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Chronological Schema Evolution. Integration of heterogeneous

data (i.e., entity resolution) is a well studied problem [2–5, 7, 12, 18].

A central problem in prior work on data integration is the massive

number of integration options available: Each attribute in every

dataset, could potentially align with any other attribute from any

other dataset. This overwhelming number of options poses both a

computational challenge as the runtime of naive algorithms grows

quadratically with the number of datasets; and a cognitive challenge,

as any errors in predicted aligning attributes require the user to

manually search through a large number of potential matches.

By contrast, longitudinal data lacks this constraint: schema inte-

gration in longitudinal studies can consider each schema chrono-

logically, as illustrated in Figure 2. Survey instruments forming

a chronological chain (i.e., survey instruments in adjacent years

are very similar, even if different) admit multiple opportunities for

improved algorithms and integration interfaces with lower cogni-

tive overheads. For example, the questions from adjacent years in

Figure 3 are similar (i.e., Form 1 and 2, and 2 and 3), so merging

adjacent schemas requires less cognitive overhead.

(a) Classical Ssetting (b) Longitudinal Setting

Figure 2: Classical Schema Integration vs. Longitudinal

Schema Integration

With longitudinal schemas, if Form 1 and 2 are already merged

then by transitivity, Form 3 only needs to be matched against 2. So,

integrating similar questions between adjacent forms and building

up on that iteratively would require ’small’, ’easy’ merges and is

less cognitively demanding, as opposed to attempting all at once.

Hierarchical Form Structure. An additional feature of survey in-

struments over other schemas in general is that questions in survey

forms are categorized hierarchically. For instance, survey forms 1

and 2 in Figure 3 have a category ’Family’ and questions under it are

(a) and (b). Grouping these questions under the same category and

ordering them in a logical sequence emphasizes their relatedness.

Similarly, Form 3 in Figure 3 has a category ’Family Details’ and

asks (a). The semantic similarity of these categories is high, which

can be exploited by clustering them together in the user interface.

This enables users to search for matching questions within the

cluster, reducing the amount of interaction required.

Integration Reusability. In addition to opportunities for complex-

ity reduction, data collected through longitudinal studies often

serves as the basis for multiple distinct research efforts, each of

which has its own requirements of the integrated dataset. Continu-

ing our example, contrast one research effort trying to understand

an educational phenomenon with respect to county-level policies,

against another effort exploring the impact of town-level policies.

Both postal codes and school districts uniquely identify counties,

so the former study would be satisfied with a published dataset that

identifies records at this granularity. The latter study, on the other

hand, would not be satisfied by county-level location data, and

instead requires a more nuanced data integration process — for ex-

ample one that discards records identified by zip code. Researchers

must frequently make such trade-offs between precision, number

of records, and data completeness. However, the optimal point on

the trade-off curve varies by the needs of each research effort, often

requiring researchers to duplicate data integration work.

Form 1

1. Degree of Schooling

2. Family

(a) Do you have children?

(b) How many? What are their ages?

3. Consultant’s personal details

(a) Village & Quarter

Form 2

1. What are the schools that you attended?

2. Family

(a) Do you have children?

(b) How many? What are their ages?

3. Consultant’s personal details

(a) Village & Quarter

Form 3

1. Schooling (list all the schools attended, with location and

remarks on schoolmates provenance and languages)

2. Family Details

(a) List out the names and ages of your children

3. Biographic Questionnaire

(a) Current Residence? Village, quarter, compound

Figure 3: Survey questions from three years, listed chrono-

logically by year [11]

In this paper, we propose DDM (Drag, Drop, Merge), a data in-

tegration tool aimed at reducing per-use data integration effort in

analytics over longitudinal study data. As input, DDM takes a set

of schemas: one for each individual revision of a survey instrument,

where each attribute of the schema corresponds to the answer to

one specific question. DDM aims to simultaneously assist the re-

searchers conducting the longitudinal study in data publication; as

well as researchers attempting to leverage the published data, as

they integrate it for the needs of their individual research efforts.

The key insight behind DDM is to split the data integration process

into two phases: (i) a curation phase in which study designers doc-

ument relationships between the attributes of the source datasets;

and (ii) a integration phase in which researchers leverage this docu-

mentation to explore the skyline of quality trade-offs, and generate

a dataset that meets their needs. Although our primary focus for

this paper is the first, curation phase, we first explore the needs of

the second, integration phase.

Target Audience. DDM is developed through an interdisciplinary

collaboration involving experts from linguistics, medicine, and sta-

tistics. The target group for DDM is domain experts conducting

longitudinal studies in their respective fields. These experts are
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already familiar with the process of data integration, which they

currently perform manually. The design considerations for DDM

evolved based on the feedback from preliminary usability tests

conducted with these collaborators, the prospective users of DDM.

1.1 Generating Task-Specific Datasets

The primary objective of researchers at this phase is to trade off

between the quantity of data that they plan to analyze, and the

completeness/precision of that data. As the researcher incorporates

more years of data from the longitudinal survey, the number of

questions missing from one or more revisions of the instrument

grows. In some cases (e.g., counties in our running example), some

attributes may be available at a reduced precision; or only in ap-

proximation for some source datasets. In other cases, questions

may only have answers that are comparable in specific situations.

For example, consider a question that asks respondents to list di-

alects that they speak, and a revision in which a specific dialect is

introduced as an example. Such a revision may have a negligible

impact on some analyses (e.g., if the new example dialect has few

speakers), but could have a drastic effect on others (e.g., a study

involving the dialect itself).

The goal of the curation phase, then, is to document the relation-

ships between attributes, giving researchers using the published

data (i) a starting point for their integration task, while simultane-

ously (ii) retaining the provenance of those relationships to allow

researchers to refine the integrated dataset, based on study-specific

criteria. In classical approaches to data integration, the objective is

usually a single, clean, redundancy-free target schema. By contrast

DDM’s curation step adopts a flat, graph-based schema model. The

focus of the model, and accordingly of the curation step, is on doc-

umenting relationships between attributes, and not on creating a

single global schema. We discuss the model further in Section 3.

1.2 Curating Longitudinal Study Data

DDM’s schema curation interface focuses on helping study design-

ers in identifying relationships between attributes (questions) from

distinct survey instruments and their revisions, specifically: (i) Pairs

of questions from different revisions where answers to one or both

may be derived from the other, and (ii) New, “least-upper-bound”

attributes that may be derived from answers to related questions

where no direct interchange is possible. Although this is fundamen-

tally similar to a classical data integration process, DDM’s use of a

flat, relationship-based model, rather than one based on creating

a single target schema, substantially increases the number of at-

tributes that the user must sift through. Like other approaches to

integration, DDM heuristically generates an approximate schema

matching as a starting point. However, when this approximation

is incorrect (e.g., if it misses a pair of equivalent questions), the

survey designer must sift through a substantially larger number

of attributes to manually declare the match. Worse, with a large

number of attributes, it becomes easier for the designer to miss an

unlisted equivalence.

Our key contribution here is to note that the order in which

schemas are integrated can significantly affect the cognitive over-

head placed on DDM curators. Specifically, we observe that asking

users to perform many isolated 1-1 schema matchings (e.g., pair-

wise matching between schema revisions), can actually result in

less work than asking them to match all schemas at once. Even

though the latter approach involves less work overall, having more

attributes under consideration at the same time creates a higher

cognitive overhead for the curator when the approximate initial

matching is incorrect.

Outline. The rest of the paper is organized as follows. Section 2

discusses related work, including table union search, schema evo-

lution, and user interfaces for data integration. In Section 3, we

introduce the DDM system and its schema model, and outline key

features in the design of its interface. Section 4 reports the results

of a simulation study, demonstrating how DDM can streamline

the cost of integration. Section 5 briefly discusses our longer term

vision for the DDM system, and we conclude in Section 6.

2 RELATED WORK

Schema Evolution. PRISM workbench [3] addresses schema evo-

lution by using theories of mapping composition and invertibility.

Its concise Schema Modification Operators (SMOs) language en-

ables efficient representation of schema changes, facilitating pre-

dictability and automating verification processes for information

preservation and query support. PRISM adopts a similar evolution-

ary model of schema evolution, but focuses on providing query

compatibility with specific schema revisions, rendering certain at-

tribute combinations inaccessible. Adaptive Schema Databases [19]

explores query support for ambiguously defined schemas, but as-

sumes that a space of possible schemas has already been defined.

DDM could be used to create such a space.

Table Enrichment. As discussed in [14], table enrichment entails

identifying unionable (resp., joinable) tables for a provided query

table: Unionable tables contribute new tuples, while joinable tables

add new attributes. Although DDM adopts similar mechanisms,

table enrichment focuses on discovery, rather than integration.

UIs for Data Cleaning and Alignment. In Clio [7], users can view,

insert, and delete correspondences between schemas. Additionally,

users can assign transformation functions to these correspondences

and inspect and modify the resulting logical mappings. However,

the system has scalability issues when schemas are large because

it can take exponential time in the worst case as it explores expo-

nential path variable assignments. Muse [1], built on top of Clio,

uses a series of simple data examples to discern between alternative

mapping specifications and deduces the desired mapping semantics

based on the actions of the designer. Wrangler [10] is an interactive

data transformation tool that uses a spreadsheet-style interface

allowing direct manipulation of visualized data with automatic de-

duction of pertinent transforms. Unlike conventional tools focusing

on pairwise settings, SMART [16] addresses scenarios involving a

large number of schemas through a pay-as-you-go approach that

leverages integrity constraints. GestureDB [9], a database archi-

tecture system for keyboardless database interaction, includes a

high-performance unionability index to allow low-latency gestural

specification of unions.

3 SYSTEM OVERVIEW

3.1 Overview

DDM’s system architecture is shown in Figure 4. In DDM, a list of

source schemas is uploaded to the workspace, and a subset (or all) of
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4 EXPERIMENTS

Experiments were performed to assess the impact of the following

factors on building mappings: (i) the order of source datasets sub-

jected during merging, and (ii) the number of attributes attempted

to merge at once (i.e. size of D).

Dataset. We used a collection of medical intake forms (schemas

only) used in a recent Social Determinants of Health (SDOH) study

on opioid use disorder[13]. The subset of the form layouts we used

involved three distinct instruments, including medical intake forms

from two sites (i.e., clinics) A and B, with form revisions denoted

01 and 02, and 11, respectively.

Overview. We were interested in the relationship between the

effort required to merge schemas and the order in which integra-

tion was performed. To understand this relationship, we simulated

merging between the source schemas belonging to the same sites

as well as different sites was simulated in different orders. Recall

that three classes of user input are required: (i) Confirming a pre-

dicted attribute relationship (TP), (ii) Rejecting a predicted attribute

relationship (FP), and (iii) Adding a non-predicted attribute relation-

ship (FN). Additionally, recall that adding a non-predicted attribute

relationship requires exploring the full list of available attributes.

We simulate this by measuring how far two mergeable candidates

(missed by similarity search) are in the tree-view, where two at-

tributes appearing one after another in the treeview have a distance

of 1. This metric is summed over all the False Negative pairs. We

set the word embedding threshold U to 0.7.

We considered three different orders:

Experiment 1 [(01 +02) +11]: First, the schemas belonging to site

A were merged, followed by a schema belonging to site B.

Experiment 2 [(01 +11) +02]: First, one schema from each of sites

A and B were merged, then the remaining schema of site A.

Experiment 3 [01+02+11]: All three source schemas were merged

simultaneously.

4.1 Experimental Results

The comparison of the number of validations required and cognitive

overhead for the three different approaches of experiments is shown

in Table 1. The union of the TP, FP, and FN scores across all the

steps for all the experiments were found to be the same. Meaning

that the order of merging has no bearing on the merge candidates

generated altogether. This is due to the fact that the final dictionary

D would eventually be the same for each of the approaches and the

semantic similarity search would generate the same results overall.

However, it significantly affected the effort to find False Negative

pairs. In experiment 3, we found that merging all schemas at once

would result in a higher overhead than merging two schemas in

a single step and building up on that in further iterations. This is

because having more attributes under consideration at the same

time creates a higher cognitive overhead for the curator when there

are False Negatives to identify manually.

5 FUTUREWORK

DDM is a proof of concept, but substantial work remains to be

done to identify pain points. We plan to conduct comprehensive

Experiment Step TP FP FN
∑

Distance to FN

1
1 16 3 7 356

2 2 1 1 8

2
1 2 1 1 4

2 16 3 7 476

3 1 18 4 8 562

Table 1: Comparison of cognitive overheads for merging

schemas from same sites first vs. merging schemas from

a different site first

expert and user studies to confirm our hypothesis that incremen-

tal integration can produce a more reliable relationship set. If this

hypothesis is supported, we will explore the design of a recommen-

dation system that suggests an order of source datasets in which

merging should be performed. For this work, we adopted a sim-

pler semantic similarity measure. Unlike classical database schemas

with attribute names identified by short keywords or codes, survey

questionnaires are often succinct, clearly informative, and some-

times verbose. However, we understand this approach may not be

entirely sufficient. We will further explore the possibilities of using

ontologies, taxonomy, and most importantly profiling actual data

values behind the schemas. These methodologies might further

help identify similarities.

The dataset [13] used in Section 4 contains multiple years of

medical intake forms from multiple sites and the results in Sec-

tion 4.1 show that site has a significant impact on the cognitive

overhead of merging schemas, so we plan to apply a hybrid strategy

that combines our methods with more classical techniques.

In this paper, we focus exclusively on schema integration; Lever-

aging these mappings for subsequent analysis is left to future work.

The key challenge here is helping users to identify which attribute

relationships can be safely leveraged. We plan to explore strategies

for measuring whether the form and/or question variant acts as

a meaningful predictor of participant responses, and for helping

users to visualize relationships between the quantity and quality of

data extracted.

Similarly, as in to PRISM [3] and similar works, it may be im-

possible to define some schema mappings precisely, a problem that

only becomes more acute in survey instruments. For example, mi-

nor changes in phrasing can substantially impact how respondents

interact with it. End even if a question is unaltered, changing social

context (e.g., the relative value of a dollar) may affect the com-

parability of answers from across instrument revisions. We will

explore how such partial relationships can be captured, and safely

incoroporated into the dataset construction phase.

6 CONCLUSION

This paper describes an initial implementation of DDM- an ap-

proach to simplifying the documentation of attribute relationships

within a pool of source schemas. By employing a user-friendly

interface and a human-in-the-loop approach, DDM facilitates the

validation and refinement of semantic mappings, with a goal of

reducing cognitive overload for data curators. DDM aims to aid in

efficient management of longitudinal study data integration tasks,

offering researchers the flexibility to generate task-specific datasets

tailored to their unique requirements.
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