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Abstract—Demand for wireless communication devices has
been growing continuously since the advent of mobile commu-
nication. Even though spectral efficiency and throughput keep
increasing, consumer demand continues to seemingly outpace
that growth. Spectrum sharing is becoming a more attractive
solution to solving various capacity constraints as the resulting
perceived spectrum scarcity can mostly be attributed to inefficient
spectrum management. However, increasingly complex sharing
arrangements come with an increased risk of interference. This
makes it necessary to address such events in a timely manner. At
the same time, research into using machine learning for solving
issues such as signal classification, decision-making processes, and
anomaly detection in wireless communication has been growing.
To support machine learning research in anomaly detection for
wireless communications, this research uses IQ data to train two
autoencoders for anomaly detection in shared spectrum: a Long
Short-Term Memory (LSTM) and a Deep Autoencoder. These
algorithms are used to successfully identify anomalies in the
time and frequency domain of recorded IQ data in the form of
unauthorized LTE transmissions on top of Wi-Fi communication.

Index Terms—machine learning, spectrum sharing, wi-fi, lte

I. INTRODUCTION

As demand for networked devices and services relying on
wireless communication is growing relentlessly - 13.1 billion
wireless connected devices expected by 2023 [1] - the need
for efficient spectrum management becomes increasingly more
important. While spectrum has traditionally been assigned
based on exclusive use rights, the inefficiencies associated with
exclusive use [2] and the simultaneously growing demand for
spectrum emphasize a need for change in how spectrum is
managed. As a result, governments and industries worldwide
have increasingly moved towards sharing spectrum and open-
ing up more bands for unlicensed use, most recently the 6
GHz band.

Simultaneously, many industries have begun relying upon
machine learning to assist with a variety of tasks. Apple and
Google for instance have begun equipping their processors
with neural engines specialized on machine learning tasks
to improve privacy on their mobile phones [3]. However,
compared to developments in these related fields, wireless
communication still only makes up a minor part of the machine
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learning field. While machine learning algorithms for the
classification of images, sound, or text processing can easily be
found, wireless communication examples are few and mostly
limited to high level research. As a result, machine learning
still offers large untapped potential for spectrum sharing and
management.

One crucial aspect of spectrum sharing that could bene-
fit from machine learning is anomaly detection. Currently,
unauthorized radio operations are mainly handled by filing
a complaint with the Federal Communications Commission
(FCC). Significant time can elapse between noticing unusual
performance and the anomalous behavior being dealt with.
In fact, an example from Lisle, Illinois highlights that it
can take up to a month just from the time FCC engineers
analyze the unauthorized use to a notice being sent out to the
unauthorized user [4], not including any amount of time it took
for the behavior to be noticed and reported. Machine learning
can significantly shorten the time between the anomalous
behavior occurring and an action being taken by automating
the detection and reporting of radio frequency (RF) anomalies.

II. BACKGROUND

Radio spectrum anomalies can take a variety of forms:
from unwanted interference in the form of noise or intentional
transmissions in licensed or shared bands, to the absence
of expected signals [5]. While detecting these anomalies
in frequency, time, and location is becoming increasingly
more important, managing anomaly detection manually can
be inefficient and restricted to addressing a limited number of
anomalies and measurement locations. Furthermore, continu-
ously monitoring for anomalies in wireless spectrum raises a
number of concerns, not only with regard to the considerable
volume of data but moreover with regard to user privacy.

While machine learning and neural networks are used in
many areas, radio frequency (RF) applications only represent
a small subset of the field. Existing research includes, among
others, a large amount of classification problems such as the
identification of digital modulation types based on known
differences in amplitude [6] or the classification of modulation
schemes using a CNN [7], or using a CNN-LSTM as a clas-
sifier [8]. Besides classification problems, machine learning
was also used by [9] and [10] to detect the number of Wi-Fi
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access points for LTE-U carrier sensing adaptive transmission
(CSAT). While [11] used 2D-HNNs to enable LTE-U and
Wi-Fi coexistence in unlicensed spectrum, [12] used machine
learning algorithms to predict path loss, [13] used a modified
generative adversarial network (GAN) and spectrograms to
detect anomalies, and [14] used deep autoencoders and spec-
trograms for anomaly detection. [15] used LSTM to predict
future IQ data, where anomalies are detected based on predic-
tion error. ALDO (anomaly detection framework for dynamic
spectrum access networks) [16] and SAIFE reconstructed
power spectral density data using an adversarial autoencoder to
design a spectrum anomaly detector with interpretable features
[5]. Akyilidiz proposes to use reinforcement learning-based
sensing to improve spectrum sensing [17], and [18] used
a convolutional network on 64x64, 128x128, and 256x256
spectrograms for spectrum sensing. [19] proposes the use of
CNNs trained on waveform images to classify RF spectrum
modulations and the use of Principal Component Analysis
(PCA) for anomaly detection. [20] applies a LSTM mixture
density network (MDN) to timeseries data of digital radio
transmissions creating probability distribution functions for
the expected signals as a function of time and to measure
anomalies such as antenna disconnect, sampling frequency
offset, and multipath interference.

Choosing an appropriate anomaly detection method is often
data specific, typically requiring a good understanding of the
data itself [21]. If the data does not fit the general assumptions
of the model, poor results will be the outcome. Due to the fact
that it can be very challenging to separate what is considered
the “norm” from what is an “anomaly”, anomaly detection
algorithms typically don’t work by classifying the anomaly
by its own characteristics, but instead use semi-supervised
learning (SSL) to create a model of normal patterns in the
data and then detect anomalies in contrast to the norm by
computing a score on the basis of the deviation from the norm
[21], [22]. 100% correct detection is often impossible due to
the fact that anomalies can be very heterogeneous, resulting in
missed anomalous instances, misidentifying normal instances,
and a generally low recall rate [23]. The emphasis is therefore
often instead on controlling the amount of Type I (false
positives) and Type II errors (false negatives) by adjusting
the anomaly threshold. For SSL to be more accurate than
supervised learning, the information gained from the unlabeled
samples also has to be useful for the inference of a classifi-
cation. Additionally, SSL needs to fulfill certain requirements
such as the smoothness or continuity assumption, i.e. if x1 and
x2 are close in a high density region, than y1 and y2 need to
be close as well, the assumption that decision boundaries can
be found in low density regions, and that the high-dimensional
data lies on a low-dimensional manifold [24].

Overall, recent RF applications focus heavily on the clas-
sification of modulation schemes or types of signals with
a large quantity of spectrograms as input with the occa-
sional use of IQ data. Even though some research addresses
anomaly detection in RF, due to the enormous amounts of
data generated by recording IQ data, it is understandable that

most research won’t have access to the necessary hardware
to execute algorithms on gigabytes or terabytes of training
data. Unfortunately, using downsized spectrograms of larger
bandwidth signals, such as a 20 MHz Wi-Fi transmission, will
lose a considerable amount of detail and result in sub-optimal
if not impossible anomaly detection. Therefore, instead of
relying on CNNs or spectrograms, the focus of this research
is the detection of anomalies in the form of unauthorized LTE
transmissions interfering with Wi-Fi in a simulated shared
band using semi-supervised learning in the form of autoen-
coders with a combination of IQ and power spectral density
samples.

III. METHODOLOGY

A. Data Collection

With the objective of using real data for anomaly detection
while avoiding the use of any personally identifiable informa-
tion (PII), an Extreme Networks AP 650 access point (AP) was
used to create an 802.11ax network with a 20 MHz channel at
5.825 GHz. This channel was chosen due to the fact that the
FCC rule allowing the use of the bands with center frequencies
upwards of 5.825 GHz, which would then allow the formation
of up to 160 MHz bandwidth channels, was still relatively
recent (November 2020 [25]) and had not been widely adopted
yet, no other transmissions were detected at this frequency in
this location. Without any other transmissions on the same
band, no PII could be recorded.

The access point transmitted data using MCS 6 or 7 (64
QAM) to a laptop and an eNodeB was used to transmit a
64 QAM LTE signal to a smartphone nearby. As highlighted
above, recent machine learning research has shown that a
number of models have been able to distinguish between
various RF modulation and coding schemes (MCS). Therefore,
to ensure that the anomaly detection algorithm used on the
collected data is not simply separating different modulations,
both Wi-Fi and LTE were recorded with the same modulation
and a similar coding scheme. To simulate a LTE signal
interfering with a Wi-Fi signal in a shared band, the former
was recorded at slightly higher received signal strength .

In both cases IQ data is collected in a binary, 16 bit unsigned
integer format using USRP B200-mini-i software defined
radios (SDR) with industrial enclosures while connected to a
Raspberry Pi 4 single-board computer via a USB 3 connection
(8 GB model). Each in-phase and each quadrature sample
consists of 15 bits plus one bit used for the sign. For the LTE
data collection an Ettus VERT 900 antenna (supports 1710 to
1990 MHz) was used with the SDR to record the 10 MHz
wide LTE signal centered at 1.8425 GHz. For the Wi-Fi data
collection an Ettus VERT 2450 was used to record the 20
MHz wide Wi-Fi signal centered at 5.825 GHz. The data was
then combined to create an LTE signal interfering with Wi-Fi.

B. Anomaly Detection

The objective of the anomaly detection algorithm is to detect
an anomaly in the frequency as well as the time domain
of the recorded IQ data. While using spectrogram images
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with a CNN model would potentially be able to provide a
visual representation of an anomaly in shared spectrum and
has already been demonstrated in a number of recent papers
(e.g. [18], [26]) , this visual representation would first have to
be translated into its time and frequency components before
the visual information could be provided to other applications
due to the FFT dependant dimensions of spectrograms. Fur-
thermore CNNs can have a number of crucial disadvantages,
such as spatial invariance spectrogram size limitations.

Instead, this anomaly detection algorithm consists of two
autoencoder models: (1) a long short-term memory (LSTM)
autoencoder to determine the anomaly’s frequency domain
location and (2), a deep autoencoder (DAE) to determine
the anomaly’s time domain location. In combination, these
can be used to determine the anomaly in the frequency and
time domain. Splitting the anomaly detection into frequency
and time domain components makes it possible to precisely
pinpoint the anomaly’s location in time and frequency. Since
the anomaly of concern consists of a large number of samples,
it is sufficient to focus on precision as long as enough con-
tiguous samples at the anomaly’s edges are correctly identified
as anomalous. Furthermore, by maintaining the indexing of
the arrays containing the data and looking for the longest
contiguous anomalies, it is possible to identify the exact range
of the anomaly in time and frequency in an automated manner
by identifying the first and last index containing the longest
contiguous sequence of above threshold anomaly scores. With
these values, the start and the end of the anomaly can then be
identified and its actual location in time or frequency can be
calculated.

The two autoencoder models are implemented using the
Keras API with a TensorFlow backend and the ”adam” op-
timizer. The models are trained and tested on an Alienware
R11 with a GeForce RTX 3080 and 32 GB RAM. The
performance of the three models is evaluated using their
precision, recall, and ROC AUC scores. The following sections
describe each implementation in detail, including the model’s
layers, activation functions and the format of the input data.

1) Deep Autoencoder: Autencoders are unsupervised arti-
ficial neural networks, sometimes also referred to as semi-
supervised or self-supervised due to the fact that they generate
their own labels while training, and consist of 4 main compo-
nents: encoder, latent space, decoder, and reconstruction loss.
They learn a low-dimensional feature representation of the data
that allows the model to reconstruct the original data instances.
Accordingly, Deep Autoencoders consist of multiple layers in
the encoder and decoder.

Autoencoders are considered good when the reconstruction
is as close as possible to the original input, i.e. the model’s
output has low reconstruction error. Due to the way recon-
struction loss works, autoencoders can also be considered
data specific as they are only able to efficiently compress
and reconstruct data they have been trained on. Since the
model has only learned how to reconstruct ”normal” data,
anomalies will be difficult to reconstruct and result in con-
siderable reconstruction error. Autoencoders can also be used

for sequential data in LSTM networks, to generate data in
variational autoencoders (VAE) as generative models, and to
pre-train supervised models by using the autoencoder’s latent
space output as the classifier’s input [27], [28].

The DAE used for anomaly detection uses the following
4 features: real component, imaginary component, phase, and
magnitude of the IQ sample. The encoder consists of 2 layers,
with the decoder mirroring the encoder:

• Dense layer with 4 units and ELU activation function
• Dense layer with 3 units and ELU activation function

The latent space consists of a Dense layer with 2 units and
the chosen loss function is the MSE.

2) Long Short-Term Memory Autoencoder: LSTM is de-
signed to support input sequences of varying length without
the need to change the model’s size and is capable of learning
the dynamics of a sequence’s temporal order by remembering
information across long sequences. LSTMs are the most suc-
cessful attempt at improving the learning of recurrent neural
networks by improving the flow of data from previous time
steps and being able to forget states [29]. A LSTM cell can
not only read and write information, but more importantly
also delete information from its memory. Weights are shared
across time and computations take historical information into
account, which means a LSTM model is able to learn long
term dependencies. A LSTM cell has 4 main components:
input, forget, and output gate, and the current cell state.
Together these components determine whether to let new input
in, delete it, or let it become part of the current timestep’s
output.

LSTM autoencoders represent an autoencoder implementa-
tion specific to sequential data with LSTM cells in a single or
multiple layers with a decreasing number of nodes in each
layer. LSTM autoencoders read the input data step-by-step
and the encoder’s output represents a vector of the learned
representation of the entire sequence of data. The decoder then
interprets this vector and generates a sequential output. While
sequence-to-sequence models such as the LSTM autoencoder
are good at modeling data with temporal dependence, they can
also be comparatively slow [30].

After experimenting with and comparing numerous configu-
rations, the LSTM model settled on for the anomaly detection
consists of 10 layers, including the input and output layer.
The input consists of a single feature in the form of power
values in dBFS gained by converting the provided IQ data
via fast Fourier transform (FFT) into its power spectrum
representation, which describes the input’s frequencies and
power distribution. Encoder and decoder are mirrored and
consist of the following layers:

• Dense layer with 512 units and ELU activation.
• LSTM layer with 128 units and tanh activation.
• LSTM layer with 32 units and tanh activation
• LSTM layer with 8 units and tanh activation
Due to restrictions in TensorFlow with regard to GPU use of

LSTM cells, the default hyperbolic tangent activation function
(tanh) is used for LSTM. The latent space of the LSTM
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model consists of a repeat vector layer, which repeats the
input a specified amount of times. The output finally consists
of a Time Distributed layer, which makes it possible to apply
a layer to every temporal slice of the input [31]. The loss
function, as seen in previous examples, is the mean square
error (MSE).

IV. RESULTS

A. Frequency Domain Anomaly Detection

The Wi-Fi IQ data samples used for anomaly detection were
collected at 20 MS/s (20 MHz bandwidth). In contrast, to
simulate partial LTE interference, the LTE IQ data samples
were recorded at 10 MS/s (10 MHz bandwidth). To be able
to train the models on the available hardware, 2 million IQ
samples of the Wi-Fi data and 1 million samples of the LTE
data were used for the FFT. The data used for prediction
consists of an independent Wi-Fi sample with interference
caused by a 10 MHz wide LTE signal. The LSTM model
was trained over 5 epochs with a batch size of 128 and a 20%
validation split.

Fig. 1. Loss distribution of the LSTM model - highest scores achieved by
the LTE anomaly.

Despite the reduced sample size, training took 683.87 sec-
onds or 11 minutes and 23.87 seconds. The trained model was
then used for prediction on Wi-Fi data from a different data
collection that had LTE interference added to it. Prediction
took 241.8 seconds or 4 minutes and 1.8 seconds and had its
anomaly threshold optimized for precision while still achieving
sufficient recall, resulting in 98.2% precision and 59.06%
recall for a F1 score of 0.7376. Fig. 1 depicts the algorithm’s
achieved reconstruction loss (y-axis) across the 2 million
samples (x-axis), clearly showing that the center LTE samples
resulted in the highest reconstruction loss.

Fig. 2 shows the model’s precision and recall in numerical
form using its confusion matrix, where each row consists
of data in the actual class while each column represents
data predicted as that class. The first row illustrates that,
of 1 million Wi-Fi data points, 989,175 have been correctly
identified as Wi-Fi, and only 10,825 falsely identified as LTE.
Of the 1 million anomalous LTE data points, 590,636 have
been correctly identified as LTE while 409,364 data points

Fig. 2. LSTM Confusion Matrix.

Fig. 3. LSTM ROC Curve.

have been missed. The AUC in Fig. 3 (b) shows a score of
0.893, indicating that the model is a well-working predictor.
Python code was then used to identify the longest contiguous
series of samples above the anomaly threshold and as a result
the anomaly’s edges. With this information, the algorithm
identified the anomaly from ∼ 5820.0 MHz to ∼ 5830.0 MHz.

B. Time Domain Anomaly Detection

The time domain anomaly detection used 2 million Wi-Fi
IQ samples – the equivalent of 0.1 seconds of a 20 MHz
wide IQ data recording - and 200,000 LTE IQ data samples
located from index 900,000 to 1,100,000 of the array (0.045
to 0.055 seconds). The complex samples were split into real
and imaginary components as their own feature in addition to
phase and magnitude representations for a total of 4 features.
Previous research has shown that adding more features did
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not noticeably improve training and sometimes was even
detrimental [32].

The DAE was trained over 15 epochs with a batch size of 64
for a total training time of 1728.4 seconds or 28 minutes and
48.4 seconds. While training time was much longer compared
to the LSTM model, prediction time was considerably shorter
at 68.09 seconds. Fig. 4 shows the model’s reconstruction loss
distribution highlighting again the anomaly in its center and its
proportionally much higher reconstruction loss. Fig. 5 shows
the DAE’s confusion matrix, highlighting 96.78% precision
and 85.75% recall in the anomaly detection task for a F1 score
of 0.91 and an AUC score of 0.966 (see Fig. 6). The Python
algorithm was again able to correctly identify the anomaly’s
edges and identified LTE samples from 0.045 to 0.055 seconds.

Fig. 4. Loss distribution of the DAE model - highest scores achieved by the
LTE anomaly.

V. CONCLUSION

This research demonstrated how two autoencoders, one for
frequency domain anomaly detection and one for time domain
anomaly detection, can be used for anomaly detection on real
data collected with relatively inexpensive SDRs. Wi-Fi and
LTE IQ data have been used to simulate a band shared between
both where an LTE transmission is interfering with Wi-Fi.
Sharing between Wi-Fi and LTE still requires considerable
optimization, but is ultimately the way forward as LTE-
LAA systems continue being deployed. As a result, detecting
anomalous behavior of either signals will become increasingly
more important. The trade-off between faster prediction time,
slightly higher recall, and overall model score needs to be
balanced. Furthermore, since collecting IQ data can produce
large amounts of data within a short amount of time, it would
not be feasible to continuously check for anomalies. Instead, to
minimize the amount of data collected and to avoid statistical
bias, samples should be collected in random intervals. How

Fig. 5. DAE Confusion Matrix.

Fig. 6. DAE ROC Curve.

often these intervals occur depends on computational cost and
benefit trade-offs.

The combination of models and algorithm presented here
also have the advantage of providing a clear machine and
human interpretable result. However, due to the inherent
characteristics of IQ data of representing magnitude and phase,
machine learning algorithms mainly learn these two features
when using IQ data, whereby magnitude is the strongest
indicator, considerably improving results as it is increased.
The large amounts of data generated by IQ data collections can
be addressed by using more advanced hardware, reducing the
time frame of a single anomaly detection analysis, decimating
the IQ samples, or by making the algorithm more adaptive.

Additionally, the presented data collection procedures can
easily be adapted for continuous spectrum monitoring by
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automating the collection of IQ data in intervals and executing
the algorithm on the recorded data. As a result, spectrum
enforcement could be expedited considerably or automated
entirely. Since automated enforcement might require consid-
erable policy changes, using the presented data collection
procedure for an automated notification regarding detected
anomalies might be faster to implement. Instead of collecting
data at predetermined intervals, a short sample can be collected
at random intervals in order to avoid statistical bias or once
an unusual change in signal strength is detected. Additional
algorithms such as the one proposed in [33] could then be
used to further determine the anomaly’s geographical location,
which can be used to further isolate the anomalous IQ data
and use it for classification.

With regard to anomaly detection, multi-user anomalies
have not been investigated and offer potential for future
research. Although the autoencoder algorithm should be able
to detect multiple anomalies, it has not yet been tested.
Additionally, it should be investigated how large the minimum
difference between a trained signal and the anomaly needs
to be in order for the algorithm to identify the anomaly.
These could be combined into a resource limited scenario,
to investigate what a system’s minimum capabilities need to
be in order to collect the minimum amount of data necessary
to identify multiple anomalies at minimum distance from a
signal or noise.
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