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Abstract— A Scanning Tunneling Microscope (STM) is a type 
of microscope that harnesses quantum tunneling to process images 
of surfaces at the atomic level. STMs are used to study particles at 
nanoscale, enabling detailed investigations at the level of 
individual atoms. However, the resolutions of STM images are 
often limited by realistic experimental conditions.  

In this paper, we investigate image super-resolution methods 
empowered by deep learning to break the experimental limits of 
STM to obtain high-resolution STM images. We first train an 
object detection model to detect and segment target molecules 
from the raw STM images. Then, an STM Super-Resolution 
(STM-SR) program based on Super-Resolution Generative 
Adversarial Networks (SRGAN) is developed and trained on a 
high-resolution STM dataset to learn to convert the low-resolution 
STM images into high-resolution ones. Our benchmark results on 
the test STM set show that STM-SR leads to significant resolution 
improvement measured by Peak Signal to Noise Ratio (PSNR), 
compared to the bicubic interpolation method. This super-
resolution breaks the experimental barrier and reaches a higher 
resolution level. Finally, a Localization Scanning Tunneling 
Microscopy (Localization-STM) method is developed to 
reconstruct and further enhance the resolution of the STM image 
beyond the STM tip-radius limitation. As a case study, we apply 
our machine learning approach to generate super-resolution STM 
images that resemble the supramolecule, which matches its 
theoretical chemical structure well. The machine learning-based 
super-resolution approach enables STM images to reach a similar 
quality under less restrictive conditions and brings new insight 
into atomic-level physics. In particular, this method can be applied 
to the STM study of large, complex molecular structures, which 
requires stringent experimental conditions.  

Keywords— Scanning Tunneling Microscope (STM), Image 
Super Resolution, Object Detection, Super Resolution Generational 
Adversarial Network (SRGAN), Localization Scanning Tunneling 
Microscopy (Localization-STM) 

I. INTRODUCTION 

Scanning Tunneling Microscope (STM) forms atom-level 
images by scanning the sample surface using a physical probe. 
STMs are key tools of nanoscience. Since their invention, STMs 
have been responsible for many breakthroughs in nanophysics, 
semiconductor science, and biochemistry [1-3]. 

The resolution of STM images is critical to precisely 
measure the physical properties of target molecular samples, 
including surface topography, electronic properties, strength of 
chemical bonds, dielectric and magnetic properties, and contact 
charges, as well as to study the subtle effects in physics 

phenomena, such as conformation change, friction, lubrication, 
vibration, and molecular manipulation, in great details. STMs 
have a lateral resolution up to 0.1nm and a depth resolution of 
0.01nm. However, an STM is only able to achieve high-
resolution atomic-level images under ideal experimental 
circumstances, at cryogenic temperature and perfect flatness. 
Oftentimes, due to limitations imposed by the target samples, 
experimental conditions cannot achieve high resolution. In 
particular, STMs have a difficult time in getting atomic 
resolution when scanning large molecules at elevated 
temperatures, primarily because the high thermal energy causes 
significant mobility and movement of the molecules. Recently, 
experimental methods to enhance STM resolution have been 
developed by functionalizing the STM tip [4, 5] with an atom or 
a molecule that significantly contributes to the tip-sample 
interaction, which can reveal the internal structure molecules 
adsorbed on surfaces. These experimental resolution 
enhancement methods have become successful in certain classes 
of molecules, and many astoundingly clear STM images have 
been generated. However, these experimental resolution 
enhancement methods based on functionalizing tips complicate 
the experiment and are not universally applicable to any 
molecules of interest.   

The purpose of this paper is to demonstrate that novel 
methods, empowered by physics experiments, image 
processing, and machine learning technology, can 
computationally enhance the resolution of STM images and 
overcome the physical limitations of STM experiments. In this 
study, we model the STM image super-resolution problem as a 
Single Image Super Resolution problem, and we attempt to train 
machine learning models with many STM images on a variety 
of molecules obtained from high-resolution STM experiments 
to enhance the low-resolution STM images where the high-
resolution version cannot be obtained from experiments. Our 
STM image super-resolution procedure includes three major 
components: a target molecule detection program, an STM 
super-resolution (STM-SR) program, and a localization-STM 
program. The target molecule detection program trains a Yolov5 
program [10] to detect target molecules with high accuracy from 
a large STM scan. Using a large set of high-resolution STM 
images across many molecule systems available as the training 
set, the STM-SR program adopts a Super-Resolution Generative 
Adversarial Networks (SRGAN) [11] architecture to transform 
low-resolution STM images into high-resolution STM versions. 
Based on the high-resolution STM images generated by STM-
SR, inspired by the microscopy localization methods [12, 13], a 
localization-STM program is designed to further improve the 
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resolution of the STM images beyond the STM tip-radius 
limitations. We use the supramolecule as a case study to 
demonstrate the effectiveness of our STM image super-
resolution methods. Our results show that a clearer view of the 
atomic world can be achieved with the help of modern machine 
learning-based image super-resolution technologies. 

II. BACKGROUND 

A. Scanning Tunneling Microscope (STM) 
An STM is a microscope capable of taking images of atomic 

topography [1-3]. The STM has two key components, the 
scanning tip and the scanning surface. STMs utilize the electron 
tunneling current between the surface and the tip of the scanning 
needle to gather data. This usage of the electron tunneling 
current requires the scanning surface to be extremely flat and the 
scanning needle to be atomically pointed. STM measures the 
tunneling current and generates tunneling current images by 
scanning an extremely sharp metal wire tip over a surface of 
material samples with precise, angstrom-level control, taking 
advantage of the piezoelectric effect [14]. When the atomically 
sharp tip is sufficiently close to the surface within sub-
nanometer distance, the voltage bias between the tip and the 
scanned surface enables electrons to tunnel through the vacuum 
in between to form tunneling current, due to the quantum 
tunneling effect. As the top encounters sample features of 
different heights, tunneling current changes correspondingly. 
Monitoring the tunneling current and coordinating the current 
with the positioning of the tip, the sample surface is 
topographically imaged at the atom scale, resolving the 
conformations of individual atoms in the material sample.  

B.  STM Image Super-Resolution 
The efforts to enhance STM image resolution can be 

classified into experiment and computation-based methods.  

The rationale behind the experiment-based methods is that 
the resolution of the STM images crucially depends on the 
chemical nature of the sharp STM tip apex. Hence, 
functionalizing the STM tips with a molecule or an atom can 
trigger the interaction between the tip and the specific structure 
of the target sample. Intentionally picking up the functionalizing 
molecule or atom amplifies the detected signal, which is the key 
to dramatically enhancing the STM resolution. For example, 
functionalizing the STM tip with a single carbon monoxide (CO) 
molecule improves the resolution of molecular orbital STM 
images [6, 7, 15]. Another example is the scanning tunneling 
hydrogen microscopy (STHM) with STM tip functionalization 
with H2, D2, and a variety of other atomic and molecular 
particles [8, 9], which allows the STM to resolve the atomic 
structures of large organic adsorbates in a direct imaging 
experiment. Although many STM images of different classes of 
molecules within sub-atomic resolution have been generated 
recently, the functionalizing tips method increases experimental 
difficulties such as the deposition of molecule or atom for tip 
decoration on surface may change the physiochemical 
properties of the target samples. Therefore, the functionalizing 
tip has experimental limitations and cannot be generalized to any 
molecules and materials of interest. 

 On the other hand, the computation-based methods attempt 
to reconstruct high-resolution STM images after the acquisition 

of STM scans. For example, the localization microscopy 
methods [16] isolate and pinpoint the spatial fluctuations of 
topographic features in microscopy images to reconstruct high-
resolution density maps. These microscopy localization 
methods typically require a lot of experimentally-obtained 
images to eliminate statistical noise, either images of many 
molecules of the same kind or many images of a single 
molecule. 

C. Single Image Super Resolution 
Single Image Super Resolution refers to the task of restoring 

a high-resolution image from a low-resolution observation of the 
same scene. Due to its ill-posedness nature, single image super-
resolution is a well-known challenging problem. Recently, 
powerful deep learning algorithms, including Super-Resolution 
Convolutional Neural Network (SRCNN) [17], SRGAN [11], 
Deep Recursive Residual Network (DRRN) [18], Enhanced 
Deep Residual Network (EDRN) [19], Deep Back Projection 
Network (DBRN) [20], and many others, have been developed 
for Single Image Super Resolution and have achieved state-of-
the-art performance in many applications. Yang et al. [21] 
provides an excellent survey of the available deep learning 
architectures for Single Image Super-Resolution.  

In this work, different from the existing experiment- or 
computation-based methods for STM image super-resolution, 
inspired by the effectiveness of deep learning methods for single 
image super-resolution, we attempt to use the experiment-
generated high-resolution STM images on a wide variety of 
molecules to enhance low-resolution STM images. While the 
purpose of this paper is not to compare different deep learning 
single image super-resolution methods on STM image super-
resolution, we adopt a deep learning architecture similar to 
SRGAN to achieve STM image super-resolution.    

III. METHODS 

A. STM Data Collection 
In the physics lab, target molecule samples are prepared and 

the raw images are scanned on the STM platform. The STM lab 
software is used to generate images of the sample. The STM 
processes include sputtering, annealing, depositing the 
molecules on the surface, and tip forming; these processes are 
shown in the flowchart of Fig. 1.  

The preparation of the sample begins with sputtering. 
Sputtering uses charged ions to atomically clean the substrate (in 
this case, a gold plate). Sputtering causes deformations in the 
gold substrate, thus annealing is used to smooth the surface of 
the substrate. Then the molecules are deposited on gold 
substrate. The tip then approaches the sample until it detects 
tunneling current. The tip is then used to scan images of the 
sample surfaces. During scanning, the tip can crash and deform. 
If this occurs, tip plunging and pulsing are used to repair the 
STM tip. The scanning generates images from the tunneling 
current between the tip and the sample. These images sometimes 
have low quality and low resolution; thus, we use image super-
resolution methods to break the STM’s experimental limit. 
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Fig. 1: Procedure to Generate Target Molecule Scan 

B. Target Molecule Identification 
 In an STM experiment, a scan is carried out on a certain area 
of the sample surface that may contain the target molecules. 
Each raw STM scan contains from none to a few small target 
molecules (Fig. 6).  Here, we develop a target molecule 
identification program by training a Yolov5 [10] program to 
automatically identify the target molecules.  

C. STM Super Resolution (STM-SR) 
 The STM-SR program adopts the similar mechanism as that 
of SRGAN. As a Generative Adversarial Network (GAN) 

architecture [22], STM-SR consists a generator and a 
discriminator, which are illustrated in Fig. 2. 

 In the STM-SR generator, the low-resolution STIM image is 
passed as input through an initial convolutional layer of 9x9 
kernels and 64 feature maps followed by a Parametric ReLU 
layer. The next layers utilize 16 residual blocks, each containing 
a convolutional layer of 3x3 kernels and 64 feature maps 
followed by a batch normalization layer, a Parametric ReLU 
activation function, another convolutional layer with batch 
normalization, and a final elementwise sum method by adding 
up the feedforward output with the skip connection output [25]. 
Then the upsampling block, consisting of a convolutional layer, 
a upsampling layer, and a leaky ReLU activation is used to resize 
toward the size of the target high-resolution STM image. The 
rest of the generator model is constructed by 2 upsampling 
blocks, a convolutional layer, and a Sigmoid activation function 
to generate the high-resolution STM image. In our 
implementation, the input low-resolution STM images are 
64x64 monotone images and the output is 256x256 high-
resolution images. 

 The STM-SR discriminator architecture makes use of an 
initial convolutional layer followed by a Leaky ReLU activation 
function. Then, after 7 repetitive discriminator blocks, each 
including a convolutional layer, a batch normalizing layer, and 
a Leaky ReLU activation function, a single one-dimensional 
vector is converted by a flatten layer. Afterwards, a series of 
fully-connected dense layers followed by a Sigmoid activation 
function are used to carry out the classification action. The 
discriminator helps the generator to effectively learn the features 
of high-resolution STM images. 

 Similar to the SRGAN, the overall loss of the STM-SR is the 
weighted sum of the content loss measured by Visual Geometry 
Group (VGG) [26] loss and the adversarial loss. This loss allows 
the STM-SR model to focus on the improvement of the quality 
of the STM image instead of pixel-by-pixel comparison. 

 

Fig. 2: Architectures for the Generator and Discriminator in STM-SR 

D. Localized Scanning Tunneling Microscopy 
 Localized-STM is a new method of processing STM images 
inspired by [16]. STMs record the tunneling current in specific 

intervals; each reading is then recorded as a pixel on the STM 
image. Thus, we can use the nature of tunneling current to 
further increase resolution by using Localization-STM. The 
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rationale of Localization-STM is that the tunneling current  
is inversely proportional to  such that 

 
where  is the constant,  is the charge of an electron,  is the 
mass of an electron,  is the work function,  is Planck’s 
constant, and  is the tip-sample distance. 

 

Fig. 3: STM tip over a true atom. 

 The tunneling current increases as tip-sample distance  
decreases. When an atom is scanned by the STM, it forms a 
Gaussian curve. In reality the atom is much smaller than the 
width of the Gaussian as shown in Fig. 3. However, the atom 
lies under the peak of the Gaussian. So the local maxima of the 
Gaussian will align with the true atom’s maxima. Not only does 
this method pinpoint where the true atom is, it also reduces the 
impact of experimental noise on the locations of the atoms. Fig. 
4 depicts the flowchart of the Localization-STM algorithm. Fig. 
4 depicts the flowchart of the Localization-STM algorithm. The 
first part of Localization STM is to generate 100 different super 
resolution images from a single STM scan. These 100 images 
are solutions to the super resolution problem and are each 
equally representative of the atomic topography below. Thus, 
each of these images will have slightly different local maxima. 
Compiling these maxima together, we get an image with the 
centers of each atom. Finally, we apply a Gaussian on each local 
maximum to account for the true size of each atom 

Generate ~100 Super-resolution Images using STM-SR

Isolate Local Maxima of each Image

Compile Local Maxima of all Images

Apply Gaussian on Local Maxima
 

Fig. 4: Flowchart of Localization-STM 

IV. RESULTS 

A. Evaluation of Target Molecule Detection 
 The target molecule detection program based on Yolov5 is 
trained on 183 raw images obtained from STM experiments, 
with totally 720 manually labeled target molecules. Each target 
molecule is labeled by drawing a bounding box around it using 
the image labeling and annotation tool DarkLabel [24]. This 
bounding box is defined by its center coordinates, height, and 
width. These labeled STM images are split into the training and 
validation set. 80% of the images are grouped into the training 
set, and 20% of the images are grouped into the validation set. 
The YoloV5 training model is run for 100 epochs. Once the 
model is trained, it is applied to the remaining images scanned. 

The molecules are identified and then automatically cropped for 
super resolution processing. 

Target molecule identification using Yolov5 is rather 
effective. After training is done, a test set of 32 images with 102 
instances of target molecules is used to determine the precision 
and recall of the identified target molecules. Precision indicates 
the proportion of target molecules correctly identified to the total 
number of identifications. Recall indicates the proportion of 
target molecules correctly identified to the total number of target 
molecules available. Our trained Target Molecule Detection 
program reaches recall at 0.863 and precision at 0.844 in 
identifying the supramolecule. Below, Fig. 5 shows the 
progression of precision and recall on the test set during the 
training process.  

 
Fig. 5: Progression of Precision and Recall on Test Set duing 

Training of Target Molecule Detection using Yolov5 
 

Fig. 6(a) displays a large raw STM scan of sample containing 
instances of supramolecule as the target molecule. Fig. 6(b) 
shows two instances of supramolecule identified by the trained 
target molecule identification using Yolov5. The cropped 
instances of the supramolecule are shown in Fig. 6(c). 

 
Fig 6. Detecting and Cropping Low-resolution Supramolecule 

Images from a large STM Scan 

B. Performance of STM-SR 
We collect 119 high-resolution STM images of a wide 

variety of molecules to train the STM SRGAN. These STM 
images are obtained by high-resolution STM experiments with 
functionalizing tips available from the public domain. All of 
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these high-resolution STM images are scaled to 256x256. Data 
augmentation methods, such as rotation, and vertical and 
horizontal reflections, are applied to increase the size of training 
samples. Additional 17 experiment-generated, high-resolution 
STM images, which are on molecules different from those in the 
training set, are collected and used as the test set to evaluate the 
performance of STM-SR.  

Peak Signal to Noise Ratio (PSNR) is used to measure how 

similar the reconstructed super-resolution image  is to the 

actual high-resolution STM image  with sizes of . The 

mean squared error (MSE) between  and  is defined as 

 

Then, PSNR is defined as  

 

where  denotes the maximum signal value that exists in 

the original high-resolution STM image .  

 
Fig. 7: Comparison of results on three STM samples in the test 

set 
We use the bicubic interpolation method [23] as the baseline 

to compare with STM-SR on converting low-resolution STM 
images (64x64) to high-resolution ones (256x256). Fig. 7 shows 
the super-resolution results of bicubic and STM-SR on three 
STM images in the test set as examples. One can find that STM-
SR yields a significantly higher PSNR than bicubic 
interpolation, while visually reconstructing the high-resolution 
images. On the overall test set, the mean PSNR of bicubic 
interpolation is 10.88 with standard deviation of 0.87. In 
comparison, the mean PSNR of STM-SR is 23.41 with standard 
deviation of 0.98. 

C. STM Super-resolution on the Supramolecule 
Here, we use the STM image of a supramolecule [27-29] as 

a case study to demonstrate the effectiveness of our STM image 
super-resolution method. A supramolecule is a molecule that is 

composed of two or more smaller subunits that are bonded 
together. These subunits can be the same type of molecule of 
different types of molecules. They can be arranged in a variety 
of ways to form a wide range of structures by a variety of non-
covalent interactions such as hydrogen bonding, electrostatic 
interactions, van der Waals forces, and hydrophobic 
interactions. Supramolecules have a lot of important 
applications in materials science, biochemistry, and 
pharmacology. However, obtaining high-resolution topography 
images of a supramolecule is technically challenging in STM 
experiments, because supramolecules are usually deposited in 
liquid phase and impurities from the liquid make STM images 
quality compromised. 

 
Fig. 8: Super-resolution of the Supramolecule  

Fig. 8 shows the procedure of applying our super-resolution 
techniques to the supramolecule STM image. Fig. 8(a) is the 
original STM scan, which contains a supramolecule. Fig. 8(b) 
segments the supramolecule by our trained object detection 
program. The cropped supramolecule image is scaled to 64x64, 
as shown in Fig. 8(c). Fig. 8(d) depicts a high-resolution 
supramolecule image in 256x256 after STM-SR. The 

Low Resolution Image 
(64x64)

High Resolution Image 
(256x256 Truth)

STM-SR (256x256) 
Our Approach

Bicubic Interpolation 
(256x256 Control)

PSNR = 9.69 PSNR = 23.59

PSNR = 23.08PSNR = 11.94

PSNR = 28.86PSNR = 9.10
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localization STM algorithm requires a lot of high-resolution 
STM images to achieve good statistics. We generate 100 high-
resolution STM images by feeding the trained STM-SR with 
100 low-resolution images smeared by Gaussian noise as input. 
The super-resolution supramolecule after localization-STM is 
shown in Fig. 8(e), where each metallic atom shows as a lighted 
dot. Fig. 8(f) is the theoretical chemical structure of the 
supramolecule and Fig. 8(g) is its abstraction. We superimpose 
the abstract chemical structure on the super-resolution 
supramolecule STM image, which is shown in Fig. 8(h). One 
can find the super-resolution supramolecule image obtained by 
our STM super-resolution approach has a good agreement with 
the theoretical chemical structure, indicating the preliminary 
success of our method. 

V. CONCLUSION 

In this study, we developed and applied super-resolution 
techniques based on machine learning methods to break the 
experimental and physical resolution limits of the STM. 
Collecting raw images from STM experiments, we train a 
Yolov5 model to identify target molecules from the STM scans. 
This target molecule detection program can confidently identify 
target molecules from the large STM scans with high precision 
and high recall. Using the target molecule detection model, we 
crop the target molecules from the large STM scans. We train 
an STM-SR model adopting the SRGAN architecture to convert 
the low-resolution STM images into high-resolution ones. 
STM-SR generates high quality images that are superior to 
those generated by conventional bicubic interpolation methods. 
We develop a Localization-STM method to process multiple 
images of a supramolecule sample generated by STM-SR, 
isolate the true atomic signals, and retrieve a high-resolution 
image that conforms to its theoretical chemical structure. 
Localization-STM is capable of surpassing the physical 
resolution limits of the STM. In our study of the supramolecule, 
the image produced by Localization-STM denotes every single 
metal atom in the molecule.  
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