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Abstract— Scanning Tunneling Microscope (STM) and qPlus 

Atomic Force Microscopy (Q+AFM) image nano-material 

surfaces at atomic level, which have led to many major scientific 

breakthroughs. However, their resolutions are often limited by 

realistic experimental conditions. 

In this paper, we investigate image super resolution methods 

empowered by deep learning to go beyond STM and  Q+AFM 

experimental limits. STM-SR and AFM-SR, adopting the Super-

Resolution Generative Adversarial Networks (SRGAN) 

architecture, are developed and trained on high-resolution STM 

and Q+AFM datasets to convert low-resolution images into high 

resolution ones, respectively. Our results show that STM-SR and 

AFM-SR lead to significant resolution improvement compared to 

bicubic interpolation. This breaks the experimental barrier and 

reaches the resolution level near ideal conditions. This method can 

be applied to the study of large, complex molecules, which requires 

stringent experimental conditions. 
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I. INTRODUCTION 

Scanning Probe Microscopy (SPM) [1] generates images by 
scanning the sample surface using a physical probe, which have 
over 1,000 times higher resolution in comparison with classical 
optical microscope. Scanning Tunneling Microscopy (STM) [2] 
and qPlus Atomic Force Microscopy (Q+AFM) [3] are well-
established SPMs to image atomic-level surfaces and to probe 
material properties. These images reveal the geometry and 
electronic structures of the surfaces with atomic resolution. 
Since being invented, STMs and Q+AFMs have been 
responsible for many breakthroughs in nanophysics, material 
science, semiconductor science, and biochemistry [4]. 

The resolution of STMs and Q+AFMs is the most critical 
factor. High resolution STM or Q+AFM images can lead to 
precise measurement of physical properties, such as surface 
topography, electronic properties, strength of chemical bonds, 
dielectric and magnetic properties, and contact charges. 
Moreover, high resolution STM and Q+AFM scans enable the 
study of subtle effects in physics phenomena, including 
conformation changes, friction, lubrication, vibration, and 
molecular manipulation. STMs and Q+AFMs have a lateral 
resolution up to 0.1nm and a vertical resolution of 0.01nm [5, 

6]. At this resolution, individual atoms within target samples can 
be routinely imaged. However, high-resolution atomic-level 
images are only achievable under ideal experimental 
circumstances, at cryogenic temperature, clean and stable 
surfaces, and sharp conducting tips. Oftentimes, due to 
limitations imposed by the target samples, experimental 
conditions cannot achieve high resolution. In particular, it is 
difficult to get atomic resolution when scanning large molecules 
at elevated temperatures, primarily because the high thermal 
energy causes significant mobility and movement of the 
molecules. Recently, experimental methods to enhance STM 
and Q+AFM resolution have been developed by functionalizing 
the scanning tip [7, 8] with an atom or a molecule (CO [9, 10], 
H2 [11], D2 [12], CH4 [13], Xe [14], CuO [15], etc.) that 
significantly contributes to the tip-sample interaction, which can 
reveal the internal structure molecules adsorbed on surfaces. 
These experimental resolution enhancement methods have 
become successful in certain classes of molecules, and many 
astoundingly high-quality STM or qPlus AFM images have been 
generated. However, these experimental resolution 
enhancement methods based on functionalizing tips increased 
experimental complexity and are not universally applicable to 
any molecules of interest. The computational-based resolution 
methods, on the other hand, has great potential to complement 
the experimental methods. 

The purpose of this paper is to demonstrate that the latest 
deep learning technology can computationally enhance the 
resolution of STM and  Q+AFM images and overcome the 
physical limitations of STM and  Q+AFM experiments. In this 
study, we model the STM and Q+AFM image super-resolution 
problem as a Single Image Super Resolution problem. We 
attempt to train deep learning models with many high-resolution 
images on a variety of molecules obtained from high-resolution 
STM or Q+AFM experiments to enhance the low-resolution 
images where the high-resolution versions cannot be obtained 
from experiments. Using a large set of high-resolution STM 
images across many molecule systems available as the training 
set, the STM-SR program adopts a Super-Resolution Generative 
Adversarial Networks (SRGAN) [16] architecture to transform 
low-resolution STM images into high-resolution STM versions. 
Similar mechanism is used to train AFM-SR on a collection of 
high-resolution Q+AFM images. Our STM-SR and AFM-SR 
results show that deep learning image super-resolution 
technologies can achieve a clearer view of the atomic world. 
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II. BACKGROUND 

A. Scanning Tunneling Microscope (STM) and qPlus Atomic 

Force Microscope (Q+AFM) 

STM works by scanning an extremely sharp metal wire tip 
over a surface of material samples with precise, angstrom-level 
control, taking advantage of the piezoelectric effect. When the 
tip is sufficiently close to the surface within sub-nanometer 
distance, the voltage bias between the tip and scanned surface 
enables electrons to tunnel through the vacuum in between to 
form tunneling current, due to quantum tunneling effect. As the 
tip encounters sample features of different heights, tunneling 
current changes correspondingly. Monitoring the tunneling 
current and coordinating the current with the positioning of the 
tip, the sample surface is imaged at the atom scale, resolving the 
conformations of individual atoms. 

Q+AFM uses a tip mounted on a tuning folk that is driven to 
vibrate under its natural frequency to detect tip-sample 
interaction. The strength of such interaction is measured as a 
frequency shift from tip natural frequency. The measured 
frequency shift as a function of probe and surface distance can 
be calculated to form force image of the sample surface.  

B. Experimental Methods for STM and AFM Image Super-

Resolution 

Experimental methods by functionalizing the scanning tip 
has been developed to enhance STM and Q+AFM image 
resolution. The fundamental idea is that the resolution of STM 
or Q+AFM images crucially depends on the chemical nature of 
the sharp tip apex. Hence, functionalizing the scanning tips with 
a molecule or an atom can trigger the interaction between the tip 
and the specific structure of the target sample. Intentionally 
picking up the functionalizing molecule or atom amplifies the 
detected signal, which is the key to dramatically enhancing the 
resolution of STMs and qPlus AFMs. For example, 
functionalizing the STM tip with a single CO molecule improves 
the resolution of molecular orbital STM images [9, 10, 17]. 
Another example is the scanning tunneling hydrogen 
microscopy (STHM) with STM tip functionalization with H2, 
D2, and a variety of other atomic and molecular particles [11-
15], which allows the STM to resolve the atomic structures of 
large organic adsorbates in a direct imaging experiment. AFM 
employing a CO-functionalized tip displays dramatically 
enhanced resolution in imaging covalent bonds of polycyclic 
aromatic hydrocarbon [18]. Although many STM or Q+AFM 
images of different classes of molecules within sub-atomic 
resolution have been generated recently, the functionalizing tips 
method increases experimental difficulties such as the 
deposition of molecule or atom for tip decoration on surface may 
change some properties of the target samples. Therefore, the 
functionalizing tip has experimental limitations and cannot be 
generalized to any molecules and materials of interest. 

C. Single Image Super Resolution 

Single Image Super Resolution attempts to restore a high-
resolution image from a low-resolution observation of the same 
scene. Due to its ill-posedness nature, single image super-
resolution is a well-known challenging problem. Recently, 
powerful deep learning algorithms, including Super-Resolution 
Convolutional Neural Network (SRCNN) [19], SRGAN [16], 

Deep Recursive Residual Network (DRRN) [20], Enhanced 
Deep Residual Network (EDRN) [21], Deep Back Projection 
Network (DBRN) [22], and many others, have been developed 
for Single Image Super Resolution and have achieved attractive 
results in many applications. Yang et al. [23] provides a 
thorough survey of the available deep learning architectures for 
Single Image Super Resolution.  

In this work, different from the existing experimental 
methods for STM and Q+AFM image super-resolution, inspired 
by the effectiveness of deep learning methods for single image 
super-resolution, we attempt to use the experiment-generated 
high-resolution STM and Q+AFM images on a wide variety of 
molecules to generally enhance low-resolution STM and 
Q+AFM images. We adopt a deep learning architecture similar 
to SRGAN to implement STM and  Q+AFM image super-
resolution.    

III. METHODS 

A. STM and AFM Data Collection 

We collect 160 high-resolution STM images of a wide 
variety of molecules available from the public domain to train 
STM-SR. These STM images are obtained by high-resolution 
STM experiments with functionalizing tips. Additional 40 
experiment-generated, high-resolution STM images, which are 
on molecules different from those in the training set, are 
collected and used as the test set to evaluate the performance of 
STM-SR. Under the similar principle, 152 high-resolution 
Q+AFM images are used to train AFM-SR and 37 are set aside 
as test set for AFM-SR. All of these high-resolution STM and 
Q+AFM images are scaled to 256x256. Data augmentation 
methods, such as rotation, and vertical and horizontal 
reflections, are applied to increase the size of training samples. 

B. Deep Learning Architectures of STM-SR and AFM-SR 

 Both STM-SR and AFM-SR programs adopt the similar 
mechanism as that of SRGAN. As a Generative Adversarial 
Network (GAN) architecture [24], STM-SR consists a generator 
and a discriminator, which are illustrated in Figure 1. AFM-SR 
shares the same deep learning architecture as STM-SR, except 
for being trained using high-resolution AFM images. Here we 
only illustrate the architecture of STM-SR. 

 In the STM-SR generator, the low-resolution STM image is 
fed as input through a convolutional layer of 9x9 kernels and 64 
feature maps followed by a Parametric ReLU layer. The next 
layers utilize 16 residual blocks, each including a convolutional 
layer of 3x3 kernels and 64 feature maps followed by a batch 
normalization layer, a Parametric ReLU activation function, 
another convolutional layer with batch normalization, and a final 
elementwise sum method by adding up the feedforward output 
with the skip connection output [25]. Then the upsampling 
block, consisting of a convolutional layer, a upsampling layer, 
and a leaky ReLU activation, is used to resize toward the size of 
the target high-resolution STM image. The rest of the generator 
model is constructed by 2 upsampling blocks, a convolutional 
layer, and a Sigmoid activation function to generate the high-
resolution STM image. In STM-SR, the input low-resolution 
STM images are 64x64 monotone images and the output is 
256x256 high-resolution images. 
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Figure 1: Architectures of the Generator and Discriminator in 
STM-SR 

 The STM-SR discriminator architecture makes use of an 
initial convolutional layer followed by a Leaky ReLU activation 
function. Then, after 7 repetitive discriminator blocks, each 
containing a convolutional layer, a batch normalizing layer, and 
a Leaky ReLU activation function, a single one-dimensional 
vector is converted by a flatten layer. Afterwards, a series of 
fully-connected dense layers followed by a Sigmoid activation 
function are used to classify the true and the generated fake 
images. The discriminator helps the generator to effectively 
learn the features of high-resolution STM images. 

 Similar to the SRGAN, the overall loss of the STM-SR is the 
weighted sum of the content loss measured by Visual Geometry 
Group (VGG) [26] loss and the adversarial loss. This loss allows 
the STM-SR model to focus on improving the overall quality of 
the STM image instead of pixel-by-pixel comparison. 

 

IV. RESULTS 

A. Evaluation Metric 

Peak Signal to Noise Ratio (PSNR) is used to measure how 

similar the reconstructed super-resolution image �  is to the 

actual high-resolution STM image � with sizes of � × �. The 

mean squared error (MSE) between images � and � is defined 

as 

��� =  1
�� � �[���, �� − ���, ��]�

�

���

�

���
. 

Then, PSNR is defined as  

���� = 10 ∙ log�$
�%&'�

��� , 
where �%&' denotes the maximum signal value that exists in 

the original high-resolution STM image �. 

B. Performance of STM-SR 

We use the widely used bicubic interpolation method [27] as 

the baseline to compare with the deep learning-based super-

resolution methods on converting low-resolution STM images 

(64x64) to high-resolution ones (256x256). Figure 2 shows the 

super-resolution results of bicubic interpolation and STM-SR on 

three STM images in the test set as examples. One can find that 

STM-SR yields a significantly higher PSNR than bicubic 

interpolation, while visually reconstructing the high-resolution 

STM images and generating more structural details. On the 

overall test set with 40 STM images, the mean PSNR of bicubic 

interpolation is 17.02 with standard deviation of 6.02. In 

comparison, the mean PSNR of STM-SR is 27.35 with standard 

deviation of 5.51.  

It is also interesting to note that STM-SR can even fix the 

flaws in the experimental STM images. The experimental image 

in Figure 2(b) shows a scratch throughout the image. This is 

typically generated by the STM tip from disruptions in tunneling 

current oscilations. These tunneling current oscilations can be 

affected by noise and minor interactions with the surface during 

scanning. Nevertheless, when generating the high-resolution 

STM images, STM-SR is able to reconstruct the atoms that are 

striked through by the scratch in the original high-resolution 

STM image. 
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Figure 2: Comparison of results on three STM samples in the test set 
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Figure 3: Comparison of results on three Q+AFM samples in the test set 
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C. Performance of AFM-SR 

Similar to the results of STM-SR, Figure 3 shows that AFM-

SR is able to generate sharper high-resolution Q+AFM images 

with more details than bicubic interpolation. AFM-SR generates 

high-resolution images with better PSNR. On the overall test set 

with 37 Q+AFM images, the mean PSNR of bicubic 

interpolation is 14.62 with standard deviation of 3.20, while the 

mean PSNR of AFM-SR is 28.11 with standard deviation of 

2.50. However, the test case shown in Figure 3(a) indicates that 

AFM-SR has the potential to generate unphysical artifacts. The 

two atoms highlighted in the blue box in the high-resolution 

Q+AFM image generated by AFM-SR are over-constructed 

with unphysical patterns. Finding the cause of these unwanted 

artifacts and removing them will be our future research work.  

V. CONCLUSION 

In this study, we develop and apply deep learning-based 

super-resolution techniques to break the experimental 

resolution limits of STMs and Q+AFMs. We train STM-SR and 

AFM-SR models adopting the SRGAN architecture to convert 

the low-resolution images into high-resolution ones. Our results 

demonstrate that STM-SR and AFM-SR are able to generate 

high quality images that are superior to those generated by 

conventional bicubic interpolation methods.  

VI. FUTURE WORK 

Our results show that the deep learning models for STM and 

Q+AFM super resolution may generate unphysical artifacts. 

Our next step will be developing methods to detect and 

eliminate these unwanted artifacts. Our research direction will 

be incorporting physics models into the machine learning 

models.The study presented here is based on the deep learning 

techniques of “Single Image Super Resolution.” In reality, 

many images of the same molecule or molecules of the same 

kind are generated in STM and Q+AFM experiments. Future 

studies can use “Multiple Images Super Resolution” to piece 

many molecule images together to form a high resolution one. 

Moreover, with the STM and Q+AFM’s ability to generate 

high-resolution atomic level images outside of its optimal 

conditions, our research can be extended into many physics and 

chemistry fields, such as studying sophisticated molecules like 

prions and other proteins. 
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