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Abstract— A Scanning Tunneling Microscope (STM) is a type
of microscope that harnesses quantum tunneling to process images
of surfaces at the atomic level. STMs are used to study particles at
nanoscale, enabling detailed investigations at the level of
individual atoms. However, the resolutions of STM images are
often limited by realistic experimental conditions.

In this paper, we investigate image super-resolution methods
empowered by deep learning to break the experimental limits of
STM to obtain high-resolution STM images. We first train an
object detection model to detect and segment target molecules
from the raw STM images. Then, an STM Super-Resolution
(STM-SR) program based on Super-Resolution Generative
Adversarial Networks (SRGAN) is developed and trained on a
high-resolution STM dataset to learn to convert the low-resolution
STM images into high-resolution ones. Our benchmark results on
the test STM set show that STM-SR leads to significant resolution
improvement measured by Peak Signal to Noise Ratio (PSNR),
compared to the bicubic interpolation method. This super-
resolution breaks the experimental barrier and reaches a higher
resolution level. Finally, a Localization Scanning Tunneling
Microscopy (Localization-STM) method is developed to
reconstruct and further enhance the resolution of the STM image
beyond the STM tip-radius limitation. As a case study, we apply
our machine learning approach to generate super-resolution STM
images that resemble the supramolecule, which matches its
theoretical chemical structure well. The machine learning-based
super-resolution approach enables STM images to reach a similar
quality under less restrictive conditions and brings new insight
into atomic-level physics. In particular, this method can be applied
to the STM study of large, complex molecular structures, which
requires stringent experimental conditions.

Keywords— Scanning Tunneling Microscope (STM), Image
Super Resolution, Object Detection, Super Resolution Generational
Adpversarial Network (SRGAN), Localization Scanning Tunneling
Microscopy (Localization-STM)

1. INTRODUCTION

Scanning Tunneling Microscope (STM) forms atom-level
images by scanning the sample surface using a physical probe.
STMs are key tools of nanoscience. Since their invention, STMs
have been responsible for many breakthroughs in nanophysics,
semiconductor science, and biochemistry [1-3].

The resolution of STM images is critical to precisely
measure the physical properties of target molecular samples,
including surface topography, electronic properties, strength of
chemical bonds, dielectric and magnetic properties, and contact
charges, as well as to study the subtle effects in physics
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phenomena, such as conformation change, friction, lubrication,
vibration, and molecular manipulation, in great details. STMs
have a lateral resolution up to 0.1nm and a depth resolution of
0.0lnm. However, an STM is only able to achieve high-
resolution atomic-level images under ideal experimental
circumstances, at cryogenic temperature and perfect flatness.
Oftentimes, due to limitations imposed by the target samples,
experimental conditions cannot achieve high resolution. In
particular, STMs have a difficult time in getting atomic
resolution when scanning large molecules at elevated
temperatures, primarily because the high thermal energy causes
significant mobility and movement of the molecules. Recently,
experimental methods to enhance STM resolution have been
developed by functionalizing the STM tip [4, 5] with an atom or
a molecule that significantly contributes to the tip-sample
interaction, which can reveal the internal structure molecules
adsorbed on surfaces. These experimental resolution
enhancement methods have become successful in certain classes
of molecules, and many astoundingly clear STM images have
been generated. However, these experimental resolution
enhancement methods based on functionalizing tips complicate
the experiment and are not universally applicable to any
molecules of interest.

The purpose of this paper is to demonstrate that novel
methods, empowered by physics experiments, image
processing, and machine learning technology, can
computationally enhance the resolution of STM images and
overcome the physical limitations of STM experiments. In this
study, we model the STM image super-resolution problem as a
Single Image Super Resolution problem, and we attempt to train
machine learning models with many STM images on a variety
of molecules obtained from high-resolution STM experiments
to enhance the low-resolution STM images where the high-
resolution version cannot be obtained from experiments. Our
STM image super-resolution procedure includes three major
components: a target molecule detection program, an STM
super-resolution (STM-SR) program, and a localization-STM
program. The target molecule detection program trains a Yolov5
program [10] to detect target molecules with high accuracy from
a large STM scan. Using a large set of high-resolution STM
images across many molecule systems available as the training
set, the STM-SR program adopts a Super-Resolution Generative
Adversarial Networks (SRGAN) [11] architecture to transform
low-resolution STM images into high-resolution STM versions.
Based on the high-resolution STM images generated by STM-
SR, inspired by the microscopy localization methods [12, 13], a
localization-STM program is designed to further improve the
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resolution of the STM images beyond the STM tip-radius
limitations. We use the supramolecule as a case study to
demonstrate the effectiveness of our STM image super-
resolution methods. Our results show that a clearer view of the
atomic world can be achieved with the help of modern machine
learning-based image super-resolution technologies.

II. BACKGROUND

A. Scanning Tunneling Microscope (STM)

An STM is a microscope capable of taking images of atomic
topography [1-3]. The STM has two key components, the
scanning tip and the scanning surface. STMs utilize the electron
tunneling current between the surface and the tip of the scanning
needle to gather data. This usage of the electron tunneling
current requires the scanning surface to be extremely flat and the
scanning needle to be atomically pointed. STM measures the
tunneling current and generates tunneling current images by
scanning an extremely sharp metal wire tip over a surface of
material samples with precise, angstrom-level control, taking
advantage of the piezoelectric effect [14]. When the atomically
sharp tip is sufficiently close to the surface within sub-
nanometer distance, the voltage bias between the tip and the
scanned surface enables electrons to tunnel through the vacuum
in between to form tunneling current, due to the quantum
tunneling effect. As the top encounters sample features of
different heights, tunneling current changes correspondingly.
Monitoring the tunneling current and coordinating the current
with the positioning of the tip, the sample surface is
topographically imaged at the atom scale, resolving the
conformations of individual atoms in the material sample.

B. STM Image Super-Resolution

The efforts to enhance STM image resolution can be
classified into experiment and computation-based methods.

The rationale behind the experiment-based methods is that
the resolution of the STM images crucially depends on the
chemical nature of the sharp STM tip apex. Hence,
functionalizing the STM tips with a molecule or an atom can
trigger the interaction between the tip and the specific structure
of the target sample. Intentionally picking up the functionalizing
molecule or atom amplifies the detected signal, which is the key
to dramatically enhancing the STM resolution. For example,
functionalizing the STM tip with a single carbon monoxide (CO)
molecule improves the resolution of molecular orbital STM
images [6, 7, 15]. Another example is the scanning tunneling
hydrogen microscopy (STHM) with STM tip functionalization
with H2, D2, and a variety of other atomic and molecular
particles [8, 9], which allows the STM to resolve the atomic
structures of large organic adsorbates in a direct imaging
experiment. Although many STM images of different classes of
molecules within sub-atomic resolution have been generated
recently, the functionalizing tips method increases experimental
difficulties such as the deposition of molecule or atom for tip
decoration on surface may change the physiochemical
properties of the target samples. Therefore, the functionalizing
tip has experimental limitations and cannot be generalized to any
molecules and materials of interest.

On the other hand, the computation-based methods attempt
to reconstruct high-resolution STM images after the acquisition

of STM scans. For example, the localization microscopy
methods [16] isolate and pinpoint the spatial fluctuations of
topographic features in microscopy images to reconstruct high-
resolution density maps. These microscopy localization
methods typically require a lot of experimentally-obtained
images to eliminate statistical noise, either images of many
molecules of the same kind or many images of a single
molecule.

C. Single Image Super Resolution

Single Image Super Resolution refers to the task of restoring
a high-resolution image from a low-resolution observation of the
same scene. Due to its ill-posedness nature, single image super-
resolution is a well-known challenging problem. Recently,
powerful deep learning algorithms, including Super-Resolution
Convolutional Neural Network (SRCNN) [17], SRGAN [11],
Deep Recursive Residual Network (DRRN) [18], Enhanced
Deep Residual Network (EDRN) [19], Deep Back Projection
Network (DBRN) [20], and many others, have been developed
for Single Image Super Resolution and have achieved state-of-
the-art performance in many applications. Yang et al. [21]
provides an excellent survey of the available deep learning
architectures for Single Image Super-Resolution.

In this work, different from the existing experiment- or
computation-based methods for STM image super-resolution,
inspired by the effectiveness of deep learning methods for single
image super-resolution, we attempt to use the experiment-
generated high-resolution STM images on a wide variety of
molecules to enhance low-resolution STM images. While the
purpose of this paper is not to compare different deep learning
single image super-resolution methods on STM image super-
resolution, we adopt a deep learning architecture similar to
SRGAN to achieve STM image super-resolution.

III. METHODS

A. STM Data Collection

In the physics lab, target molecule samples are prepared and
the raw images are scanned on the STM platform. The STM lab
software is used to generate images of the sample. The STM
processes include sputtering, annealing, depositing the
molecules on the surface, and tip forming; these processes are
shown in the flowchart of Fig. 1.

The preparation of the sample begins with sputtering.
Sputtering uses charged ions to atomically clean the substrate (in
this case, a gold plate). Sputtering causes deformations in the
gold substrate, thus annealing is used to smooth the surface of
the substrate. Then the molecules are deposited on gold
substrate. The tip then approaches the sample until it detects
tunneling current. The tip is then used to scan images of the
sample surfaces. During scanning, the tip can crash and deform.
If this occurs, tip plunging and pulsing are used to repair the
STM tip. The scanning generates images from the tunneling
current between the tip and the sample. These images sometimes
have low quality and low resolution; thus, we use image super-
resolution methods to break the STM’s experimental limit.

1139

Authorized licensed use limited to: Old Dominion University. Downloaded on June 30,2024 at 18:15:06 UTC from IEEE Xplore. Restrictions apply.



Sputter to remove
remaining residue

Approach tip to

Anneal to
restore flatness

Plunge tip to
reform e

v scan images
I
|
|
+

Pulse to remove
tip contamination

STM Image
S Tl r

Fig. 1: Procedure to Generate Target Molecule Scan

B. Target Molecule Identification

In an STM experiment, a scan is carried out on a certain area
of the sample surface that may contain the target molecules.
Each raw STM scan contains from none to a few small target
molecules (Fig. 6). Here, we develop a target molecule
identification program by training a Yolov5 [10] program to
automatically identify the target molecules.

C. STM Super Resolution (STM-SR)

The STM-SR program adopts the similar mechanism as that
of SRGAN. As a Generative Adversarial Network (GAN)
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architecture [22], STM-SR consists a generator and a
discriminator, which are illustrated in Fig. 2.

In the STM-SR generator, the low-resolution STIM image is
passed as input through an initial convolutional layer of 9x9
kernels and 64 feature maps followed by a Parametric ReLU
layer. The next layers utilize 16 residual blocks, each containing
a convolutional layer of 3x3 kernels and 64 feature maps
followed by a batch normalization layer, a Parametric ReLU
activation function, another convolutional layer with batch
normalization, and a final elementwise sum method by adding
up the feedforward output with the skip connection output [25].
Then the upsampling block, consisting of a convolutional layer,
aupsampling layer, and a leaky ReLU activation is used to resize
toward the size of the target high-resolution STM image. The
rest of the generator model is constructed by 2 upsampling
blocks, a convolutional layer, and a Sigmoid activation function
to generate the high-resolution STM image. In our
implementation, the input low-resolution STM images are
64x64 monotone images and the output is 256x256 high-
resolution images.

The STM-SR discriminator architecture makes use of an
initial convolutional layer followed by a Leaky ReL U activation
function. Then, after 7 repetitive discriminator blocks, each
including a convolutional layer, a batch normalizing layer, and
a Leaky ReLU activation function, a single one-dimensional
vector is converted by a flatten layer. Afterwards, a series of
fully-connected dense layers followed by a Sigmoid activation
function are used to carry out the classification action. The
discriminator helps the generator to effectively learn the features
of high-resolution STM images.

Similar to the SRGAN, the overall loss of the STM-SR is the
weighted sum of the content loss measured by Visual Geometry
Group (VGG) [26] loss and the adversarial loss. This loss allows
the STM-SR model to focus on the improvement of the quality
of the STM image instead of pixel-by-pixel comparison.

Generator

2 Upsampling Blocks

Batch Normalizing
UpSampling
Sigmoid

Discriminator

LR
=]
‘o S| OO

Dense (1024)
-
igmoid

Fig. 2: Architectures for the Generator and Discriminator in STM-SR

D. Localized Scanning Tunneling Microscopy

Localized-STM is a new method of processing STM images
inspired by [16]. STMs record the tunneling current in specific

intervals; each reading is then recorded as a pixel on the STM
image. Thus, we can use the nature of tunneling current to
further increase resolution by using Localization-STM. The
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rationale of Localization-STM is that the tunneling current I (d)
is inversely proportional to e such that
2mo
I(d)=k- eOV-e_2 g
where k is the constant, e is the charge of an electron, m is the
mass of an electron, @ is the work function, h is Planck’s
constant, and d is the tip-sample distance.

STM
ol Reading

Fig. 3: STM tip over a true atom.

The tunneling current increases as tip-sample distance d
decreases. When an atom is scanned by the STM, it forms a
Gaussian curve. In reality the atom is much smaller than the
width of the Gaussian as shown in Fig. 3. However, the atom
lies under the peak of the Gaussian. So the local maxima of the
Gaussian will align with the true atom’s maxima. Not only does
this method pinpoint where the true atom is, it also reduces the
impact of experimental noise on the locations of the atoms. Fig.
4 depicts the flowchart of the Localization-STM algorithm. Fig.
4 depicts the flowchart of the Localization-STM algorithm. The
first part of Localization STM is to generate 100 different super
resolution images from a single STM scan. These 100 images
are solutions to the super resolution problem and are each
equally representative of the atomic topography below. Thus,
each of these images will have slightly different local maxima.
Compiling these maxima together, we get an image with the
centers of each atom. Finally, we apply a Gaussian on each local
maximum to account for the true size of each atom

‘ Generate ~100 Super-resolution Images using STM-SR ‘

‘ Isolate Local Maxima of each Image ‘
‘ Compile Local Maxima of all Images ‘

‘ Apply Gaussian on Local Maxima ‘

Fig. 4: Flowchart of Localization-STM

IV. RESULTS

A. Evaluation of Target Molecule Detection

The target molecule detection program based on Yolovs is
trained on 183 raw images obtained from STM experiments,
with totally 720 manually labeled target molecules. Each target
molecule is labeled by drawing a bounding box around it using
the image labeling and annotation tool DarkLabel [24]. This
bounding box is defined by its center coordinates, height, and
width. These labeled STM images are split into the training and
validation set. 80% of the images are grouped into the training
set, and 20% of the images are grouped into the validation set.
The YoloV5 training model is run for 100 epochs. Once the
model is trained, it is applied to the remaining images scanned.
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The molecules are identified and then automatically cropped for
super resolution processing.

Target molecule identification using Yolov5 is rather
effective. After training is done, a test set of 32 images with 102
instances of target molecules is used to determine the precision
and recall of the identified target molecules. Precision indicates
the proportion of target molecules correctly identified to the total
number of identifications. Recall indicates the proportion of
target molecules correctly identified to the total number of target
molecules available. Our trained Target Molecule Detection
program reaches recall at 0.863 and precision at 0.844 in
identifying the supramolecule. Below, Fig. 5 shows the
progression of precision and recall on the test set during the
training process.

09

08

Proportion

——Precision =—Recall

1 1 31 a 61 7 8 o1

]',p(’»c]\
Fig. 5: Progression of Precision and Recall on Test Set duing
Training of Target Molecule Detection using Yolov5

Fig. 6(a) displays a large raw STM scan of sample containing
instances of supramolecule as the target molecule. Fig. 6(b)
shows two instances of supramolecule identified by the trained
target molecule identification using Yolov5. The cropped
instances of the supramolecule are shown in Fig. 6(c).

Fig 6. Detecting and Cropping Low-resolution Supramolecule
Images from a large STM Scan

B. Performance of STM-SR

We collect 119 high-resolution STM images of a wide
variety of molecules to train the STM SRGAN. These STM
images are obtained by high-resolution STM experiments with
functionalizing tips available from the public domain. All of
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these high-resolution STM images are scaled to 256x256. Data
augmentation methods, such as rotation, and vertical and
horizontal reflections, are applied to increase the size of training
samples. Additional 17 experiment-generated, high-resolution
STM images, which are on molecules different from those in the
training set, are collected and used as the test set to evaluate the
performance of STM-SR.

Peak Signal to Noise Ratio (PSNR) is used to measure how
similar the reconstructed super-resolution image O is to the
actual high-resolution STM image P with sizes of m X n. The
mean squared error (MSE) between O and P is defined as

1 m n
MSE = EZ Z[O(i,j) — PG, )]*

i=1j=1
Then, PSNR is defined as
PSNR = 20 -log,o(MAXp) — 10 - log,,(MSE),
where MAXp denotes the maximum signal value that exists in
the original high-resolution STM image P.

STM-SR (256x256)
Our Approach

Low Resolution Image Bicubic Interpolation
(64x64) (256x256 Control)

High ResolutionImage
(256x256 Truth)

PSNR = 23.59

PSNR = 9.69

set

We use the bicubic interpolation method [23] as the baseline
to compare with STM-SR on converting low-resolution STM
images (64x64) to high-resolution ones (256x256). Fig. 7 shows
the super-resolution results of bicubic and STM-SR on three
STM images in the test set as examples. One can find that STM-
SR yields a significantly higher PSNR than bicubic
interpolation, while visually reconstructing the high-resolution
images. On the overall test set, the mean PSNR of bicubic
interpolation is 10.88 with standard deviation of 0.87. In
comparison, the mean PSNR of STM-SR is 23.41 with standard
deviation of 0.98.

C. STM Super-resolution on the Supramolecule

Here, we use the STM image of a supramolecule [27-29] as
a case study to demonstrate the effectiveness of our STM image
super-resolution method. A supramolecule is a molecule that is

composed of two or more smaller subunits that are bonded
together. These subunits can be the same type of molecule of
different types of molecules. They can be arranged in a variety
of ways to form a wide range of structures by a variety of non-
covalent interactions such as hydrogen bonding, electrostatic

interactions, van der Waals forces, and hydrophobic
interactions. Supramolecules have a lot of important
applications in materials science, biochemistry, and

pharmacology. However, obtaining high-resolution topography
images of a supramolecule is technically challenging in STM
experiments, because supramolecules are usually deposited in
liquid phase and impurities from the liquid make STM images
quality compromised.

(b} Identified Supramolecule by
Yalovd
E (d) High-resolution (236x236)
{c) Cropped Supramelecule Supramolecule Image after
(scaled to 64x64)

SRGAN

00

150

200

150 00 50

(e} Super-resolution
Supramolecule after L ocalized
STM Supramolecule

(f) Chemical Structure of the

. 0 5 ’
b 50 100 150 ma
(h) Overlaying the Chemical
Strucnure over the Super-
Eesoluted Supram olecule

50

{g) Abstract Chemical Structure of the
Supramolecule

Fig. 8: Super-resolution of the Supramolecule

Fig. 8 shows the procedure of applying our super-resolution
techniques to the supramolecule STM image. Fig. 8(a) is the
original STM scan, which contains a supramolecule. Fig. 8(b)
segments the supramolecule by our trained object detection
program. The cropped supramolecule image is scaled to 64x64,
as shown in Fig. 8(c). Fig. 8(d) depicts a high-resolution
supramolecule image in 256x256 after STM-SR. The
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localization STM algorithm requires a lot of high-resolution
STM images to achieve good statistics. We generate 100 high-
resolution STM images by feeding the trained STM-SR with
100 low-resolution images smeared by Gaussian noise as input.
The super-resolution supramolecule after localization-STM is
shown in Fig. 8(e), where each metallic atom shows as a lighted
dot. Fig. 8(f) is the theoretical chemical structure of the
supramolecule and Fig. 8(g) is its abstraction. We superimpose
the abstract chemical structure on the super-resolution
supramolecule STM image, which is shown in Fig. 8(h). One
can find the super-resolution supramolecule image obtained by
our STM super-resolution approach has a good agreement with
the theoretical chemical structure, indicating the preliminary
success of our method.

V. CONCLUSION

In this study, we developed and applied super-resolution
techniques based on machine learning methods to break the
experimental and physical resolution limits of the STM.
Collecting raw images from STM experiments, we train a
Yolov5 model to identify target molecules from the STM scans.
This target molecule detection program can confidently identify
target molecules from the large STM scans with high precision
and high recall. Using the target molecule detection model, we
crop the target molecules from the large STM scans. We train
an STM-SR model adopting the SRGAN architecture to convert
the low-resolution STM images into high-resolution ones.
STM-SR generates high quality images that are superior to
those generated by conventional bicubic interpolation methods.
We develop a Localization-STM method to process multiple
images of a supramolecule sample generated by STM-SR,
isolate the true atomic signals, and retrieve a high-resolution
image that conforms to its theoretical chemical structure.
Localization-STM is capable of surpassing the physical
resolution limits of the STM. In our study of the supramolecule,
the image produced by Localization-STM denotes every single
metal atom in the molecule.
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