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Abstract— Scanning Tunneling Microscope (STM) and qPlus
Atomic Force Microscopy (Q+AFM) image nano-material
surfaces at atomic level, which have led to many major scientific
breakthroughs. However, their resolutions are often limited by
realistic experimental conditions.

In this paper, we investigate image super resolution methods
empowered by deep learning to go beyond STM and Q+AFM
experimental limits. STM-SR and AFM-SR, adopting the Super-
Resolution Generative Adversarial Networks (SRGAN)
architecture, are developed and trained on high-resolution STM
and Q+AFM datasets to convert low-resolution images into high
resolution ones, respectively. Our results show that STM-SR and
AFM-SR lead to significant resolution improvement compared to
bicubic interpolation. This breaks the experimental barrier and
reaches the resolution level near ideal conditions. This method can
be applied to the study of large, complex molecules, which requires
stringent experimental conditions.

Keywords—Scanning Tunneling Microscopy (STM), Atomic
Force Microscopy (AFM), Single Image Super Resolution, Super-
Resolution Generative Adversarial Networks (SRGAN)

I. INTRODUCTION

Scanning Probe Microscopy (SPM) [1] generates images by
scanning the sample surface using a physical probe, which have
over 1,000 times higher resolution in comparison with classical
optical microscope. Scanning Tunneling Microscopy (STM) [2]
and gPlus Atomic Force Microscopy (Q+AFM) [3] are well-
established SPMs to image atomic-level surfaces and to probe
material properties. These images reveal the geometry and
electronic structures of the surfaces with atomic resolution.
Since being invented, STMs and Q+AFMs have been
responsible for many breakthroughs in nanophysics, material
science, semiconductor science, and biochemistry [4].

The resolution of STMs and Q+AFMs is the most critical
factor. High resolution STM or Q+AFM images can lead to
precise measurement of physical properties, such as surface
topography, electronic properties, strength of chemical bonds,
dielectric and magnetic properties, and contact charges.
Moreover, high resolution STM and Q+AFM scans enable the
study of subtle effects in physics phenomena, including
conformation changes, friction, lubrication, vibration, and
molecular manipulation. STMs and Q+AFMs have a lateral
resolution up to 0.1nm and a vertical resolution of 0.01nm [5,
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6]. At this resolution, individual atoms within target samples can
be routinely imaged. However, high-resolution atomic-level
images are only achievable under ideal experimental
circumstances, at cryogenic temperature, clean and stable
surfaces, and sharp conducting tips. Oftentimes, due to
limitations imposed by the target samples, experimental
conditions cannot achieve high resolution. In particular, it is
difficult to get atomic resolution when scanning large molecules
at elevated temperatures, primarily because the high thermal
energy causes significant mobility and movement of the
molecules. Recently, experimental methods to enhance STM
and Q+AFM resolution have been developed by functionalizing
the scanning tip [7, 8] with an atom or a molecule (CO [9, 10],
H, [11], D, [12], CH4 [13], Xe [14], CuO [15], etc.) that
significantly contributes to the tip-sample interaction, which can
reveal the internal structure molecules adsorbed on surfaces.
These experimental resolution enhancement methods have
become successful in certain classes of molecules, and many
astoundingly high-quality STM or qPlus AFM images have been
generated.  However, these experimental resolution
enhancement methods based on functionalizing tips increased
experimental complexity and are not universally applicable to
any molecules of interest. The computational-based resolution
methods, on the other hand, has great potential to complement
the experimental methods.

The purpose of this paper is to demonstrate that the latest
deep learning technology can computationally enhance the
resolution of STM and Q+AFM images and overcome the
physical limitations of STM and Q+AFM experiments. In this
study, we model the STM and Q+AFM image super-resolution
problem as a Single Image Super Resolution problem. We
attempt to train deep learning models with many high-resolution
images on a variety of molecules obtained from high-resolution
STM or Q+AFM experiments to enhance the low-resolution
images where the high-resolution versions cannot be obtained
from experiments. Using a large set of high-resolution STM
images across many molecule systems available as the training
set, the STM-SR program adopts a Super-Resolution Generative
Adpversarial Networks (SRGAN) [16] architecture to transform
low-resolution STM images into high-resolution STM versions.
Similar mechanism is used to train AFM-SR on a collection of
high-resolution Q+AFM images. Our STM-SR and AFM-SR
results show that deep learning image super-resolution
technologies can achieve a clearer view of the atomic world.
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II. BACKGROUND

A. Scanning Tunneling Microscope (STM) and qPlus Atomic
Force Microscope (Q+AFM)

STM works by scanning an extremely sharp metal wire tip
over a surface of material samples with precise, angstrom-level
control, taking advantage of the piezoelectric effect. When the
tip is sufficiently close to the surface within sub-nanometer
distance, the voltage bias between the tip and scanned surface
enables electrons to tunnel through the vacuum in between to
form tunneling current, due to quantum tunneling effect. As the
tip encounters sample features of different heights, tunneling
current changes correspondingly. Monitoring the tunneling
current and coordinating the current with the positioning of the
tip, the sample surface is imaged at the atom scale, resolving the
conformations of individual atoms.

Q+AFM uses a tip mounted on a tuning folk that is driven to
vibrate under its natural frequency to detect tip-sample
interaction. The strength of such interaction is measured as a
frequency shift from tip natural frequency. The measured
frequency shift as a function of probe and surface distance can
be calculated to form force image of the sample surface.

B. Experimental Methods for STM and AFM Image Super-
Resolution

Experimental methods by functionalizing the scanning tip
has been developed to enhance STM and Q+AFM image
resolution. The fundamental idea is that the resolution of STM
or Q+AFM images crucially depends on the chemical nature of
the sharp tip apex. Hence, functionalizing the scanning tips with
a molecule or an atom can trigger the interaction between the tip
and the specific structure of the target sample. Intentionally
picking up the functionalizing molecule or atom amplifies the
detected signal, which is the key to dramatically enhancing the
resolution of STMs and qPlus AFMs. For example,
functionalizing the STM tip with a single CO molecule improves
the resolution of molecular orbital STM images [9, 10, 17].
Another example is the scanning tunneling hydrogen
microscopy (STHM) with STM tip functionalization with H2,
D2, and a variety of other atomic and molecular particles [11-
15], which allows the STM to resolve the atomic structures of
large organic adsorbates in a direct imaging experiment. AFM
employing a CO-functionalized tip displays dramatically
enhanced resolution in imaging covalent bonds of polycyclic
aromatic hydrocarbon [18]. Although many STM or Q+AFM
images of different classes of molecules within sub-atomic
resolution have been generated recently, the functionalizing tips
method increases experimental difficulties such as the
deposition of molecule or atom for tip decoration on surface may
change some properties of the target samples. Therefore, the
functionalizing tip has experimental limitations and cannot be
generalized to any molecules and materials of interest.

C. Single Image Super Resolution

Single Image Super Resolution attempts to restore a high-
resolution image from a low-resolution observation of the same
scene. Due to its ill-posedness nature, single image super-
resolution is a well-known challenging problem. Recently,
powerful deep learning algorithms, including Super-Resolution
Convolutional Neural Network (SRCNN) [19], SRGAN [16],

Deep Recursive Residual Network (DRRN) [20], Enhanced
Deep Residual Network (EDRN) [21], Deep Back Projection
Network (DBRN) [22], and many others, have been developed
for Single Image Super Resolution and have achieved attractive
results in many applications. Yang et al. [23] provides a
thorough survey of the available deep learning architectures for
Single Image Super Resolution.

In this work, different from the existing experimental
methods for STM and Q+AFM image super-resolution, inspired
by the effectiveness of deep learning methods for single image
super-resolution, we attempt to use the experiment-generated
high-resolution STM and Q+AFM images on a wide variety of
molecules to generally enhance low-resolution STM and
Q+AFM images. We adopt a deep learning architecture similar
to SRGAN to implement STM and Q+AFM image super-
resolution.

III. METHODS

A. STM and AFM Data Collection

We collect 160 high-resolution STM images of a wide
variety of molecules available from the public domain to train
STM-SR. These STM images are obtained by high-resolution
STM experiments with functionalizing tips. Additional 40
experiment-generated, high-resolution STM images, which are
on molecules different from those in the training set, are
collected and used as the test set to evaluate the performance of
STM-SR. Under the similar principle, 152 high-resolution
Q+AFM images are used to train AFM-SR and 37 are set aside
as test set for AFM-SR. All of these high-resolution STM and
Q+AFM images are scaled to 256x256. Data augmentation
methods, such as rotation, and vertical and horizontal
reflections, are applied to increase the size of training samples.

B. Deep Learning Architectures of STM-SR and AFM-SR

Both STM-SR and AFM-SR programs adopt the similar
mechanism as that of SRGAN. As a Generative Adversarial
Network (GAN) architecture [24], STM-SR consists a generator
and a discriminator, which are illustrated in Figure 1. AFM-SR
shares the same deep learning architecture as STM-SR, except
for being trained using high-resolution AFM images. Here we
only illustrate the architecture of STM-SR.

In the STM-SR generator, the low-resolution STM image is
fed as input through a convolutional layer of 9x9 kernels and 64
feature maps followed by a Parametric ReLU layer. The next
layers utilize 16 residual blocks, each including a convolutional
layer of 3x3 kernels and 64 feature maps followed by a batch
normalization layer, a Parametric ReLU activation function,
another convolutional layer with batch normalization, and a final
elementwise sum method by adding up the feedforward output
with the skip connection output [25]. Then the upsampling
block, consisting of a convolutional layer, a upsampling layer,
and a leaky ReLU activation, is used to resize toward the size of
the target high-resolution STM image. The rest of the generator
model is constructed by 2 upsampling blocks, a convolutional
layer, and a Sigmoid activation function to generate the high-
resolution STM image. In STM-SR, the input low-resolution
STM images are 64x64 monotone images and the output is
256x256 high-resolution images.
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Figure 1: Architectures of the Generator and Discriminator in
STM-SR

The STM-SR discriminator architecture makes use of an
initial convolutional layer followed by a Leaky ReLU activation
function. Then, after 7 repetitive discriminator blocks, each
containing a convolutional layer, a batch normalizing layer, and
a Leaky ReLU activation function, a single one-dimensional
vector is converted by a flatten layer. Afterwards, a series of
fully-connected dense layers followed by a Sigmoid activation
function are used to classify the true and the generated fake
images. The discriminator helps the generator to effectively
learn the features of high-resolution STM images.

Similar to the SRGAN, the overall loss of the STM-SR is the
weighted sum of the content loss measured by Visual Geometry
Group (VGG) [26] loss and the adversarial loss. This loss allows
the STM-SR model to focus on improving the overall quality of
the STM image instead of pixel-by-pixel comparison.

IV. RESULTS

A. Evaluation Metric

Peak Signal to Noise Ratio (PSNR) is used to measure how
similar the reconstructed super-resolution image O is to the
actual high-resolution STM image P with sizes of m X n. The
mean squared error (MSE) between images O and P is defined
as

1 m n
MSE = %ZZ[O(LJ) — P, NI

i=1 j=1
Then, PSNR is defined as
PSNR = 10 -logy, A%
T 08B0 TyeE
where MAXp denotes the maximum signal value that exists in
the original high-resolution STM image P.

B. Performance of STM-SR

We use the widely used bicubic interpolation method [27] as
the baseline to compare with the deep learning-based super-
resolution methods on converting low-resolution STM images
(64x64) to high-resolution ones (256x256). Figure 2 shows the
super-resolution results of bicubic interpolation and STM-SR on
three STM images in the test set as examples. One can find that
STM-SR yields a significantly higher PSNR than bicubic
interpolation, while visually reconstructing the high-resolution
STM images and generating more structural details. On the
overall test set with 40 STM images, the mean PSNR of bicubic
interpolation is 17.02 with standard deviation of 6.02. In
comparison, the mean PSNR of STM-SR is 27.35 with standard
deviation of 5.51.

It is also interesting to note that STM-SR can even fix the
flaws in the experimental STM images. The experimental image
in Figure 2(b) shows a scratch throughout the image. This is
typically generated by the STM tip from disruptions in tunneling
current oscilations. These tunneling current oscilations can be
affected by noise and minor interactions with the surface during
scanning. Nevertheless, when generating the high-resolution
STM images, STM-SR is able to reconstruct the atoms that are
striked through by the scratch in the original high-resolution
STM image.
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Figure 2: Comparison of results on three STM samples in the test set
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Figure 3: Comparison of results on three Q+AFM samples in the test set

Authorized licensed use limited to: Old Dominion University. Downloaded on June 30,2024 at 00:29:01 UTC from IEEE Xplore. Restrictions apply.



C. Performance of AFM-SR

Similar to the results of STM-SR, Figure 3 shows that AFM-
SR is able to generate sharper high-resolution Q+AFM images
with more details than bicubic interpolation. AFM-SR generates
high-resolution images with better PSNR. On the overall test set
with 37 Q+AFM images, the mean PSNR of bicubic
interpolation is 14.62 with standard deviation of 3.20, while the
mean PSNR of AFM-SR is 28.11 with standard deviation of
2.50. However, the test case shown in Figure 3(a) indicates that
AFM-SR has the potential to generate unphysical artifacts. The
two atoms highlighted in the blue box in the high-resolution
Q+AFM image generated by AFM-SR are over-constructed
with unphysical patterns. Finding the cause of these unwanted
artifacts and removing them will be our future research work.

V. CONCLUSION

In this study, we develop and apply deep learning-based
super-resolution techniques to break the experimental
resolution limits of STMs and Q+AFMs. We train STM-SR and
AFM-SR models adopting the SRGAN architecture to convert
the low-resolution images into high-resolution ones. Our results
demonstrate that STM-SR and AFM-SR are able to generate
high quality images that are superior to those generated by
conventional bicubic interpolation methods.

VI. FUTURE WORK

Our results show that the deep learning models for STM and
Q+AFM super resolution may generate unphysical artifacts.
Our next step will be developing methods to detect and
eliminate these unwanted artifacts. Our research direction will
be incorporting physics models into the machine learning
models.The study presented here is based on the deep learning
techniques of “Single Image Super Resolution.” In reality,
many images of the same molecule or molecules of the same
kind are generated in STM and Q+AFM experiments. Future
studies can use “Multiple Images Super Resolution” to piece
many molecule images together to form a high resolution one.

Moreover, with the STM and Q+AFM’s ability to generate
high-resolution atomic level images outside of its optimal
conditions, our research can be extended into many physics and
chemistry fields, such as studying sophisticated molecules like
prions and other proteins.
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