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Abstract—Because of their limited flight range, multiple drones
are often deployed simultaneously to perform complex tasks. The
flight path is planned for each drone to follow to complete the
job before task execution. However, multi-drone path planning
places drones at risk of in-flight collisions. To overcome this
problem, we model the multi-drone path planning problem as
a multi-vehicle routing problem that maximizes job coverage
subject to collision-free paths. We propose three 3D collision-
free path planning algorithms, namely, XTRACT, 3DETACH, and
ASCEND. XTRACT and 3DETACH provide collision-free paths
by setting partial paths at different altitudes while ASCEND
prevents intersecting paths at the planning phase by selecting
different altitudes. We limit the search processes to two altitudes
to demonstrate sufficiency with the lowest height complexity.
Through exhaustive evaluations, we compare the performance of
the proposed schemes and show the trade-offs between resolving
and preventing collisions from path planning. We identify the
best-performing strategy by using a profit model to evaluate the
plethora of applicable performance metrics.

Index Terms—Unmanned aerial vehicles, in-flight collisions,
multiple depot vehicle routing problems, path planning, optimiza-
tion, collision avoidance, 3D path planning, altitude planning.

I. INTRODUCTION

The applications of Unmanned Aerial Vehicles (UAVs) or
drones span from aerial photography, surveillance, search and
rescue, delivery, agriculture, and many other domains in recent
years [1]-[3]. These drones are often small in size and with
limited battery capacity and flight range. Therefore, complex
jobs may require the coordination of multiple drones for their
completion. In such an operation, each drone covers a portion
of the task. Paths are determined as a set of waypoints that a
drone visits. Drones fly to a waypoint, perform the required
task, and continue to the next waypoint, until completing the
task or exhausting the battery. In such cases, each drone visits
a unique set of waypoints and each waypoint is visited by a
single drone. The drone range determines the trajectory, the
number of waypoints, and the path followed, including the
departure and return to the drone’s depot.

In this paper, we focus on a multi-drone path planning prob-
lem where drones are tasked to collect data from a set of static
waypoints that are dispersed over a determined large area. The
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flight paths of such drones define a multi-variable optimization
problem where range and coverage are considered. However,
the asynchronous nature of the problem also raises the risk of
in-flight collision, which may compromise the complex task.

Different from existing work, we consider the operation
of drones in realistic airspace for designing an in-flight
collision-free path planning algorithm that makes use of three-
dimensional (3D) space to maximize the number of way-
points covered by each drone. The flight path conservatively
considers eliminating collisions while aiming at the largest
waypoint coverage. This objective is translated as resolving
edge intersections in a directed graph in 3D space. Solving
the multi-drone path planning problem and the potential of in-
flight drone collision raises the following question: is planning
a collision-free flight path more cost-effective than removing
possible collisions from a flight path in a scenario with a
minimal number of altitudes in 3D airspace? To answer this
question, we focus on designing a set of efficient collision-
avoidance path planning algorithms for multi-drone path plan-
ning where drones are commissioned to cover the largest
number of waypoints in a designated ground area.

The contributions of this paper are the formulation of
a multi-depot vehicle routing problem (MDVRP) with the
objective of maximizing the number of waypoints visited by
drones in a 2D area while the drone is permitted to travel in a
3D space. We propose three path planning algorithms, namely
XTRACT, 3DETACH, and ASCEND, to generate collision-
free paths. XTRACT and 3DETACH remove the intersect-
ing paths generated using a greedy collision-agnostic nearest
neighbor algorithm, while ASCEND performs path planning
by avoiding intersecting paths as a preventive measure. The in-
tersection removal algorithms use different altitudes to resolve
any crossing path and thus to avoid a possible collision. Here,
we test two altitudes as a proof-of-concept to compare the
collision prevention and removal approaches. We model the
three proposed path planning algorithms and evaluate their
performance through computer simulation in terms of the
number of waypoints covered, the number of drones used, the
traveled distance, and cost-effectiveness based on our proposed
profit model. We compare the performance of these three
algorithms with an algorithm that adopts a greedy collision-
agnostic approach for different waypoint density scenarios. We
show that ASCEND outperforms XTRACT and 3DETACH
in both the number of waypoints covered and the traveled
distance while achieving a profit similar to that of the collision-
agnostic greedy path planning approach.
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The remainder of the paper is organized as follows.
Section II presents the related work on collision-avoidance
path planning. Section III introduces the multi-depot vehicle
routing problem formulation. Section IV presents the pro-
posed collision-avoidance path planning algorithms. Section
V presents the simulation setup, and performance metrics,
and compares the results of the three proposed path planning
algorithms. Section VI concludes the paper.

II. RELATED WORK

Drones have been widely adopted in applications in dis-
aster relief and efficient smart cities [4]-[8]. Many of these
applications require multiple drones to overcome infrastructure
failure or to supplement the existing ones. To provide reliable
services, these drones must work collaboratively where each
drone is assigned a clearly defined task and a path to traverse
without potential collisions.

Path planning for drones has been extended from existing
solutions for vehicle routing problems to avoid obstacles on the
planned path [9]-[16]. These graph-based approaches model
the environment and obstacles as graphical shapes, the targets
and waypoints as vertices, and paths as edges. To find the
optimal collision-free path for multiple drones, constrained
optimization problems were formulated to seek an optimal
solution among all the possible paths from a source to a
destination for an individual or multiple drones [10], [11].

These graph-based path planning algorithms use 2D graphs
with a single altitude [9], [14], [17]-[21]. Free-space algo-
rithms were proposed where paths are generated with the same
distance from the edges of the obstacles to avoid collision [17],
[18]. However, these generated paths may not be optimal. An
artificial bee colony algorithm was proposed that uses concave
polygon convex decomposition to find a global optimal route
more efficiently [19]. Because these vehicle routing problems
are known to be NP-hard, heuristic algorithms, such as the
Dijkstra algorithm (DA), genetic algorithm (GA), and particle
swarm optimization (PSO) have been also considered for
vehicle path planning [14], [20]-[22]. Ant colony algorithms
have been proposed [13], [14]. Here each vehicle is considered
an agent and the swarm of vehicles forms the colony. These
bio-inspired algorithms mimic the behavior of ants to find
an optimal path based on the highest reward. The optimiza-
tion constraints are based on the task requirements such as
maximizing the coverage area or minimizing the mission
completion time.

Other collision-avoidance methods adopt a coordinated ap-
proach through a communication network among a swarm
of drones [12], [15], [23]. These approaches consider the
real-time location of each drone and use this location infor-
mation to calculate and decide a safe path for each drone
to follow. This coordinated approach depends on a reliable
communication network and is prone to jamming attacks on
the communication network. An exploration of taking flight
paths at different altitudes to avoid collision on the intersected
path was proposed [16]. Another collision-avoidance approach
proposed a separation maintenance method to avoid collision

TABLE I: Variables Description

Variable | Description
D The set of depots
v The set of waypoints
T Radius of a drone’s flight range
H Height of the elevated edge
Q Vehicle distance capacity
L Minimum number of waypoints in a route
M Distance matrix
Ry, Route for drone &
[ Rk The number of waypoints in Ry,
R All the paths for drones
Ry All the collision-free paths for drones
Ak The back tour distance from current waypoint n., to
depot k&
deym. k Cumulative distance traveled by drone k

between drone paths in both space and time [24]. A safety
distance and a safety margin time were manually set to avoid
drone collision. Any violation of the preset safety distance and
time is added as a penalty to the cost of the planned paths.
However, the added penalty does not guarantee a collision-free
path, which could render an unfinished job.

In our previous work, we proposed a collision-agnostic
multi-drone path planning algorithm ORBIT and two graph-
based collision-free multi-drone path planning algorithms,
DETACH and STEER, in a 2D space [25]. In this paper, we
look into a 3D space with three proposed collision-free multi-
depot drone path planning algorithms, XTRACT, 3DETATCH,
and ASCEND, and compare their performance.

III. MULTI-DEPOT VEHICLE ROUTING COLLISION
AVOIDANCE PROBLEM FORMULATION

We formulate the multi-drone path planning problem as a
multi-depot vehicle routing problem. Drones are tasked with
surveying a number of waypoints in a set 3D area. The
following assumptions are made for the path-planning problem
formulation:

o The depots are uniformly distributed in the area.

o Each drone is allocated to one depot, as its starting and
ending point.

o Each drone visits waypoints within a circular area cen-
tered at its depot with radius r.

o The drones are homogeneous, each with the same vehicle
distance capacity, Q.

o A drone is used only if it covers a minimum number of
L waypoints in its route.

Table I outlines the variables used to describe the proposed
algorithms. The set of waypoints is denoted as V' and the
set of depots is denoted as D. Each depot is denoted as k
where £k € D. Here, a node is defined as either a depot or a
waypoint. (a;, b;, ¢;) and (a;, b;, c;) denote the coordinates of
nodes ¢ and j, respectively. The Euclidean distance between
nodes ¢ and j, d;;, is defined in (1). The pair-wise distance
among all nodes forms the distance matrix, M. Rj denotes
the route for the drone starting at depot k. The number of
waypoints in Ry, is denoted as |Ry|. R denotes the set of all
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paths for drones while R4 denotes the set of all collision-free
paths for drones. d,,,, 5 denotes the distance of the return trip
from the last waypoint in the route to depot k. dcym, . denotes
the cumulative distance traveled by drone k.

dij = \/(ai_aj)2+(bi_bj)2+(ci_Cj)2 (D
The binary decision variable z;;;, € {0,1} in (2) denotes

whether an edge between nodes ¢ and j for depot k is selected
or not.

L
Tiik —
Jk 0,
(2)

The path planning problem was formulated as follows:
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The objective function is to maximize the number of way-
points visited as denoted in (3). Constraint (4) ensures that
waypoints are visited at most once. Constraint (5) ensures that
each drone goes back to its depot. Constraint (6) states that
the visited waypoints are within the radius r from the depot.
Constraint (7) ensures the drone travels within its distance ca-
pacity. Constraint (8) sets the minimum number of waypoints
for each drone to cover for efficient use, L. Constraint (9)
eliminates the subtours for each drone. Constraint (10) ensures
the paths are collision-free [16]. Here, H;jj pq is a binary
variable for collision check. Hjj ,q1 = 0 indicates that there
is no collision between edge (¢, j) for drone %k and path (p, ¢)
for drone I. H;ji pq = 1 indicates that there is a collision
and a disjoint of the intersected edges is needed. In (10), z;;x
represents the edge on a different altitude between edge (¢, 7)
for drone k.

IV. PROPOSED PATH PLANNING ALGORITHMS

The ORBIT algorithm [25] uses a greedy approach to find
the nearest neighbor to be included in the routes for every

node. However, ORBIT neglects the risk of collision and
therefore becomes collision prone. ORBIT follows similar
constraints defined in Section III, except for Constraint 10.
We use ORBIT as a baseline for our proposed collision-free
path planning algorithms.

Fig. 1: ORBIT path planning example.

Fig.1 shows an example of path planning generated by
ORBIT. Here, the three generated routes Rpy = [D1 — 1 —
2—-53—-4—-Dl],Rps=[D2—-5—-6—>7—8— D2
and Rp3 = [D3 — 9 — 10 — 11 — 12 — D3] intersect with
each other. Because ORBIT is agnostic to route collisions, it
does not guarantee collision-free path planning. We use this
case to demonstrate how XTRACT and 3DETACH remove the
intersected routes in the following sections.

A. XTRACT ALGORITHM

XTRACT is a graph-based algorithm that removes the route
intersections generated with ORBIT by sending one of the
drones with the intersecting path to another altitude. Here,
routes are interpreted as the edges of a polygon, and drones
are assumed to initiate the flight at the same altitude. Whenever
XTRACT detects an intersection among the routes generated
by ORBIT, it sends one of the drones on the intersecting
routes to another altitude or an elevated route. If the new
route intersects with an already elevated route, the new route is
discarded, leaving all the waypoints in the new route unvisited.
We refer to the unvisited waypoints as orphan nodes in this
paper.

Algorithm 1 describes the XTRACT algorithm. The input of
XTRACT requires the list of the routes generated with ORBIT
R, the coordinates of the depots and waypoints, the distance
capacity of the drones (), the minimum number of waypoints
L, and the drone height H and returns the list of collision-free
routes Ry as output. First, XTRACT calculates the distance
matrix M. Then, it performs sequential pairwise intersection
checks among all the generated routes. For example, for a
pair of routes ([2; and R;), it checks for edge intersections
between R; and R;. It adds any edge of R; intersecting R;
to an array I., moves the drone in R; to an altitude H, and
then reduces the drone’s total travel distance capacity by twice
the travel altitude H. Once all the edges of R; are checked
for intersections with R;, the total traveled distance of R;
is calculated. If the drone’s distance capacity @ for R; is
satisfied, then R; is stored in R4. Otherwise, the last visited
waypoint in R; is removed. This process continues until the
drone’s distance capacity ) for R; is satisfied.
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If the intersecting edge of R; intersects with any edge in
the I. array, then R; is removed from the array and is no
longer considered. Moreover, all the nodes in R; are marked
as orphans. On the contrary, if the intersecting edge of R;
does not intersect with any edge in the array, then R; is
kept in Ry. After all the routes have been considered for
intersection checks, XTRACT returns the routes in R, that
meet the requirement for the minimum number of waypoints
L.

D1

Fig. 2: XTRACT path planning example by removing
intersected paths for D3 in Figure 1.

Figure 2 shows an example of the path planning results
using XTRACT for the path generated using ORBIT shown
in Figure 1. The elevated edges are represented by the black
dotted line in the figure. The path planning results using
XTRACT contains Rp; and Rpo. XTRACT chooses to move
the drone in Rpo to altitude H because the edge between
waypoints 6 to 7 of Rpo insects Rp; at the edges between
waypoints 3 to 4 and waypoints 2 to 3. XTRACT discards Rps
because this route intersects Rp; and Rpo and moving the
drone in Rp3 to avoid the insertion with Rpq would intersect
the elevated edge of Rpo.

B. 3DETACH ALGORITHM

3DETACH algorithm is another graph-based 3D approach
that removes the route intersections generated by ORBIT.
Similar to XTRACT, in 3DETACH, routes are considered the
edges of a polygon, and drones are initially considered to fly
at the same height. A drone path is moved to another altitude
to resolve any edge intersections between the generated routes.
The difference between XTRACT and 3DETACH lies in the
strategy to resolve the edge intersections, as described below.

Algorithm 2 describes the proposed 3DETACH algorithm.
The input of the 3DETACH algorithm includes the coordinates
of the depot and waypoints, the distance capacity (), the
minimum number of waypoints L, the drone height H, and
the routes from the ORBIT algorithm. The output returns the
collision-free routes in R4. For every pair of routes (R; and
R;), 3DETACH performs the edge intersection check between
R; and R;. The intersecting edges of R; are stored in I.
The drone in R; is chosen to be elevated for the intersection
edges and the total travel distance capacity is reduced by two
times the travel altitude H for every intersected edge. If the

Algorithm 1 XTRACT Algorithm

1: Obtain routes R from ORBIT

2: Input: D, V, R, height, L , Q

3: Output: Ry

4: for Sequential pair of ; and R; in R do

5 1. =]

6: if R; and R; are intersected then

7 Record the intersection edges in the array I, from

route R;

8: Calculate the totaldistance = totaldistance + 2H

9: if totaldistance < () then

10: Store the route in Ry

11: else

12: Remove the last visited waypoint from the R;
13: end if

14:  else

15: Store the route in Ry

16:  end if

17:  if Edge of R; intersects with elevated edge of R; then
18: Consider all the waypoints in route I2; as orphans
19:  end if
20: end for

21: for path in R; do
22:  if length of path in R4y > L then

23: Store that path in Ry in Ry
24:  end if
25: end for

26: return Ry

total distance of R; is less than (), the last visited waypoint
in R; is removed and marked as an orphan. The process
repeats until exhausting @, after that R; is stored in R,. If the
intersecting edge of R; intersects with any of the edges in I,
the conflicting edges of R; are removed, and R; is updated
with the remaining waypoints in the route. if the travel distance
of R; is within capacity, R; is kept in R. Finally, 3DETACH
returns the routes in R, that satisfies the minimum number of
visited waypoints L.

Fig. 3: 3DETACH path planning example.

Figure 3 shows the results of path planning using 3DETACH
for the routes generated with ORBIT, as shown in Figure 1.
For 3DETACH, the path planning result consists of three
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routes Rp; = [D1 - 1 - 2 - 3 — 4 — D1l],
Rps = D2 - 5 - 6 - 7 —- 8 — D2], and
Rps = [D3 —+ 9 — 10 — 12 — D3]. 3DETACH chooses
to elevate the drone in Rpo at the edge between waypoints
6 to 7 to resolve the intersections with Rp; and Rpo and
elevate the drone in Rps to resolve the two collisions with
Rpi. However, elevating the drone in Rpg creates a collision
with Rps at the edge between waypoints 6 to 7. To remove the
collision, 3DETACH removes the intersecting edges of Rps
with Rpo and updates the route of Rps with the remaining
waypoints in the route.

Algorithm 2 3DETACH Algorithm

1: Obtain routes R from ORBIT

2: Input: D, V, R, height, L , Q

3: Output: Ry

4: for Sequential pair of R; and R; in R do

I, =1]

6: if R; and R; are intersected then

7: Record the intersection edges in the array I. from
route R;

(9,1

8: Calculate the totaldistance = totaldistance + 2H

9: if totaldistance < () then

10: Store the route in Ry

11: else

12: Remove the last visited waypoint from the IZ;

13: end if

14:  else

15: Store the route in Ry

16:  end if

17:  if Edge of R; intersects with elevated edge of I; then

18: Eliminate that waypoint from the route 12; and make
that waypoint as orphan

19:  end if

20: end for

21: for path in R; do
22:  if length of path in R; > L then

23: Store that path in Ry in Ry
24:  end if
25: end for

26: return Ry

C. ASCEND ALGORITHM

ASCEND performs the same intersection checks as
XTRACT and 3DETACH do, but it does not consider the
routes generated by ORBIT as input. Instead, ASCEND checks
for an intersection each time it adds a waypoint to the route.
If there is an edge intersection, the other altitude is used to
continue with the path. However, if the elevated edge intersects
with another elevated edge, ASCEND looks for the next
nearest neighbor from the last visited waypoint to continue
the search.

Algorithm 3 describes the ASCEND algorithm. The input
of ASCEND is the coordinates of the depot and waypoints,
the drone’s distance capacity ), the radius r, the minimum

number of waypoints L, and the altitude of the elevated edge
H. The output is the array R4 with the collision-free routes. At
first, ASCEND randomly chooses one of the depots, namely
depot k, finds all the waypoints that are within a radius r, and
stores the waypoints within 7 in Tj. It then checks if depot k&
has enough neighbors in Tk, i.e., |Tx| > L. Then, ASCEND
checks if the traveled distance capacity ) for the obtained
route is also satisfied. The waypoints within r for depot k are
added sequentially as long as the capacity of the visiting drone
is not exceeded. No intersection checks are required for the
first route.

For the second route, a depot is chosen randomly from
the remaining depots. The procedure is repeated as in the
case of finding the first route. However, for the second and
following routes, ASCEND performs intersection checks every
time a new waypoint is added to the route and checks if
the distance capacity constraint is satisfied. If it finds any
edge intersection between the new route and any existing
routes flying at the base altitude, then the drone is elevated
at the intersecting edge. Moreover, if there is an intersection
between the edges of a new route with the elevated edges,
ASCEND will select the nearest waypoint that satisfies the
distance capacity constraint and ensures no intersection with
any elevated edge. The waypoint meeting those conditions is
added to Ry. After no more routes can be formed, ASCEND
returns the routes that meet the requirement of the minimum
number of waypoints L from Rg.

(a) Example 1 (b) Example 2

Fig. 4: ASCEND path planning examples.

Figure 4(a) shows one of the possible path planning results
obtained using ASCEND for the example shown in Figure 1.
In the figure, the dotted black represents the intersecting
edges elevated in a route. In this example, it is considered
that ASCEND randomly chooses the drone at depot D1 and
that waypoints 1, 2, 3, 4, and 10 are within the radius r
from D1. The waypoints within » for D1 are then stored
in Tx. ASCEND finds that the nearest waypoint to D1 is
waypoint 1 and adds it to the route after the distance capacity
and intersection checks. The next step is to find the nearest
waypoint from waypoint 1 that satisfies all the conditions.
The process is repeated, and ASCEND finds for D1 the
route Rp; = [D1 - 1 - 2 —- 3 — 4 — DI1]. The
next unvisited depot D3 is chosen. The same procedure is
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followed for depot D3 as for D1. The route for depot D3
is Rps = [D3 -9 - 10 - 7 — 11 — 12 — D3]
The edge between waypoints 9 to 10 and the edge between
waypoints 10 to 7 are stored in Intersecting.qqe because
these edges intersect with the edges of Rp;. For D2, the
route Rps = [D2 =+ 5 — 6 — 8 — D2] is found, and
because it does not intersect with any of the edges of both
Rp; and Rp3, no drone elevation is needed. ASCEND returns
the three routes because all of them meet the requirement of
the minimum number of waypoints L. Figure 4(b) shows that
the path planning output that ASCEND obtains after D2 is
chosen before D3. In this example, Rps is elevated because
there is an intersecting edge with Rp.

Algorithm 3 ASCEND Algorithm
1: Input: D, V, Q, L, r, M
2: Output: Ry
3: for £ in D do
4
5

Ty =11
Add all the unvisited waypoints in 7T} within coverage
range r from k

6: I =]

7. if |Ty| > L then

8: n==k

9: dcum,k =0

10: Find the minimum distance d,,,;,, from n to nearest
waypoint (n,,) in Tj

11: if n,—nw> intersects with any edges in I. then

12: look for the next nearest waypoint n,, for n

13: else

14: Go to step 16

15: end if

16: if m intersects with any edges (i.e. not in I.) in
R, then

17: if n,, satisfies deym, ik + dmin +dn,, x < @ then

18: Store the edge m in I,

19: Add n,, to Rj; mark n,, as unavailable

20: dcum,k+ = dmins

21: n="ny

22: else

23: Discard n,, and set it as unavailable

24: end if

25: else

26: Discard n,, and set it as unavailable

27: end if

28:  end if

29:  if |Rx| > L then

30: Mark all waypoints in Ry, as visited

31: Add k to Ry, then add R;, to Ry

32:  end if

33: end for

V. SIMULATION RESULTS AND ANALYSIS
A. Simulation setup

We implemented the algorithms in C++ and evaluated their
performance through computer simulation. The flight zone is
set as a 4x4 km? area with 25 depots and different waypoint
densities from 50 to 500 waypoints with an increment of 50
waypoints. The number of depots is determined by the upper
bound of the number of depots needed to cover this area.
The waypoints are randomly distributed inside the area. The
locations of the depots are evenly distributed in the area and
are fixed for all the experiments. Each depot is home to one
drone, the algorithms randomly choose the depots from the
given set of 25 depots to generate routes. We set the distance
capacity of the drones to that of commercial ones, or 7 km.
The range of the drone is a circle with a radius of 2 km,
where the center of the circle is its depot. The minimum
number of visited waypoints within each route is set to at
least 3% of the total number of waypoints in the area. The
simulation is run 10,000 times for each scenario. Each time,
the depots are randomly selected with a randomly generated
set of waypoints. The three algorithms were evaluated using
the same topology. We record the mean and standard deviation
of the number of orphan nodes, the number of drones used,
and the cumulative route distance. We also use our previously
proposed profit model to evaluate the cost-effectiveness of the
three algorithms.

B. Performance evaluation

We compare the performance of the proposed 3D collision-
free path planning algorithms in terms of the number of drones
used, the number of waypoints covered, the number of orphan
nodes, and the cumulative covered distance for a target area
with waypoint densities that vary from 50 to 500 waypoints
in the area. We use ORBIT as a baseline to compare the
performance of our proposed algorithms. We also evaluate
the profit ratio achieved with each algorithm to measure the
cost-effectiveness of each approach. The profit ratio indicates
the revenue generated from the number of covered waypoints,
the cost of investment (i.e., drones), and usage, which is
proportional to the drone covered distance.

Number of drones used. Figure 5 shows that the number of
drones needed increases as the number of waypoints increases.
Here, ASCEND requires the largest number of drones because
it is optimized to maximize the number of visited waypoints
in the presence of edge intersections with elevated routes. On
the other hand, XTRACT requires the smallest number of
drones because the algorithm discards entire routes whenever
it finds a collision with an elevated route. Similar to XTRACT,
3DETACH detangles the routes generated by ORBIT with less
restrictive conditions. Therefore, 3DETACH uses more drones
to cover more waypoints than XTRACT.

Number of orphan nodes. Figure 6 shows the number of
orphan nodes increases as the number of waypoints increases
because high-density waypoints make it more difficult to find
routes without collisions. ORBIT leaves out the smallest num-
ber of orphan nodes because it neglects intersection checks
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Fig. 6: Number of orphans vs. number of waypoints.

between the generated routes, which results in more vis-
ited waypoints but with colliding routes. ASCEND generates
fewer orphan nodes than XTRACT and 3DETACH because
it chooses alternative collision-free routes at the planning
phase upon detection of route intersection and provides a
more efficient coverage. This strategy reduces the number of
orphan waypoints. XTRACT leaves more orphan nodes than
3DETACH because its strategy to resolve route collisions is
more restrictive than that of 3DETACH. With a density of 500
waypoints in the area, ASCEND leaves approximately 60%
and 50% fewer orphan nodes than XTRACT and 3DETACH,
respectively.

Cumulative route distance. Figure 7 shows the cumulative
travel distance for the path planning of each considered
approach as the number of waypoints increases. Again, AS-
CEND outperforms XTRACT and 3DETACH with the longest
cumulative travel distance with XTRACT covering the least
distance due to its restrictive route selection.

Profit ratio. To make a fair and complete comparison
between the profit of each approach considering the cost
and maintenance of drones, and revenue from the number of
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Fig. 7: Cumulative distance vs. number of waypoints.
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Fig. 8: Profit ratio vs. number of waypoints.

covered waypoints, we use the profit model proposed in [25]:

(1)

P = Nwaypoint Y= D- €distance — Ndrone * €drone

Here, Nyaypoint denotes the number of visited waypoints,
~ is the reward for each visited waypoint, D is the total
distance, after subtracting the travel altitude H in the case of
the elevated routes, €g;siance 1S the unit cost for the distance
covered by the drone, and Ngyone is the number of drones
used, each with a unit price €4,one. We assume the initial unit
costs, for example, v = 50, €gistance = 9, and €g4rone = 185.
The profit ratio is calculated as the profit achieved with each
approach divided by the maximum profit of ORBIT for 500
waypoints.

Figure 8 shows the profit ratio as a function of the number
of waypoints. It is clear that the profit ratio of ASCEND is the
closest to that of ORBIT, which indicates its effectiveness in
finding routes with a large number of visited nodes as ORBIT
but without route collisions. XTRACT and 3DETACH achieve
a smaller profit ratio than ASCEND and ORBIT because they
visit fewer waypoints, translating to a lower achievable profit.
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VI. CONCLUSIONS

In this paper, we tackle the collision-avoidance multi-drone
path planning problem in a 3D space. We formulate the
problem as a multi-depot vehicle routing problem and pro-
posed three heuristic algorithms, XTRACT, 3DETACH, and
ASCEND. We compared the performance of these three algo-
rithms with the collision-agnostic ORBIT algorithm. XTRACT
and 3DETACH take the path generated by ORBIT and re-
move the intersecting paths by taking one of the paths at a
different altitude. ASCEND plans the path by selecting the
nearest neighbors with a non-intersecting path. We consider
only two altitudes in this paper to compare the collision
prevention and removal approaches with minimal height com-
plexity. We evaluate the three proposed algorithms through
computer simulation and the results show that ASCEND not
only covers as many waypoints as ORBIT but also generates
60% fewer orphan nodes than XTRACT under a high-density
waypoint scenario in an area with 500 waypoints. In general,
ASCEND outperforms XTRACT and 3DETACH and also
achieves higher cost-effectiveness in the long term. These
results suggest that collision prevention is more effective than
collision removal.
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