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Abstract

It is widely expected that generic black holes have a nonempty but weakly singu-

lar Cauchy horizon, due to mass inflation. Indeed this has been proven by the author

in the spherical collapse of a charged scalar field, under decay assumptions of the

field in the black exterior which are conjectured to be generic. A natural question

then arises: can this weakly singular Cauchy horizon close off the space-time, or does

the weak null singularity necessarily “break down,” giving way to a different type of

singularity? The main result of this paper is to prove that the Cauchy horizon cannot
ever “close off” the space-time. As a consequence, the weak null singularity breaks

down and transitions to a stronger singularity for which the area-radius r extends

to 0.
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1. Introduction

The characterization of singularities inside black holes is a fundamental problem in
General Relativity, which is related to the fate of in-falling observers and the very
validity of the principle of determinism. “Strong” singularities, for which the area-
radius r extends to 0, are already present in the interior of the Schwarzschild black
hole and raised immense interest (see [1] and its vast developments and see, e.g., the
review [2]).
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For many years, it was believed that a generic black hole interior is necessarily
delimited by a singularity which is everywhere strong and space-like. It is now well
understood that the above belief is false. Indeed, it has been proven in [18] that all
dynamical black holes settling down to Kerr possess a Cauchy horizon in the black
hole interior, that is, a null boundary spanned by spheres of nonzero radius. Addi-
tionally, a Cauchy horizon on which r > 0 necessarily occurs for dynamical charged
black holes settling down to Reissner–Nordström in spherical symmetry, as proven in
[14], [37]; at the heuristic level, this phenomenon is explained by the repulsive mech-
anism provided by the Maxwell field in the charged case, or provided by angular
momentum in the non-spherically-symmetric case.

While the future boundary components on which r D 0 are (strong) singulari-
ties, in contrast Cauchy horizons are not always singular: for instance the Reissner–
Nordström Cauchy horizon is smoothly regular. Nevertheless, the pioneering works
[22], [33]–[35] suggested that the Cauchy horizon of generic dynamical black holes
is, in fact, a weak null singularity. This phenomenon is known as “mass inflation.” It
has been proven indeed (see [15], [30], [37], [39]) that the Cauchy horizon of charged
spherically symmetric black holes is weakly singular, under assumptions which are
conjectured to be generic; retrieving these assumptions remains an important open
problem. Weak null singularities have been constructed in vacuum (see [29]) and are
conjecturally present in the interior of generic perturbations of Kerr black holes.

In view of the mathematical evidence in favor of the generic character of weak
null singularities, the necessity of the occurrence in collapse of r D 0 singularities
on part of the boundary, ironically, becomes subject to questioning: do weak null
singularities necessarily “break down” in finite retarded time, and does a new type of
(presumably stronger) singularity take over? Or, on the contrary, is it possible in some
cases that they subsist up to the center of symmetry and close off the space-time, as
depicted in the Penrose diagram of Figure 1? This is not a moot point, since in the
two-ended asymptotically flat case, the Cauchy horizon closes off the space-time for a
large class of dynamical solutions, as later depicted in Figure 4 (see also Section 1.7).

In the present paper, we carry out the first global study of the black hole inte-
rior in what can be seen as the simplest model in which this question makes sense,
namely the gravitational collapse of a charged scalar field, governed by the Einstein–
Maxwell–Klein–Gordon equations in spherical symmetry:

Ric��.g/ � 1

2
R.g/g�� D TEM

�� C TKG
�� ; (1.1)

TEM
�� D 2

�

g˛ˇ F˛�Fˇ� � 1

4
F ˛ˇ F˛ˇ g��

�

; (1.2)

TKG
�� D 2

�

<.D��D��/ � 1

2

�

g˛ˇ D˛�Dˇ � C m2j�j2
�

g��

�

; (1.3)
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Figure 1. Penrose diagram whose existence we disprove if CH iC is weakly singular.

r�F�� D q0

2
i.�D�� � �D��/; F D dA; (1.4)

g��D�D�� D m2�; (1.5)

which feature a scalar field � of charge q0 ¤ 0 and of mass m2 � 0 and D� D r� C
iq0A� is the gauge derivative. This model has been extensively studied (see [23],
[24], [27], [28], [32]). In the present paper, we consider solutions with one-ended
asymptotically flat initial data, diffeomorphic to R3, as they model black holes arising
from gravitational collapse.

Our main result in this context is summarized in layman’s terms as the following.

THEOREM

In the spherical collapse of a charged scalar field, weak null singularities necessarily
break down.

Therefore, a weakly singular Cauchy horizon can never close off the space-time,
so the Penrose diagram of Figure 1 is ruled out in the presence of a weak null singu-
larity. As a consequence of the necessary breakdown of weak null singularities, we
obtain a proof of the “r D 0 singularity conjecture” (see [27]): a one-ended black hole
which does not have a “locally naked singularity” always features an “r D 0 singu-
larity,” in addition to a weakly singular Cauchy horizon, and its Penrose diagram is
given by Figure 2. To prove this result, we make use of an earlier classification of
possible Penrose diagrams [27]. As a consequence, we show there exists a so-called
“first singularity” where r D 0, that is, a Terminal Indecomposable Past (associated
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Figure 2. Generic Penrose diagram of a one-ended charged black hole under the assumptions of
Theorem C.

to a boundary point) whose closure has compact intersection with the Cauchy initial
hypersurface.

Our approach fundamentally uses a contradiction argument. More precisely, we
assume that the Penrose diagram is given by Figure 1, where CH iC is a Cauchy
horizon subject to mass inflation; by this, we mean that the Hawking mass blows up
when one approaches CH iC over (at least) one outgoing light cone. From these two
facts, we show a contradiction. As a consequence of our analysis, we prove that a
nontrivial boundary component must emanate from the center, with two possibilities
(see the upcoming Theorem A):
(1) either a r D 0 type singularity S is present, in addition to the Cauchy horizon

(see Figure 2),
(2) or a null outgoing segment emanates from the endpoint of the center b� to

meet the Cauchy horizon (see Figure 3).
The second possibility, which corresponds to a “locally naked” singularity ema-

nating from the center, is conjectured to be nongeneric (see Section 1.4). In both cases,
we prove that the endpoint of the center b� is a (central) first singularity. In the first
case, the boundary additionally contains a (noncentral) first singularity belonging to
S (see Section 1.4).

We also obtain a second result if, instead of assuming mass inflation, we make
assumptions on the event horizon (see the upcoming Theorem B). More precisely, we
assume that the scalar field decays on the event horizon at a weak polynomial rate
which is conjectured to be generic. Then we show, using the main result of [39], that
the following dichotomy holds:
� either the Cauchy horizon is subject to mass inflation, and hence it cannot

close off the space-time by our earlier result,
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Figure 3. General Penrose diagram of a one-ended charged spherically symmetric black hole,
[27].

� or the Cauchy horizon is an isometric copy of the Reissner–Nordström Cauchy
horizon.

In the latter case, we prove that the Cauchy horizon cannot close off the space-time
either, due to rigidity properties established via a different argument. Our assumptions
are comparable to those used in [37] to prove the nonemptiness of the Cauchy horizon
and backed up by multiple numerical studies (see Section 1.2). Moreover, the decay
assumptions that we use are quite weak since we require much less information on
the outgoing data than what is conjectured to be generic.

We now return to the main result (Theorem A), assuming mass inflation. Our
proof relies on quantitative estimates in which the center of symmetry � plays a role
of utmost importance (recall that it is the presence of a regular center � that dis-
tinguishes gravitational collapse space-times from the two-ended case considered in
[17]). The most significant quantity that we control is the Maxwell field, which is
dynamical as it interacts with the charged scalar field. As we explained earlier, if
this interaction was not present in the equations—like for the Dafermos model—no
regular one-ended solution could exist, as the center of symmetry � would be singu-
lar, which is impossible. Thus, we emphasize that the quantitative estimates of this
Maxwell field, in particular near the center, are a fundamental aspect of the problem
which cannot be overlooked by any serious attempts to establish the generic character
of r D 0 singularities.

In Section 1.1, we give a detailed description of the matter model and the
Einstein–Maxwell–Klein–Gordon equations, and we enumerate all the possible a
priori Penrose diagrams, following [27]. Then we state our main result and discuss
its assumptions in Section 1.2. We mention previous works on uncharged models
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in Section 1.3. In Section 1.4, we explain the r D 0 singularity conjecture and its
relation to first singularities. We continue with a presentation of other major prob-
lems, solved or unsolved, in charged collapse in Section 1.5. The few heuristic and
numerical previous works on one-ended black holes are mentioned in Section 1.6. In
Section 1.7, we mention prior results on two-ended black holes and emphasize the
contrast with the one-ended case. Finally in Section 1.8, we give a short outline of
the proof and of the paper.

1.1. A priori boundary characterization of one-ended space-times

We consider the Einstein–Maxwell–Klein–Gordon equations, namely the Einstein
equations in the presence of a charged scalar field (which we also allow to be mas-
sive if m2 ¤ 0 or massless if m2 D 0), that is, (1.1), (1.2), (1.3), (1.4), (1.5), where
D WD r C iq0A is the gauge derivative, r is the Levi-Civita connection of g, and A is
the potential one-form. We emphasize that the Klein–Gordon mass m2 � 0 is allowed
to be zero, but the coupling constant q0 ¤ 0 is not.

Some a priori information can be derived for this system in spherical symmetry
from “soft estimates” only involving the null condition satisfied by the nonlinearity.
This work was carried out by Kommemi in [27], who gave an inventory of the vast
a priori possibilities for the interior structure of the black hole. To determine which
boundary components are empty or singular, one must go beyond such “a priori esti-
mates,” and a precise analysis of the equations is required, which we undertake in the
present work. Note that in the sequel, Penrose diagrams themselves will be used to
convey important information regarding the space-time geometry, (see Figure 2 and
see later Figure 4, Figure 5, and the discussion of spherically symmetric space-times
in Section 2.1 and in [27]). We now present the preliminary result of Kommemi.

THEOREM 0 (Theorem 1.1 of [27])
We consider the maximal development .M D Q

C �r S
2; g�� ; �;F��/ of smooth,

spherically symmetric, containing no anti-trapped surface, one-ended asymptoti-

cally flat initial data satisfying the Einstein–Maxwell–Klein–Gordon system, where

r W Q
C ! Œ0;C1/ is the area-radius function. Then the Penrose diagram of Q

C is

given by Figure 3, with boundary † [ � in the sense of manifold-with-boundary—

where † is space-like, and � , the center of symmetry, is time-like with rj� D 0—and

boundary B
C induced by the manifold ambient R1C1:

B
C D b� [ S

1
� [ CH� [ S

2
� [ S [ SiC [ CH iC [ iC [ I

C [ i0;

where i0 is space-like infinity, I
C is null infinity, iC is time-like infinity (see [27] for

details), and
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(1) CH iC is a connected (possibly empty) half-open null ingoing segment ema-

nating from iC. The area-radius function r extends as a strictly positive func-

tion on CH iC , except maybe at its future endpoint.

(2) SiC is a connected (possibly empty) half-open null ingoing segment emanating

(but not including) from the endpoint of CH iC [ iC. r extends continuously

to zero on SiC .

(3) b� is the center end-point, that is, the unique future limit point of � in QC �
Q

C.

(4) S
1
� is a connected (possibly empty) half-open null outgoing segment emanat-

ing from b� . r extends continuously to zero on S
1
� .

(5) CH � is a connected (possibly empty) half-open null outgoing segment ema-

nating from the future end-point of b� [ S
1
� . r extends as a strictly positive

function on CH� , except maybe at its future endpoint.

(6) S
2
� is a connected (possibly empty) half-open null outgoing segment emanat-

ing from the future end-point of CH� . r extends continuously to zero on S
2
� .

(7) S is a connected (possibly empty) achronal curve that does not intersect null

rays emanating from b� or iC. r extends continuously to zero on S .

We also define the black hole region BH WD Q
CnJ �.IC/ and the event horizon

H
C D J �.IC/nJ �.IC/ � Q

C.

Remark 1

S is the only boundary component including “first singularities” (see Section 1.1 for
a discussion).

In the Penrose diagram, every point in M represents a sphere. At each sphere,
one can define the outgoing null derivative of the area-radius function r . We define the
regular region, denoted R, as the set of points for which the outgoing null derivative
of r is strictly positive; the trapped region, denoted T , as the set of points for which
the outgoing null derivative of r is strictly negative; and the apparent horizon, denoted
A, as the set of points for which the outgoing null derivative of r is zero.1

An important feature of charged matter models like the Einstein–Maxwell–
Klein–Gordon system is that they permit space-times with a regular center � � ¹r D
0º (corresponding to constant-time slices with one asymptotically flat end). Indeed,
in spherical symmetry, the Maxwell field can be written in terms of a scalar function
Q defined on Q

C as

F�� D Q

r2
� �2 du ^ dv;

1The definitions of R, T , and A rely on a sign, and thus are independent of the null vectors normalization (see

Section 2).
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in any double null coordinate system .u; v/ on Q
C, where we defined the null lapse

to be �2 D �2g.@u; @v/.
In the case q0 D 0, the right-hand-side of (1.4) vanishes, and this implies that

Q � e is a constant function. If e ¤ 0, then F�� diverges at the center � D ¹r D 0º;
thus, no one-ended smooth solution is possible in the uncharged matter case (e.g., in
the Dafermos model). In the setting of charged matter, Q is no longer a constant func-
tion, and one-ended regular solutions are available, provided that we impose boundary
conditions at the center � , as detailed in Section 2.

1.2. First version of the main results and discussion of the hypothesis

In this section, we state our main result, namely that a weakly singular Cauchy hori-
zon cannot close off the space-time. For the consequences on the r D 0 singularity
conjecture and the generic existence of first singularities, see Section 1.4.

1.2.1. Theorem assuming the existence of a weak null singularity

We present our main theorem, which does not require any quantitative assumption.
Namely, we only assume the existence of a weak null singularity, that is, the blowup
of the mass and the boundedness of the matter fields over one outgoing trapped cone
reaching the Cauchy horizon. We give a first version of the theorem, which will be
made precise in Section 3.

THEOREM A
For initial data as in Theorem 0, assume there exists a trapped cone ¹u1º � Œv1; vmax/

with .u1; vmax/ 2 CH iC , on which the Hawking mass � blows up, while � and Q are

bounded:

lim
v!vmax

�.u1; v/ D C1; sup
v�vmax

j�j.u1; v/ C jQj.u1; v/ < C1: (1.6)

Then

S
1
� [ CH � [ S

2
� [ S ¤ ;;

that is, CH iC [ SiC cannot close off the space-time at b� (i.e., the Penrose diagram

of Figure 1 is impossible).

The theorem relies on two assumptions: the first one is the blowup of the Hawk-
ing mass toward (at least) one sphere on the Cauchy horizon. This blowup, which is
conjectured to be generic, results from the blue-shift effect of radiation at the Cauchy
horizon. This effect is localized near iC inside the black hole, in the sense that no
knowledge of the global structure of space-time is necessary to obtain it, as it only
depends on the asymptotic structure of the event horizon (see [16], [39]). Of course,
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the mass blowup of (1.6) is not satisfied for the Reissner–Nordström solution: this is
simply due to the absence of radiation in the Reissner–Nordström space-time, which
is static. The other assumption is the boundedness of � and Q, again over the same
outgoing light cone, which is expected to hold generically as well, due to local stabil-
ity estimates near time-like infinity (see [37] and [25]).

1.2.2. Theorem with assumptions on the event horizon

Instead of making assumptions on the behavior of one given light cone in the black
hole interior, one can also make assumptions on the event horizon H

C to prove that
the Cauchy horizon CH iC does not close the space-time. We give a first version of
the theorem, which will be made precise later in Section 3.

THEOREM B
We assume that the black hole event horizon H

C settles quantitatively toward a

subextremal Reissner–Nordström event horizon. Then S
1
� [ CH� [ S

2
� [ S ¤ ;.

This theorem uses the following result of the author: assuming the quantitative
exterior stability, we proved in [39] that
(1) either the Hawking mass blows up on the Cauchy horizon, while � and Q are

controlled,2

(2) or the Cauchy horizon CH iC is an isometric copy of the Reissner–Nordström
one.

If the first option is true, then the assumptions of Theorem A are satisfied, which
implies that the Cauchy horizon cannot close the space-time: S

1
� [ CH� [ S

2
� [ S ¤

;. If the second option is true, then we prove that it is impossible to connect an
isometric copy of the Reissner–Nordström Cauchy horizon to a space-time for which
S

1
� [ CH� [ S

2
� [ S D ;. To do this, we make use of an argument showing that

focusing cannot occur in the vicinity of the Cauchy horizon, together with geometric
properties (see Section 1.8).

1.2.3. Conjectured decay rates on the event horizon

In this subsection, we discuss the conjectured decay rates at which a black hole is
expected to settle toward a subextremal Reissner–Nordström black hole for large
times, and the previous works on the subject in the physics literature. In our upcom-
ing Theorem B, we will assume these rates are satisfied on the event horizon of the
dynamical black hole.

2We cannot work under the assumption that .�;Q/ are bounded, since this is not true in general (see [25]).
However, we have proved in [39] that .�;Q/ do not blow up too fast, which is what we mean by “controlled.”
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In [23], Hod and Piran provided a heuristic argument, based on asymptotic match-
ing, to formulate the correct decay of charged scalar fields on charged spherically
symmetric black holes. The main difference with uncharged fields is that the decay
rate now depends on the black hole charge e, as opposed to the universal rate pre-
scribed by Price’s law (see [19], [21], [31], [36]) in the uncharged case. The results of
[23] are confirmed by the numerics of Oren and Piran [32], providing further evidence
that the rate depends on q0e, the adimensional black hole charge.

CONJECTURE 1.1 (Decay of charged scalar fields, Hod and Piran [23], Oren and Piran
[32])
Among all the data admissible and sufficiently regular and decaying from Theorem

0, there exists a generic subclass for which if the maximal future development has

Q
C \ J �.IC/ ¤ ;, we have, in the charged massless case q0 ¤ 0, m2 D 0:

j�jjHC.v/ � v�2Cı.q0e/; jDv�jjHC.v/ � v�2Cı.q0e/;

where e is asymptotic charge of the black hole at time-like infinity, ı.q0e/ WD 1 �
<.

p

1 � 4.q0e/2/ 2 Œ0; 1/, and v is a null coordinate defined by the gauge choice

(2.23).

Note that the upper bound corresponding to Conjecture 1.1 was retrieved rigor-
ously in [38], on a fixed Reissner–Nordström background, for small charge q0e and
for a rate p D 2 � ı.q0e/ C o.

p

jq0ej/ as q0e ! 0.
Now we turn to the case of a massive scalar field. In [26], Koyama and Tomimatsu

considered the case of a massive, uncharged scalar field and provided a heuristic argu-
ment, also based on asymptotic matching, to support that massive fields decay poly-
nomially at a very weak rate and with oscillations. Their tails were later confirmed by
the numerics of Burko and Khanna [5]. For the case of a massive, charged scalar field,
it was argued by Konoplya and Zhidenko [28] that the late-time tail must be identical,
as they claim that the asymptotic behavior of massive scalar field is universal.

CONJECTURE 1.2 (Decay of massive scalar fields, [5], [26], [28])
Among all the data admissible, sufficiently regular, and decaying from Theorem 0,

there exists a generic subclass for which if the maximal future development has Q
C \

J �.IC/ ¤ ;, we have, in the massive uncharged case m2 ¤ 0, q0 D 0 (see [5], [26]),

and in the massive charged case m2 ¤ 0, q0 ¤ 0 (see [28]):

j�jjHC.v/ � j sin j
�

mv C o.v/
�

� v� 5
6 ; jDv�jjHC.v/ � j sin j

�

mv C o.v/
�

� v� 5
6 ;

where v is a null coordinate defined by the gauge choice (2.23).
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1.2.4. Comments on the assumptions of Theorem A and Theorem B

The assumptions we make for Theorem B (see Theorem 3.3 for the details) are com-
patible with the tails of Conjecture 1.1 and Conjecture 1.2 but require much less
information. We only assume, for some s > 3

4
, that

j�jjHC.v/ C jDv�jjHC.v/ � v�s;

Z C1

v

jDv�j2
jHC.v0/ dv0 � v1�2s:

Remarks

Notice that 1 > 5
6

> 3
4

, so this decay is compatible with both Conjecture 1.1 and
Conjecture 1.2.

Note that we require an L2-averaged (energy) polynomial lower bound (which
is weaker than a pointwise bound) to also account for the potential oscillations pre-
scribed by Conjecture 1.2.

As for Theorem A, assumption (1.6) can be weakened if we allow global, but soft,
assumptions. More precisely, the mildest assumption that will suffice for our result,
instead of the mass blowup, is some integrability condition (4.7) over (only) one out-
going cone, in addition to the assumption that the entire Cauchy horizon is trapped
(see Theorem 3.2 for a precise statement). In turn, we prove that this scenario occurs
if one only assumes mass blowup on one cone, due to the propagation of blowup
(see Section 4.6). Thus, we emphasize that the blowup of the Hawking mass is just
a sufficient condition, but it is not necessary to prove that the Cauchy horizon can-
not close the space-time. In the asymptotically flat setting, mass inflation occurs (see
[33], [39]), so the sufficiency of these weaker assumptions does not matter. However,
in other settings such as the Einstein equations with a positive cosmological constant,
mass inflation is not generically expected (see [13], [20]), but the weaker assumption
may be still satisfied; thus we expect our argument to be useful in this setting as well.

1.3. The models of Christodoulou and Dafermos and their generalization

In this section, we present two submodels of the Einstein–Maxwell–Klein–Gordon
equations. The first one is the uncharged spherically symmetric model studied by
Christodoulou [9]–[12], governed by the Einstein-scalar-field equations, that is, the
system (1.1), (1.2), (1.3), (1.4), (1.5), in the special case F � 0, m2 D 0. While this
model is suitable to study gravitational collapse, as one-ended solutions are allowed, it
does not permit the formation of Cauchy horizons due to the absence of any repulsive
mechanism such as angular momentum or charge. Therefore, this model is ill-suited
to understand weak null singularities, as there is no Cauchy horizon emanating from
time-like infinity iC.
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The second model, featuring a Maxwell field with uncharged matter, was studied
by Dafermos [14]–[17] and is governed by the Einstein–Maxwell-(uncharged)-scalar-
field equations, that is, the system (1.1), (1.2), (1.3), (1.4), (1.5), in the special case
q0 D 0, m2 D 0. This model allows Cauchy horizons to form and provides a good
setting to understand the formation of weak null singularities and their local aspects.
Yet, the Dafermos model is in turn restricted by the topology of its initial data, neces-
sarily two-ended. This is because the Maxwell field, which is static due to the absence
of charged matter, is singular in the one-ended case. Therefore, the Dafermos model
is inappropriate to study the global aspects of gravitational collapse, including the
necessary breakdown of weak null singularities, due to the absence of a center � .

The Einstein–Maxwell–Klein–Gordon equations in spherical symmetry that we
study in the present paper generalize both the Christodoulou and the Dafermos model,
and are free from the above restrictions, as one-ended black holes with Cauchy hori-
zon are allowed in principle. In fact, the Einstein–Maxwell–Klein–Gordon system is
one3 of the only spherically symmetric models which is elaborate enough to formulate
the breakdown of weak null singularities in a nontrivial way.

An important preliminary step, before proving the result of our present paper,
is to establish that the Cauchy horizon is indeed always nonempty4 in the Einstein–
Maxwell–Klein–Gordon model (see [37]). As the dynamics of charged scalar fields
in the exterior are more intricate than their uncharged counterparts, new difficulties
arise. These difficulties were nonetheless overcome by the author in [37], [39], where
it was also shown that the Cauchy horizon CH iC is weakly singular.

We now briefly present this result, after mentioning previous works for context.

1.3.1. The Einstein-scalar-field equations in spherical symmetry

The uncharged gravitational collapse has been analyzed in great detail by Christo-
doulou. Recall that in this case, no Cauchy horizon is allowed to emanate from
time-like infinity iC due to the absence of charge or angular momentum. We sum
up Christodoulou’s main results on the black hole interior.

THEOREM 1.1 (Christodoulou, Einstein-scalar-field in spherical symmetry [9], [10],
[12])
For initial data as in Theorem 0 in the more general BV class, assume that the

Maxwell field is trivial F�� � 0 and that the field is massless m2 D 0. Then:

(1) There is no Cauchy horizon emanating from time-like infinity: CH iC D ;.

3It is also possible to study charged dust, but dust on its own propagates by transport. The dust model is sim-

pler than the Einstein–Maxwell–Klein–Gordon system, but it is thus not expected to reflect as accurately the

dynamics of the vacuum Einstein equations [8].
4Provided, of course, that the asymptotic charge e of the black hole is nonzero, which is conjecturally the generic

case.
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(2) There is no secondary outgoing null segment emanating from b� and where

r D 0: S
2
� D ;.

(3) Among all the data admissible from Theorem 0, in the BV class, with F�� �
0, m2 D 0, there exists a generic subclass for which if the maximal future

development has Q
C \ J �.IC/ ¤ ;, then S is the only nontrivial component

of the boundary S
1
� D CH� D ;.

Notice that the statement S ¤ ; is immediate for the Christodoulou model, where
very special monotonicity properties dominate, in the absence of any repulsive mech-
anism such as angular momentum or charge. This is in contrast with the model consid-
ered in the present paper, where the (nontrivial) presence of a Cauchy horizon CH iC

(see Section 1.3.3), together with a more complex model, could, in principle, allow
for CH iC to be the only nonempty boundary component.

1.3.2. The Einstein–Maxwell-scalar-field equations in spherical symmetry

The breakthrough of Dafermos [14] was to realize and prove that the Cauchy hori-
zon is nonempty for dynamical black holes, in a model where a Maxwell field plays
the role of angular momentum. This early insight, gained from a spherically symmet-
ric model, paved the way to the monumental work of Dafermos and Luk [18], who
recently proved the stability of the Cauchy horizon of Kerr black holes for the vacuum
Einstein equations, remarkably in the absence of any symmetry.

THEOREM 1.2 (Dafermos, Einstein–Maxwell-scalar-field in spherical symmetry [14],
[15])
Assume that the black hole event horizon H

C settles quantitatively toward a subex-

tremal Reissner–Nordström event horizon. Then CH iC ¤ ;, that is, there exists a

nonempty Cauchy horizon emanating from iC. Moreover, CH iC is weakly singular,

yet C 0 extendible.

The C 0 extendibility of CH iC , together with a result on the exterior by Dafer-
mos and Rodnianski [19], also falsifies the C 0 version of strong cosmic censorship
in spherical symmetry. See Section 1.5 for a discussion of this important conjecture
related to determinism.

We emphasize, however, that the theorem of Dafermos is for uncharged scalar
fields, and thus it does not apply to the Einstein–Maxwell–Klein–Gordon model—
featuring a charged, massive scalar field—that we consider in the present paper.
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1.3.3. Nonemptiness of CH iC for the Einstein–Maxwell–Klein–Gordon model

In the charged and massive case, the model becomes more intricate, and the proof of
Dafermos does not carry over. Additionally, the scalar field obeys different dynamics,
in particular a weaker decay than in the uncharged case. See Conjecture 1.1 and Con-
jecture 1.2 and compare with the Price’s law governing uncharged fields [19]. This
weak decay of charged/massive fields renders nonlinear stability harder and requires
new estimates, established by the author in [37].

THEOREM 1.3 (Einstein–Maxwell–Klein–Gordon in spherical symmetry [37])
Assume that the event horizon H

C settles quantitatively toward a subextremal

Reissner–Nordström event horizon. Then CH iC ¤ ;. Moreover, CH iC is weakly

singular.

Remark 2

In this context, the weak null singularity of CH iC is to be understood as a blowup of
some curvature component.

Under the same assumptions, it is also proven in [37] that CH iC is C 0 extendible
in the charged massless case. Therefore, the C 0 version of strong cosmic censorship
(see Section 1.5) is also false in this more general setting. The same conclusion was
reached for the massive and charged case by the author and Kehle [25], exploiting a
novel mechanism based on the oscillations of the perturbations.

1.4. The r D 0 singularity conjecture in charged gravitational collapse

Theorem A has consequences on space-time singularities. Under some reasonable
additional assumptions, one can prove that a r D 0 singularity exists generically in
the black hole interior. We discuss this issue in the present section.

1.4.1. First singularities

We define the notion of spherically symmetric “first singularities,” a concept intro-
duced by Dafermos in [16] and further formalized by Kommemi in [27]. First sin-
gularities are the boundary points from which nontrivial components emanate. Thus,
most of the investigation of the black hole interior relies on the precise understanding
of those singularities.

Definition

Let p 2 QC. We say that J �.p/ � QC is compactly generated if there exists a com-
pact set X � Q

C such that J �.p/ � ….DC
M .…�1.X/// [ J �.X/, where D

C
M .A/ is
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the domain of dependence of A and … W M ! Q
C is the projection onto the Penrose

diagram Q
C (see the definition in Section 2).

Definition 1.1 (See [27])
With the conventions of Theorem 0, we say that p 2 B

C is a first singularity if J �.p/

is compactly generated and if any compactly generated proper causal subset of J �.p/

is of the form J �.q/, q 2 Q
C. Then,

(1) if p 2 B
C � ¹b�º, p is a first singularity if and only if there exists q 2

I �.p/ \ Q
Cn¹pº, such that J C.q/ \ J �.p/n¹pº � Q

C, and we say that p is
a noncentral first singularity,

(2) b� is a first singularity if and only if S [ S
1
� [ CH� [ S

2
� ¤ ;. In that case,

we say b� is a central first singularity.

Theorem 0 then has an immediate application on the location of the first singu-
larities.

COROLLARY (Corollary of Theorem 0, [27])
If S ¤ ;, there exists at least one noncentral first singularity p 2 S , and b� is a

central first singularity. Moreover, there are no noncentral first singularities in B
C �

S . Therefore, if p is a noncentral first singularity, then r.p/ D 0.

In view of Theorem 0, one can also define a reasonable notion of space-like por-
tion of the boundary.

Definition 1.2

Let S
0 � S . We say that S

0 is space-like if every p 2 S
0 is a first singularity.

Remark 3

Notice that, even if S is space-like in the sense of Definition 1.2, it is not clear a priori
whether one can, from S , construct and attach a space-like boundary to the 3 C 1

space-time Q
C �r S2, as subtle considerations may be important.

For the uncharged model of Christodoulou, that is, (1.1), (1.2), (1.3), (1.4), (1.5),
in the special case F�� � 0, m2 D 0 the analysis of Christodoulou [9], [10], [12]
leading to Theorem 1.1 also impacts the structure of first singularities.

PROPOSITION (First singularities for Einstein-scalar-field (see Christodoulou [9],
[10], [12] and Dafermos [16]))
Among all the data admissible from Theorem 1.1, there exists a generic subclass for
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which if the maximal future development has Q
C \ J �.IC/ ¤ ;, then every point

p 2 B
C is a first singularity. In particular, S is space-like.

1.4.2. The r D 0 singularity conjecture

Now, we return to the charged gravitational collapse case, that is, the full system
(1.1), (1.2), (1.3), (1.4), (1.5), where F�� ¤ 0, q0 ¤ 0, and we mention important
conjectures formulated in [27]. In view of Definition 1.1, our main result directly
implies the following.

COROLLARY 1.4
Under the assumptions of Theorem A or Theorem B, b� is a central first singularity;

therefore the set of first singularities is nonempty.

Now, we want to investigate the behavior of the area-radius r at the interior
boundary B

C. We introduce an important conjecture stating the existence of a crush-
ing singularity S D ¹r D 0º.

CONJECTURE 1.3 (r D 0 singularity conjecture, as formulated in [27])
Among all the data admissible from Theorem 0, there exists a generic subclass for

which if the maximal future development has Q
C \ J �.IC/ ¤ ;, then the Penrose

diagram is given by Figure 2, that is, S ¤ ;, CH iC ¤ ; and S
1
� D CH� D S

2
� D ;.

The main content of the conjecture is the statement S ¤ ;, which implies that
there exists a nontrivial boundary component where r D 0. Additionally, S ¤ ;
implies the existence of a (noncentral) first singularity, by Definition 1.1. The addi-
tional assumption we need to prove Conjecture 1.3 in the present paper is formulated
as another conjecture, which has important connections with the Weak Cosmic
Censorship conjecture (see Section 1.5).

CONJECTURE 1.4 (Spherical trapped surface conjecture, formulated in [27])
Among all the data admissible from Theorem 0, there exists a generic subclass for

which, if the maximal future development has Q
C � J �.IC/ ¤ ;, then the apparent

horizon A has a limit point on b� . Moreover, if that is the case, then S
1
� D CH� D

S
2
� D ;.

Remark 4

Note that the statement S
1
� D CH� D S

2
� D ; corresponds to the absence of “locally

naked” singularity emanating from the center b� , a slightly stronger statement than
weak cosmic censorship (Conjecture 1.5).
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Notice that Conjecture 1.4 is related to the behavior of space-time in the vicin-
ity of b� ; therefore, by causality, this behavior cannot be influenced by the late time
tail on the event horizon.5 In contrast, our results start from data on a fixed outgo-
ing trapped cone, which is itself related to asymptotic behavior on the event hori-
zon ultimately responsible for the existence of a weak null singularity. In fact, by the
same principle, the result of [37] and Theorem A are the only emptiness/nonemptiness
statements which can be nontrivially obtained from the late time behavior on an out-
going cone, as all the other possible statements would result from purely local con-
siderations.

In the uncharged case F�� D m2 D 0, Christodoulou proved the validity of Con-
jecture 1.4, which directly implies Statement 3 of Theorem 1.1 and is also the key
ingredient of his proof of the weak cosmic censorship conjecture.

One immediate consequence of Theorem A is the following fact, which was not
previously recorded.

THEOREM C
Assume Conjecture 1.4. Then Conjecture 1.3 is true.

The breakdown of weak null singularities (a global property) combined with Con-
jecture 1.4 (a statement on b� ) implies there exists a noncentral first singularity p 2 S

and that b� is a central first singularity. Therefore, the last step to obtain a full geomet-
ric understanding of spherical collapse is to prove Conjecture 1.4, which would also
imply the instability of naked singularities, a statement known as the weak cosmic
censorship conjecture (see Section 1.5).

1.5. Additional related questions in charged gravitational collapse

In this section, we give a brief review of the past works, conjectures, and open prob-
lems related to the black hole interior. Ironically, the most prominent subsisting prob-
lem in gravitational collapse is related to the existence of singularities which form
in the absence of a black hole. Such “naked” singularities are conjectured to be non-
generic. This statement—the weak cosmic censorship conjecture—can be formulated
in modern terms as such:

CONJECTURE 1.5 (Weak cosmic censorship conjecture for the Einstein–Maxwell–
Klein–Gordon–Model)
Among all the data admissible from Theorem 0, there exists a generic subclass for

which I
C is complete.

5Except, of course, in the case where CH iC closes off the space-time as in Figure 1, but this is precisely the
case we disprove in Theorem A.
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Notice that in spherical symmetry, it can be proven that if the black hole region
is nonempty, then I

C is future-complete (see [16], [27]). One can also immediately
show (see [27]) that Conjecture 1.4 implies Conjecture 1.5.

We now turn to another important problem, the strong cosmic censorship conjec-
ture, which broadly states that general relativity is a deterministic theory.

CONJECTURE 1.6 (Strong cosmic censorship conjecture for the Einstein–Maxwell–
Klein–Gordon–Model)
Among all the data admissible from Theorem 0, there exists a generic subclass for

which the maximal globally hyperbolic development .M;g/ is future inextendible as

a suitably regular Lorentzian manifold.

The main obstruction to strong cosmic censorship is the existence of Cauchy
horizons, which can be smoothly extendible (e.g., for the Kerr stationary metric or
for the Reissner–Nordström static metric). Nevertheless, it was expected that generic

dynamical Cauchy horizons feature a weak null singularity [33] and, therefore, are
C 2 inextendible. In the case of gravitational collapse, additional obstructions related
to the center appear, such as the existence of CH� , which is however empty generi-
cally if Conjecture 1.4 is true. Modulo these issues which are unrelated to weak null
singularities, and assuming the quantitative stability of the black hole exterior, the
author has obtained a version of Conjecture 1.6.

THEOREM 1.5 (C 2 inextendibility of the Cauchy horizon for the Einstein–Maxwell–
Klein–Gordon model (see [37], [39]))
Assume that Conjecture 1.4 is true. Then, under the assumptions of Theorem B, the C 2

version of Conjecture 1.6 holds (i.e., .M;g/ is future inextendible as a C 2 Lorentzian

manifold).

We also mention the remarkable work of Luk and Oh [30], [31], who provide a
comprehensive proof of the C 2 version of strong cosmic censorship for the Einstein–
(uncharged)–scalar–field model. Note that in their case, the data are two-ended, and
thus there is no obstruction coming from the center of symmetry � , in contrast with
our model. Note also that the decay of uncharged fields in the exterior is well under-
stood and governed by Price’s law (see [19], [21], [31], [36]). However, Price’s law
does not apply to charged scalar fields, which obey more complicated dynamics, and
decay is only known in the small charge case. See [38] for the proof of upper bounds
that are sharp according to Conjecture 1.1.

We now return to the characterization of the interior boundary. In addition to
the weak and strong cosmic censorship conjectures, one problem is left unexplored:
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the causal character of S . In particular, one can wonder whether S is space-like, in
the sense of Definition 1.2. The following “space-like singularity” conjecture appears
reasonable.

CONJECTURE 1.7
Among all the data admissible from Theorem 0, there exists a generic subclass for

which if the maximal future development has Q
C \J �.IC/ ¤ ;, then S ¤ ; is space-

like.

Note that, with the approach adopted in the present paper, we do not have any
control over the causal character of S , as we use a contradiction argument. Thus, it
seems that a different approach is required to investigate this issue.

We conclude this discussion with an interesting open problem: What happens
in the interior of the black hole for the Einstein–Maxwell–Klein–Gordon equations
in the presence of a positive cosmological constant? Based on the works [13], [20],
the Cauchy horizon always exists but is not weakly singular for a certain range of
black hole parameters (i.e., the Hawking mass is finite). While it seems reasonable
that our approach could be adapted to the cosmological setting, for parameters such
that a weak null singularity is present, it would be interesting to see whether the
Cauchy horizon may in some cases close off the space-time for parameters such that
the Hawking mass is finite.

1.6. Numerical and heuristic previous studies on r D 0 singularities

The presence of r D 0 singularities during the process of gravitational collapse
received a lot of attention from the numerical relativity community. In view of the
work of Christodoulou, it is not the existence of those singularities which requires
evidence, but the statement that they are generic, for models which allow for the
formation of Cauchy horizons. However, it is difficult to validate generic statements
numerically, as it requires exploring the whole moduli space of initial data.

The pioneering works of Brady and Smith [3], Burko and Ori [6]. and Burko
[4] first provided evidence for the occurrence of r D 0 singularities inside spher-
ically symmetric Einstein–Maxwell-uncharged-scalar-field black holes. While the
uncharged character of the scalar field does not significantly modify the asymptotic
behavior, it forces the black hole to be two-ended (Section 1.3). In the two-ended
case, the occurrence of r D 0 singularities is not generic (see [17] and Section 1.7).

In contrast, to study the genericity of r D 0 singularities in spherical collapse,
we must consider charged matter in one-ended space-times, as in the present paper.
One of the only numerical studies of charged gravitational collapse was carried out
by Hod and Piran [24], who considered the Einstein-charged-scalar-field system (i.e.,
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Figure 4. Bifurcating Cauchy horizons in the two-ended case for small data. Figure from [17].

(1.1), (1.2), (1.3), (1.4), (1.5) with m2 D 0). For a particular choice of (global) initial
data, including the center, they exhibited a Cauchy horizon, which is singular due to
mass inflation, and at later times a singularity toward which the area-radius r extends
to zero.

We also mention some heuristics of [7], which attempt to argue in favor of the
emergence of a r D 0 singularity. It is not clear, however, what the role of the center
� and of the Maxwell field is in their work.

1.7. Contrast with two-ended black holes, for charged/uncharged matter

In this section, we describe what happens in the case of so-called two-ended initial
data that have R � S2 topology (as opposed to the one-ended case R3 considered in
the present paper). Two-ended space-times are historically important, in that they have
the same topology as Reissner–Nordström or Kerr black holes. In such space-times,
however, there is no center (i.e., � D ;), and thus the two-ended data assumption does

not model the global structure of gravitational collapse. The two-ended setting is
radically different from the one-ended case already for the Einstein–Maxwell-scalar-
field model: in [17], Dafermos proves that the two-ended analogue of Conjecture 1.3
is false: there exists an open set of small, regular initial data for which there is no
r D 0 singularity, and an outgoing Cauchy horizon branches with an ingoing Cauchy
horizon to close off the space-time at a bifurcation sphere as in Figure 4, just like for
the Reissner–Nordström solution. For those solutions constructed by Dafermos, the
Hawking mass blows up everywhere, at least for a generic subclass inside the open
set of data. Thus, weak null singularities do not necessarily break down, in contrast
with the one-ended case.

We present a result which generalizes [17] to the more elaborate Einstein–
Maxwell–Klein–Gordon model. The argument of [17] is easily transposable, and
almost no modification is necessary. We provide a sketch of the proof in the Appendix.
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THEOREM 1.6
Small scalar field data give rise a bifurcate Cauchy horizon in the two-ended case.

Consider .M;g;�;F / a solution of Einstein–Maxwell–Klein–Gordon system (1.1),

(1.2), (1.3), (1.4), (1.5) arising from two-ended, spherically symmetric regular initial

data.

Assume moreover that the event horizon H
C settles quantitatively toward a

subextremal Reissner–Nordström event horizon and that the scalar field is small;
then there are no r D 0 singularities: S D ; and the Penrose diagram is given by

Figure 4 (i.e., a bifurcate Cauchy horizon CH
i
C
1

[ CH
i
C
2

closes off the space-time).

This result proves that it is imperative to consider the global structure of the
space-time for Theorem A to be valid, and, a fortiori, that there is no possible local
approach to proving Conjecture 1.3.

1.8. Method of the proof and outline of the paper

The proof of our main result, Theorem A, is by contradiction. We assume that the
Penrose diagram is given by Figure 1 (additionally, we may also have SiC ¤ ; as
in Figure 5; see Theorem 0 for a definition of SiC ), where CH iC features a weak
null singularity at an early time, and we derive a contradiction from these two facts.
In our approach, the main mechanism is the breakdown of weak null singularities;
the necessary occurrence of r D 0 singularities (i.e., S ¤ ;) is only obtained as an
indirect consequence (assuming the absence of “locally naked singularities,” i.e., S

1
� [

CH � [ S
2
� D ;), using the a priori result of Theorem 0.

Our methods are based on quantitative estimates involving the center of symme-
try � and the control of the Maxwell field by the Hawking mass. These estimates,
based on the nonlinear focusing properties of the Einstein equations in the pres-
ence of a weak null singularity, are proven on a causal rectangle with a top vertex
p D .u; v/ 2 A (A being the apparent horizon), a bottom vertex q 2 T (T being the
trapped region), and a left vertex on the center � (see Figure 5). As a consequence, we
prove that there exists a trapped ingoing null segment emanating from the top vertex
p.

Due to the geometry of the Penrose diagram given by Figure 1, there exist such
rectangles where p D .u; v/ 2 A is followed by an ingoing regular segment. This is
in contradiction with the consequence of the focusing estimates, which proves that
the Penrose diagram given by Figure 1, where CH iC is a weak null singularity, was
impossible in the first place.

We outline the rest of the paper. In Section 2, we lay out the geometric framework
and the equations in double null coordinates. Then we state precisely our results in
Section 3. In Section 4, we provide the proof of Theorem A (i.e., Theorem 3.1 and
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Figure 5. The causal rectangle J C.q/ \ J �.p/ on which we prove focusing estimates, where
p 2 A, q 2 T .

Theorem 3.2). In Section 5, we give the proof of Theorem B (i.e. Theorem 3.3), using
the main result of [39] that we recall. Finally, in the Appendix, we prove Theorem
1.6, implying that the two-ended case analogue of Conjecture 1.3 is false.

2. Geometric framework

The purpose of this section is to provide the precise setup, together with the definition
of various geometric quantities, the coordinates, and the equations that we will use
throughout the paper.

2.1. Spherically symmetric solution, as given by Theorem 0

From Theorem 0, we obtain .M;g;�;F /, a regular solution of the system (1.1), (1.2),
(1.3), (1.4), (1.5), where .M;g/ is a Lorentzian manifold of dimension 3 C 1, � is a
complex-valued function on M , and F is a real-valued 2-form on M .

.M;g;�;F / is related to a quadruplet of scalar functions ¹�2.u; v/; r.u; v/;

�.u; v/;Q.u; v/º, with .u; v/ 2 Q � R1C1 by

g D gQ C r2 �
�

d�2 C sin.�/2 d'2
�

D ��2.u; v/dudv C r2.u; v/ �
�

d�2 C sin.�/2 d'2
�

;

F .u; v/ D Q.u;v/

2r2.u; v/
�2.u; v/du ^ dv:

(2.1)

The domain Q � R2, called the Penrose diagram, is depicted in Figure 3 (for a choice
of .u; v/, see Remark 7, such that Q is a bounded subset of R2). Note that the bound-
ary components of Theorem 0 can be identified with intervals in R2 as
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iC D
®

.u�1; v1/
¯

;

CH iC D .u�1; uCH
iC

/ � ¹v1º;

SiC D ŒuCH
iC

; u.CH iC [ SiC// � ¹v1º;

b� D
®�

u.b�/; v.b�/
�¯

S
1
� D

®

u.b�/
¯

�
�

v.b�/; v.S1
�/

�

;

CH � D
®

u.b�/
¯

� Œv.S1
�/; v.S1

� [ CH�//;

S
2
� D

®

u.b�/
¯

� Œv.S1
� [ CH�/; v.S1

� [ CH� [ S
2
�//;

where all these intervals are bounded and possibly degenerate or empty (recall Theo-
rem 0 for the precise definition of these boundary components).

Remark 5

Note that the statement S ¤ ; (obtained under the assumptions of Theorem C) is
equivalent to u.CH iC [ SiC/ < u.b�/. The statement S

1
� [ CH � [ S

2
� [ S ¤ ;

appearing in Theorem A is equivalent to v.b�/ < v1.

One can now formulate the Einstein equations (1.1), (1.2), (1.3), (1.4), (1.5) as a
system of nonlinear PDEs on �2, r , �, and Q expressed in the double null coordinate
system .u; v/ 2 Q:

@u@v log.�2/ D �2<.Du�Dv�/ C �2

2r2
C 2@ur@vr

r2
� �2

r4
Q2; (2.2)

@u@vr D ��2

4r
� @ur@vr

r
C �2

4r3
Q2 C m2r

4
�2j�j2; (2.3)

DuDv� D �@vr � Du�

r
� @ur � Dv�

r
C iq0Q�2

4r2
� � m2�2

4
�; (2.4)

@uQ D �q0r2=.�Du�/; (2.5)

@vQ D q0r2=.�Dv�/; (2.6)

@u

�@ur

�2

�

D �r

�2
jDu�j2; (2.7)

@v

�@vr

�2

�

D �r

�2
jDv�j2; (2.8)

where the gauge derivative is defined by D� WD @� C iq0A�, and the electromagnetic
potential A� D Au du C Av dv satisfies

@uAv � @vAu D Q�2

2r2
: (2.9)
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Remark 6

(2.7) and (2.8) are the Raychaudhuri equations, and we will use this terminology in
the paper.

Remark 7

The double null coordinates .u; v/ are not unique and can be re-parametrized as du0 D
f1.u/du, dv0 D f2.v/dv for functions f1 > 0, f2 > 0. This procedure takes Q to a
different domain Q

0 but does not change the system of equations.

Subsequently, we define the Lorentzian gradient of r and introduce the mass ratio
� by the formula

1 � � WD gQ.rr;rr/;

where we recall that gQ is the radial part of g defined in (2.1). We can also define the
Hawking mass:

� WD � � r

2
D r

2
�
�

1 � gQ.rr;rr/
�

:

Notice that the .u; v/ coordinate system, we have gQ.rr;rr/ D �4@ur �@vr

�2 . We
can then define �:

� D @vr

1 � 2�
r

D ��2

4@ur
2 R[ ¹˙1º: (2.10)

Now we introduce the modified mass $ which involves the charge Q:

$ WD � C Q2

2r
D �r

2
C Q2

2r
: (2.11)

An elementary computation relates the previously quantities:

1 � 2�

r
D 1 � 2$

r
C Q2

r2
D �4@ur � @vr

�2
D ��1 � @vr: (2.12)

On the subextremal Reissner–Nordström space-time gRN of mass $ � M > 0 and
charge Q � e with 0 < jej < M , we denote rC D M C

p
M 2 � e2, the area-radius of

the event horizon H
C, its surface gravity 2KC WD 2

r2
C

.M � e2

rC
/ > 0, and r� D M �

p
M 2 � e2, the radius of the Cauchy horizon, its surface gravity 2K� WD 2

r2
�

.M �
e2

r�
/ < 0.

In view of the definition of new quantities �, �, one can derive new PDEs gov-
erning these quantities as reformulations of the system previously written. The first
two are variants of the ingoing Raychaudhuri equation (2.7):
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@u.��1/ D 4r

�2
jDu�j2; (2.13)

@u

�

log.��1/
�

D r

j@ur j jDu�j2: (2.14)

Next, we can derive two transport equations for the Hawking mass using (2.3), (2.13),
(2.8):

@u� D �2r2�2

@vr
jDu�j2 C

�m2

2
r2j�j2 C Q2

r2

�

� @ur; (2.15)

@v� D r2

2�
jDv�j2 C

�m2

2
r2j�j2 C Q2

r2

�

� @vr: (2.16)

Now we can reformulate our former equations to put them in a form that is
more convenient to use. For instance, the Klein–Gordon wave equation (2.4) can be

expressed in different ways, using the commutation relation ŒDu;Dv	 D iq0Q�2

2r2 :

Du.rDv�/ D �@vr � Du� C �2 � �

4r
� .iq0Q � m2r2/; (2.17)

Dv.rDu�/ D �@ur � Dv� � �2 � �

4r
� .iq0Q C m2r2/: (2.18)

We can also rewrite (2.2) and (2.3) as

@u@v log.r�2/ D �2

4r2
�
�

1 � 3Q2

r2
C m2r2j�j2 � 8r2<

�Du�

�2
� Dv

N�
��

; (2.19)

�@u@v

�r2

2

�

D @u.�r@vr/ D @v

�

r j@ur j
�

D �2

4
�
�

1 � Q2

r2
� m2r2j�j2

�

: (2.20)

2.2. One-ended smooth solutions and regularity conditions on �

In view of (2.1), we define � WD ¹.u; v/ 2 Q; r.u; v/ D 0º, the center of symmetry.
From Theorem 0, � ¤ ; is time-like.

The smoothness of the solution .M;g;�;F / imposes the following boundary
conditions for the geometric quantities:

ˇ

ˇgQ.rr;rr/j�

ˇ

ˇ < C1; j�jj� < C1; jF�� jj� < C1: (2.21)

The reader can check that the regularity condition (2.21) imposes in particular
the following boundary conditions, which are crucial in the present paper and follow
from Theorem 0:

�j� D 0; r�j� D 0; Qj� D 0: (2.22)

Notice (see Figure 3) also that every future directed ingoing ray must inter-
sect � . For a fixed v, we denote u�.v/, the u coordinate of the intersection point,
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.u�.v/; v/ 2 � . Notice also that every past directed outgoing ray inside the black hole
must intersect � . For a fixed u, we denote v�.u/, the v coordinate of the intersection
point, .u; v�.u// 2 � .

2.3. Trapped region and apparent horizon

We recall that it is assumed in Theorem 0 that there is no antitrapped surface in the
initial data, that is, @urj†0

< 0, and hence @ur < 0 in the whole space-time, as a
consequence of (2.13). In particular, � > 0 and @vr has the same sign as 1 � 2�

r
.

We define the trapped region T , the regular region R, and the apparent horizon
A as (see [27]):
(1) .u; v/ 2 T if and only if @vr.u; v/ < 0 if and only if 1 � 2�.u;v/

r.u;v/
< 0,

(2) .u; v/ 2 R if and only if @vr.u; v/ > 0 if and only if 1 � 2�.u;v/
r.u;v/

> 0,

(3) .u; v/ 2 A if and only if @vr.u; v/ D 0 if and only if 1 � 2�.u;v/
r.u;v/

D 0.
Note that the no antitrapped surface assumption of Theorem 0 implies, as rj� D 0,
that � � R.

2.4. Double null coordinate choice

We renormalize the coordinate v by the condition @vrjHC D 1 � 2�
jHC

r
jHC

, which is

equivalent by (2.12) to

�jHC � 1; (2.23)

v.p/ D 0; where ¹pº D H
C \ �: (2.24)

Note that the second condition is simply a normalization of v up to an additive con-
stant, a choice which leaves (2.23) invariant.

As for the choice of u coordinate, it is much less important because we will
always write estimates which are independent of the u coordinate choice. For con-
creteness, we introduce the following u-gauge:

u�.v/ D v: (2.25)

Note that by (2.24) we have H
C D ¹u D 0º.

For convenience, we will keep the notations of Section 2.1 for the boundary
components. Note, however, that under the coordinate choice 2.23, 2.25 we now
have u�1 D 0, v1 D C1, u.b�/ D C1, and .u; v/ 2 Q

0, where Q
0 � R2 is an

unbounded set in R2.

2.5. Electromagnetic gauge choice, and gauge invariant estimates

The system of equations (1.1), (1.2), (1.3), (1.4), (1.5) is invariant under the gauge
transformation:
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� ! e�iq0f �;

A ! A C df;

where f is a smooth real-valued function. By an easy computation, one can show that
the quantities j�j and jD��j are gauge invariant. We can then derive a gauge-invariant
estimate (see Lemma 2.1 in [38]): for all u1 < u2, v1 < v2,

j�j.u2; v/ 	 j�j.u1; v/ C
Z u2

u1

jDu�j.u0; v/du0;

j�j.u; v2/ 	 j�j.u; v1/ C
Z v2

v1

jDv�j.u; v0/ dv0:

In the present paper, we only use such gauge-invariant estimates, and we will not
involve A� in any computation.

3. Statement of the main results

We now give a precise statement of our theorems from Section 1.2 for space-times as
in Theorem 0.

3.1. Precise version of Theorem A

We start with a precise version of Theorem A, the main result of the paper.

THEOREM 3.1
For initial data as in Theorem 0, assume that there exists an outgoing future cone ema-

nating from .u1; v1/ 2 T and reaching CH iC on which � and Q obey the following

upper bounds: for all v � v1,

j�j.u1; v/ C jQj.u1; v/ 	 C �
ˇ

ˇlog.�/
ˇ

ˇ (3.1)

for some C > 0 and the Hawking mass � blows up

lim
v!C1

�.u1; v/ D C1: (3.2)

Then

S
1
� [ CH� [ S

2
� [ S ¤ ;:

In reality, Theorem 3.1 will be realized as a consequence of a more general theo-
rem, for which we replace the mass blowup by the more relaxed condition (3.3), and
we make the soft, but global, assumption that there exists a trapped neighborhood of
the Cauchy horizon, at least for sufficiently late times. While these assumptions can
seem obscure at first, we prove that they are both satisfied if (3.1) and (3.2) hold, so
the following theorem is more general than Theorem 3.1.
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THEOREM 3.2
For initial data as in Theorem 0, assume that CH iC ¤ ; and there exists .u1; v1/ 2
T , with .u1;C1/ 2 CH iC such that

Z C1

v1

�.u1; v/
�

1 C j�j2.u1; v/
�

dv < C1: (3.3)

Denoting u.CH iC [ SiC/, the u coordinate of the future endpoint of CH iC [ SiC ,

assume that there exists u0 < u.CH iC [SiC/ such that, for all u0 	 u < u.CH iC [
SiC/, there exists v.u/ such that .u; v.u// 2 T . Then

S
1
� [ CH� [ S

2
� [ S ¤ ;:

Remark 8

Theorem 3.2 is a result of independent interest, as its assumptions are a priori uncor-
related with the blowup (or the boundedness) of the Hawking mass; therefore we may
hope that they hold in various settings, in particular in the cosmological case where
the blowup of the mass is not expected generically.

As the integral of (3.3) is, in fact, the crucial quantity governing the problem, we
will first prove Theorem 3.2 in Section 4 and then deduce Theorem 3.1 in Section 4.6,
using the propagation of the Hawking mass blowup proven in [39].

3.2. Precise version of Theorem B

In the next theorem, we replace the integrability assumption (3.3) and the trapped
neighborhood assumption of Theorem 3.2 by a decay assumption on the event horizon
H

C (at the expected rates; see Section 1.2).

THEOREM 3.3
We normalize v by the gauge condition (2.23). For some s > 3

4
, we assume on H

C,

for all v � v0

j�jjHC.v/ C jDv�jjHC.v/ � v�s; (3.4)
Z C1

v

jDv�j2
jHC.v0/ dv0 � v�p (3.5)

for some 2s � 1 	 p 	 min¹2s; 6s � 3º. On the ingoing cone, we assume a red-shift

estimate

jDu�j.u; v0/ � j@ur j.u; v0/ (3.6)

for all u 	 u0. Additionally, assume that a subextremal Reissner–Nordström event

horizon is approached, that is, on H
C
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0 < lim sup
v!C1

jQjjHC.v/

rjHC.v/
< 1: (3.7)

Then

S
1
� [ CH� [ S

2
� [ S ¤ ;:

Remark 9

The decay rates that we assume for (3.4) and (3.5) are conjectured to hold in the black
hole exterior for generic Cauchy data (see Section 1.2.3). Red-shift bounds such as
(3.6) are also conjectured to hold and reflect the fact that the event horizon H

C is a
regular hypersurface for the black hole metric and that � is also regular across H

C.

4. Proof of Theorem 3.1 and Theorem 3.2

4.1. The strategy to prove Theorem 3.1 and Theorem 3.2

Theorem 3.1, with its stronger version Theorem 3.2, corresponds to Theorem A.
Before starting their proof, we give in this subsection an account of the strategy that
we use in the rest of Section 4.

4.1.1. The logic of the proof of Theorem 3.1 and Theorem 3.2

In this section, we outline the proof that, under the assumptions of Theorem 3.1 and
Theorem 3.2, S

1
� [ CH� [ S

2
� [ S ¤ ;. The proof is divided in three steps and

follows a contradiction argument. Nonetheless, it relies on constructive focusing esti-
mates (see Section 4.1.2) which are valid independently and subsist even after the
contradiction has been established.
(1) We consider focusing properties on a large class of causal rectangles with a

vertex on the center (Section 4.4).
We consider any causal rectangle of the form Œu1; u	 � Œv�.u/; v	 � Q

C, with
p D .u; v/ 2 A and q D .u1; v�.u// 2 T as in Figure 5.
Assuming that the following focusing condition holds on the ¹u1º � Œv�.u/; v	

side of the rectangle, for a small ı > 0,
Z v

v� .u/

�.u1; v0/ �
�

1 C j�j2.u1; v0/
�

dv0 	 ı; (4.1)

we prove that the ingoing segment emanating from .u; v/ is trapped, that is,
there exists 
 > 0 with .u;u C 
/ � ¹vº � T .

(2) We construct one rectangle with a vertex on the center, using the trapped

neighborhood assumption (Section 4.5).
For this step, we assume for now that there exists a neighborhood of the
Cauchy horizon CH iC in the trapped region.
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Then, we work by contradiction and assume that S
1
� [ CH� [ S

2
� [ S D ;.

Then, we essentially establish that a connected component of A must termi-
nate on b� , via a soft argument using the trapped neighborhood of CH iC

and the geometry resulting from S
1
� [ CH� [ S

2
� [ S D ; (see the Penrose

diagram of Figure 1).
As a result, we can construct one causal rectangle of the form Œu1; u	 �
Œv�.u/; v	, with .u; v/ 2 A and .u1; v�.u// 2 T , such that (4.1) holds—a con-
sequence of the blowup of the Hawking mass (1.6)—and yet .u;uC�/�¹vº �
R for some small � > 0. This constitutes a contradiction, using the result of
Step 1 that .u;u C 
/ � ¹vº � T for 
 > 0.

(3) We show the existence of a trapped neighborhood of CH iC from the blowup

of the Hawking mass (Section 4.6).

In this final step, we prove, independently of the contradiction argument, and
using (1.6), that there exists a trapped neighborhood of CH iC . This follows
from the propagation of the blowup of the Hawking mass over CH iC , a result
proven in [39]. Therefore, every outgoing cone over CH iC eventually satisfies
2�
r

> 1, and hence is trapped.

4.1.2. Novel focusing estimates, the key ingredient in the proof of Theorem 3.1

The proof of Theorem 3.1 and Theorem 3.2, in particular step 1, relies on focusing
estimates near the center, which are valid in any circumstance, independently of the
proof of Theorem A. As a consequence of these estimates, the Hawking mass controls
a very large flux of radiation. Thus, the charge, which is controlled by a smaller flux,
is dominated by the Hawking mass.
(1) The Hawking mass � controls an exponential flux of radiation.

In the regular region R, the combination of (2.14) with (2.16) gives a focusing
estimate as follows (ignoring for now the r weights).
� Integrating (2.14) in u gives an estimate of the schematic form

j�j2 � log.��1/: (4.2)

� Using (4.2), (2.16) gives an estimate of the schematic form

@v� � ej�j2 � jDv�j2: (4.3)

� Integrating (4.3) in v from6 the center where � D 0 shows that an expo-
nential flux of radiation is controlled by �.

Note that we omitted various terms, some depending on the data on the outgo-
ing cone ¹u1º � Œv1; vmax	, and r factors. The main novel ingredient through
which we obtain this control is an a priori radiation flux estimate (see (4.6)).

6Note that the entire domain of integration is contained in the regular region R; see Section 2.1 for more details.
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(2) The charge Q is dominated by the Hawking mass �.

By the Maxwell equation (2.6), we also have an estimate on the charge Q of
the following form, using also (4.3),

j@vQj � j�j � jDv�j 
 @v�;

which we integrate from the center where Q D 0 and � D 0. Thus, the charge
is dominated by the Hawking mass

jQj.u; v/ 
 �.u; v/:

(3) We exploit the focusing of the Einstein equations in the trapped region.

In fact, the actual estimate which is obtained in step 1 is of the more specific
form:

jQj.u; v/ � �.u; v/ �
Z C1

v� .u/

� �
�

1 C j�j2.u1; v0/
�

dv0:

From the fact that .u; v/ is in the regular region/apparent horizon, �.u; v/ 	
2r.u; v/ (see Section 2). Moreover, for any small ı > 0, there exists v large
enough such that (4.1) is valid, using the blowup assumption (1.6).
Thus, combining the three inequalities, one can deduce that jQj.u; v/ 	
C.M;e; q0;m2/ � ı � r.u; v/ < r.u; v/, which then implies in the massless
m2 D 0 case, from (2.20) and for v large enough, with .u; v/ in the regular
region,

@u.r@vr/.u; v/ < 0: (4.4)

In turn, if .u; v/ 2 A, this estimate directly implies that .u;u C 
/ � ¹vº � T

for some small 
 > 0.
This is essentially the content of Theorem 4.4 with an estimate of the charge

proven Lemma 4.5. The massive case m2 ¤ 0 can be also be treated: we then need an
additional estimate for the massive term provided by Lemma 4.6.

4.2. Two elementary calculus lemmata

We start with two elementary computations, stated here for convenience. The first
one is simply a one-dimensional functional inequality, which is important to handle
the potential blowup in (4.6). The second one is a simple second order polynomial
equation, which is useful to sort out the right smallness of ı required to apply Theorem
4.4 and Lemma 4.6.

LEMMA 4.1
Assume that for some u > u1, v > v1, ¹uº � Œv1; v	 � R [ A, and ¹u1º � Œv1; v	 �
T [ A.
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Then, defining r1 WD r.u1; v1/ > 0, for all nonnegative functions f , we have the

following estimate:

Z v

v1

r.u; v0/ log
� r�1.u; v0/

r�1.u1; v0/

�

f .u; v0/ dv0 	 r1

Z v

v1

f .u; v0/ dv0: (4.5)

Proof

Since ¹u1º � Œv1; v	 � T [ A, r.u1; v0/ 	 r1 for all v1 	 v0 	 v, and since @ur 	
0, r.u; v/ 	 r.u1; v/ 	 r1. Also, since ¹uº � Œv1; v	 � R [ A, for all v1 	 v0 	 v,
r.u; v0/ 	 r.u; v/ 	 r1.

As a consequence of the inequalities, we have the estimate defining x.v0/ D
r.u;v0/

r1
2 .0; 1	, for all v1 	 v0 	 v:

r.u; v0/ log
� r�1.u; v0/

r�1.u1; v0/

�

	 r1 � r.u; v0/

r1

log
� r1

r.u; v0/

�

D r1 � x log.x�1/:

The function x ! x log.x�1/ is increasing on .0; e�1/ and decreasing on
.e�1; 1	, with a maximum at x D e�1, whose value is e�1 	 1. This gives (4.5)
immediately.

LEMMA 4.2
If 0 < ı < 1

32m2r1.1Cm2r2
1

/
, then

m2 �
q

8r3
1 � ı �

�

1 C

s

2ı

r1

�

<
1

2
:

Proof

Set y D
q

2ı
r1

. If y˙ are the roots of the polynomial second degree equation

y.1 C y/ D 1

4m2r2
1

, we must obtain y < yC. We see by standard methods that

yC D �1C

q

1Cm�2r�2
1

2
D m�2r�2

1

2.1C

q

1Cm�2r�2
1

/
� m�2r�2

1

4

q

1Cm�2r�2
1

.

Therefore, it is sufficient that y D
q

2ı
r1

< 1

4m2r2
1

q

1Cm�2r�2
1

or, equivalently, ı <

1

32m2r1.1Cm2r2
1

/
.

4.3. An ingoing a priori estimate on � in the entire space-time

Now, we establish a elementary focusing estimate, which relates the scalar field to the
flux of ingoing radiation, quantified by �, only using the Raychaudhuri equation. This
estimate is important for Section 4.4.
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LEMMA 4.3
For all v 2 R, u1 	 u 	 u�.v/, the following estimate is true:

j�j2.u; v/ 	 2j�j2.u1; v/ C 2 log
� ��1.u; v/

��1.u1; v/

�

� log
� r�1.u; v/

r�1.u1; v/

�

: (4.6)

Proof

We estimate �.u; v/ with respect to �.u1; v/. Using Cauchy–Schwarz and the ingoing
Raychaudhuri equation (2.14),

j�j.u; v/ 	 j�j.u1; v/ C
Z u

u1

jDu�j.u0; v/du0

	 j�j.u1; v/ C
�

Z u

u1

r jDu�j2
j@ur j .u0; v/du0

�
1
2
�

Z u

u1

j@ur j
r

.u0; v/du0
�

1
2

	 j�j.u1; v/ C
�

log
� ��1.u; v/

��1.u1; v/

��
1
2 �

�

log
� r�1.u; v/

r�1.u1; v/

��
1
2

;

an estimate we can square, using .a C b/2 	 2a2 C 2b2, which immediately gives
(4.6).

4.4. The key estimate on a late rectangle with a vertex on the center

Now, we get to the heart of the proof of Theorem 3.2. We establish focusing esti-
mates, which will later be revealed, in Section 4.5, to be incompatible with the Cauchy
horizon closing off the space-time. We will work on causal rectangles of the form
J �.p/ \ J C.q/, as in Figure 5, for p D .u; v/ 2 A and q D .u1; v�.u// 2 T [ A.

THEOREM 4.4
Let .u; v/ 2 A. We define the area-radius of the past vertex r1 WD r.u1; v�.u//. We

make the following assumptions on the causal rectangle J �.p/ \ J C.q/ D Œu1; u	 �
Œv�.u/; v	 for p D .u; v/ and q D .u1; v�.u//, as in Figure 5:

(1) .u1; v�.u// 2 T [ A; therefore for all v�.u/ 	 v0 	 v, .u1; v0/ 2 T [ A.

(2) For all v�.u/ 	 v0 < v, .u; v0/ 2 R [ A.

(3) We have the following (gauge invariant) estimate on the past outgoing bound-

ary of the rectangle:

Z v

v� .u/

�.u1; v0/ �
�

1 C j�j2.u1; v0/
�

dv0 	 ı: (4.7)

Then there exists ı1.q0;m2; r1/ > 0, which we can choose to be ı1 D min¹ 1

4q2
0

r1
;

1

32m2r1.1Cm2r2
1

/
º such that, if ı 	 ı1, we have @u.r@vr/.u; v/ < 0. Therefore, a small
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future ingoing segment emanating from .u; v/ is included in the trapped region; there

exists 
 > 0 such that .u;u C 
/ � ¹vº � T .

We start with the main ingredient of the proof of Theorem 4.4: the control of
the charge, in particular near the center. The following lemma is probably the most
important result in the present paper.

LEMMA 4.5
Under the assumption of Theorem 4.4, we have the following estimate at the top vertex

.u; v/:

Q2

r2
.u; v/ 	 2r1 � q2

0 � ı <
1

2
; (4.8)

where for the last inequality, we chose ı < 1

4r1�q2
0

.

Proof

Using (2.6), we have j@vQj 	 jq0j � r2 � j�j � jDv�j, which we integrate on ¹uº �
Œv�.u/; v	, in the notations of Theorem 4.4. Using the fact that Q.u;v�.u// D 0 and
the Cauchy–Schwarz inequality, we get

jQj.u; v/ 	 jq0j
Z v

v� .u/

r2j�jjDv�j.u; v0/ dv0

	 jq0j
�

Z v

v� .u/

r2

2�
jDv�j2

�
1
2
�

Z v

v� .u/

2r2�j�j2.u; v0/ dv0
�

1
2

: (4.9)

Since ¹uº � Œv�.u/; v	 � R [ A by assumption, @vr.u; v0/ � 0 for all v0 2 Œv�.u/; v	.
Thus, by (2.16), we have r2

2�
jDv�j2.u; v0/ 	 @v�.u; v0/ for all v0 2 Œv�.u/; v	; hence,

combining with (4.9) and using �.u; v�.u// � 0, we get

jQj.u; v/ 	 jq0j
Z v

v� .u/

r2j�jjDv�j.u; v0/ dv0

	 jq0j � �
1
2 .u; v/ �

�

Z v

v� .u/

2r2�j�j2.u; v0/ dv0
�

1
2

: (4.10)



THE BREAKDOWN OF WEAK NULL SINGULARITIES INSIDE BLACK HOLES 2991

Now we estimate the term under the square-root, using (4.6) to control j�j2.u; v0/:
Z v

v� .u/

2r2�j�j2.u; v0/ dv0

	 2r.u; v/

Z v

v� .u/

r�j�j2.u; v0/ dv0

	 4r.u; v/

Z v

v� .u/

r.u; v0/�.u; v0/j�j2.u1; v0/ dv0

C 4r.u; v/

Z v

v� .u/

r.u; v0/ log
� r�1.u; v0/

r�1.u1; v0/

�

�.u; v0/ log
� ��1.u; v0/

��1.u1; v0/

�

dv0

	 4r1 � r.u; v/ �
�

Z v

v� .u/

�.u1; v0/j�j2.u1; v0/ dv0

C
Z v

v� .u/

�.u; v0/ � log
� ��1.u; v0/

��1.u1; v0/

�

dv0
�

;

where we used r.u; v0/ 	 r.u; v/ for the first inequality (since ¹uº � Œv�.u/; v	 �
R [ A) and for the last inequality, r.u; v0/ 	 r1 for the first term (since r.u; v/ 	 r1,

see the proof of Lemma 4.1), and (4.5) with f .v0/ D �.u; v0/ log. ��1.u;v0/

��1.u1;v0/
/ for the

second term.
Now, notice that f .v0/ D �.u1; v0/ � log.x/

x
for x D ��1.u;v0/

��1.u1;v0/
. Then, we use the

fact that log.x/
x

	 e�1 	 1 for any x 2 Œ1;C1/, applied to x D ��1.u;v0/

��1.u1;v0/
� 1. There-

fore,
Z v

v� .u/

2r2�j�j2.u; v0/ dv0

	 2r.u; v/

Z v

v� .u/

r�j�j2.u; v0/ dv0

	 4r1 � r.u; v/ �
Z v

v� .u/

�.u1; v0/
�

1 C j�j2.u1; v0/
�

dv0

	 4r1 � ı � r.u; v/; (4.11)

where we used (4.7) in the last inequality. Thus, squaring (4.10) and dividing by r2,
we get

Q2.u; v/

r2.u; v/
	 q2

0

.
R v

v� .u/ r2j�jjDv�j.u; v0/ dv0/2

r2.u; v/
	 q2

0 � �.u; v/ � 4r1ı

r.u; v/

D 2r1 � ı � q2
0 � 2�.u; v/

r.u; v/
D 2r1 � ı � q2

0 ; (4.12)
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where for the last inequality, we used 2�.u;v/
r.u;v/

D 1 since .u; v/ 2 A. This concludes
the proof.

In particular, Lemma 4.5 provides immediately a proof of Theorem 4.4 in the
massless case m2 D 0, as in this case, we see by (2.20) that @u.r@vr/.u; v/ D
��2

4
.1 � Q2

r2 /.u; v/ < ��2.u;v/
8

< 0 since �2.u; v/ > 0.
Now, we turn to the crucial estimate to handle the massive term when m2 ¤ 0.

LEMMA 4.6
Under the assumption of Theorem 4.4, we have the following estimate in the top vertex

.u; v/:

m2r2j�j2.u; v/ 	 m2 �
q

8r3
1 � ı �

�

1 C

s

2ı

r1

�

<
1

2
; (4.13)

where for the last inequality, we took ı < 1

32m2r1.1Cm2r2
1

/
.

Proof

We integrate @v.r2j�j2/ on ¹uº� Œv�.u/; v	. Using the fact that r2j�j2.u; v�.u// D 0,
we get

r2j�j2.u; v/ 	 2

Z v

v� .u/

r2j�jjDv�j.u; v0/ dv0 C 2

Z v

v� .u/

r@vr j�j2.u; v0/ dv0;

where we used the identity @v.j�j2/ D 2<. N�Dv�/. For the first term, we use (4.12),
which we proved in Lemma 4.5, and for the second term, we use the inequality
@vr.u; v0/ D .1� 2�

r
/�.u; v0/ 	 �.u; v0/, which holds for all v�.u/ 	 v0 	 v by (2.12)

and because ¹uº � Œv�.u/; v	 � R, and hence @vr.u; v0/ � 0. Thus, we get

r2j�j2.u; v/ 	 2
p

2 � p
r1 � r.u; v/ �

p
ı C 2

Z v

v� .u/

r�j�j2.u; v0/ dv0

	 r
3
2

1 �
p

8ı C 2

Z v

v� .u/

r�j�j2.u; v0/ dv0;

and we already proved (see (4.11)) that 2
R v

v� .u/
r�j�j2.u; v0/ dv0 	 4r1 � ı. Thus,

combining everything,

m2r2j�j2.u; v/ 	 m2 �
q

8r3
1 � ı �

�

1 C

s

2ı

r1

�

<
1

2
;

where we chose ı < 1

32m2r1.1Cm2r2
1

/
for the last estimate, by Lemma 4.2. This con-

cludes the proof.
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In the case m2 ¤ 0, choosing ı < ı1 with ı1 defined in the statement of Theorem
4.4, the combination of Lemma 4.5 and Lemma 4.6 concludes the proof of Theorem

4.4 since we have @u.r@vr/.u; v/ D ��2

4
.1� Q2

r2 �m2r2j�j2/.u; v/ < 0 by (2.20). To
finish the proof, notice that u ! r@vr.u; v/ is a C 1 function on Œu;u�.v//, and since
r@vr.u; v/ D 0, there exists 
 > 0 such that for all u0 2 .u;u C 
/, r@vr.u0; v/ < 0;
thus @vr.u0; v/ < 0, which proves that .u;u C 
/ � ¹vº � T .

4.5. Existence of arbitrarily late half-diamonds in the regular region

We start with a geometric result. We construct half-diamonds with specific causal
properties, and on which we will later apply the key estimate of Section 4.4. To carry
out this construction, we work by contradiction, assuming that S

1
� [CH� [S

2
� [S D

; (i.e., we assume by contradiction that the Cauchy horizon closes off the space-time
in b� as depicted in Figure 1).

PROPOSITION 4.7
Assume, as in Theorem 3.2, that there exists u0 < u.CH iC [ SiC/ such that, for all

u 2 Œu0; u.CH iC [ SiC//, there exists v.u/ such that .u; v.u// 2 T . Assume also

S
1
� [ CH� [ S

2
� [ S D ;.

Then, for all v � v.u0/, there exists uAC.v/ 2 Œu0; u�.v// such that .uAC.v/;

v/ 2 A and:

(1) The future ingoing cone emanating from .uAC.v/; v/ lies in the regular region

(i.e., .uAC.v/; u�.v/	 � ¹vº � R).

(2) The past outgoing cone emanating from .uAC.v/; v/ lies in the marginally

regular region (i.e., ¹uAC.v/º � Œv�.uAC.v//; v	 � R [ A).

(3) .uAC.v/; v/ approaches b� as v ! C1. Denoting u.b�/, the u coordinate

of b� , we have

lim
v!C1

uAC.v/ D u.b�/: (4.14)

Therefore, we also have, given that � is time-like (cf. Figure 1),

lim
v!C1

v�

�

uAC.v/
�

D C1: (4.15)

Proof

By assumption, CH iC [SiC ¤ ; and, since S
1
� [CH� [S

2
� [S D ;, then u.b�/ D

u.CH iC [ SiC/. By the trapped neighborhood assumption, for all u0 	 u < u.b�/,
there exists v.u/ such that .u; v.u// 2 T , and therefore, by the monotonicity of the
Raychaudhuri equation (2.8), ¹uº � Œv.u/;C1/ � T .

For any v � v.u0/, we know that .u0; v/ 2 T . Also .u�.v/; v/ 2 � � R, so
because u ! @vr.u; v/ is continuous on Œu0; u�.v/	, there exists u0 2 .u0; u�.v//
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Figure 6. Illustration of the proof of Proposition 4.7.

such that @vr.u0; v/ D 0 by the intermediate value theorem. Hence .u0; v/ 2 A.
Define uAC.v/ WD max¹u0 2 .u0; u�.v//; @vr.u0; v/ D 0º. By continuity, uAC.v/

is well defined and .uAC.v/; v/ 2 A. By definition (and continuity again), for all
u0 2 .uAC.v/; u�.v/	, @vr.u0; v/ > 0; thus .uAC.v/; u�.v/	 � ¹vº � R.

v ! uAC.v/ is a nondecreasing function with values on Œu0; u.b�/	. Indeed, if
v < v0, then by the monotonicity of the Raychaudhuri equation (2.8), @vr.uAC.v/;

v0/ 	 0; thus uAC.v/ 	 uAC.v0/. This means that uAC.v/ converges to a limit value
ul 2 Œu0; u.b�/	 as v ! C1. We claim that ul D u.b�/. If not, then the region ¹u >

ul ; v � v.u0/º � R by definition, obviously contradicting the trapped neighborhood
assumption.

Therefore, we chose u D uAC.v/ and the claims 1 and 3 are satisfied, and only
claim 2 remains.

For claim 2, notice that ¹uAC.v/º � Œv�.u/; v	 � R [ A, using again the mono-
tonicity of the Raychaudhuri equation (2.8).

Now, combining Theorem 4.4 and Proposition 4.7, we prove Theorem 3.2.

COROLLARY 4.8
Assume, as in Theorem 3.2, that there exists .u1; v1/ 2 T with .u1;C1/ 2 CH iC

such that
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Z C1

v1

�.u1; v/
�

1 C j�j2.u1; v/
�

dv < C1;

and that there exists u0 < u.CH iC [ SiC/ such that, for all u0 	 u < u.CH iC [
SiC/, there exists v.u/ such that .u; v.u// 2 T . Then S

1
� [ CH� [ S

2
� [ S ¤ ;.

Proof

First, define r1 D r.u1; v1/ and then ı1.q0;m2; r1/ by the expression given in the
statement of Theorem 4.4. Using the integrability assumption, we see that there exists
v0 > v1 large enough such that, if v � v0,

Z C1

v

�.u1; v/
�

1 C j�j2.u1; v/
�

dv < ı1.q0;m2; r1/:

Then we proceed by contradiction. Assume that S
1
� [CH� [S

2
� [S D ;. Then,

for all v > v0 large enough (recall that v0 is defined right above), by Proposition
4.7, there exists uA.v/ > u1 such that .uA.v/; v/ 2 A, Œu;u�.v/	 � ¹vº � R, ¹uº �
Œv�.u/; v	 � R [ A and v�.u/ > v1 (i.e., a causal rectangle J �.p/ \ J C.q/ as in
Figure 5) with p D .u; v/, q D .u1; v�.u//.

We choose such a V > v0 > v1 large enough so that v�.uA.V // > v0 > v1 (this
is possible by the Claim 3 of Proposition 4.7). Therefore, we have in particular that

Z C1

v� .uA.V //

�.u1; v/
�

1 C j�j2.u1; v/
�

dv < ı1.q0;m2; r1/:

Notice also that r.u1; v�.uA.V /// 	 r1 as v�.uA.V // > v1 and ¹u1º �
Œv1;1/ � T ; thus, ı1.q0;m2; r1/ 	 ı1.q0;m2; r.u1; v�.uA.V //// as x ! ı1.q0;m2;

x/ is a decreasing function, which also implies that

Z C1

v� .uA.V //

�.u1; v/
�

1 C j�j2.u1; v/
�

dv < ı1

�

q0;m2; r
�

u1; v�

�

uA.V /
���

:

Thus, the assumptions of Theorem 4.4 are satisfied on the rectangle Œu1; u	 �
Œv�.u/;V 	.

Hence .u;u C 
/ � ¹V º � T , which contradicts .u;u�.V /	 � ¹V º � R, and the
corollary is proven.

The proof of Corollary 4.8 thus also concludes the proof of Theorem 3.2.

4.6. Proof of Theorem 3.1 and propagation of the mass blowup

We now start with the stronger assumptions of Theorem 3.1. We will simply prove
that those assumptions imply the assumptions of Theorem 3.2, which we can then
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apply. For this, we need to use a result from [39], which propagates the blowup of the
Hawking mass, provided that � and Q are controlled.

LEMMA 4.9 (Propagation of the Hawking mass blowup, [39])
If there exists u1 < uCH

iC
(recall the definition of uCH

iC
from Section 2.1) such that

lim
v!C1

�.u1; v/ D C1;

v1 2 R large enough, and a constant D > 0 such that for all v � v1,

j�j2.u1; v/ C jQj.u1; v/ 	 D �
ˇ

ˇlog.�/
ˇ

ˇ.u1; v/; (4.16)

then, for all u1 	 u2 < uCH
iC

,

lim
v!C1

�.u2; v/ D C1:

Thus, for all u1 	 u < uCH
iC

, there exists v.u/ such that .u; v.u// 2 T .

Proof

This statement is proven in [39], but we give a streamlined version of the argument
for the benefit of the reader.

First, fix u2 < uCH
iC

. Note that, by definition (see Theorem 0), for v1 large

enough, there exist constants 0 < r�
0 < rC

0 such that r�
0 < r.u; v/ < rC

0 for all .u; v/ 2
Œu1; u2	 � Œv1;C1	. Fix ˛ D 1

4
and 
0 > 
 > 0; we bootstrap in the region Œu1; uB 	 �

Œv1;C1/ and uB 2 Œu1; u2	:

j�j2 C Q2 	 �2˛; (4.17)

�@vr

�2
� 
: (4.18)

From the assumptions of the lemma and (2.8), it is clear that the set of space-time
points at which (4.17) and (4.18) are true is nonempty for a small 
 > 0 and taking v1

larger if necessary.
Then, using (2.15) together with bootstrap (4.17), we have for some C 0.C;M;e;

m2; rC
0 ; r�

0 / > 0 that

@u� � 2r2�2

�@vr
jDu�j2 � C 0 � �2˛ � j@ur j � �C 0 � �2˛ � j@ur j;

where for the last lower bound we just used �@vr

�2 � 0, as a soft consequence of (4.18).
Since 0 < ˛ < 1

2
, it is clear that

@u.�1�2˛/.u; v/ � �.1 � 2˛/ � C 0 � j@ur j.u; v/:
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Thus integrating, we get that for all .u; v/ 2 Œu1; uB 	 � Œv1;C1/,

�1�2˛.u; v/ � �1�2˛.u1; v/ � .1 � 2˛/C 0 � r.u1; v/

� �1�2˛.u1; v/ � .1 � 2˛/C 0 � rC.M; e/

� �1�2˛.u1; v/ � C 00;

where C 00.C;M;e;m2; rC
0 ; r�

0 / > 0. Note that to get the second inequality we have
used r.u1; v/ 	 r.0; v/ D rjHC.v/ 	 rC.M; e/. From there, we get

�.u; v/ � �.u1; v/ �
�

1 � C 00 � �2˛�1.u1; v/
�

1
1�2˛ :

Now, remembering that limv!C1 �.u1; v/ D C1 and Taylor-expanding gives us the
following inequality, since 2˛ � 1 < 0, for some C 000 > 0,

�.u; v/ � �.u1; v/ �
�

1 � C 000 � �2˛�1.u1; v/
�

: (4.19)

From this we obtain the blowup of the mass. Thus, there exists v0
1 > v1

such that for all u1 	 u 	 uB , v � v0
1, 2�.u; v/ > rC; thus .u; v/ 2 T . There-

fore, by (2.8), �@vr

�2 .u; v/ � 
1 > 0 for all v � v0
1 and u1 	 u 	 uB , defining


1 WD supu2Œu1;u2	
�@vr

�2 .u; v0
1/. Thus we retrieve bootstrap (4.18) if 0 < 
 < 
1.

Now we need to retrieve bootstrap (4.17). For this, consider (2.15) and write,
under bootstrap (4.17) and (4.18),

r2 � j@vr j
2�2

� jDu�j2.u; v/ 	 C 0 � j@ur j�2˛.u; v/ C @u�.u; v/;

which is also equivalent, using (2.12), to

r jDu�j2
2j@ur j .u; v/ 	 C 0 � j@ur j�2˛.u; v/

2�.u; v/ � r.u; v/
C @u�.u; v/

2�.u; v/ � r.u; v/

	 C 0 � j@ur j��1C2˛.u; v/ C @u log.�/.u; v/; (4.20)

where we have used 2�.u; v/ � r.u; v/ � �.u; v/ on Œu1; uB 	 � Œv1;C1	 for v1 large
enough, since � tends to C1.

Thus, we get, integrating (4.20) and using (4.19), that for all u1 	 u 	 uB ,

Z u

u1

r jDu�j2
2j@ur j .u0; v/du0 � ��1C2˛.u1; v/ C log

� �.u; v/

�.u1; v/

�

: (4.21)

We can now use Cauchy–Schwarz to estimate � as follows:
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ˇ

ˇ�.u; v/ � e
�iq0

R u
u1

Au.u0;v/du0

�.u1; v/
ˇ

ˇ

	
Z u

u1

jDu�j.u0; v/du0

	
�

Z u

u1

r jDu�j2
2j@ur j .u0; v/du0

�
1
2
�

Z u

u1

2j@ur j
r

.u0; v/du0
�

1
2

; (4.22)

which gives, combining (4.21) and (4.22),

j�j.u; v/ � j�j.u1; v/ C
�

log
� �.u; v/

�.u1; v/

��
1
2

� log
�

�.u; v/
�

1
2 ;

where we used (4.16) and (4.19). A similar estimate is true for Q, using (2.5) so we
get for some constant C > 0 (independent of v1) and for all u1 	 u 	 u2, v � v1,

j�j2.u; v/ C Q2.u; v/ 	 C log
�

�.u; v/
�

:

Since limv!C1 log.�/��2˛.u; v/ D 0, and taking v1 larger if necessary, we have
improved bootstrap (4.17), which concludes the proof.

Later, we will use this lemma to obtain a trapped neighborhood of CH iC . Now
we prove Theorem 3.1.

COROLLARY 4.10
For initial data as in Theorem 0, assume that there exists an outgoing future cone

emanating from .u1; v1/ 2 T with .u1;C1/ 2 CH iC and C > 0 such that for all

v � v1,

j�j.u1; v/ C jQj.u1; v/ 	 C �
ˇ

ˇlog.�/
ˇ

ˇ; (4.23)

and the Hawking mass blows up:

lim
v!C1

�.u1; v/ D C1: (4.24)

Then (3.3) is satisfied, and there exists u0 < u.CH iC [ SiC/ such that, for all u0 	
u < u.CH iC [ SiC/, there exists v.u/ such that .u; v.u// 2 T .

Proof

To prove (3.3), we use (2.12) as � D j@vr j
2�
r �1

. Then we get, using (4.23), that

� �
�

1 C j�j2
�

	 j@vr j � 1 C C 2 � Œlog.�/	2

2�
r

� 1
;
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and by (4.24), there exists C 0 > 0 such that

1 C C 2 � Œlog.�.u1; v//	2

2�.u1;v/
r

� 1
	 C 0

for all v large enough. Then, we have

Z C1

v1

� �
�

1 C j�j2
�

.u1; v0/ dv0 	 C 0

Z C1

v1

.�@vr/.u1; v0/ dv0

	 C 0 � r.u1; v1/ < C1:

For the trapped neighborhood, we divide the proof in two cases. If SiC D ;
(recall the definition of SiC from Theorem 0), then for all u < uCH

iC
, there exists

v.u/ such that .u; v.u// 2 T by Lemma 4.9 and uCH
iC

D u.CH iC [ SiC/, so there
is nothing more to do. If SiC ¤ ;, for every uCH

iC
< u < u.CH iC [ SiC/,

r.u; v/ ! 0 as v ! C1. Since for all .u; v/ 2 Q
C � � , r.u; v/ > 0, ¹uº �

Œv0;C1/ � R [ A for any v0 > v�.u/, so there exists v.u/ such that .u; v.u// 2 T ,
which concludes the proof, choosing u0 > uCH

iC
.

Thus, the assumptions of Theorem 3.2 are satisfied, and this concludes the proof
of Theorem 3.1.

5. Proof of Theorem 3.3

5.1. The logic of the proof of Theorem 3.3

In this section, we state three more steps to prove Theorem 3.3, using Theorem 3.1.
Thus, we only assume polynomial decay of the scalar field on the event horizon. This
allows us to invoke a result from [39] which proves that there exists a neighborhood of
CH iC [ SiC inside the trapped region and that, moreover, either (1.6) is satisfied, or
CH iC is “of static type,” meaning it is an isometric copy of the Reissner–Nordström
Cauchy horizon (step 1). Then, we prove that a static type CH iC cannot be connected
to SiC (step 2) or to b� (step 3), which is sufficient to obtain the conclusion S

1
� [

CH � [ S
2
� [ S ¤ ;. (Recall that all these boundary components and their notations

were defined in Theorem 0.)
(1) Starting from assumptions on the event horizon: the dichotomy of [39] (Sec-

tion 5.2).

We use the main result of [39]: under the assumptions on the event horizon
stated in Theorem 3.3, there exists a trapped neighborhood of CH iC [ SiC ,
and one can classify the Cauchy horizon CH iC :
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(a) CH iC is of static type: then �, r � r�.M; e/, Q � e, $ � M extend
to zero on CH iC , meaning that CH iC is an isometric copy of the
Reissner–Nordström Cauchy horizon with parameters M and e.

(b) CH iC is of dynamical type: for all outgoing light cone ¹uº� Œv0;C1/

to the future of the event horizon we have the following asymptotic
estimates, in the gauge (2.23) and for v0 large enough:

�.u; v/ � C.u/ � e�˛.M;e/�v; (5.1)

j�j.u; v/ � C.u/ � v: (5.2)

(c) CH iC is of mixed type: there exists an outgoing light cone ¹u1º �
Œv0;C1/ such that the asymptotic estimates (5.1) and (5.2) are true on
any outgoing light cone to the future of ¹u1º � Œv0;C1/.

Now, either possibility 1b or possibility 1c hold, in which case there exists a
trapped outgoing cone on which (3.1), (3.2) are true and thus S

1
� [ CH� [

S
2
� [ S ¤ ; by Theorem 3.1; or possibility 1a holds, and the Cauchy horizon

CH iC is of static type. The rest of the discussion will thus focus on the case
where CH iC is of static type.
In the rest of the proof, we establish, using radically different techniques, that
in the latter case [possibility 1a], S

1
� [ CH� [ S

2
� [ S ¤ ; is still true. The

core of the argument relies on the impossibility to connect a static Cauchy
horizon to the other boundary components in presence when S

1
� [ CH� [

S
2
� [ S D ;.

(2) Impossibility to connect a static CH iC to a nontrivial SiC (Section 5.3 as

well).

We establish that, if CH iC is of static type, SiC D ;. This follows from a
more general result (cf. Corollary 5.4 and Remark 10) that we establish: if
there exists a trapped neighborhood of the endpoint of CH iC and SiC ¤ ;,
then the area-radius r must extend to a continuous function on that neigh-
borhood, including at the endpoint where r D 0. The continuity of r results
from the wave equation (2.20) with a regular right-hand side (because we are
in the trapped region) and the propagation of singularities. This is incompat-
ible with a static Cauchy horizon, on which r is a strictly positive constant:
r � r�.M; e/ > 0.
To complete the proof, the remaining task is to show, using a standard boot-
strap method, that there exists a trapped neighborhood of the endpoint of
CH iC if CH iC is of static type (Proposition 5.3).

(3) Impossibility to connect a static CH iC to b� (Section 5.3).

To conclude the argument, we must show that it is impossible to have S
1
� [

CH� [S
2
� [S [SiC D ; and CH iC of static type. This follows directly from
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the estimates of Proposition 5.3, which in particular conclude that there exists
a space-time rectangle below the Cauchy horizon where r is lower bounded,
which is incompatible with the presence of a center � where r D 0.

5.2. The classification of the Cauchy horizon proven in [39]

Now, we set the preliminaries to the proof of Theorem 3.3. For this, we recall a the-
orem proven in [39], under the same assumptions as Theorem 3.3: the main result is
precisely the existence of a trapped neighborhood of CH iC together with some rigid-
ity results, which are related to the blowup or the finiteness of the Hawking mass.

THEOREM 5.1 (Classification of the Cauchy horizon (Theorem 3.5 of [39]))
Under the assumptions of Theorem 3.3, CH iC ¤ ; and there exists a neighborhood

of CH iC inside the trapped region: for all u < uCH
iC

, there exists v.u/ 2 R such

that ¹uº � Œv.u/;C1/ � T . Moreover, there is an alternative between two possibili-

ties:

(1) CH iC is of dynamical or mixed type in the language of [39] and, as a conse-

quence, there exists u1 < uCH
iC

, ˛.M;e/ > 0, C.u1/ > 0, v1 > 0 such that

.u1; v1/ 2 T and for all v � v1:

�.u1; v/ 	 C � e�˛v; (5.3)

j�j.u1; v/ 	 C � v1�s: (5.4)

In particular, (3.3) and the other assumptions of Theorem 3.2 are satisfied.

(2) CH iC is of static type in the language of [39]; then r � r�.e;M/, �, Du�,

$ � M , Q � e, @v log.�2/ � 2K� all extend continuously to 0 on CH iC ,

where 2K�.M; e/ WD 2
r2

�
ŒM � e2

r�
	 < 0 is the surface gravity of the Reissner–

Nordström Cauchy horizon. Moreover, there exist u1 < uCH
iC

, C.u1/ > 1,

v1.u1/ > 0 such that .u1; v1/ 2 T , and we have the following estimates for all

v � v1:

C �1 � e2:01K�v 	 �2.u1; v/ 	 C � e1:99K�v; (5.5)

j�j.u1; v/ C jDv�j.u1; v/ 	 C � v�s; (5.6)
ˇ

ˇ$.u1; v/ � M
ˇ

ˇ C
ˇ

ˇQ.u1; v/ � e
ˇ

ˇ C
ˇ

ˇr.u1; v/ � r�.M; e/
ˇ

ˇ

	 C � v1�2s; (5.7)
ˇ

ˇ@v log.�2/.u1; v/ � 2K�

ˇ

ˇ 	 C � v1�2s; (5.8)
ˇ

ˇ��1.u1; v/ � 1
ˇ

ˇ 	 C � v1�2s; (5.9)

j@vr j.u1; v/ 	 C � v�2s; (5.10)
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Z C1

v

j@vr j.u1; v0/ dv0 � C �1 � v�p: (5.11)

Now, we prove a small corollary, which is an easy consequence of Theorem 5.1
but is not, strictly speaking, proven in [39]. This corollary proves the trapped neigh-
borhood assumption in Theorem 3.2, under the assumptions of Theorem 3.3.

COROLLARY 5.2
Under the assumptions of Theorem 3.3, there exists u0 < u.CH iC [ SiC/ such that,

for all u0 	 u < u.CH iC [ SiC/, there exists v.u/ such that .u; v.u// 2 T .

Proof

If SiC D ;, then we apply Theorem 5.1 and the result follows. If SiC ¤ ;, then we
argue exactly as in the proof of Corollary 4.10: for every uCH

iC
< u < u.CH iC [

SiC/, r.u; v/ ! 0 as v ! C1; thus ¹uº � Œv0;C1/ � R [ A for any v0 > v�.u/,
so there exists v.u/ such that .u; v.u// 2 T .

5.3. The proof of Theorem 3.3

We are now ready to prove Theorem 3.3, that is, that S
1
� [ CH� [ S

2
� [ S ¤ ; under

assumptions on the event horizon. First, we establish stability estimates with data on
a static Cauchy horizon and an outgoing cone. Those estimates are extremely strong
(a consequence of the rigidity of Cauchy horizons of static type).

PROPOSITION 5.3
Assume that for some u1 < u2 < uCH

iC
, r � r�.e;M/, �, Du�, $ � M , Q � e

extend continuously to 0 on CH iC \ Œu1; u2	 and moreover estimates (5.5), (5.6),

(5.7), (5.8), (5.9), (5.10) are true on ¹u1º � Œv1;C1/ � T for some v1 > 1 and a

constant C > 0. Then there exists v0
1 D v0

1.C;M;e; q0;m2/ > v1 such that the fol-

lowing are true:

(1) The rectangle belongs to the space-time: Œu1; u2	 � Œv0
1;C1/ � Q

C.

(2) The rectangle is trapped: Œu1; u2	� Œv0
1;C1/ � T , and the following estimate

is true for all u 2 Œu1; u2	:

� r@vr.u; v0
1/ � A > 0; (5.12)

where A.C;M;e; q0;m2; p/ > 0 is a constant independent of u1 and u2.

(3) Moreover, for all � > 0, there exists Qv.�;C;M; e; q0;m2/ such that, if v0
1 > Qv,

the following estimates are true for all .u; v/ 2 Œu1; u2	 � Œv0
1;C1/:

ˇ

ˇr.u; v/ � r�.M; e/
ˇ

ˇ 	 �: (5.13)
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Then, choosing � 	 r�

2
, there exists v0

1.C;M;e; q0;m2/ such that for all u1 <

u2 < uCH
iC

, Œu1; u2	 � Œv0
1;C1/ \ � D ;.

Proof

To fix the ideas and without loss of generality, we fix v1 D 2. In the proof, we consider
characteristic initial data on

CH iC \ ¹u1 	 u 	 u2º [ ¹u1º � Œ2;C1/;

satisfiying (5.5)–(5.11). Whenever necessary, we will restrict the domain of evolution
to ¹v � v0

1º, where v0
1.C;M;e; q0;m2; u1/ � v1 D 2 will be chosen adequately. The

v-gauge will be chosen as (2.23). The u-gauge will be chosen later (note that (2.25)
does not make sense, as we consider a “local problem” on a space-time rectangle that
does not a priori intersect �).

For some D0.C;M;e; q0;m2/ > 0 to be determined later, we formulate the fol-
lowing bootstrap assumptions:

j�j C jDv�j 	 4C � v�s; (5.14)

jDu�j 	 D0 � �2 � v�s; (5.15)

jQj 	 10jej; (5.16)

r � r�

2
; (5.17)

j@vr j 	 4C � v�2s; (5.18)

3K�.M; e/ 	 @v log.�2/ 	 K�.M; e/; (5.19)

1

2
	 ��1 	 2; (5.20)

Z uB

u1

�2 du 	 eK�v: (5.21)

Note that (5.14)–(5.21) are all invariant with respect to the choice of u-gauge. We
define the bootstrap set

B WD
®

uB � u1; Œu1; uB 	 � Œv0
1;C1/ � Q

C;

and (5.14)–(5.21) are satisfied for all .u; v/ 2 Œu1; uB 	 � Œv0
1;C1/

¯

:

Note that, because of (5.5)–(5.10), B is nonempty for v0
1 large enough. We will

show that uB D u2 by proving that (5.14)–(5.21) are satisfied with a smaller constant.
Now integrate (2.13) using the boundedness of r and bootstrap (5.15), (5.20):

j@u.log.��1//j � j@ur j � v�2s , which we can integrate to get, for v0
1 large enough,
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j��1 � 1j 	 C � v1�2s C QD.M;e; q0;m2;C / � v�2s 	 1

100
: (5.22)

In particular, bootstrap (5.20) is retrieved. Note that (5.22) also shows that ��1

extends to 1 on CH iC .
Integrate (2.2) in u, using the bound j@u@v log.�2/j � �2 which comes from

(5.22), and bootstraps (5.15), (5.16), (5.17), (5.18); we get by (5.21),

ˇ

ˇ@v log.�2/.u; v/ � @v log.�2/.u1; v/
ˇ

ˇ � eK�v 	 jK�j
100

; (5.23)

where we took v0
1 large enough. In particular, bootstrap (5.19) is retrieved, in view of

(5.8) (again for v0
1 large enough).

Now define �2
CH .u; v/ WD �2.u;v/

�2.u1;v/
. Since (5.23) shows that @v log.�2

CH .u; v//

is integrable, it means that �2
CH .u; v/ admits an extension �2

CH .u/ > 0 to CH iC ,
and moreover

ˇ

ˇ

ˇ
log

��2
CH .u; v/

�2
CH .u/

�ˇ

ˇ

ˇ
� eK�v: (5.24)

In parallel, note that by (2.3), we have

�@u.@vr/

�@ur
D �

r

h2$

r
� Q2

r2
C m2r2j�j2

i

: (5.25)

Recall that, by assumption, .r;$;Q;�/ extends to .r�.M; e/;M; e; 0/ on CH iC ;

thus �@u.@vr/
�@ur

extends to 2K� D Œ2M
r2

�
� Q2

r3
�

	 < 0.

Note that the above also shows that �@ur

�2.u1;v/
extends to a finite nonzero limit

(namely �2
CH .u/) on CH iC . Hence the above extension of �@u.@vr/

�@ur
is also equiva-

lent to the fact that the quantity

�@u

�@vr.u; v/ � @vr.u1; v/

�2.u1; v/

�

extends to 2K� � �2
CH .u/ < 0; hence �2.u1; 2/ � @vr.u;v/�@vr.u1;v/

�2.u1;v/
also extends to a

finite function F.u/ � 0 on CH iC (note that we multiplied @vr.u;v/�@vr.u1;v/

�2.u1;v/
by the

constant �2.u1; 2/ so that F.u/ is gauge independent). Now choose the u-gauge to
be

�2
CH .u/ D F.u/ C 1: (5.26)

In view of the above, we have that @u log.�2
CH / is constant on CH iC , more precisely:

@u log.�2
CH / � 2K� � �2.u1; 2/ < 0; (5.27)
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from which we obtain the following estimate for some D.u1/ > 0:
Z uB

u1

�2
CH .u/du 	

�2
CH .u1/

2jK�j�2.u1; 2/
D D.u1/: (5.28)

Combining (5.28) with (5.24), we get, using (5.5),
Z uB

u1

�2.u; v/du 	 D.M;e;u1/ � �2.u1; v/ 	 e1:99K�v 	 1

2
eK�v (5.29)

for v0
1.C;M;e; q0;m2; u1/ large enough, which retrieves bootstrap (5.21).

Then, using (5.22), we write j@ur j D ��1

4
� �2 	 �2, which we integrate using

(5.7) and (5.29):
ˇ

ˇr.u; v/ � r�

ˇ

ˇ 	 2C � v1�2s; (5.30)

where we took v0
1 large enough. Bootstrap (5.17) is then retrieved.

Now we integrate (2.17) using (5.22), bootstraps (5.14), (5.15), (5.16), and the
r boundedness, and we get, for some constant D.M;e; q0;m2;C / > 0 and using the
upper bound @v log.�2/ 	 1:99K�,

ˇ

ˇDv.rDu�/
ˇ

ˇ 	 D � �2 � v�s D D � v�s

�@v log.�2/
� .�@v�2/ 	 D � v�s

1:99jK�j � .�@v�2/;

which we integrate from the future ¹v D C1º where Du�jCH
iC

D 0 by assumption,
also using bootstrap (5.17) and integration by parts:

jDu�j 	 2D � v�s

1:99jK�j � r�

�2: (5.31)

This retrieves bootstrap (5.15) for D0 > 2D
1:99jK�j�r�

. Additionally, one can integrate
this estimate in u, using (5.22), (5.29) to obtain

j�j 	 2C � v�s; (5.32)

where we took v0
1 large enough. Using (2.5), with bootstraps (5.14) and (5.31), we

have j@uQj � �2; thus by (5.29),
ˇ

ˇQ.u;v/ � e
ˇ

ˇ 	 2C � v1�2s; (5.33)

where we took v0
1 large enough. This retrieves bootstrap (5.16).

Then using the upper and lower bounds on r , the upper bond on Q, and (5.35),
we see using (2.17) that jDu.rDv�/j � �2 � v�s , which we can integrate, using (5.6),
(5.29), and the largeness of v0

1 to get

jDv�j.u; v/ 	 2C � v�s; (5.34)

which we combine with (5.32) to close bootstrap (5.14).
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Now, we integrate (2.20) in the u direction, using (5.10):
ˇ

ˇr@vr.u; v/ � r@vr.u1; v/
ˇ

ˇ 	 e1:98K�v;
ˇ

ˇr@vr.u; v/
ˇ

ˇ 	 2r� � C � v�2s C e1:98K�v 	 4r� � C � v�2s;
(5.35)

where we took v0
1 large enough. (5.35) together with bootstrap (5.17) allows us to

retrieve bootstrap (5.18).
Thus we have closed all the bootstraps, and the first claim of the proposition

follows.
Finally, we estimate � using (2.15) as j@u�j � �2, using (5.35), (5.31), (5.22),

(5.32), (5.29), and the upper bounds on r and Q. Integrating, we obtain, for v0
1 large

enough,
ˇ

ˇ�.u; v/ � �.u1; v/
ˇ

ˇ 	 e1:98K�v:

Recall also that $ D � C Q2

2r
. Thus combining with (5.30) and (5.33), the upper-

lower bounds on r and Q, and (5.7), we also get, taking v0
1 large enough,

ˇ

ˇ$.u;v/ � M
ˇ

ˇ 	 2C � v1�2s: (5.36)

From (5.30), (5.33), and (5.36), the third claim of the proposition follows imme-
diately.

Recall that ¹u1º � Œv1;C1/ � T by assumption. By (5.35) we have for all
.u; v/ 2 Œu1; u2	 � Œv0

1;C1/,

�r@vr.u; v/ � r j@vr j.u1; v/ � e1:98K�v:

Now, note that by (5.11) there exists C 0 > 0 and a sequence vn ! C1 such that

r j@vr j.u1; vn/ � C 0 � .vn/�p�1:

Therefore, there exists N (independent of u1 and u2) large enough (so that the term
C 0 � .vn/�p�1 dominates e1:98K�vn ) such that for all n � N and for all u 2 Œu1; u2	,

� r@vr.u; vn/ � C 0

2
� .vn/�p�1 > 0: (5.37)

Therefore, Œu1; u2	�¹vN º � T . By the monotonicity of (2.8), Œu1; u2	� ŒvN ;C1/ �
T . Therefore, choosing v0

1 > vN , the entire space-time rectangle is trapped. Choosing
v0

1 D vn for some n � N gives (5.12), and the second claim of the proposition follows.

Using Proposition 5.3, we now show that a static Cauchy horizon cannot be con-
nected to SiC .
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COROLLARY 5.4
Assume that alternative 2 holds, that is, CH iC is of static type. Then SiC D ;.

Proof

Suppose for the sake of contradiction that SiC ¤ ;.
Set � > 0 and take u1 as in the statement of Theorem 5.1, alternative 2. By Propo-

sition 5.3, there exists v0
1.�/ such that for all .u; v/ 2 Œu1; uCH

iC
/ � Œv0

1;C1/, (5.12)
and (5.13) hold for some A > 0. Additionally, by continuity of the functions u !
r.u; v/ and u ! �r@vr.u; v/ for every fixed v � v0

1, we also have that (5.13) holds
for all .u; v/ 2 Œu1; uCH

iC
	 � Œv0

1;C1/ and (5.12) holds for all u 2 Œu1; uCH
iC

	.
In particular, taking � smaller if necessary, we have r.u; v/ � r�

2
for all .u; v/ 2

Œu1; uCH
iC

	 � Œv0
1;C1/. Also, as a consequence of (5.12), .uCH

iC
; v0

1/ 2 T .
Since T is an open set in the topology of Q

C, there exists 
 > 0 such that
ŒuCH

iC
; uCH

iC
C 
	 � ¹v0

1º � T ; thus by the monotonicity of the Raychaudhuri
equation (2.8) we have that ŒuCH

iC
; uCH

iC
C 
	 � Œv0

1;C1/ � T .
For every fixed u 2 ŒuCH

iC
; uCH

iC
C 
	, v ! r.u; v/ has a limit rCH .u/ � 0 as

v ! C1, by monotonicity. Now, we integrate (2.20) in both u and v over the space-
time rectangle ŒuCH

iC
; uCH

iC
C 
	 � Œv0

1;C1	 to get a “four points” estimate:

r2.uCH
iC

C 
; v0
1/

2
C

r2
CH .uCH

iC
/

2
�

r2.uCH
iC

; v0
1/

2
�

r2
CH .uCH

iC
C 
/

2

D
Z uCH

iC
C


uCH
iC

Z C1

v0
1

�2

4

�

1 � Q2

r2
� m2r2j�j2

�

.u0; v0/ du0 dv0

	
Z uCH

iC
C


uCH
iC

Z C1

v0
1

�2.u0; v0/

4
du0 dv0

	
Z uCH

iC
C


uCH
iC

�2.u0; v0
1/

4j@vr j.u0; v0
1/

Z C1

v0
1

j@vr j.u0; v0/ dv0 du0

	
Z uCH

iC
C


uCH
iC

�2.u0; v0
1/ � r.u0; v0

1/

4j@vr j.u0; v0
1/

du0 	 D � 
;

where, from the second line to the third, we used the monotonicity of the Raychaud-
huri equation (2.8), and for the last inequality we set

D WD
�

�

�

�

�2 � r

4j@vr j

�

�

�

�

L1.ŒuCH
iC

;uCH
iC

C
	�¹v0
1

º/

< C1

because the solution is smooth. Since, by monotonicity, we know r2
CH .uCH

iC
C
/ 	

r2
CH .uCH

iC
/, the previous estimate also implies
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ˇ

ˇr2
CH .uCH

iC
C
/�r2

CH .uCH
iC

/
ˇ

ˇ 	 2C �
C
ˇ

ˇr2.uCH
iC

C
; v0
1/�r2.uCH

iC
; v0

1/
ˇ

ˇ:

Thus, by continuity of the function u ! r2.u; v0
1/ on ŒuCH

iC
; uCH

iC
C 
	, we see

that

lim

!0

r2
CH .uCH

iC
C 
/ D r2

CH .uCH
iC

/ � r�

2
:

This contradicts that for 
 small enough, r2
CH .uCH

iC
C 
/ D 0, by definition of

SiC . Thus, SiC D ;.

Remark 10

Note that we proved a result of independent interest: if SiC ¤ ; and there exists
a trapped neighborhood V of the endpoint of CH iC in Q

C, then r extends to a
continuous function on V \ .CH iC [ SiC/; in particular r must be continuous at
the endpoint of CH iC . Since we just used Tvv � 0 and Tuv � 0, the result is true in
general for any matter model which satisfies the null energy condition.

We now conclude the proof of Theorem 3.3. Under the assumptions of Theorem
3.3, either alternative 1 holds or alternative 2 holds, by Theorem 5.1. If alternative 1
holds, then the assumptions of Theorem 3.2 are satisfied, also using Corollary 5.2;
thus S

1
� [ CH� [ S

2
� [ S ¤ ;. If alternative 2 holds, then SiC D ; by Corollary 5.4.

Assume by contradiction that S
1
� [ CH� [ S

2
� [ S D ;. Then, CH iC closes off the

space-time, and its endpoint is b� ; thus uCH
iC

D u.b�/. By Theorem 5.1, alternative
2, the assumptions of Proposition 5.3 are satisfied; thus there exists v0

1 2 R such that
Œu1; uCH

iC
/ � Œv0

1;C1/ \ � D ;. This obviously leads to a contradiction, and thus
S

1
� [ CH� [ S

2
� [ S ¤ ;. Therefore, the proof Theorem 3.3 is complete.

Appendix. Cauchy horizons can close off a two-ended space-time

In this section, we give a brief sketch of the proof of Theorem 1.6, mostly based on
the strategy of [17].

THEOREM A.1
For some s > 1

2
and � > 0, we assume that the right event horizon H

C
1 is a future-

affine-complete outgoing cone, that for all v � v0,

j�j
jH

C
1

.v/ C jDv�j
jH

C
1

.v/ 	 � � v�s; (A.1)

and that the following red-shift estimates hold:

jDu�j.u; v0/ 	 � � j@ur j.u; v0/ (A.2)
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for all u 	 u0 Additionally, assume that a subextremal Reissner–Nordström black

hole is approached on H
C
1 , that is,

0 < lim sup
v!C1

jQj
jH

C
1

.v/

r
jH

C
1

.v/
< 1: (A.3)

We make the same assumptions on the left event horizon H
C
2 . Then there exists an

�0 > 0 such that, if � < �0, then the Penrose diagram is the one of Figure 4, that is,

CH
C
1 [ CH

C
2 close off the interior and S D ;.

Proof

The hard work, already established in [37], is to prove first the local result CH
C
1 ¤ ;,

CH
C
2 ¤ ; together with stability estimates. The Cauchy stability argument of [17]

can be immediately adapted ([17, Proposition 9.1]). Now, one must generalize [17,
Theorem 7], which states that r is lower bounded, implying immediately the result.
The only place where the Einstein equations are used in this result is in equation (36),
([17, p. 747]), to establish that, in some region,

@u log
�

j@vr j
�

	 j@ur j
r

: (A.4)

This implication is not true in our model, as by (2.3), @u@vr D ��2

4r
� @ur@vr

r
C

�2

4r3 Q2 C m2r
4

�2j�j2, and thus

@u log
�

j@vr j
�

	 j@ur j
r

C �2

j@vr j �
� 1

4r
� Q2

4r3
� m2r j�j2

2

�

I

and this estimate is valid in the region of interest, where @ur < 0 and @vr < 0. How-
ever, the new term does not create any problem as, by Cauchy stability, one still has
1

4r
� Q2

4r3 � m2r j�j2

2
< 0, which is the analog of equation (36). Therefore (A.4) is true,

and from there one can follow the argument of [17] to the letter.
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