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Figure 1: DDM’s User Interface

ABSTRACT

We explore data management for longitudinal study survey in-
struments: (i) Survey instrument evolution presents a unique data
integration challenge; and (ii) Longitudinal study data frequently re-
quires repeated, task-specific integration efforts. We present DDM
(Drag, Drop, Merge), a user interface for documenting relationships
among attributes of source schemas into a form that can streamline
subsequent efforts to generate task-specific datasets. DDM employs
a "human-in-the-loop” approach, allowing users to validate and
refine semantic mappings. Through a simulation of user interac-
tions with DDM, we demonstrate its viability as a way to reduce
cognitive overhead for longitudinal study data curators.
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1 INTRODUCTION

In longitudinal studies', survey instruments (i.e., questionnaires)
evolve over years, or even decades. Questions may be added, re-
moved, or adjusted to account for changes in the social context
in which the study is administered, or as the researcher’s under-
standing of the study domain improves. For example, consider a
longitudinal study of school students. In the midst of the study,
researchers observe an increase in noise in answers to a question
about the family’s postal code. After examining the situation, the
researchers are able to attribute the noise to changing social factors
that result in fewer respondents knowing their postal code. In this
situation, the researchers may opt to modify the question (e.g., to
ask for the student’s school district instead), reducing noise, albeit
at the cost of creating heterogeneity in the data.

! Although we use longitudinal studies as a motivating example, similar challenges

arise in other settings like dataset archival, and meta-studies designed around creating
publishable datasets.
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Chronological Schema Evolution. Integration of heterogeneous
data (i.e., entity resolution) is a well studied problem [2-5, 7, 12, 18].
A central problem in prior work on data integration is the massive
number of integration options available: Each attribute in every
dataset, could potentially align with any other attribute from any
other dataset. This overwhelming number of options poses both a
computational challenge as the runtime of naive algorithms grows
quadratically with the number of datasets; and a cognitive challenge,
as any errors in predicted aligning attributes require the user to
manually search through a large number of potential matches.

By contrast, longitudinal data lacks this constraint: schema inte-
gration in longitudinal studies can consider each schema chrono-
logically, as illustrated in Figure 2. Survey instruments forming
a chronological chain (i.e., survey instruments in adjacent years
are very similar, even if different) admit multiple opportunities for
improved algorithms and integration interfaces with lower cogni-
tive overheads. For example, the questions from adjacent years in
Figure 3 are similar (i.e., Form 1 and 2, and 2 and 3), so merging
adjacent schemas requires less cognitive overhead.

(b) Longitudinal Setting

(a) Classical Ssetting

Figure 2: Classical Schema Integration vs. Longitudinal
Schema Integration

With longitudinal schemas, if Form 1 and 2 are already merged
then by transitivity, Form 3 only needs to be matched against 2. So,
integrating similar questions between adjacent forms and building
up on that iteratively would require ’small’, ’easy’ merges and is
less cognitively demanding, as opposed to attempting all at once.

Hierarchical Form Structure. An additional feature of survey in-
struments over other schemas in general is that questions in survey
forms are categorized hierarchically. For instance, survey forms 1
and 2 in Figure 3 have a category 'Family’ and questions under it are
(a) and (b). Grouping these questions under the same category and
ordering them in a logical sequence emphasizes their relatedness.
Similarly, Form 3 in Figure 3 has a category 'Family Details’ and
asks (a). The semantic similarity of these categories is high, which
can be exploited by clustering them together in the user interface.
This enables users to search for matching questions within the
cluster, reducing the amount of interaction required.

Integration Reusability. In addition to opportunities for complex-
ity reduction, data collected through longitudinal studies often
serves as the basis for multiple distinct research efforts, each of
which has its own requirements of the integrated dataset. Continu-
ing our example, contrast one research effort trying to understand
an educational phenomenon with respect to county-level policies,
against another effort exploring the impact of town-level policies.
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Both postal codes and school districts uniquely identify counties,
so the former study would be satisfied with a published dataset that
identifies records at this granularity. The latter study, on the other
hand, would not be satisfied by county-level location data, and
instead requires a more nuanced data integration process — for ex-
ample one that discards records identified by zip code. Researchers
must frequently make such trade-offs between precision, number
of records, and data completeness. However, the optimal point on
the trade-off curve varies by the needs of each research effort, often
requiring researchers to duplicate data integration work.

'Form 1

1. Degree of Schooling
2. Family
(a) Do you have children?
(b) How many? What are their ages?
3. Consultant’s personal details
(a) Village & Quarter
Form 2

1. What are the schools that you attended?
2. Family
(a) Do you have children?
(b) How many? What are their ages?
3. Consultant’s personal details
(a) Village & Quarter
Form 3

1. Schooling (list all the schools attended, with location and
remarks on schoolmates provenance and languages)
2. Family Details
(a) List out the names and ages of your children
3. Biographic Questionnaire
(a) Current Residence? Village, quarter, compound

Figure 3: Survey questions from three years, listed chrono-
logically by year [11]

In this paper, we propose DDM (Drag, Drop, Merge), a data in-
tegration tool aimed at reducing per-use data integration effort in
analytics over longitudinal study data. As input, DDM takes a set
of schemas: one for each individual revision of a survey instrument,
where each attribute of the schema corresponds to the answer to
one specific question. DDM aims to simultaneously assist the re-
searchers conducting the longitudinal study in data publication; as
well as researchers attempting to leverage the published data, as
they integrate it for the needs of their individual research efforts.
The key insight behind DDM is to split the data integration process
into two phases: (i) a curation phase in which study designers doc-
ument relationships between the attributes of the source datasets;
and (ii) a integration phase in which researchers leverage this docu-
mentation to explore the skyline of quality trade-offs, and generate
a dataset that meets their needs. Although our primary focus for
this paper is the first, curation phase, we first explore the needs of
the second, integration phase.

Target Audience. DDM is developed through an interdisciplinary
collaboration involving experts from linguistics, medicine, and sta-
tistics. The target group for DDM is domain experts conducting
longitudinal studies in their respective fields. These experts are
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already familiar with the process of data integration, which they
currently perform manually. The design considerations for DDM
evolved based on the feedback from preliminary usability tests
conducted with these collaborators, the prospective users of DDM.

1.1 Generating Task-Specific Datasets

The primary objective of researchers at this phase is to trade off
between the quantity of data that they plan to analyze, and the
completeness/precision of that data. As the researcher incorporates
more years of data from the longitudinal survey, the number of
questions missing from one or more revisions of the instrument
grows. In some cases (e.g., counties in our running example), some
attributes may be available at a reduced precision; or only in ap-
proximation for some source datasets. In other cases, questions
may only have answers that are comparable in specific situations.
For example, consider a question that asks respondents to list di-
alects that they speak, and a revision in which a specific dialect is
introduced as an example. Such a revision may have a negligible
impact on some analyses (e.g., if the new example dialect has few
speakers), but could have a drastic effect on others (e.g., a study
involving the dialect itself).

The goal of the curation phase, then, is to document the relation-
ships between attributes, giving researchers using the published
data (i) a starting point for their integration task, while simultane-
ously (ii) retaining the provenance of those relationships to allow
researchers to refine the integrated dataset, based on study-specific
criteria. In classical approaches to data integration, the objective is
usually a single, clean, redundancy-free target schema. By contrast
DDM’s curation step adopts a flat, graph-based schema model. The
focus of the model, and accordingly of the curation step, is on doc-
umenting relationships between attributes, and not on creating a
single global schema. We discuss the model further in Section 3.

1.2 Curating Longitudinal Study Data

DDM’s schema curation interface focuses on helping study design-
ers in identifying relationships between attributes (questions) from
distinct survey instruments and their revisions, specifically: (i) Pairs
of questions from different revisions where answers to one or both
may be derived from the other, and (ii) New, “least-upper-bound”
attributes that may be derived from answers to related questions
where no direct interchange is possible. Although this is fundamen-
tally similar to a classical data integration process, DDM’s use of a
flat, relationship-based model, rather than one based on creating
a single target schema, substantially increases the number of at-
tributes that the user must sift through. Like other approaches to
integration, DDM heuristically generates an approximate schema
matching as a starting point. However, when this approximation
is incorrect (e.g., if it misses a pair of equivalent questions), the
survey designer must sift through a substantially larger number
of attributes to manually declare the match. Worse, with a large
number of attributes, it becomes easier for the designer to miss an
unlisted equivalence.

Our key contribution here is to note that the order in which
schemas are integrated can significantly affect the cognitive over-
head placed on DDM curators. Specifically, we observe that asking
users to perform many isolated 1-1 schema matchings (e.g., pair-
wise matching between schema revisions), can actually result in

HILDA 24, June 14, 2024, Santiago, AA, Chile

less work than asking them to match all schemas at once. Even
though the latter approach involves less work overall, having more
attributes under consideration at the same time creates a higher
cognitive overhead for the curator when the approximate initial
matching is incorrect.

Outline. The rest of the paper is organized as follows. Section 2
discusses related work, including table union search, schema evo-
lution, and user interfaces for data integration. In Section 3, we
introduce the DDM system and its schema model, and outline key
features in the design of its interface. Section 4 reports the results
of a simulation study, demonstrating how DDM can streamline
the cost of integration. Section 5 briefly discusses our longer term
vision for the DDM system, and we conclude in Section 6.

2 RELATED WORK

Schema Evolution. PRISM workbench [3] addresses schema evo-
lution by using theories of mapping composition and invertibility.
Its concise Schema Modification Operators (SMOs) language en-
ables efficient representation of schema changes, facilitating pre-
dictability and automating verification processes for information
preservation and query support. PRISM adopts a similar evolution-
ary model of schema evolution, but focuses on providing query
compatibility with specific schema revisions, rendering certain at-
tribute combinations inaccessible. Adaptive Schema Databases [19]
explores query support for ambiguously defined schemas, but as-
sumes that a space of possible schemas has already been defined.
DDM could be used to create such a space.

Table Enrichment. As discussed in [14], table enrichment entails
identifying unionable (resp., joinable) tables for a provided query
table: Unionable tables contribute new tuples, while joinable tables
add new attributes. Although DDM adopts similar mechanisms,
table enrichment focuses on discovery, rather than integration.

UIs for Data Cleaning and Alignment. In Clio [7], users can view,
insert, and delete correspondences between schemas. Additionally,
users can assign transformation functions to these correspondences
and inspect and modify the resulting logical mappings. However,
the system has scalability issues when schemas are large because
it can take exponential time in the worst case as it explores expo-
nential path variable assignments. Muse [1], built on top of Clio,
uses a series of simple data examples to discern between alternative
mapping specifications and deduces the desired mapping semantics
based on the actions of the designer. Wrangler [10] is an interactive
data transformation tool that uses a spreadsheet-style interface
allowing direct manipulation of visualized data with automatic de-
duction of pertinent transforms. Unlike conventional tools focusing
on pairwise settings, SMART [16] addresses scenarios involving a
large number of schemas through a pay-as-you-go approach that
leverages integrity constraints. GestureDB [9], a database archi-
tecture system for keyboardless database interaction, includes a
high-performance unionability index to allow low-latency gestural
specification of unions.

3 SYSTEM OVERVIEW

3.1 Overview

DDM'’s system architecture is shown in Figure 4. In DDM, a list of
source schemas is uploaded to the workspace, and a subset (or all) of
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Figure 4: System Architecture

it can be selected to document relationships among source attributes
in 3). These documented relationships can then be transformed into
study-specific schemas (6), and corresponding datasets (7). Without
the documented relationships, researchers with new requirements
must revisit the entire integration process for each new study; DDM
kick-starts this integration process through a schema relationship
graph (defined formally below).

We would like to avoid the need for schema curators to define this
graph manually. Instead, DDM streamlines the process by proposing
a schema relationship graph for review and manual correction. As
shown in (@, the user validates the candidates, applies corrections
as needed, and potentially marks specific relationships as requiring
a mapping function. As part of this process, DDM uses the graph
to warns users about attributes that have not been reviewed or
matched. Once the user is satisfied, they commit their changes to a
database of documented relationships.

In order for DDM to propose a preliminary graph to the curator,
we needed a metric that could quantify the similarity between two
attributes. Many such measures exist, relating categorical and prose
data [14, 15], numerical data [20], or semantics [8]; but frequently
rely on the data behind the schemas. We adopted a simpler seman-
tic measure based on the question contents [13], leveraging vector
embeddings of attribute names (i.e., question plaintext and their
containing context). DDM identifies related questions from differ-
ent instrument revisions by performing a top-k similarity search
using Faiss[6], a library tailored for efficient similarity search and
clustering of dense vectors in 3). Two attributes (questions) are
considered to be related if their cosine distance exceeds a threshold,
a. A higher value of a decreases false positives in the candidates
list, but increases the number of false negatives.

We assurme that the schemas are provided by the survey designer.
Our initial approach is modeled after a collection of medical intake
forms, used in a recent study on opioid use disorder[13]. The struc-
ture of the forms (i.e., the schema) had already been digitized into
a hierarchical Json schema mirroring each individual instrument’s
structures and questions. Each section of the form and its questions
are represented as nested objects, aligned with their hierarchy in
the forms. Questions are encoded according to their type (e.g., free
text, number, multiple choice) with appropriate data fields, includ-
ing enums for multiple choice questions. This structure facilitates
efficient data entry and supports automated validation and manage-
ment of evolving schemas. To make the attributes easier to work

with, we first project the hierarchical source schema into a flat
collection of attributes. These projected attributes from multiple
source forms are identified by the question text and elements from
the hierarchy of section headers. The set of attributes (denoted D
in (D) is the set of all projected attributes. D is transformed into
vector embeddings using a pre-trained model [17] and clustered in
(@ based on the sentence embeddings of their root question cate-
gory. Clustering the questions has two advantages: (i) it preserves
the order of the question asked in original source schema up to
some extent, and (ii) it minimizes the user effort to find an attribute
from similar root question categories.

The entire process is iterative and the information obtained from
human interaction is used in future iterations to reduce required
calculations for similarity search and suggest preciser candidates.

3.2 Model

Definition 3.1. (Dictionary). A schema set S = {S1,...,Sn}isa
set of disjoint source schemas, where S; = {a;1,...,a;;} is a set of
attributes in the schema S;. We typically assume that each pair S;
and S; (where i # j) is fully disjoint. An attribute a;; indicates ji
attribute of schema S;. A dictionary D is the union of all of the
attributes in source schemas: D = Ui\il Si.

Definition 3.2 (Correspondence). A lossy correspondence {(aj, ax., f)
defines a relationship between a pair of attributes a;, @ from two
distinct source schemas a; € Sj, ax € Sg through a function fj ¢
that maps values of attxibute a; into values of attribute ag. If f; x is

invertible, we call it a lossless correspondence {a;, ap L.

Definition 3.3 (Relationship Set). A relationship set is a mixed
graph G : (9,E, A), where E is a set of undirected edges repre-
senting lossless correspondences, and A is a set of directed edges
representing lossy correspondences.

We emphasize the choice to explicitly distinguish lossless and
lossy edges as undirected and directed edges, respectively. This
treatment simplifies the handling of bidirectional transformations
and allows for efficient processing of inverse relationships. A cor-
respondence is either (i) lossless, or (ii) lossy. If f(j) = k and f~!
exists such that f~1(k) = j, then the correspondence is lossless and
is denoted as a tuple {a;, ag, f, f1). For instance, temperature unit
conversion from Celsius to Fahrenheit is a lossless correspondence.
On the other hand, the correspondence is lossy if f(j) = k and f~!
does not exist, denoted as tuple (a;, ai., f). An example of a lossy
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correspondence is the mapping from school district and zip code to
county from the introduction.

Definition 3.4 (Global Attribute). A global attribute is a fully
connected component C in G: C = {v1,02,...,0n} € V, where
Vl)i,l)j eCi# ], 361‘]‘ €eEU Haij €A

C2

Figure 5: Global attributes as fully connected components.
Node x5 has lossy correspondence to both C; and C; and
belongs to both of them

If we can find a correspondence for a vertex v with any one of the
vertices v; in the fully connected component Cy, then o can be as-
signed to Cy. Similarly, a vertex v can have a lossy correspondence
to multiple fully connected components Cy. and can be assigned to
all of them. For every vertex v,0” € V , if v has a lossy correspon-
dence to the fully connected component C and o” has a lossless
correspondence to o, then we remove o from Ci. and form a new
fully connected component C;_ by including o and o’

3.3 Interface Design Considerations

Our choice of the mixed graph model for DDM was backed by
its flexibility in including various types of mappings and transfor-
mations between different data elements. This modular approach
facilitates the incremental development of integration workflows.
In addition, the features of connected components in a graph can be
leveraged to reduce computation time and document more refined
mappings.

The primary goal of DDM’s user interface is to produce the
relationship set G for a set of source schemas S. As a completion
measure, DDM requires every attribute in O to be associated with
a global attribute; If the attribute is a singleton in the relationship
set, we require the user to explicitly confirm this fact, to avoid
accidentally omitted attributes.

We considered two design options for the user interface: (i) al-
lowing users to manually explore the top-k similar candidates list
generated by Faiss, for each attribute in D, and (ii) suggesting the
mergeable candidates (based on the Faiss metric) for all attributes in
D and making them visible as a list in the UL The former approach
allows more control to the user, in terms of exploring mergeable
candidates. However, based on the preliminary usability study with
our area-expert collaborators, we observed that it required far too
many user interactions to generate (E, A), because the user had
to click each attribute in O and choose from their top-k list; we
ultimately adopted the latter approach. We wanted to preserve the
order of questions asked in the source schemas, so the attributes
in D are displayed in tree-view format as shown in Figure 1. Here,
each node is a cluster that represents root category of a question.
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Each attribute appears with a list of potential merge candidates.
To allow users to distinguish the strength of similarity between
an attribute in O and the merge candidates, the merge candidates
are ordered in descending order of the similarity scores, appearing
with a color gradient as shown in Figure 1.

Since the user begins with a proposed relationship set, there are
three fundamental interactions that the user needs to perform in
DDM: (i) confirming True Positives (correctly predicted merge can-
didates), (ii) rejecting False Positives (incorrectly predicted merge
candidates), and (iii) repairing False Negatives (missed merge can-
didates). Confirming true positives can be done by dragging a can-
didate attribute from candidates branch to merge branch of the cor-
responding global attribute in the tree-view. Untouched attributes
are rejected as false positives. We note that a key challenge in re-
solving false negatives is the need to find the mapped attribute
among the list of available mappable attributes. To mitigate the
scrolling distance that the user needs to drag a value, as shown in
Figure 1, DDM provides a separate temporary merge area where
attributes can be dragged from tree-view of D, dropped in the pane,
and merged.

Json_schema_1json @
Json_schema_0.json

Json_schema_3json @
Json_schema_4.son @
hema_2json® [

(a) Lesser number of source at-(b) Large number of source at-
tributes tributes

Figure 6: Graph Visualization of Relationships Among Source
Attributes

A visualization tab, powered by D3 was created to allow users
to visualize the status of the identified relationships in the current
workspace and quickly locate global attributes (i.e., connected com-
ponents in the graph). The initial approach allowed the user to see
all relationships of attributes in D, but it did not provide a clear
indication of which attributes were candidates for merging when
there were many source attributes. To provide users with a clear
visualization, the latter approach only displays attributes with their
merge candidates in the visualization tab. As shown in Figure 6, the
graph was useful as long as the number of attributes was small in
the workspace since it fills the graph with a thick cloud of nodes
and edges that hinders visualization as the number of attributes
grows. It also explains why one should not want to integrate many
things at once.

A few fundamental considerations were made in terms of the
user interface to improve the user experience: (i) use of a fixed-
width panel to display candidate attributes instead of a single line
panel with a horizontal scroll bar, (ii) auto-collapse of attributes
with candidates available (to reduce the need for vertical scrolling),
and (iii) use of a brighter color gradient (e.g. red) for the appearance
of candidates list.
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4 EXPERIMENTS

Experiments were performed to assess the impact of the following
factors on building mappings: (i) the order of source datasets sub-
jected during merging, and (ii) the number of attributes attempted
to merge at once (i.e. size of D).

Dataset. We used a collection of medical intake forms (schemas
only) used in a recent Social Determinants of Health (SDOH) study
on opioid use disorder[13]. The subset of the form layouts we used
involved three distinct instruments, including medical intake forms
from two sites (i.e., clinics) A and B, with form revisions denoted
ay and ay, and by, respectively.

Overview. We were interested in the relationship between the
effort required to merge schemas and the order in which integra-
tion was performed. To understand this relationship, we simulated
merging between the source schemas belonging to the same sites
as well as different sites was simulated in different orders. Recall
that three classes of user input are required: (i) Confirming a pre-
dicted attribute relationship (TP), (ii) Rejecting a predicted attribute
relationship (FP), and (iii) Adding a non-predicted attribute relation-
ship (FN). Additionally, recall that adding a non-predicted attribute
relationship requires exploring the full list of available attributes.
We simulate this by measuring how far two mergeable candidates
(missed by similarity search) are in the tree-view, where two at-
tributes appearing one after another in the treeview have a distance
of 1. This metric is summed over all the False Negative pairs. We
set the word embedding threshold « to 0.7.

We considered three different orders:

Experiment 1 [(a; + az) + by ]: First, the schemas belonging to site
A were merged, followed by a schema belonging to site B.
Experiment 2 [(aj + b1) + ay]: First, one schema from each of sites
A and B were merged, then the remaining schema of site A.
Experiment 3 [a; +az +b1]: All three source schemas were merged
simultaneously.

4.1 Experimental Results

The comparison of the number of validations required and cognitive
overhead for the three different approaches of experiments is shown
in Table 1. The union of the TP, FP, and FN scores across all the
steps for all the experiments were found to be the same. Meaning
that the order of merging has no bearing on the merge candidates
generated altogether. This is due to the fact that the final dictionary
D would eventually be the same for each of the approaches and the
semantic similarity search would generate the same results overall.
However, it significantly affected the effort to find False Negative
pairs. In experiment 3, we found that merging all schemas at once
would result in a higher overhead than merging two schemas in
a single step and building up on that in further iterations. This is
because having more attributes under consideration at the same
time creates a higher cognitive overhead for the curator when there
are False Negatives to identify manually.

5 FUTURE WORK

DDM is a proof of concept, but substantial work remains to be
done to identify pain points. We plan to conduct comprehensive
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Experiment [ Step [ TP [ FP [ FN [ > Distance to FN

. 1 [16] 3] 7 356
2 2 | 1] 1 8
) 1 2 1] 1 4
2 | 16| 3 | 7 476
| 3 [ 1 18] 4] 8] 562 |

Table 1: Comparison of cognitive overheads for merging
schemas from same sites first vs. merging schemas from
a different site first

expert and user studies to confirm our hypothesis that incremen-
tal integration can produce a more reliable relationship set. If this
hypothesis is supported, we will explore the design of a recommen-
dation system that suggests an order of source datasets in which
merging should be performed. For this work, we adopted a sim-
pler semantic similarity measure. Unlike classical database schemas
with attribute names identified by short keywords or codes, survey
questionnaires are often succinct, clearly informative, and some-
times verbose. However, we understand this approach may not be
entirely sufficient. We will further explore the possibilities of using
ontologies, taxonomy, and most importantly profiling actual data
values behind the schemas. These methodologies might further
help identify similarities.

The dataset [13] used in Section 4 contains multiple years of
medical intake forms from multiple sites and the results in Sec-
tion 4.1 show that site has a significant impact on the cognitive
overhead of merging schemas, so we plan to apply a hybrid strategy
that combines our methods with more classical techniques.

In this paper, we focus exclusively on schema integration; Lever-
aging these mappings for subsequent analysis is left to future work.
The key challenge here is helping users to identify which attribute
relationships can be safely leveraged. We plan to explore strategies
for measuring whether the form and/or question variant acts as
a meaningful predictor of participant responses, and for helping
users to visualize relationships between the quantity and quality of
data extracted.

Similarly, as in to PRISM [3] and similar works, it may be im-
possible to define some schema mappings precisely, a problem that
only becomes more acute in survey instruments. For example, mi-
nor changes in phrasing can substantially impact how respondents
interact with it. End even if a question is unaltered, changing social
context (e.g., the relative value of a dollar) may affect the com-
parability of answers from across instrument revisions. We will
explore how such partial relationships can be captured, and safely
incoroporated into the dataset construction phase.

6 CONCLUSION

This paper describes an initial implementation of DDM- an ap-
proach to simplifying the documentation of attribute relationships
within a pool of source schemas. By employing a user-friendly
interface and a human-in-the-loop approach, DDM facilitates the
validation and refinement of semantic mappings, with a goal of
reducing cognitive overload for data curators. DDM aims to aid in
efficient management of longitudinal study data integration tasks,
offering researchers the flexibility to generate task-specific datasets
tailored to their unique requirements.
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