen<jo FHW@) L# 1 @) L),

which will imply that fo[¢] = f ko [vr], contradicting the fact that [¢r] is an element

of an w-chain. Hence

CS*W=licw:¥@) +vIi(i) = M}

Since C C* {i e w : ¥ (i) |}, we have
Cciflicw:y@) I Al(YW@E) > M} =
fiew:y@) I AIWG)>MAY3GE) e f(A}U
fiew:y@) I AIW@)>MAY(E) e A— f(A}

We can further show that C C* {i e w : (i) | A L(Y (@) > M AV (@) € A— f(A))

since, otherwise, there is [t] € B such that f([t]) = [¥], contradicting the fact that

[W]1€ B— f(B).Forae A, let X, ={i € w:¢¥({) l=a}.

Hence, C C* | J{X, : a € (A — f(A)) Al(a) = oo}. By assumption, the union in
the previous formula is a finite union, so for some ag, we have

CC*{i e w:¥(@) L= ap)-

Thus, [{] belongs to the range of the canonical embedding. It follows that the number

of w-chains is the same in .4 and B. o

For the following result we require more decidability in a computable structure.

Definition 30 [6] A computable (2,0) : 1 structure A = (A, f) is said to be highly
computable if ran( f) is a computable set.

Theorem 31 Let C be a cohesive set. Let A be a highly computable (2, 0) : 1 structure
with unbounded endpath character or with infinitely many elements in A — f(A) of
infinite length. Then T1c A has infinitely many w-chains.

Hence if A has only finitely many w-chains, we have A 2 T1¢A.

Proof Let B = I¢.A. Let g : @ — A be a computable function such that g(w) C
A — f(A) and for every m € w we have
5 gm) : frgm) L AO<n<mA 0<k<n)|=mElimt2)
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A partial function ¥, , : @ - A form, n € w is defined as follows:

_ | fMelm,x)) if 0 <n < (m, x);
Vmn(¥) = otherwise.
Itfollows thatevery [V, n] € B.Ifny # na, then [(¥m n,)] # [(¥m,n,)]. Furthermore,
[(Wm‘ﬂ)] € B — f(B) and f([wm,n]) = [‘:“’m,n+l]a 50 {[ﬂ’m,n] ‘n e m} is a subset
of an w-chain. For any pair of natural numbers mj, my such that m; # m> and

arbitrary k1, k2, we have fk' ([V¥rm,.0]) # f"2 ([¥m5,00), 80 [V, 0] and [V, 0] belong
to different w-chains. Hence B has infinitely many w-chains. O

Corollary 32 Let A be a highly computable (2, 0) : 1 structure with unbounded end-
path character and no w-chains. Let C be a cohesive set, and B = [ [ A. Then there
is a computable Xy sentence o such that BF o and A ¥ «.

Proof The property that there is an w-chain can be expressed by a computable (infini-
tary) X, sentence «o:

I (Ayea® # FON A Nizonkso(F @) # ()

7 Cohesive powers of partial injection structures

A partial injection structure (A, f) consists of a set A and a partial function
f i+ A— Asuchthatif x,y € dom(f) and x # y, then f(x) # f(y). We will
call f a partial injection. As usual, we write f(x) | to denote that x € dom(f),
and f(x) 1 to denote that x ¢ dom(f). Also, f(x) |= y stands for f(x) | and
f(x) = y. Partial inverse function f =1 is defined naturally. For z € Z, f* is defined
as the usual composition of partial functions. Partial injection structures and their
computability-theoretic properties, including complexity of their isomorphisms, were
studied by Marshall in [27]. She calls a partial injection structure (A, f) a partial
computable injection structure if A a computable set and f is a partial computable
function.

In order to make a partial injection structure (A, f) into a first-order structure, we
will consider it as a relational structure A = (A, G y), where G ¢ is the graph of f :

Gy ={x,y):x edom(f) A f(x) = y}.
Having this framework in mind, we can still write (A, f).

Definition 33 We say that a partial computable injection structure (A, f) is a com-
putable partial injection structure if Gy is a computable binary relation. Hence
(A, Gy) is a computable structure.

Proposition 34 Let (A, f) be a partial computable injection structure.

(1) Ifran(f) is computable, then G f is computable.
(ii) If dom(f) is computable, then G s is computable.

Proof (i) Without loss of generality, we may assume that A= w. Given a pair (x, y),
first determine whether y € ran(f).If y ¢ ran(f).then (x,y) ¢ Gf. If y €
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ran(f), then run a Turing machine program Py for computing f simultaneously
on(0,1,2,... by adding more and more inputs and computation steps (although
finitely many at every stage) until we find z such that the program Py halts on z
and outputs y. If x = z then (x, y) € G, and if x # z then (x,y) € G.
(ii) Given a pair (x, y), first determine whether x € dom(f), and if that is the case
compute f(x).
m]

The domain of a partial computable injection function with computable range does
not have to be computable. For example, for the halting set K, consider a computable
1-1 cnumcrati:)n g:w— K.Let f: w — wbe defined as:

g 'x)ifxek

f = I 1+ otherwise
Then f is a partial computable injection with ran(f) = w and dom(f) = K.

Let (A, f) be a partial injection structure. The orbit of a is defined to be:

Of@={b:Ineo(f"@@=bv f"(}) |=a)}.

There are five kinds of orbits. Finite orbits may be k-cycles or k-chains for k = 1.
A k-chain is of the form {x; : 1 < i < k} where x; # x; forl <i < j <k
and x; € A —ran(f), xiy+1 = f(x;), and xx ¢ dom(f). Infinite orbits may be
Z-chains, w-chains, or w*-chains. An w*-chain is of the form {x; : i € w} where
xp € A —dom(f).x;i = f(xi+1).and x; # x; fori # j.

Definition 35 Let. A = (A, f) be a partial injection structure. In the following defini-
tions we will assume that k, n € @ — {0}.

(a) The cycle character of A is

Xeyele(A) = {{k, n) : Ahas > n many k-cycles}.

(b) The finite chain character of A is

Xpath (A) = {(k, n) : A has > n many k-chains}.

We say that a character in the previous definition is bounded if there is an upper
bound on the size k. Two countable partial injection structures are isomorphic if and
only if they have the same cycle character, the same finite chain character, and the
same number of Z-chains, w-chains and w™*-chains.

Let A = (A, f) be acomputable partial injection structure. Let C be a cohesive set,
and B = TcA. Then f5([y]) Lif € €* (i € @ : f(¥(@) |} and fE(Y]) 1 oth-
erwise. Similarly, fB([¥]) = [¢]if and only if C C* {i € w : F(¥ () L= p (i) ).
We often omit the superscript in f B,

The following proposition is based on Theorem 2.

Theorem 36 Let A = (A, f) be a computable partial injection structure. Let C be a
cohesive set. Then the cohesive power [1c A is a partial injection structure that has
the same cycle character and finite chain character as A.

Proof Being a partial injection structure can be described by the following l'IgJ sen-
tences:

VaVyVz[(f(x) =zA f(y) =2) = x =]

VaVyVz[(f(x) =y A f(x) =2) = y = z].
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Furthermore,

(k,n) e XC)-‘CIe(A) iff

Ax1 - 3wl Aj<ian (FFCD) = xi AN 1 1D # XDAN << j<nsr<i<x £ G0
# x;l,
whjéh is a ¢ sentence.
Also,

(k,n) € Xparn(A) iff

3xt -+ 3y IV Atcicjan Xi %5 A Ni<icn (FO) # xi A fE 1) =
yi A Fi) # 01,

which is a Eg sentence. O
In some cases, the cohesive power is isomorphic to the original structure.

Theorem 37 Let A be a computable partial injection structure with bounded cycle
character, bounded finite chain character, and no infinite orbits. Let C be a cohesive
set. Then A = TIc A

Proof Let A = (A, f) and B = II¢.A. Let M be the maximum size of finite orbits.
Since .4 has no infinite orbits, it satisfies the following l'lg sentence:

—3x3y (MM @) =y A Njgian (FF ) # X)),
Hence B satisfies the same sentence, so it has no infinite orbits. Thus, together with
Theorem 36, we have A = B. O

If the conditions of the previous theorem are not satisfied, the cohesive power will
have infinitely many Z-chains.

Theorem 38 Let A be a computable partial injection structure with unbounded cycle
character, or with unbounded finite chain character, or with an infinite orbit. Let C be
a cohesive set. Then I A has infinitely many Z-chains.

Hence if A has only finitely many Z-chains, then A 2 ¢ A.

Proof The proof is similar to the proof of part (ii) of Theorem 22. O

The cohesive power always has at least as many orbits of a certain fixed type as .A.
In some cases the number of w-chains and w*-chains is the same.

Theorem 39 Let A be a computable partial injection structure with bounded finite
chain character. Let C be a cohesive set. Then I1¢ A has the same number of w-chains
and the same number of w*-chains as A.

Proof Let A = (A, f) and B = I1-.A. Let M be the maximum size of finite chains.
The property that A has > n many w-chains can be expressed by the following Eg
sentence:

dxqp -+ 3xpdyr - "Hynvz[/\]gj{jsﬂ Xi #FXjA A]g;‘sn(fM(xf) =¥iNf2) #
xi)].
Hence A and B have the same number of w-chains.

Similarly, the property that .4 has > n many w*-chains can be expressed by the
following X sentence:

dxq -+ - 3x,3y; - "HyHVZ[Alsjﬁjsn x; # Xj A A]Eiin(fM(yi) =x; A f(x) #
z2)]. (]
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Theorem 40 Let A = (A, f) be a computable partial injection structure with
unbounded finite chain character. Let C be a cohesive set.
(i) Assume that ran(f) is computable. Then I1¢ A has infinitely many w-chains.
Hence if A has only finitely many w-chains, then A % T1¢.A.
(i) Assume that dom (f) is computable. Then Il . A has infinitely many w*-chains.
Hence if A has only finitely many w*-chains, then A % T¢ A.

Proof (i) The proof is similar to the proof of Theorem 31.
(ii) Letg : @ — (A —dom(f)) be a computable function such that if natural numbers
mi, my, ni, ny satisfy the property thatm % mporn; # na,then f "' (g(m1)) #
f ™(g(m2)) wheren; < mj and n» < ms. Such a function exists since the chain
character is unbounded and dom ( f) is computable.
We define a partial function ¥, , : @ — A form, n € w as follows:
F"(g((m, x))) if n < (m, x);
Vmn(x) = I + otherwise.
It follows that [y, ,] € TI¢ A since dom (Y, ) is cofinite. For m € w, we can show
that {[{, »] : n € w} forms an w*-chain, and for m; # m, we have that [y, o] and
[¥m,,0] belong to different w*-chains. Hence I1¢.A has infinitely many w*-chains. O

8 Concluding remarks

In this paper, we focus on the isomorphism types of cohesive powers of certain com-
putable structures with a single binary relation, such as graphs, equivalence structures,
and partial injection structures. This adds to the previous study of the cohesive powers
of the ordered set of natural numbers, (w, <), and other natural linear orderings in [17,
18]. Here, we also investigate cohesive powers of computable structures with a unary
function that is one-to-one, two-to-one, and (2, 0) : 1, which can be identified with
the directed graphs they induce. It will be worthwhile to investigate the isomorphism
types of cohesive powers of other directed graphs induced by functions. Some struc-
tures in the classes we consider are isomorphic to all of their cohesive powers. It was
previously known that this is also true for finite structures, ordered set of rationals,
random graph, and the countable atomless Boolean algebra. Some structures in the
classes we consider are not isomorphic to their cohesive powers, having properties
that distinguish them and that can be described by computable (infinitary) sentences.

Our goal is to further develop the theory of cohesive powers and, more gen-
erally, cohesive products of effective structures by investigating their algebraic,
computability-theoretic, and syntactic properties. We would like to include more com-
plicated algebraic structures such as semigroups, groups, rings, and fields. Cohesive
powers of computable fields will extend the earlier study of cohesive powers of the
field of rationals, ) = (Q, +, -), in [16] and will have further applications in the study
of the lattice of c.e. vector spaces and their automorphisms, thus generalizing results
in [15].
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