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We give a systematic account of the current state of knowledge of an
effective analogue of the ultraproduct construction. We start with a
product of a uniformly computable sequence of computable structures
indexed by the set of natural numbers. The equality of elements and sat-
isfaction of formulas are defined modulo a subset of the index set, which
is cohesive, i.e., indecomposable with respect to computably enumerable
sets. We present an analogue of Lo$’s theorem for effective ultraprod-
ucts and a number of results on definability and isomorphism types of
the effective ultrapowers of the field of rational numbers, when the com-
plements of cohesive sets are computably enumerable. These effective
ultraproducts arose naturally in the study of the automorphisms of the
lattice of computably enumerable vector spaces. Previously, a number of
authors considered related constructions in the context of nonstandard
models of fragments of arithmetic.

1. Introduction

The idea of establishing an axiomatic system that captures the standard

model of arithmetic, N = (N, +,-,0,1, <), has been developed in the late

19th century by Dedekind and Peano [28]. Hilbert asked for proof that

such axiomatizations are complete and categorical. Computable axioma-

tizations give incomplete theories according to Gddel. They are also not

categorical. The existence of nonstandard models of formal arithmetic (the
201
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deductive closure of a fixed computable axiomatization) and of true arith-
metic, Th(N), can be established using ultrapower constructions. In partic-
ular, if F' is a non-principal ultrafilter on w, then the ultrapower N¥/F is
not isomorphic to N and is hence a nonstandard model of arithmetic. The
ultrafilter construction is very elegant but it uses the Axiom of Choice and
also produces uncountable models: [N /F| = 2%,

By the ultrapower construction, various first-order theories of arithmetic
are not 2%°-categorical. It is natural to ask whether there are countable
nonstandard models of arithmetic and if such models can be effective. The
first question was answered positively by Skolem in 1934. In [32], Skolem
constructed a countable nonstandard model of Peano arithmetic, PA (see
also [33]). The second question was answered by Tennenbaum in 1959. He
proved that if M = (M,+,-,0,1,<) is a countable model of PA, which is
not isomorphic to the standard model N, then M is not computable.

In his construction of nonstandard countable models of PA, Skolem used
a combinatorial lemma (Satz 1 in [32]) to define an equivalence relation ~
on the countable set Fy of arithmetically definable unary functions. The
domain of his nonstandard model N* is Fy/ ~. Skolem’s construction has
later been presented as an ultrapower construction (see [2], pp. 236—-240)
but it is Skolem’s original proof that is of particular interest to us. The
proof of his Satz 1 provides an idea for the construction of certain (more
effective) nonstandard structures. Skolem constructed a total function the
range of which is what we now call an arithmetically indecomposable set
(see [20], p. 429, and Remark 2.3(iii)).

Following Skolem’s idea, Feferman, Scott, and Tennenbaum in 1959 con-
sidered a quotient structure R/C as a possible model of arithmetic. Here, R
is the set of all unary (total) computable functions, and C' is an r-cohesive
set of natural numbers. The domain of R/C' consists of the equivalence
classes of the elements in R modulo an equivalence relation =, defined
using C' (see Remark 2.3(i)) as follows:

f=cge CC {new]|f(n)=gn)}

It can be established that N and R/C are 2-elementary equivalent. Fefer-
man, Scott, and Tennenbaum [12] proved that R/C is a model of only a
fragment of arithmetic. They gave a specific IT sentence o such that N |= o
but R/C ¥ o. Hirshfeld, McLaughlin, and Wheeler later proved a general
result that implies that the structure R /C has no nontrivial automorphisms
(that is, it is rigid). The idea of the proof has been given by Hirshfeld and
Wheeler in [18] and formally presented by McLaughlin in [22]. The idea for
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the construction of R/C can be generalized to higher levels of arithmetical
hierarchy (see Definition 2.2). The structures R /C and the Skolem’s N* can
be seen as the bottom and the top levels of the hierarchy of such structures,
respectively. These structures have been studied as models of fragments of
arithmetic by Hirshfeld, Lerman, McLaughlin and Wheeler in [17, 18, 20],
and [21-23]. Recursive ultrafilter constructions have also been studied by
Nelson in [26], where he provided a sufficient condition for recursive satu-
ration of recursive ultrapowers.

More recently, the notion of cohesive powers of computable structures
has been presented in [10]. The cohesive powers of fields appear in the char-
acterization of certain filters in the lattice of computably enumerable (c.e.)
vector spaces, which has been extensively studied in computable model the-
ory. The vector space V., has been introduced by Metakides and Nerode
in [24] as a canonical infinite-dimensional, fully effective vector space over
a computable field F. The lattice £(Vs) of c.e. subspaces of Vo, and its
factor lattice modulo finite dimension, £*(V,,), are examples of modular
counterparts to the classical distributive lattices of c.e. sets, £, and c.e. sets
modulo finite sets, £*, in computability theory.

In the characterization of certain principal filters in £*(V,,) (see [9]),
we encountered fields with elements that are the equivalence classes of par-
tial computable functions from w to F. We noticed that the structure of
these fields has certain similarities with the classical ultrapower construc-
tion. In [10], we introduced the general notion of a cohesive power of a
computable structure. It turns out that, in some instances, the cohesive
powers of N are isomorphic to the structures R/C introduced by Feferman,
Scott, and Tennenbaum. In this chapter, we present results from [3,6,10],
together with certain generalizations and some new proofs.

In Sec. 2, we give some standard definitions from computability the-
ory. In Sec. 3, we introduce the notion of cohesive products and prove the
fundamental theorem of cohesive products, an effective analogue of Lo$’s
theorem for ultraproducts. We further explore the properties of cohesive
products of computable structures and provide several examples. In Sec. 4,
we present the following theorem from [3] for a field Q of rational numbers.

Theorem 4.4: For any two maximal sets M; and Ms with complements
M, and M, we have

[[e=][Qif M =, M,
My Mo

where =,, stands for m-equivalence.
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In Sec. 5, we present a new proof of the following theorem from [3].

Theorem 5.1: If M is a maximal set, then []Q has only trivial auto-
M
morphisms.

Finally, in Sec. 6, we give an example of the role cohesive powers play
in the study of the structure and automorphisms of the lattice £*(V).

2. Computability-Theoretic Background

The following notions come from computability theory. The complement of
a set X C w is denoted by X.

Definition 2.1: (i) An infinite set C' C w is cohesive iff for every c.e. set
W, either W N C or W N C is finite.

(i) A set M C w is mazimal iff M is c.e. and M is cohesive.

(iii) An infinite set C' C w is r-cohesive iff for every computable set W,
either W N C or W N C is finite.

(iv) A set M is r-mazimal iff M is c.e. and M is r-cohesive.

Equivalently, a set M C w is maximal if M is c.e., M is infinite, and for
every c.e. set F such that M C F C w, either w — F or E — M is finite.
Maximal sets have been extensively studied within the lattice £ of c.e. sets.
For sets A and B, we use A =* B to denote that A and B differ on at most
finitely many elements, and we use A C* B to denote that all but finitely
many elements of A are also elements of B. For vector spaces, we use the
same notation provided “modulo finitely many elements” is replaced by
“modulo finite dimension.” We will now introduce a more general notion
than cohesiveness.

Definition 2.2: Let F be a countable family of subsets of w. A set C' C w
is called F-indecomposable if C is infinite, and for every W in F, either
WNCor WnNC is finite.

Remark 2.3:

(i) If € is the collection of computably enumerable sets, then &-
indecomposable sets are cohesive.

(ii) If R is the collection of computable sets, then R-indecomposable
sets are r-cohesive.

(iii) If A is the collection of arithmetically definable sets, then .A-
indecomposable sets will be called arithmetically indecomposable.
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Definition 2.4: A set B C w is called quasimazimal if it is the intersection
n
of finitely many maximal sets. If B = (| M; where M,’s are maximal, and

=1
for i # j, M; #* M;, the number n is called the rank of B.

Next, we will introduce the notion of m-reducibility which is stronger
than Turing reducibility.

Definition 2.5: Let A, B C w.
(i) The set A is m-reducible to B, denoted by A <,, B, if there is a
computable function f :w — w such that

re€A& f(z) € B.

(ii) The sets A and B have the same m-degree, denoted by A =,,, B (or
deg,,(A) = deg,,(B)), iff A <,,, B and B <,,, A.

We will now recall the definitions of a computable and a decidable struc-
ture.

Definition 2.6: Let A be a countable structure for a computable lan-
guage L.
(i) A is computable if its domain and its atomic diagram are computable.
(ii) A is decidable if its domain and its elementary (complete) diagram
are computable.

Clearly, every decidable structure is computable, and the theory of a
structure is computable in its elementary diagram.

3. Cohesive Products

Cohesive powers of fields were used in [9] to characterize principal filters
of quasimaximal spaces. They motivated the definition of cohesive powers
of computable structures in [10]. We now give a more general definition of
a cohesive product of computable structures. We will use ~ to denote the
equality of partial functions.

Definition 3.1: Let A;, for i € w, be a uniformly computable sequence

of computable structures in a computable language L, and let C' C w be a

cohesive set. The cohesive product B of A; over C, in symbols B = [] A;,
c

is a structure defined as follows.
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(1) Let
D={p|lyp:w— U A; is a partial computable function,
C C *dom(p), anzjuif (i) } then (i) € A;}.
For ¢1,¢2 € D, let
p1=cp, iff CC"{i:pi1(0) I= (i) I}
The domain of 1;[ A; is the quotient set D/__ and is denoted here by B.

(2) If f € L is an n-ary function symbol, then f5 is an n-ary function on
B such that for every [¢1],. .., [¢n] € B, we have

FB(er)s- o lon)) = [0] (Vi€ w) [@(i) = fA (@1(i), ..., on(0))] -

(3) If P € L is an m-ary predicate symbol, then PB is an m-ary relation
on B such that for every [¢1],...,[¢m] € B,

Po([pal,. s lom) i C S {i€w | PA(01(),..., om(D)}-

(4) If ¢ € L is a constant symbol, then c? is the equivalence class (with
respect to =¢) of the computable function g : w — |J A; such that

S
g(i) = i, for each i € w.
Definition 3.2: (Dimitrov [10]) If A; = A for i € w, then [[.A; is called
c

the cohesive power of A over C and is denoted by [].A.
c
Theorem 3.3: (Fundamental theorem of cohesive products)

(1) If T(y1,---,Yn) is a term in L and [p1],-..,[¢on] € B, then
[PB([eal, .- [on])]

s the equivalence class of a partial computable function such that
™ (lpr)s s leal) (0) 2 74 (01(0), - - (@)

(2) If ®(y1, ..., yn) is a formula in L, which is a conjunction of X9 and 119
formulas, and [¢1], ..., [¢n] € B, then

B = o([pl;- - [n]) iff C S {i: Ai = @(01(2), -+, n(2))}-
(3) If @ is a 113 sentence in L, then C C* {i: A; = ®} implies B = ®.
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Proof: (1) The proof is straightforward, but we note that we essentially use
the fact that the operations in the structures A; are uniformly computable.

(2) We proceed by induction.

(2.1) Let ®(y1,---,yn) = P(mi(y1,---sYn)s-- s Tm(¥1,---,Yn)) be an
atomic formula and suppose [t;] = 72 ([¢1], -, [@n]). Then

B @([¢1], - [on])

iff

B = P([y], ..., [Ym])

iff

CC {i: A = Pr(),...,0m(1)}
iff

ccr {Z cA; ): (I)(Spl(i)a .. -7‘Pm(i))}'

(2.2) Suppose D(y1,.--,yn) = P1(y1,---,Yn) A Pa(y1,...,y,) and the
claim is true for ®;(y1,...,yn), ¢ = 1,2. Then

iff

B @([¢1),- ... [¢n]) and B = @a([¢1], - .., [¢n])

iff

CC{i: A |E i(p1(i),- -, (i)} and

CC{i: A = Da(p1(d),...,0n(9)}

iff

CC {i: A EP(p1(i),...,0on(1)}

(2.3) Suppose (y1,...,yn) = WY (Y, Y1, ..., Yn) and ¥(y,y1,...,Yn) is
a quantifier-free formula for which the claim is true.

(2.3a) Suppose B = Jy¥(y, [¢1],--.,[en]) and suppose that the par-
tial computable function ¢ is such that B = U([¢], [p1],- -, [¢n]). By the
inductive hypothesis, C' C* {i : A; = U(p(i), ¥1(%),. .., ¢n(i))} and so

C i A = 3yW(y, vi(i), -, onld) }-

(2.3b) Suppose C C* {i : A; E JyV(y, ¢1(4),...,9n(i))}. Since the
structures A; are uniformly computable and ¥(y,y1,...,yn) is quantifier-
free, we can define a partial computable function

o(i) = (py € Ai) [Ai E ¥ (y, 1), -, onli))]-
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Then
{i: Ai =3y (y, 010, o))} = {0 Ai = (), 1 (2), -, (0))}
and so C C* {i: A; = ¥(e(i), v1(4),...,pn(i))}. By the inductive hypoth-

B ': \1/([90]7 [901}7 ety [cpn])v and so B ': Elyql(lh [(pl]v R [Qpn])

(2.4) Suppose ®(y1,...,Yn) = "U(y1,...,Yn) where U(y;,...,y,) is a
%9 formula for which the hypothesis is true.

(2.4a) Suppose B = @([p1], .- -, [pn]) and let
W= {i: Ai = ¥(p1(2), . on(i)}-
Since B ¥ ¥([¢1],...,[pn]), we have C ¢* W. Since ¥(yi,...,y,) is

a XY formula, the structures A; are uniformly computable, and ¢;, for

1 < j < n, is partial computable, W is a c.e. set. Since C is cohesive, we
n

have C N W =* (). Also, since C C* [ dom(y;), for almost all i € C' we
i=1
have

Therefore,
Cc{i: A E(p1(i), - (i)}
(2.4b) Suppose C C* {i : A; E"U(p1(i),...,90n(¢))}. Then
and, by the inductive hypothesis, B ¥ ¥([¢1],. .., [¢n]). Therefore,

B E"([p1], ..., [onl)-

(3) Assume that C' C* {i : A; = @}, where ® = Vy3IzU(y, z) for some
quantifier-free formula ¥(y, z). Let [¢] € B. Define a partial computable 1
as follows:

Y(i) = (pu € 4;)[A; | U (p(i), u)].
Since A;’s are uniformly computable, we can deduce that 1 is partial com-
putable. Note that

C C* dom(y) and C C* {i: A; = U (p>3), (%))},

because C C* dom(y) and C C* {i : A; = Vy3Iz¥(y,z)}. Therefore,
B = U([¢], [¢]), which means that B |= 32¥([¢], z), and so B = ®. |
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Remark 3.4: The statement in Part (2) of Theorem 3.3 can be extended
to Boolean combinations of £y and I1{ formulas. (For further improvements
see [5].)

Definition 3.5: (Dimitrov [10]) Let B =]].A be a cohesive power of A.

c
For c € A, let [¢.] € B be the equivalence class of the total function ¢, such
that ¢ (i) = c for every i € w. The map d : A — B such that d(c) = [p.] is
called the canonical embedding of A into B.

Theorem 3.6: (Dimitrov [10]) Let B =]].A be a cohesive power of A.
C

(1) If ® is a 11 sentence in L, then B = ® implies A = ®.

(2) If ® is a X9 sentence in L, then A = ® implies B |= ®.

(3) If ® is a 119 (or 229) sentence in L, then B = ® iff A = ®.

(4) Letci,...,cn € A and let ®(yi,...,yn) be a 113 or a X9 formula in L.
Then

AE®(cr, ... ) iff BE ®([pe], - [pe,])-
(5) Let c1,...,cn € A and let ®(y1,...,yn) be a ¥ formula in L. Then
A ®(c1,...,c,) implies Bl= O([oe,], - [@e,])-

Proof: (1) Let ® = Vy3zVtU(y,z,t) where ¥(y, z,t) is a quantifier-free
formula. Let ¢ € A be arbitrary and let . (i) = ¢ for every i € w. Let [¢] € B
be such that B | VtU([p.], [¢],t). By (2) of Theorem 3.3 above, we have
CC* {i: Al YtY(p.(i), (i), t)}. Then C C* {i : A | FVtU(c, 2,t)}.
The set C is infinite and so A = 32Vt (c, 2, t). Therefore, A = ®.

(2) This is the contrapositive of (1).

(3) Let ® = Vy32U(y, z) where ¥(y, z) is a quantifier-free formula.
(3a) The fact that A = ® whenever B = @ follows from (1).

(3b) Suppose that A = ® and let [¢] € B be arbitrary. We have
that C C* dom(p) = {i : A E 32U(p(i),z)}. By (2) of Theorem 3.3,
B = 329([¢], 2) and so B |= ®.

(4) Let Ax be the structure A in the language L U {cy,...,c,} with
the constant symbols cq, ..., c, interpreted as ci,...,c,, respectively. The
result follows from part (3) of this theorem applied to Ax and Bx = [] Axk.

C
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(5) It follows from part (2) of this theorem. |

Remark 3.7: If Ais a (dense) linear order (without endpoints), a ring, (an

algebraically closed) field (of characteristic p), lattice, (atomless) Boolean

algebra, then so is [].A. Each of their theories is I13-axiomatizable, and so
c

we can apply part (3) of the previous theorem.

Theorem 3.8: (Dimitrov [10]) Let A be decidable and B =] A.
c

(1) If ®(y1,-.-,Yn) is a formula in L, and [p1],...,[¢n] € B, then

H-A ': (I)([Qol}v' ) [9071]) Zﬁc g* {Z t A ): (I)(Sal(i)’ e 79071(1))}
C

(2) If ® is a sentence, then [[AE @ iff A= ®.
c

(3) The canonical map d is an elementary embedding of A into B.

Proof: (1) Note that for any formula ¥(yq,...,y,) the set {(a1,...,a,) €
A" A E 9(ay,...,a,)} is computable, and hence {i : A [
U(p1(2),...,0n(7))} is c.e. Then the steps 2.3 and 2.4 in the proof of The-
orem 3.3 can be carried out for any formula W.

(2) and (3) follow immediately from (1). m|

Proposition 3.9: (Dimitrov [10]) Let the structure A be finite and let
B=]]A. Then B A.
c

Proof: Let [¢] € B be arbitrary. For any ¢ € A, let I. = {i : (i) = c}.
Note that the set I.. is c.e. Since dom(p) = |J I. and A is finite, for some

ceEA
c1 € A, the set I, NC is infinite. Since C' is cohesive, we have that C C* I,
and so [¢] = [¢e, |- Thus, the canonical embedding of A into B is onto, and
so B= A. m|

Proposition 3.10: (Dimitrov [10]) If there is a computable permutation

o of w such that o(Cy) =* Cy, then [[AX]]A.
i Cs

Proof: Let the map ®: [[.A — [ A be such that ®([¢)]) = [ o g].
Cs Ci
The proof that ® is an isomorphism is straightforward. O
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Remark 3.11: (1) Let C be co-c.e. Then for every [p] € [].A there is a
c

computable function f such that [f] = [¢].

(2) If M is a maximal set, then [N and R/ ~y; are isomorphic.
M

Proof: (1) Let [¢] € [[A be arbitrary, a € A, and define
c

f(n) =

(2) Tt follows from (1). |

{(p(n) if p(n) | first,

a if n is enumerated into C first.

Remark 3.12: (1) The fields Z,, (p; is the i-th prime number) are uni-
formly computable and, by part (3) of Theorem 3.3, [[ Z,, is a field, but of
c

characteristic 0.
(2) Notice that, by Proposition 3.9, ];[Zp = Zp.
(3) No “nonstandard” element of the cohesive power [[ Q of the field Q
C

is algebraic over Q (see [10]).

Let Z,, be the algebraic closure of Z,,. By a result of Rabin (Theorem 7
in [29]), each Z,, has a computable presentation. If these presentations
are uniformly computable, then we can form B =][]Z,,. By part (3) of

c

Theorem 3.3, B is an algebraically closed field (ACF). The structure B is a
countable model of the theory of ACF and we note that the characteristic
of B is 0. Although the theory of ACFy is not Ng-categorical, we know that
all of its countable models are isomorphic to one of the following

@ < Q(SEl) < Q(ml,mg) << @(1‘1,.%'2,. . )

Note that in the classical case the situation is quite different. If U is
a nonprincipal ultrafilter on the set of prime numbers, then the classical

[1Z,,| = 2% and ACFy is
U

categorical in every x > N;, we have Hzpi = C, where C is the field of
U

ultraproduct [[Z,, is a model of ACFy. Since
U

complex numbers.

4. Isomorphism Types of Cohesive Powers of Q

The results in this section were obtained by Dimitrov, Harizanov, Miller
and Mourad and were originally presented in [3]. We assume that N, Z, and
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Q are the standard computable presentations of the structures of natural

numbers, integers, and rational numbers in the language L = {+,-,0,1}.

Before giving the characterizations of the isomorphism types of co-maximal

powers of Q, we will first prove that [[N is definable both in [[Z and
c c

[T Q. The definability of Z in Q (by a IIJ formula) has been established by
c

J. Robinson in [30]. More recently, Koenigsmann [19] gave a I19 definition
of Z in Q. He proved that there is a positive integer n and a polynomial
p € Zly, z1,..., 2] such that

yGZ@Q':vzlvanp(yvzla7Zn)7£0]

The proof of Proposition 4.1 below makes essential use of Koenigsmann’s
definition of Z in Q and does not work with definitions of higher complexity.

The definability of N in Z (by various Y formulas) has been established
by R. Robinson in [31]. We will use the formula that defines the natural
numbers as sums of squares of four integers. Using these results, we obtain
that N can be defined in Q as follows:

zeNeIy | N\ vieZro=yi+yi+y3+u7],

1<i<4

reNSQEIJy - JyaVz - V2,
N pizt,. ) 2ONe =y + 5 + 95 + 43 |
1<i<4
which we will abbreviate as
reN&e QE Iyvz(z,7,%z).

Hence 6(z,7, %) is the quantifier-free formula above in the language of rings
L={+,-,0,1}.

Proposition 4.1: (Dimitrov, Harizanov, Miller, and Mourad [3]) The
natural embedding of T[N is definable in [[Q by the same formula
c c

JyVz0(x,7,Z) that defines N in Q.

Proof: First, assume that for some [¢] € []Q, we have
c

1@k 3pvz0(le] .7.2),
C
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and that y;’s are such that y; = [¢;] and
[TQE vzo(el, [l ).
c

By Theorem 3.3, we have that

C C* {n:Q | Vz0(p(n), ¥i(n), 2)}.

Using the definition of (z, 7, Z) we obtain that C C* {n : ¢(n) € N}, which
means that [p] € [[N.
c

Now, assume that [¢] € [[N. We will prove that

[T@F 3ve0(el.7.2)

c
Define the partial computable functions §; : w — Q, for 1 < i < 4, as
follows. If at stage s we have ¢ ( ) = m and m € N, then find the least
(b1,...,bs) € N* such that m = Z b2, and let &;(n) = b;.
By the definition of the functlons §Z, we have that

CC*n:QEVz---Vz

/\ p(gi(n)vzla-“a )7&0/\50 Z gl )

1<i<4 1<i<4

which implies that

[TQ = vy ,7.2)
C

O

Notation 4.2: We will use ¢' (Z) to denote the formula ¢(Z) with the scope
of its quantifiers restricted from Q to N (and from [[Q to [[N because of
c c

Proposition 4.1).

Proposition 4.3: (Dimitrov, Harizanov, Miller, and Mourad [3]) The
structures [[ Q and Q are not elementary equivalent.
c

Proof: Let T be Kleene’s predicate. Recall that T'(e, z, z) holds if the et®
Turing machine program halts on input z in < z steps. By a result by
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Feferman, Scott, and Tennenbaum (see Theorem 2.1 in [20]), we know that
for

¢ =VrItvevzlle < x AT (e,x,2)) = 2z < t],

NE¢ but J[NEo.
C

We can assume that ¢ is a sentence in L = {+, -, 0, 1} since both Kleene’s
T predicate and < are definable in N. Then Q = ¢T ifft N = ¢, and [JQ ¥ ¢T
C

iff [[N ¥ ¢. This finally gives us
c

ez ][]
c
By = we denoted elementary equivalence of structures. O

The following theorem is the main result in this section.

Theorem 4.4: (Dimitrov, Harizanov, Miller, and Mourad [3]) Let M; C w
and Ms C w be mazimal sets.

(1) If M, =,,, Ms, then HQ = EQ

M Mo
(2) If My #y, My, then [[Q # [] Q.
My Mo

Proof: (1) It follows from a result by Hermann [16] that if M =, Mo,
then there is a computable permutation o of w such that o(M;) =* Ms.

Then, by Proposition 3.10, the map ® : [[ Q@ — [] Q such that ®([¢]) =
M2 M1
[t o o] is an isomorphism.

(2) If My #,,, Ma, then R/M; # R/M,, by Theorem 2.3 from [20]. In
fact, Lerman provided a specific sentence 6 (originally in the language L. =
{+,-,0,1,<}) for which R/M; [= 0 while R/M, =70. By Remark 3.11,
part (2), R/M; = [[N, for i = 1,2, and so [[N # [[N. Since < is

M; My Mo
definable in L = {+,-,0,1}, we can assume that the sentence 6 is equivalent

:
to a sentence in the language L. Thus, for the relativisation 6 , we have

[[QkE 06, while [[Q =9 .
iy i

O
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5. Automorphisms of Cohesive Powers of QQ

The results in this section were obtained by Dimitrov, Harizanov, Miller
and Mourad and were originally presented in [3]. Here, we give a new proof
of Theorem 5.1.
Let M be a maximal set and let C = M. We will prove that the field [ Q
c

is rigid. In this case, [[ N is a special case of the A? ultrapowers studied by

Hirshfeld, Wheeler, a%d McLaughlin. Specifically, they studied the struc-
tures F,, /U, where U is a non-principal ultrafilter in the Boolean algebra
of A sets, and F,, is the set of all total functions with £0 graphs. In [22]
(Theorem 2.11), McLaughlin proved a general result about rigidity of a class
of ultrapowers. His result implies that the structure F; /U, which is the set
JF1 of all computable functions modulo a non-principal ultrafilter U in the
Boolean algebra of A{ sets, is rigid in the language L. = {+,-,0,1,<}. To
apply McLaughlin’s result, we first notice that his theorem also holds for
the language L = {+,,0, 1} because of the definability of the relation “<”.
Next, the equivalence relation induced by the cohesive set C' is equivalent
to the one induced by a A ultrafilter because

Uc =gef {W | W € A} and C C* W}
is an ultrafilter in the Boolean algebra AY. Finally, the domain of [N
c

consists of partial computable functions, while the functions in F; are total.
However, since the set C is co-c.e., by part (2) of Remark 3.11, [[N 2
c

F1/Uc and, using McLaughlin’s result, we have that [[ N is also rigid.
c

Theorem 5.1: (Dimitrov, Harizanov, Miller, and Mourad [3])
(1) The structure [[Z is rigid.

c
(2) The structure [[Q is rigid.
C

Proof: We will prove only (2). The idea for the proof of (1) is similar.
Suppose that T is an automorphism of [ Q, and let [¢] € [] Q be arbitrary.
C C

We will prove that I'([¢]) = [¢] in the (nontrivial) case when [p] # 0.
By Proposition 4.1, [[N is first-order definable in [JQ, and so I' 11y

(& C c
is an automorphism of [[N. Since [N is rigid, we have I' [{n= 4d [[Tn-
C C c c
Let 5 denote the sequence of variables

Y11, Y12, Y13, Y14, Y21, Y22, Y23, Y24, Y31, Y32, Y33, Y34-
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Also, let

0% (2,21, 29,73,7) =dey
3
(Vz1---Vzp) | (x- 21 + 22 = 23) A /\

=1

4
(z; = Z y?j)/\
j=1

3 4
N\ A\ ®ij, 21,0 20) #0)
i=1j5=1

Here, p(yij, #1, . - ., 2n) is the polynomial from the Koenigsmann’s formula.
The intended interpretation of the ITY formula 67 is that

(1) yi; (for 1 <4< 3,1 <j <4) are elements of Z,

(ii) z; are elements of N,

(iii) for € Q we have

T3 — X2

T
We will now construct [¢;], [¢i;] € [[N (for 1 <¢ < 3,1 < j <4) such
c
that

TTQ@F 6% (), [ea, 2l [s]; [pis])-
C

For each n € w such that ¢(n) =0, let:

m; =0 for 1 <i<3, and
m; =0for1 <i<3and1<5 <4,

For each n € w such that ¢(n) J# 0, find the least
(my, my, ms) € N3
and
(M1, mia, mag, mia, Mo, Moz, Moz, Mas, Ma1, Mag, Mas, Maa) € N2
such that
my # 0

@(n) -m1 +ma = m3, and

4
mi:Zm?j for 1 <3 <3.
=1



Effective Ultrapowers and Applications 217

Then let p;(n) = m; (for 1 < ¢ < 3) and ¢;;(n) = m,; (for 1 <i < 3 and
1 < j <4). Note that

dom(yp) = dom(p;) = dom(ypy;),

for each 1 < ¢ <3 and 1 < j <4, and moreover,

C C* dom(p) = {n: QF 0% (p(n), p1(n), p2(n), p3(n), pi;(n))}.

By Theorem 3.3,

[T QF 6# (4], [e1); 2], [ps). [pis)-

c

In particular, this implies that [¢] is a solution of the linear equation

z-[p1] + 2] = lpa] in [] Q.
C

Since T' is an automorphism of [[ Q, we also have
c

[TQF 0#@(e]). T[], T(2)), T([i3]): T([pis]))-
C

Since [p;] and [p;;] are elements of [[N, we have
c

L([pi]) = [wi] and T'([p45]) = [i5],
for1<i<3and1l<j<4, and so

[TQF 6*#(T (4D [e1), [e2], [wa], [is))-
C

This implies that T'([¢]) is also a solution of the linear equation

- [p1] + [p2] = [ps] in [[Q
c

Therefore, I'([¢]) = [¢]. m|
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6. An Application of Cohesive Powers to Computable
Algebra

Assume that the canonical computable Ry-dimensional vector space Vi, is

over the field Q. As usual, we denote the lattice of c.e. subspaces of Vi

by L(Vx), and the lattice £(Vo) modulo finite dimension by £*(V). If

V € L(Vx), then by £*(V*,1) we will denote the principal filter of V* in

L*(Vs). To simplify the notation, we will use Qa =4e¢ [[ Q to denote the
M

cohesive power of the field Q over a co-maximal set M such that deg,,(M) =
a. This notation is justified by Theorem 5.1. In [6], Dimitrov and Harizanov
characterized the orbits, in £*(V4), of the equivalence classes of the closures
of quasimaximal subsets of computable bases. We introduced the notion of

n
an m-degree type of a quasimaximal set E = (| M; of rank n with respect

to a fixed computable basis A of V, denotézd1 by typea(E). This notion
captures the number and the m-degrees of the maximal sets M;’s. In the
Main Theorem in [6], we proved that there is an automorphism ® of £*(V)
such that ®(cl(E1)*) = cl(Eq)* if and only if typea, (E1) = typea,(Es).
We now give an example illustrating the notion of the type and apply the
theorem to this case.

Example 6.1: Suppose A; and As are computable bases of V.
Suppose that, for j = 1,2, the sets M{ =, MJ =,, M] are different

, 3
maximal subsets of A; and deg,, (M;) = a;. Let E; = (| M. In this case,
=1

typea, (E;) = (3;a;).

By the Main Theorem in [9], L*(cl(E;)*,T) = L(3,Qa,), where
L(3,Qa;) denotes the lattice of all subspaces of a 3-dimensional vector
space over the field Qa; =acy [[ Q, for j =1,2.

M;

By the Main Theorem in [6], there is an automorphism ® of £*(Vy)

such that ®(cl(F1)*) = cl(F2)* if and only if a; = as.

1=

In the case of maximal sets, we have the following result.

Theorem 6.2: (Dimitrov and Harizanov [6]) Let My and My be maxi-
mal subsets of computable bases A1 and As of Vo, respectively. Then the

following are equivalent:
(1) There is an automorphism ® of L*(V) such that

D(cl(M71)*) = cl(Ms)*,
(2) degm (M) = degm, (Ma).
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