
Journal of Functional Analysis 286 (2024) 110423
Contents lists available at ScienceDirect

Journal of Functional Analysis

journal homepage: www.elsevier.com/locate/jfa

Regular Article

Global existence for an isotropic modification of the
Boltzmann equation

Stanley Snelson
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, 
FL 32901, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 May 2023
Accepted 11 March 2024
Available online 26 March 2024
Communicated by Luis Silvestre

MSC:
35Q20
35B60
46N20

Keywords:
Boltzmann equation
Global existence
Fractional Hardy inequality

Motivated by the open problem of large-data global existence 
for the non-cutoff Boltzmann equation, we introduce a model 
equation that in some sense disregards the anisotropy of the 
Boltzmann collision kernel. We refer to this model equation 
as isotropic Boltzmann by analogy with the isotropic Landau 
equation introduced by Krieger and Strain (2012) [35]. The 
collision operator of our isotropic Boltzmann model converges 
to the isotropic Landau collision operator under a scaling limit 
that is analogous to the grazing collisions limit connecting 
(true) Boltzmann with (true) Landau.
Our main result is global existence for the isotropic Boltzmann 
equation in the space homogeneous case, for certain parts of 
the “very soft potentials” regime in which global existence 
is unknown for the space homogeneous Boltzmann equation. 
The proof strategy is inspired by the work of Gualdani and 
Guillen (2022) [22] on isotropic Landau, and makes use of 
recent progress on weighted fractional Hardy inequalities.

© 2024 Elsevier Inc. All rights reserved.

E-mail address: ssnelson@fit.edu.
https://doi.org/10.1016/j.jfa.2024.110423
0022-1236/© 2024 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jfa.2024.110423
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jfa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfa.2024.110423&domain=pdf
mailto:ssnelson@fit.edu
https://doi.org/10.1016/j.jfa.2024.110423


2 S. Snelson / Journal of Functional Analysis 286 (2024) 110423
v′ v′
∗

v

v∗

σ

θ

Fig. 1. The collision geometry corresponding to the Boltzmann collision operator.

1. Introduction

1.1. Motivation: the non-cutoff Boltzmann equation

The Boltzmann equation is a fundamental kinetic model in statistical physics. The 
unknown function f(t, x, v) ≥ 0 represents the particle density of a diffuse gas as it 
evolves in phase space. The equation reads

∂tf + v · ∇xf = QB(f, f), (1.1)

where QB(f, f) is Boltzmann’s collision operator, a nonlinear, nonlocal operator that 
acts in the velocity variable. For any two functions f, g, the operator is defined by

QB(f, g) =
∫
Rd

∫
Sd−1

B(v, v∗, σ)[f(v′
∗)g(v′) − f(v∗)g(v)] dσ dv∗.

Because collisions are assumed to be elastic, momentum and energy are conserved, which 
implies the four pre- and post-collisional velocities v, v∗, v′, v′

∗ lie on a sphere of radius 
|v − v∗|/2. (See Fig. 1.) Parameterizing this sphere by σ ∈ Sd−1, one has the formulas

v′ = v + v∗
2 + |v − v∗|

2 σ,

v′
∗ = v + v∗

2 − |v − v∗|
2 σ.

(1.2)

The non-cutoff collision kernel B(v, v∗, σ) is not integrable over Sd−1. For constants 
γ > −d and s ∈ (0, 1), it takes the form

B(v, v∗, σ) = |v − v∗|γb(cos θ), b(cos θ) ≈ θ−(d−1)−2s as θ → 0, (1.3)
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where θ is the deviation angle between pre- and post-collisional velocities:

cos θ = v − v∗
|v − v∗| · σ.

This paper is (mostly) focused on the space homogeneous regime, where the system is 
constant in x. In this case, the Boltzmann equation reduces to

∂tf = QB(f, f).

Global existence of classical smooth solutions is known for this homogeneous equation 
only when γ + 2s ≥ 0: see e.g. [14,13,27]. Regarding other notions of solution, measure-
valued solutions are known to exist globally when γ ≥ −2 [38,41], and H-solutions exist 
for any γ > −d and s ∈ (0, 1) [46]. Thanks to the recent result of [9], H-solutions are 
in fact weak solutions in the usual sense (integration against smooth test functions) 
when γ + 2s > −2. For more on the existence and regularity theory of the spatially 
homogeneous Boltzmann equation, see [12,17,40,10,20,8,7] and the references therein.

We are interested in the problem of constructing global smooth solutions, so we restrict 
our attention to the range

γ + 2s < 0,

sometimes referred to as “very soft potentials.”1 The regularity of the generalized solu-
tions discussed above is not understood in this parameter regime.

The main extra difficulty in the case of very soft potentials comes from the singularity 
|v − v∗|γ in (1.3), which becomes more severe when γ is more negative. To control this 
singularity, one would need higher integrability estimates for the solution f , but it is 
not clear how to obtain this higher integrability unconditionally, when γ + 2s < 0. For 
the model equation we introduce below, the desired higher integrability estimates are 
available.

For the full inhomogeneous equation (1.1), global existence remains unknown in the 
case of general (far from equilibrium) initial data, regardless of γ and s. A more at-
tainable, but still difficult, goal is to prove regularity conditional to uniform control on 
the mass, energy, and entropy densities of f , i.e. show that the solution is smooth and 
can be continued past any given time, as long as these densities satisfy uniform bounds. 
This has been accomplished for the case γ + 2s ∈ [0, 2] in the breakthrough result [34], 
but is still open in the case γ + 2s < 0. This open problem is discussed in the review 
article [33], Section 12.2. The extra obstacle is, once again, the more severe singularity 
in the collision operator as v∗ ∼ v. We believe that the model equation introduced in 
the present article may provide a useful stepping stone for this problem as well.

1 If the interaction potential between particles is taken to be an inverse power law φ(r) = r1−p, then the 
assumption γ + 2s < 0 corresponds to p < 3.
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Fig. 2. The collision geometry corresponding to the isotropic collision operator. Momentum is conserved by 
the collisions, but energy is not.

1.2. An isotropic Boltzmann model

We now introduce a model equation that—although not necessarily relevant from 
the point of view of physics—is more tractable than the Boltzmann equation while still 
encapsulating many of the key mathematical difficulties.

To derive our equation, we begin by relaxing the requirement that the four pre- and 
post-collisional velocities lie on a sphere, i.e. we replace σ in (1.2) with any z ∈ Rd, 
yielding

v′ = v + v∗
2 + |v − v∗|

2 z,

v′
∗ = v + v∗

2 − |v − v∗|
2 z.

(1.4)

(See Fig. 2.) This amounts to discarding energy conservation while still requiring mo-
mentum conservation (since v + v∗ = v′ + v′

∗ is still true in (1.4)).
Next, we look at the Boltzmann collision kernel (1.3), which in light of Fig. 1 and 

θ ≈ sin θ can be rewritten as

B(v, v∗, σ) ≈ |v − v∗|γ
(

|v′ − v|
|v − v∗|

)−(d−1)−2s

. (1.5)

Since we will integrate over z ∈ Rd rather than σ ∈ Sd−1, dimensional analysis tells us 
that we should replace the exponent −(d − 1) − 2s with −d − 2s. Next, we make the 
change of variables

z �→ w = v′ − v = v∗ − v

2 + |v − v∗|
2 z,

which gives

v′ = v + w,

v′ = v − w,
(1.6)
∗ ∗
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and noting that dz = 2d|v − v∗|−d dw, we absorb this extra factor of ∼ |v − v∗|−d into 
the collision kernel, giving B ≈ |v − v∗|γ+2s|v′ − v|−d−2s. Finally, we need to change the 
factor |v − v∗| in order to recover micro-reversibility, i.e. the property that a collision 
and its reverse are weighed the same amount by the collision kernel. It would be difficult 
to obtain a well-behaved operator without micro-reversibility. Since |v′ − v′

∗| 	= |v − v∗|
in our collision geometry, we replace |v − v∗| in the collision kernel with |v − v′

∗|, or 
equivalently, |v′ − v∗|. This is the length of the dashed lines in Fig. 2.

For simplicity, we choose our kernel to be a product of power laws:

B(v, v∗, w) = cd,γ,s|v − v′
∗|γ+2s+d|v′ − v|−d−2s,

and our collision operator finally becomes

Q(f, g) = cd,γ,s

∫
Rd

∫
Rd

|v − v∗ + w|γ+2s|w|−d−2s[g(v + w)f(v∗ − w) − g(v)f(v∗)] dw dv∗,

(1.7)
with v′, v′

∗ defined in (1.6), and

cd,γ,s =
(1 − s)Γ

(
d+2s

2
)

Γ
(
−γ+2s

2
)

πd2d+γΓ
(

d+γ+2s
2

) . (1.8)

The value of the constant cd,γ,s does not play an important role, as long as one studies 
the equation for fixed γ and s. The choice we make for cd,γ,s ensures that Q(f, g) has a 
well-defined limit as s → 1 (see (1.18) below).

The following alternate form of the operator Q is justified in Section 2.2:

Q(f, g) = c1[f ∗ | · |γ+2s](−Δ)sg + c2[f ∗ | · |γ ]g, (1.9)

where throughout this paper, we use the notation [g ∗| · |μ] or [g ∗| · |μ](v) for convolutions 
over Rd

v with power functions |v|μ, and the constants c1, c2 are defined by

c1 =
(1 − s)|Γ(−s)|Γ

(
−γ+2s

2
)

πd/22d+γ+2sΓ
(

d+γ+2s
2

) ,

c2 =
(1 − s)|Γ(−s)|Γ

(
−γ

2
)

πd/22d+γΓ
(

d+γ
2

) .

(1.10)

Both representations (1.7) and (1.9) of Q(f, g) are useful in our analysis.
The goal of this paper is to study the equation

∂tf + v · ∇xf = Q(f, f), (1.11)
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with Q(f, f) defined as in (1.7) or equivalently, (1.9). We call (1.11) the isotropic Boltz-
mann equation.

To justify the use of the term “isotropic,” recall that the true Boltzmann collision 
operator can be written in the Carleman representation (see, e.g. [43]) as follows:

QB(f, g) =
∫
Rd

KB(v, w)g(v + w) − g(v)
|w|d+2s

dw + c[f ∗ | · |γ ]g, (1.12)

KB(v, w) ≈

⎛
⎜⎝ ∫

{z⊥w}

f(v + z)|z|γ+2s+1 dz

⎞
⎟⎠ |w|−d−2s. (1.13)

This integral kernel KB(v, w) consists of the standard singularity of order 2s, weighted 
by a function depending nonlocally on f . The kernel is anisotropic because the weight 
depends on the direction of w relative to v, and this leads to nontrivial complications 
in the analysis of QB. On the other hand, the isotropic collision operator (1.9) can be 
written in the same form (1.12), with KB(v, w) replaced by

Kf (v, w) := cd,γ,s

⎛
⎝∫
Rd

f(v + z)|z|γ+2s dz

⎞
⎠ |w|−d−2s.

Note that this weight function cd,γ,s[f ∗ | · |γ+2s](v) is independent of w.

1.3. Main result

Recall the notation 〈v〉 =
√

1 + |v|2. Our main result is the existence of global solu-
tions in the homogeneous case, for part of the very soft potentials regime:

Theorem 1.1. Let d ≥ 3 be an integer, and let γ ∈ (−d, 0) and s ∈ (0, 1) satisfy

max
{

−d + 4s

3 , −2s − 4s

d

}
≤ γ < −2.

Then, for any fin : Rd → [0, ∞) with 〈v〉qfin ∈ C∞(Rd) for all q ≥ 0, there is a unique 
smooth solution f ≥ 0 of the homogeneous isotropic Boltzmann equation

∂tf = Q(f, f), (1.14)

on [0, ∞) ×Rd with f(0, v) = fin(v), where Q(f, f) is defined in (1.7). This solution has 
nonincreasing L2(Rd) norm:

∫
f2(t, v) dv ≤

∫
f2

in(v) dv, t ≥ 0.
Rd Rd
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We emphasize that global existence of classical solutions is not known for the homo-
geneous Boltzmann equation in the range of γ and s covered by Theorem 1.1. For the 
most important case d = 3, our condition on γ and s simplifies to

−1 − 4
3s ≤ γ < −2.

Some of our intermediate results apply also to the case d = 2, which is ruled out in our 
main theorem by the condition γ < −2.

The requirement that fin is smooth with rapid decay is certainly not sharp. We take 
very smooth initial data to avoid some technical difficulties, and to obtain a clean state-
ment of our result.

The key step in the proof of Theorem 1.1 is an estimate in L2(Rd
v) that holds for all 

t ≥ 0 (Theorem 3.1 below). This estimate and its proof are inspired by a recent result for 
the isotropic Landau equation by Gualdani-Guillen [22]. The proof in [22] is based on a 
clever application of a weighted Hardy inequality, and our proof of Theorem 3.1 applies 
an analogous strategy, using a weighted fractional Hardy inequality that was recently 
proven in [16].

After proving the L2 estimate, we show that the energy 
∫
Rd |v|2f(t, v) dv (which is 

not conserved by the flow) remains bounded on finite time intervals. Next, we adapt 
techniques from Boltzmann theory to prove global boundedness and polynomial decay. 
Finally, by bootstrapping L2-based energy estimates, we show that these global estimates 
imply continuation of solutions for large times.

1.4. Local existence

A local existence theorem is naturally needed as part of the proof of our main result. 
For the sake of potential future applications, we prove local existence under much weaker 
hypotheses than our global existence theorem. In particular, we construct a solution for 
both the homogeneous and inhomogeneous equations, and for all d ≥ 2 and (γ, s) ∈
(−d, 0) × (0, 1) such that γ + 2s < 0, i.e. all relevant values of d, γ, and s.

Let Td denote the d-dimensional torus of side length one, and define the weighted Lp

and Sobolev spaces

Lp
q(Td × Rd) = {f : Td

x × Rd
v → R : ‖〈v〉qf(x, v)‖Lp(Td×Rd)},

Hk
q (Td × Rd) = {f : Td

x × Rd
v → R : ∂βf ∈ Lp

q(Td × Rd) for all β ∈ N2d with |β| ≤ k}.

For functions of v only, let Lp
q(Rd) and Hk

q (Rd) be defined in the analogous way, with 
norms over Rd

v and with β ∈ Nd instead of N2d. For the inhomogeneous equation, we 
have

Theorem 1.2. Let d ≥ 2 and (γ, s) ∈ (−d, 0) × (0, 1) be such that γ + 2s < 0. For any 
q > max{γ + 2s + d, 1}, and any nonnegative initial condition fin ∈ H2d+2

q (Td × Rd), 
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there exists a T > 0 depending only on ‖fin‖H2d+2
q (Td×Rd), and a unique nonnegative 

solution

f ∈ L∞([0, T ], Hk
q (Td × Rd)) ∩ W 1,∞([0, T ], Hd+1

q−1 (Td × Rd))

to

∂tf + v · ∇xf = Q(f, f).

In addition, if fin ∈ Hk
q′(Td×Rd) for any k ≥ 2d +2 and q′ ≥ q, then f(t) ∈ Hk

q′(Td×Rd)
for all t ∈ [0, T ], and

‖f(t)‖Hk
q′ (Td×Rd) ≤ ‖fin‖Hk

q′ (Td×Rd) exp(Ct(1 + ‖f‖L∞([0,t],H2d+2
q (Td×Rd)))), t ∈ [0, T ].

In particular, if 〈v〉q′
fin ∈ C∞(Td×Rd) for all q′ > 0, then 〈v〉q′

f ∈ C∞([0, T ] ×Td×Rd)
for all q′ > 0, with the same T as above.

For the homogeneous equation, we have essentially the same result, with weaker reg-
ularity assumptions on fin needed because the domain is of smaller dimension. Letting 
�x� denote the smallest integer ≥ x, we have:

Theorem 1.3. Let d ≥ 2 and (γ, s) ∈ (−d, 0) × (0, 1) be such that γ + 2s < 0. For 
any q > γ + 2s + d, and any nonnegative initial condition fin ∈ Hd+3

q (Rd), there 
exists a T > 0 depending only on ‖fin‖Hd+3

q (Rd), and a unique nonnegative solution 

f ∈ L∞([0, T ], Hd+3
q (Rd)) ∩ W 1,∞([0, T ], H�(d+1)/2�

q (Rd)) to

∂tf = Q(f, f).

In addition, if fin ∈ Hk
q′(Rd) for any k ≥ d + 3 and q′ ≥ q, then f(t) ∈ Hk

q′(Rd) for all 
t ∈ [0, T ], and

‖f(t)‖Hk
q′ (Rd) ≤ ‖fin‖Hk

q′ (Rd) exp(Ct(1 + ‖f‖L∞([0,t],Hd+3
q (Rd)))), t ∈ [0, T ]. (1.15)

In particular, if 〈v〉q′
fin ∈ C∞(Rd) for all q′ > 0, then 〈v〉q′

f ∈ C∞([0, T ] × Rd) for all 
q′ > 0, with the same T as above.

In these results, we have made no attempt to optimize the regularity requirements on 
fin, since our main focus in this paper is the continuation of smooth solutions for large 
times. For the inhomogeneous Boltzmann equation (1.1), short-time existence has been 
proven under much weaker regularity assumptions (fin ∈ L∞

q for some q > 3 + 2s, and 
fin is uniformly positive in some small ball in T 3

x × R3
v), see [30]. A similar existence 

result could be derived for our isotropic model, thereby extending the existence part of 
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Theorem 1.2 to irregular initial data, by adapting the proofs in [30] (and the companion 
paper [29] about pointwise lower bounds, which are used in [30]), replacing the Boltzmann 
operator QB(f, f) with our isotropic Q(f, f). As in [30], a uniqueness result in relatively 
low-regularity spaces would require Hölder continuity and uniform-in-x positivity for fin, 
at least with current techniques. We do not explore the details here. See also [14,13] for 
existence results on homogeneous Boltzmann with irregular initial data.

These local results should not be considered as novel as our Theorem 1.1, since they 
are similar in spirit to known results for the true Boltzmann equation, e.g. [42,28,31]. 
(However, these cited results specialize to d = 3, while we give a proof for any d ≥ 2.) 
We have highlighted these local existence results in the introduction because they may 
be useful for future research.

1.5. Comparison with Landau and isotropic Landau equations

The Landau equation is the plasma physics counterpart of the Boltzmann equation. 
It reads

∂tf + v · ∇xf = QL(f, f), (1.16)

where for some γ ≥ −d, the Landau collision operator can be written

QL(f, g) = ad,γtr
(
[Π(·)| · |γ+2 ∗ f ]D2

vg
)

+ cd,γ [f ∗ | · |γ ]g,

where Π(z) is the projection matrix onto z⊥, and

ad,γ =
π−d/2Γ

(
−γ

2
)

(−γ − 2)2d+γ+1Γ
(

d+γ+2
2

) ,

cd,γ = (−γ − 2)(d + γ)ad,γ .

When γ = −d, the second term in QL(f, f) must be replaced by f2.
In 2012, Krieger and Strain [35] introduced a spatially homogeneous model equation 

that has since come to be known as isotropic Landau. It is obtained by removing the 
projection matrix from QL:

∂tf = QIL(f, f),

QIL(f, g) = ad,γ [f ∗ | · |γ+2]Δg + cd,γ [f ∗ | · |γ ]g.
(1.17)

As above, in the case γ = −d, one replaces cd,γ [f ∗ | · |γ ]f with f2. Note that [35] only 
considered the case d = 3, γ = −3.

Some regularity and existence results for (1.17) were later obtained in [21,24,25,22]. 
See also the review [23]. For Coulomb potentials (d = 3, γ = −3, the most physically 
relevant case), global existence has been proven only in the case of radially decreasing 
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initial data [24]. Global existence was shown in [22] for part of the parameter range 
γ ∈ [−d, −2), which is striking because at that time, global existence was not known 
for homogeneous Landau in this parameter range. Very recently, global existence for 
homogeneous Landau was established in the breakthrough result [26] for any γ ∈ [−3, 1].

The Landau collision term QL(f, f) can be seen as the limit of the Boltzmann operator 
QB(f, f) when grazing collisions (collisions with θ ≈ 0 in (1.3)) predominate [11,3]. For 
our isotropic collision operator (1.7), a true grazing collisions limit does not make sense 
because the angle between velocities plays no role. The correct analogy to the grazing 
collisions limit is a rescaling that focuses on the singularity at w = 0 (equivalently, 
z = 0), which becomes a delta function in the limit. With our choice of normalization 
constant cd,γ,s, this is exactly the limit s → 1 in (1.7). Then one has (−Δs)f → −Δf

and [f ∗ | · |γ+2s] → [f ∗ | · |γ+2], and taking the limit in c1 and c2 in (1.10), we obtain 
the following important fact:

Q(f, g) → QIL(f, g), as s → 1, (1.18)

for any sufficiently smooth functions f and g.
In light of this convergence, one may compare our results to the main result of [22]. 

Sending s → 1 in the condition γ ≥ −d+4s
3 in our Theorem 1.1, this would converge to 

γ ≥ −d+4
3 , which is slightly worse than the condition obtained in [22] for the isotropic 

Landau equation. This gap exists because we need to use the L2 norm in our proof (see 
Theorem 3.1), whereas in [22] they manage to bound any Lp norm with 1 ≤ p ≤ d+γ

−2−γ . 
By tracing the proof in [22] and insisting on using only the L2 norm, one would get the 
condition 2 ≤ d+γ

−2−γ , or γ ≥ −d+4
3 , as expected.

It is interesting to note that if the Boltzmann collision operator is written in the 
Carleman form (1.12), all four equations (Boltzmann, Landau, isotropic Boltzmann, and 
isotropic Landau) have the same reaction term f [f ∗ | · |γ ] up to a constant, at least when 
γ > −d.

1.6. Open problems

1.6.1. Expanding the allowable range of γ and s in our main result
The restrictions on γ and s in Theorem 1.1 come from the following obstructions:

• The condition γ ≥ −d+4s
3 arises in our proof that the L2 norm is nonincreasing 

(Theorem 3.1). Extending our L2 bound to higher Lp norms, as is done for isotropic 
Landau in [22], would improve the allowable range of γ and s. To do this, one would 
likely need to understand a “divergence form” type of structure of Q(f, f), by analogy 
with the form QIL(f, f) = c∇v · ([f ∗ | · |γ+2]∇f − f [∇f ∗ | · |γ+2]) used in [22].

• The condition γ < −2 arises from our estimate on the energy 
∫
Rd |v|2f(t, v) dv, 

Lemma 3.3. It is not clear whether this estimate would be true for γ > −2. Without 
a bound on the energy, it is difficult to control the collision kernel Kf (v, w) ≈ [f ∗ | ·
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|γ+2s](v)|w|−d−2s either from above or below. Note that this issue does not arise for 
the homogeneous Boltzmann equation, which conserves energy.

• The condition γ ≥ −2s − 4s/d is needed for our proof that f is globally bounded, 
Proposition 4.3. This proof uses a barrier argument. A different proof of this L∞

estimate (for example, using De Giorgi or Moser iteration) could possibly allow one 
to weaken or remove this condition.

We should note that the constant in the fractional Hardy inequality degenerates as 
γ → −d (i.e. the constant CH in Theorem 2.1 approaches 0), which suggests our approach 
cannot be extended to very negative values of γ.

1.6.2. The radially symmetric case
The first global existence result for the isotropic Landau equation (1.17) was obtained 

in [24] under the assumption of initial data that is radially symmetric and monotone 
decreasing in |v|. See also the earlier works [35,21] which proved a similar result for 
modified versions of (1.17). These results all apply to the Coulomb case d = 3, γ = −3.

Based on these results, it is natural to conjecture that global existence for the (ho-
mogeneous) isotropic Boltzmann equation for very negative values of γ may be more 
tractable in the case of radially decreasing initial data.

1.6.3. The spatially inhomogeneous case
As mentioned above, the inhomogeneous case of the isotropic Boltzmann equation 

may provide a useful model for the problem of conditional regularity in the very soft 
potentials regime. We have constructed a local classical solution for the inhomogeneous 
equation in Theorem 1.2 with the goal of inspiring future work on this question.

1.6.4. Results for the true Boltzmann equation
As with any model problem, the eventual goal is to gain insights that can be applied 

to the actual Boltzmann equation. One interesting, but speculative, direction is to seek 
an “anisotropic fractional Hardy inequality” adapted to the specific structure of the 
Boltzmann collision operator, which could play a role similar to the weighted fractional 
Hardy inequality of [16] in the present work.

1.7. Notation

We sometimes use the abbreviations ϕ′ = ϕ(v′), ϕ′
∗ = ϕ(v′

∗), ϕ∗ = ϕ(v∗), and ϕ =
ϕ(v), where v′ and v′

∗ are defined by (1.6).
For q ∈ R, we let Lp

q(Rd) denote the polynomially-weighted Lp spaces with norm

‖h‖Lp
q (Rd) = ‖〈v〉qh‖Lp(Rd),

and similarly, for integer k we define the weighted Sobolev norms
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‖h‖Hk
q (Rd) = ‖〈v〉qh‖Hk(Rd).

For s ∈ (0, 1), we use the standard Hs(Rd) seminorm

[h]2Hs(Rd) =
∫
Rd

∫
Rd

|h(v + w) − h(v)|2
|w|d+2s

dw dv,

and define

[h]Hs
q (Rd) = [〈v〉qh]Hs(Rd)

as well as

‖h‖2
Hk+s

q (Rd) = ‖h‖2
Hk

q (Rd) +
∑

|β|=k

[∂βh]2Hs
q (Rd),

where |β| denotes the order of the multi-index β = (β1, . . . , βd).
We often use the notation A � B to indicate A ≤ CB for a constant depending on d, 

γ, s, and sometimes additional quantities in the statement of a given theorem or lemma. 
We also use A ≈ B to mean A � B and B � A.

1.8. Organization of the paper

In Section 2, we derive some general properties of our equation, and discuss the 
weighted fractional Hardy inequality that we need in our proof. Section 3 proves that 
the L2(Rd) norm of our solution is nonincreasing, and establishes a bound on the energy 
(second moment) of the solution. In Section 4, we prove an L∞ estimate and propagation 
of polynomial decay estimates. Section 5 contains the proof of global existence (Theo-
rem 1.1), and Section 6 contains the proof of short-time existence (Theorems 1.2 and 
1.3), which is given outside its proper logical order because of its length. Appendix A
contains some technical lemmas.

2. Fundamental properties and tools

2.1. Weak formulation and conservation laws

It is well known that the Boltzmann collision operator QB(f, f) has a useful weak 
formulation (originally written down by Maxwell [39]) that allows one to make sense 
of 

∫
Rd ϕQ(f, f) dv without using any regularity of f . Our collision operator satisfies 

an analogous property. To see this, we use the pre-post-collisional change of variables 
(v, v∗, w) �→ (v′, v′

∗, −w), with unit Jacobian, to write
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∫
Rd

ϕQ(f, f) dv =
∫
Rd

∫
Rd

∫
Rd

B(v, v∗, w)ff∗[ϕ′ − ϕ] dw dv∗ dv. (2.1)

Symmetrizing this expression again with the change of variables (v, v′) ↔ (v∗, v′
∗), which 

also has unit Jacobian, gives
∫
Rd

ϕQ(f, f) dv = 1
2

∫
Rd

∫
Rd

∫
Rd

B(v, v∗, w)ff∗[ϕ′ + ϕ′
∗ − ϕ − ϕ∗] dw dv∗ dv. (2.2)

From (2.2) with the choices ϕ(v) ≡ 1 and ϕ(v) = v, we see that 
∫
Rd Q(f, f) dv = 0

and 
∫
Rd vQ(f, f) dv = 0. As a result, integrating the equation (1.14) against 1 and v

shows that the evolution formally conserves mass and momentum. Note, however, that 
|v′|2 + |v′

∗|2 − |v|2 − |v∗|2 	= 0, so the energy is not conserved.
We can show that the evolution of (1.14) dissipates entropy by the same formal argu-

ment as in the Boltzmann equation: symmetrizing (2.2) again with the pre-post collisional
change of variables, one has

∫
Rd

ϕQ(f, f) dv = −1
4

∫
Rd

∫
Rd

∫
Rd

B(v, v∗, w)(f ′f ′
∗ − ff∗)[ϕ′ + ϕ′

∗ − ϕ − ϕ∗] dw dv∗ dv.

The choice ϕ(v) = log f(v) then gives
∫
Rd

log fQ(f, f) dv = −1
4

∫
Rd

∫
Rd

∫
Rd

B(v, v∗, w)(f ′f ′
∗ − ff∗) log

(
f ′f ′

∗
ff∗

)
dw dv∗ dv ≤ 0,

since (x − y)(log x − log y) ≥ 0 for any x, y > 0. As a result, the entropy 
∫
Rd f log f dv is 

non-increasing in t for solutions of (1.14).

2.2. Integro-differential form

In this section, we justify the formula (1.9) for Q(f, f), that is analogous to the 
Carleman representation for the Boltzmann collision operator. Starting with (1.7), we 
add and subtract f(v∗ −w)g(v) inside the integral to write Q(f, g) = Q1(f, g) +Q2(f, g), 
with

Q1(f, g) = cd,γ,s

∫
Rd

∫
Rd

|v − v∗ + w|γ+2s|w|−d−2sf(v∗ − w)[g(v + w) − g(v)] dw dv∗,

Q2(f, g) = cd,γ,sg(v)
∫
Rd

∫
Rd

|v − v∗ + w|γ+2s|w|−d−2s[f(v∗ − w) − f(v∗)] dw dv∗.

In Q1, we reverse the order of integration and observe that 
∫
Rd |v − v∗ + w|γ+2sf(v∗ −

w) dv∗ = [f ∗ | · |γ+2s](v), yielding
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Q1(f, g) = cd,γ,s

∫
Rd

[f ∗ | · |γ+2s](v)g(v + w) − g(v)
|w|d+2s

dw

= cd,γ,s
πd/2|Γ(−s)|
4sΓ(d+2s

2 )
[f ∗ | · |γ+2s](v)(−Δ)sg.

(2.3)

Alternatively, one could write

Q1(f, g) =
∫
Rd

Kf (v, w)[g(v + w) − g(v)] dw,

with

Kf (v, w) := cd,γ,s|w|−d−2s
[
f ∗ | · |γ+2s

]
(v).

For Q2, we separate terms and make the change of variables v∗ �→ v∗ − w in the first 
term. To avoid divergent integrals, we write the w integral as a limit:

Q2(f, g) = cd,γ,sg(v) lim
ε→0

⎛
⎜⎝∫
Rd

∫
{|w|≥ε}

|v − v∗ + w|γ+2s|w|−d−2sf(v∗ − w) dw dv∗

−
∫
Rd

∫
{|w|≥ε}

|v − v∗ + w|γ+2s|w|−d−2sf(v∗) dw dv∗

⎞
⎟⎠ ,

= cd,γ,sg(v) lim
ε→0

∫
Rd

∫
{|w|≥ε}

[|v − v∗|γ+2s − |v − v∗ + w|γ+2s]|w|−d−2sf(v∗) dw dv∗.

(2.4)

Next, we use the known formula for (−Δ)s|v|γ+2s [36, Table 1] to write

lim
ε→0

∫
{|w|≥ε}

|v|γ+2s − |v + w|γ+2s

|w|d+2s
dw = πd/2|Γ(−s)|

4sΓ(d+2s
2 )

(−Δ)s|v|γ+2s

= cR|v|γ ,

with cR, the constant corresponding to the reaction term, given by

cR =
πd/2|Γ(−s)|Γ(γ+2s+d

2 )Γ(−γ
2 )

Γ(d+2s
2 )Γ(γ+d

2 )Γ(−γ+2s
2 )

(2.5)

Evaluating this at v − v∗, we now have
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Q2(f, g) = cd,γ,scRg(v)
∫
Rd

|v − v∗|γf(v∗) dv∗.

The preceding (relatively simple) calculation to write Q2(f, g) in a convenient form, plays 
the same role as the Cancellation Lemma [2] for the Boltzmann collision operator.

Combining the formulas for Q1 and Q2, we have, as claimed above in (1.9),

Q(f, g)(v) = c1[f ∗ | · |γ+2s](v)(−Δ)sg + c2[f ∗ | · |γ ](v)g(v),

with c1 and c2 as in (1.10). It is convenient to write Q(f, g) without the normalization 
constant of (−Δ)s, i.e.

Q(f, g) = cd,γ,s

⎛
⎝[f ∗ | · |γ+2s](v)

∫
Rd

g(v + w) − g(v)
|w|d+2s

dw + cR[f ∗ | · |γ ](v)g(v)

⎞
⎠ ,

where cd,γ,s is given by (1.8) and cR is given by (2.5). This form is useful because the 
value of cd,γ,s does not affect the structure of the equation, but the balance of constants 
between the terms Q1 and Q2 plays an important role.

2.3. Fractional Hardy inequality

A functional inequality of Hardy type plays a crucial role in our proof of Theorem 3.1
below. Let us quote from the recent work of Dyda-Kijaczko [16], specialized to the case 
p = 2, α = 0, β = −(γ + 2s):

Theorem 2.1. [16, Theorem 5] Let 0 < s < 1. For all u ∈ Cc(Rd), the following inequality 
holds:

CH

∫
Rd

|u(v)|2
|v|−γ

dv ≤
∫
Rd

∫
Rd

|u(v + w) − u(v)|2
|w|d+2s

|v|γ+2s dw dv,

where

CH = πd/2|Γ(−s)|
Γ(d+2s

2 )

[
2Γ(d−γ

4 )Γ(d+γ+4s
4 )

Γ(d+γ
4 )Γ(d−γ−4s

4 )
−

Γ(−γ
2 )Γ(d+γ+2s

2 )
Γ(d+γ

2 )Γ(−γ−2s
2 )

]
.

Furthermore, the constant CH is optimal.

This result can easily be extended to non-compactly supported u by density, as long 
as both sides of the inequality are finite.

Fractional inequalities of this general type have a long history. See e.g. the result of 
Stein-Weiss [45] from 1958, as well as some more recent works such as [18,37,15,1]. For 
our purposes in this article, we need an inequality featuring weights of a general enough 
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form, and we need an optimal constant. It seems that [16] is the first result satisfying 
both these requirements.

To derive the form of the inequality that we use below, for each v∗ ∈ Rd, we apply 
Theorem 2.1 to u(v − v∗) and change variables to obtain

CH

∫
Rd

|u(v)|2|v − v∗|γ dv ≤
∫
Rd

∫
Rd

|u(v + w) − u(v)|2
|w|d+2s

|v − v∗|γ+2s dw dv.

Multiplying this inequality by f(v∗) and integrating in v∗, we obtain

CH

∫
Rd

|u(v)|2[f ∗ | · |γ ](v) dv ≤
∫
Rd

∫
Rd

|u(v + w) − u(v)|2
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv. (2.6)

3. Time-independent L2 bound

This section is devoted to the L2 estimate for solutions of (1.14), which is the key 
step in proving global existence.

In the following proof, we need to use an alternate form of identity (2.1):

∫
Rd

ϕQ(f, f) dv = cd,γ,s

∫
Rd

∫
Rd

∫
Rd

f(v)f(v∗)ϕ(v + w) − ϕ(v)
|w|d+2s

|v − v∗ + w|γ+2s dw dv∗ dv

= cd,γ,s

∫
Rd

∫
Rd

f(v)[f ∗ | · |γ+2s](v + w)ϕ(v + w) − ϕ(v)
|w|d+2s

dw dv.

(3.1)

Theorem 3.1. Let γ and s satisfy

γ ≥ −d + 4s

3 ,

and let f ≥ 0 be a classical solution to the (homogeneous) isotropic Boltzmann equation 
(1.14) in C1([0, T ), C2(Rd)), with T ≤ +∞, such that 

∫
Rd f2(0, v) dv < +∞.

Then the L2 norm of f is non-increasing in time, and
∫
Rd

f2(t, v) dv ≤
∫
Rd

f2(0, v) dv, t ∈ [0, T ).

Proof. Integrate the equation against f :

1
2

d

dt

∫
f2 dv =

∫
fQ(f, f) dv. (3.2)
Rd Rd
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With the Q1 + Q2 decomposition discussed in Section 2.2, this right-hand side equals
∫
Rd

fQ(f, f) dv =
∫
Rd

f(Q1(f, f) + Q2(f, f)) dv

= cd,γ,s

⎛
⎝∫
Rd

∫
Rd

f(v)[f ∗ | · |γ+2s](v)f(v + w) − f(v)
|w|d+2s

dw dv

+cR

∫
Rd

f2(v)[f ∗ | · |γ ](v) dv

⎞
⎠ .

(3.3)

Applying the Hardy inequality (2.6) to the second term on the right, with u = f , we 
obtain

cR

∫
Rd

f2(v)[f ∗ | · |γ ](v) dv ≤ cR

CH

∫
Rd

∫
Rd

|f(v + w) − f(v)|2
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

≤ cR

CH

⎛
⎝∫
Rd

∫
Rd

f(v + w)f(v + w) − f(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

+
∫
Rd

∫
Rd

f(v)f(v) − f(v + w)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

⎞
⎠ .

We notice that cd,γ,s times the second integral on the right is equal to − 
∫
Rd fQ1(f, f) dv. 

For the first integral on the right, we change variables to exchange v and v + w and use 
formula (3.1) with ϕ = f to write

cd,γ,s

∫
Rd

∫
Rd

f(v + w)f(v + w) − f(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

= cd,γ,s

∫
Rd

∫
Rd

f(v)f(v) − f(v + w)
|w|d+2s

[f ∗ | · |γ+2s](v + w) dw dv

= −
∫
Rd

fQ(f, f) dv.

We therefore have
∫
Rd

fQ(f, f) dv ≤
(

1 − cR

CH

) ∫
Rd

fQ1(f, f) dv − cR

CH

∫
Rd

fQ(f, f) dv,

or
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∫
Rd

fQ(f, f) dv ≤
(

1 + cR

CH

)−1 (
1 − cR

CH

) ∫
Rd

fQ1(f, f) dv. (3.4)

Next, we claim that 
∫
Rd fQ1(f, f) dv ≤ 0. Indeed, using (3.1) with the change of variables 

v ↔ v + w again,

∫
Rd

fQ1(f, f) dv = cd,γ,s

∫
Rd

∫
Rd

f(v)f(v + w) − f(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

= −cd,γ,s

∫
Rd

∫
Rd

|f(v + w) − f(v)|2
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

+ cd,γ,s

∫
Rd

∫
Rd

f(v + w)f(v + w) − f(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dv

≤ −
∫
Rd

fQ(f, f) dv

= −
∫
Rd

fQ1(f, f) dv −
∫
Rd

fQ2(f, f) dv,

which implies 2 
∫
Rd fQ1(f, f) dv ≤ − 

∫
Rd fQ2(f, f) dv = − 

∫
Rd f2[f ∗ | · |γ ] dv ≤ 0.

We conclude 
∫
Rd fQ(f, f) dv ≤ 0 whenever cR/CH ≤ 1. Using this in (3.2), we see 

that

1
2

d

dt

∫
Rd

f2 dv ≤ 0,

as desired. From Lemma 3.2 below, the condition cR/CH ≤ 1 is true exactly when 
γ ≥ −d+4s

3 . �
Lemma 3.2. For d, s, and γ such that

−2s > γ ≥ −d + 4s

3 ,

one has cR ≤ CH , where cR is defined in (2.5) and CH is the constant from the weighted 
fractional Hardy inequality, Theorem 2.1.

Numerical computations show that this lemma is sharp, i.e. cR > CH whenever γ ∈
(−d, −d+4s ).
3



S. Snelson / Journal of Functional Analysis 286 (2024) 110423 19
Proof. Recalling (2.5) and Theorem 2.1, we have

cR

CH
=

πd/2|Γ(−s)|Γ(γ+2s+d
2 )Γ(−γ

2 )
Γ(d+2s

2 )Γ(γ+d
2 )Γ(−γ+2s

2 )

×
(

πd/2|Γ(−s)|
Γ(d+2s

2 )

[
2Γ(d−γ

4 )Γ(d+γ+4s
4 )

Γ(d+γ
4 )Γ(d−γ−4s

4 )
−

Γ(−γ
2 )Γ(d+γ+2s

2 )
Γ(d+γ

2 )Γ(−γ−2s
2 )

])−1

=
Γ(γ+2s+d

2 )Γ(−γ
2 )

Γ(γ+d
2 )Γ(−γ+2s

2 )

(
2Γ(d−γ

4 )Γ(d+γ+4s
4 )

Γ(d+γ
4 )Γ(d−γ−4s

4 )
−

Γ(−γ
2 )Γ(d+γ+2s

2 )
Γ(d+γ

2 )Γ(−γ−2s
2 )

)−1

=
(

2Γ(d−γ
4 )Γ(d+γ+4s

4 )Γ(d+γ
2 )Γ(−γ−2s

2 )
Γ(d+γ

4 )Γ(d−γ−4s
4 )Γ(−γ

2 )Γ(d+γ+2s
2 )

− 1
)−1

.

This expression is ≤ 1 whenever

Φ(d, s, γ) :=
Γ(d−γ

4 )Γ(d+γ+4s
4 )Γ(d+γ

2 )Γ(−γ−2s
2 )

Γ(d+γ
4 )Γ(d−γ−4s

4 )Γ(−γ
2 )Γ(d+γ+2s

2 )
≥ 1. (3.5)

For γ ∈ (−d+4s
3 , −2s), all of the evaluations of the Γ function in (3.5) are well-defined 

and nonzero. We also observe directly that

Φ
(

d, s, −d + 4s

3

)
=

Γ(d+s
3 )Γ(d+4s

6 )Γ(d−2s
3 )Γ(d−2s

6 )
Γ(d−2s

6 )Γ(d−2s
3 )Γ(d+4s

6 )Γ(d+s
3 )

= 1.

Therefore, the lemma will follow from showing Φ(d, s, γ) is increasing in γ ∈ (−d+4s
3 ,

−2s), for each fixed d and s. Taking derivatives, and letting ψ denote the digamma 
function, ψ = Γ′/Γ, we have

∂γΦ(d, s, γ) = Φ(d, s, γ)
[
−1

4ψ

(
d−γ

4

)
− 1

4ψ

(
d+γ

4

)
+ 1

4ψ

(
d+γ+4s

4

)
+ 1

4ψ

(
d−γ−4s

4

)

+1
2ψ

(
d + γ

2

)
+ 1

2ψ

(
−γ

2

)
− 1

2ψ

(
−γ − 2s

2

)
− 1

2ψ

(
d + γ + 2s

2

)]
.

(3.6)

It is well-known that the digamma function ψ is strictly concave on (0, ∞), so ψ′ is 
decreasing. To use this fact, we consider the first four terms on the right in (3.6), in two 
cases. If γ < −4s, then for some z1, z2 with

d + γ

4 < z1 <
d + γ + 4s

4 <
d − γ − 4s

4 < z2 <
d − γ

4 ,

there holds
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−1
4

ψ

(
d − γ

4

)
− 1

4
ψ

(
d + γ

4

)
+ 1

4
ψ

(
d + γ + 4s

4

)
+ 1

4
ψ

(
d − γ − 4s

4

)

= s

4 [ψ′(z1) − ψ′(z2)] > 0,

since ψ′ is decreasing. On the other hand, if γ ≥ −4s, we pair the four terms differently 
and find z3, z4 with

d + γ

4 < z3 <
d − γ − 4s

4 ≤ d + γ + 4s

4 < z4 <
d − γ

4 ,

such that

−1
4ψ

(
d − γ

4

)
− 1

4ψ

(
d + γ

4

)
+ 1

4ψ

(
d + γ + 4s

4

)
+ 1

4ψ

(
d − γ − 4s

4

)

= 1
4

(
−γ

2 − s

)
[ψ′(z3) − ψ′(z4)] > 0,

since −γ
2 − s > 0. We analyze the last four terms in (3.6) in a similar manner: if −d

2 ≤
γ < −2s, then there exist z5, z6 such that

−γ − 2s

2 < z5 <
−γ

2 ≤ d + γ

2 < z6 <
d + γ + 2s

2 ,

and

1
2ψ

(
d + γ

2

)
+ 1

2ψ

(
−γ

2

)
− 1

2ψ

(
−γ − 2s

2

)
− 1

2ψ

(
d + γ + 2s

2

)

= s

2 [ψ′(z5) − ψ′(z6)] > 0.

If −d
2 − s < γ < −d

2 , then there exist z7, z8 with

−γ − 2s

2 < z7 <
d + γ

2 <
−γ

2 < z8 <
d + γ + 2s

2 ,

and

1
2ψ

(
d + γ

2

)
+ 1

2ψ

(
−γ

2

)
− 1

2ψ

(
−γ − 2s

2

)
− 1

2ψ

(
d + γ + 2s

2

)

= s

2 [ψ′(z7) − ψ′(z8)] > 0.

We have shown ∂γΦ(d, s, γ) > 0 whenever γ > −d
2 − s. Since −d+4s

3 > −d
2 − s, the proof 

is complete. �
Next, we show that our L2 bound implies a bound on the energy 

∫
Rd |v|2f(t, v) dv on 

any finite time interval:
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Lemma 3.3. Assume

max{−d

2 − 1, −d − 1 − 2s} < γ < −2,

and let f ≥ 0 be a classical solution of (1.14) in C1([0, T ), C2(Rd)) with finite mass and 
energy at t = 0, i.e.

∫
Rd

(1 + |v|2)f(0, v) dv < +∞,

and whose L2 norm is nonincreasing, 
∫
Rd f2(t, v) dv ≤

∫
Rd f2(0, v) dv.

Then the energy of f satisfies the inequality

∫
Rd

|v|2f dv ≤ exp
(
Ct

(
‖fin‖L1(Rd) + ‖fin‖L2(Rd)

))

×

⎛
⎝∫
Rd

|v|2f(0, v) dv + C
(
‖fin‖L1(Rd) + ‖fin‖L2(Rd)

)⎞⎠ ,

for a constant C > 0 depending only on d, γ, and s.

Note that this lower bound on γ follows from our assumption γ ≥ −d+4s
3 in Theo-

rem 1.1.
Also, note that the condition γ < −2 is really needed for our proof. Indeed, the 

right-hand side of (3.7) can in general be infinite if γ ≥ −2.

Proof. Integrating equation (1.14) against |v|2, and using (2.1), gives

d

dt

∫
Rd

|v|2f dv =
∫
Rd

|v|2Q(f, f) dv

= cd,γ,s

∫
Rd

∫
Rd

∫
Rd

|v − v∗ + w|γ+2s|w|−d−2sf(v)f(v∗)

× [|v + w|2 − |v|2] dw dv∗ dv.

(3.7)

Let us consider the inner w integral, which we denote

I :=
∫
Rd

|v − v∗ + w|γ+2s|w|−d−2s[|v + w|2 − |v|2] dw.

With r = 2|v − v∗|, we divide I as follows:
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I = I1 + I2 + I3,

with

I1 =
∫

Br

|v − v∗ + w|γ+2s|w|2−d−2s dw,

I2 = 2
∫

Br

|v − v∗ + w|γ+2s|w|−d−2sv · w dw,

I3 =
∫

Rd\Br

|v − v − ∗ + w|γ+2s[|w|2 + 2v · w] dw.

For I1, we subdivide Br = Br(0) into Br(0) \ Br/4(v − v∗) and Br/4(v − v∗). The first 
part is bounded using |v − v∗ + w| ≥ r/4 = |v − v∗|/2:

∫
Br\Br/4(v−v∗)

|v − v∗ + w|γ+2s|w|2+d−2s dw � rγ+2s

∫
Br

|w|2−d−2s dw � |v − v∗|γ+2.

Next, for w ∈ Br/4(v − v∗), we must have |w| ≥ |v − v∗|/2, so

∫
Br/4(v−v∗)

|v − v∗ + w|γ+2s|w|2+d−2s dw � |v − v∗|2+d−2s

∫
Br/4(0)

|u|γ+2s du � |v − v∗|γ+2.

We conclude

I1 � |v − v∗|γ+2.

For I2, which is more singular as w → 0, we use the fact that

p.v.

∫
Br

|w|−d−2sw|v − v∗|γ+2s dw = 0,

to write

I2 = 2
∫

Br

|w|−d−2sv · w
[
|v − v∗ + w|γ+2s − |v − v∗|γ+2s

]
dw.

Now we make the same splitting into Br/4(v − v∗) and Br(0) \ Br/4(v − v∗) that was 
used to estimate I1. In Br(0) \ Br/4(v − v∗), letting F (z) = |z|γ+2s, we can differentiate 
F because γ + 2s − 1 > −d, by assumption. We therefore have
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|v − v∗ + w|γ+2s − |v − v∗|γ+2s ≤|w| max
σ∈[0,1]

|DF (v − v∗ + σw)|

≤ C|w||v − v∗|γ+2s−1,

since |v − v∗ + σw| ≥ 1
2 |v − v∗| for all σ ∈ [0, 1]. This implies

∫
Br\Br/4(v−v∗)

|w|−d−2sv · w
[
|v − v∗ + w|γ+2s − |v − v∗|γ+2s

]
dw

≤ C|v − v∗|γ+2s−1|v|
∫

Br\Br/4(v−v∗)

|w|−d−2s+2 dw

≤ C|v − v∗|γ+1|v|.

Next, in Br/4(v − v∗), we use once again that |w| ≥ 1
2 |v − v∗|:

∫
Br/4(v−v∗)

|w|−d−2sv · w
[
|v − v∗ + w|γ+2s − |v − v∗|γ+2s

]
dw

≤ C|v − v∗|−d−2s+1|v|

⎛
⎜⎝ ∫

Br/4(v−v∗)

|v − v∗ + w|γ+2s dw + |v − v∗|γ+2s

∫
Br/4(v−v∗)

dw

⎞
⎟⎠

≤ C|v − v∗|γ+1|v|.

We have shown

I2 � |v − v∗|γ+1|v|.

Next, we estimate I3. In this domain, we have |w| ≥ r = 2|v − v∗|, which implies 
|v − v∗ + w| ≥ |w| − |v − v∗| ≥ 1

2 |w|. We also have |v − v∗ + w| ≤ 3
2 |w|, so in fact 

|v − v∗ + w| ≈ |w| in this region. This gives

I3 =
∫

Rd\Br

|w|−d−2s|v − v∗ + w|γ+2s(|w|2 + 2v · w) dw

�
∫

Rd\Br

|w|−d+γ+2 dw + |v|
∫

Rd\Br

|w|−d+γ+1 dw

� |v − v∗|γ+2 + |v||v − v∗|γ+1,

since r ≈ |v − v∗| and γ + 2 < 0.
Returning to (3.7) and collecting our upper bounds for I1, I2, and I3, we have

d

dt

∫
|v|2f dv ≤ C

∫ ∫
f(v)f(v∗)

(
|v − v∗|γ+2 + |v||v − v∗|γ+1) dv∗ dv. (3.8)
Rd Rd Rd



24 S. Snelson / Journal of Functional Analysis 286 (2024) 110423
The right hand side can be bounded by standard convolution estimates. In detail, dividing 
the v∗ integral into B1(v) and Rd \ B1(v), since γ + 2 > γ + 1 > −d

2 , we have

∫
B1(v)

f(v∗)|v − v∗|γ+2 dv∗ ≤ ‖f‖L2(Rd)

⎛
⎜⎝ ∫

B1(v)

|v − v∗|2(γ+2) dv∗

⎞
⎟⎠

1/2

≤ C‖f‖L2(Rd),

and ∫
Rd\B1(v)

f(v∗)|v − v∗|γ+2 dv∗ ≤
∫

Rd\B1(v)

f(v∗) dv∗ ≤ ‖f‖L1(Rd).

For the second term in (3.8), we proceed similarly, since γ + 1 > −d
2 :

|v|
∫

B1(v)

f(v∗)|v − v∗|γ+1 dv∗ ≤ |v|‖f‖L2(Rd)

⎛
⎜⎝ ∫

B1(v)

|v − v∗|2(γ+1) dv∗

⎞
⎟⎠

1/2

≤ C|v|‖f‖L2(Rd),

and

|v|
∫

Rd\B1(v)

f(v∗)|v − v∗|γ+1 dv∗ ≤ |v|‖f‖L1(Rd),

and we finally have

1
2

d

dt

∫
Rd

|v|2f dt ≤ C
(
‖f‖L1(Rd) + ‖f‖L2(Rd)

) ∫
Rd

(1 + |v|)f(v) dv

≤ C
(
‖f‖L1(Rd) + ‖f‖L2(Rd)

) ⎛
⎝‖f‖L1(Rd) +

∫
Rd

|v|2f dv

⎞
⎠ .

Grönwall’s inequality implies the conclusion of the lemma, since ‖f(t)‖L1(Rd) and 
‖f(t)‖L2(Rd) are bounded by their values at t = 0. �
4. Global upper bounds

This section establishes bounds for our solution f(t) in L∞(Rd), using a barrier 
method inspired by the approach of [43] and [32]. We also establish estimates in 
polynomially-weighted L∞(Rd) spaces.
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Lemma 4.1. Let f : Rd → R be nonnegative and satisfy

m0 ≤
∫
Rd

f dv ≤ M0,

∫
Rd

|v|2f dv ≤ E0,

∫
Rd

f log f dv ≤ H0,

for some positive constants m0, M0, E0, H0. Then there exists a constant c0 > 0 depend-
ing on m0, M0, E0, and H0, such that

Kf (v, w) ≥ c0〈v〉γ+2s|w|−d−2s,

for any w ∈ Rd.

Proof. With f as in the statement of the lemma, [43, Lemma 4.6] states that there exist 
r, �, μ > 0 depending on m0, M0, E0, and H0, such that

|{v ∈ Rd : f(v) > �} ∩ Br| ≥ μ.

Let S = {f(v) > �} ∩ Br. Since f ≥ �χS , we clearly have

Kf (v, w) ≥ K�χS
(v, w) = cd,s�|w|−d−2s

∫
Rd

χS(u)|v − u|γ+2s du.

Since S ⊂ Br, we have |v − u| ≤ |v| + r, and
∫
Rd

χS(u)|v − u|γ+2s du =
∫
S

|v − u|γ+2s du ≤ (|v| + r)γ+2s|S| ≥ μ(|v| + r)γ+2s,

since γ + 2s ≤ 0. The conclusion of the lemma follows. �
The following upper bound for Q2(f, g) will be needed in the proof of the L∞ bound, 

Proposition 4.3. The key point is that using the L2 estimate for f (rather than the L1

estimate provided by conservation of mass) leads to a less severe dependence on ‖f‖L∞ .

Lemma 4.2. If f ∈ L2(Rd) satisfies the bounds 
∫
Rd f dv ≤ M0 and 

∫
Rd |v|2f dv ≤ E0, 

then for any σ satisfying
(

−2γ

d
− 1

)
< σ ≤ 1,
+
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there holds

Q2(f, g)(v) ≤ Cg(v)〈v〉max{γ,−2−4γ/(d(1+σ))}
(

1 + ‖f‖−2σγ/(d(1+σ))
L∞(Rd)

)
,

where the constant C depends on cd,γ,s, σ, M0, E0, and ‖f‖L2(Rd).

Proof. Recall that Q2(f, g)(v) ≈ g(v)[f ∗ | · |γ ](v).
First, assume |v| ≥ 1. Letting

ρ = |v|−
4

d(1+σ) ‖f‖− 2σ
d(1+σ)

L∞ ,

we divide the integral defining [f ∗ | · |γ ](v) into

I1 =
∫

Bρ

|w|γf(v − w) dw, I2 =
∫

B|v|/2\Bρ

|w|γf(v − w) dw,

I3 =
∫

Rd\B|v|/2

|w|γf(v − w) dw.

For I1, we use both the L2 and L∞ bounds for f :

I1 ≤ ‖f‖σ
L∞

∫
Bρ

|w|γf1−σ(v − w) dw

≤ ‖f‖σ
L∞‖f‖1−σ

L2

⎛
⎜⎝∫

Bρ

|w|2γ/(1+σ) dw

⎞
⎟⎠

(1+σ)/2

� ργ+d(1+σ)/2‖f‖σ
L∞‖f‖1−σ

L2

� |v|−2−4γ/(d(1+σ))‖f‖−2σγ/(d(1+σ))
L∞ .

The condition σ > −2γ
d − 1 ensures that |w|2γ/(1+σ) is integrable near w = 0.

For I2, we use the energy bound. Since |v − w| � |v| when |w| ≤ |v|/2,

I2 ≤ ργ |v|−2
∫

B|v|/2\Bρ

|v − w|2f(v − w) dw ≤ ργ |v|−2E0

� |v|−2−4γ/(d(1+σ))‖f‖−2σγ/(d(1+σ))
L∞ .

Finally, for I3, we use the bound on the mass:

I3 � |v|γ
∫

Rd\B

f(v − w) dw ≤ M0|v|γ .
|v|/2
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In the case |v| < 1, we choose ρ′ = ‖f‖−2σ/(d(1+σ))
L∞ , and proceed as in the estimate of 

I1 to write
∫

Bρ′

|w|γf(v − w) dw � (ρ′)γ+d(1+σ)/2‖f‖σ
L∞ � ‖f‖−2σγ/(d(1+σ))

L∞ ,

as well as ∫
Rd\Bρ′

|w|γf(v − w) dw � (ρ′)γM0 � ‖f‖−2σγ/(d(1+σ))
L∞ ,

as desired. �
Next, we prove a global upper bound that is valid away from t = 0. We assume f

is a classical solution that is smooth enough that conservation of mass holds, by the 
argument in Section 2.1.

Proposition 4.3. Assume

⎧⎪⎨
⎪⎩

−d

2 + s < γ + 2s < 0, if − d

2 + s ≥ −4s

d
,

−4s

d
≤ γ + 2s < 0, if − d

2 + s < −4s

d
.

(4.1)

For any bounded classical solution f of (1.14) on [0, T ] × Rd satisfying
∫
Rd

f(t, v) dv = M0,

∫
Rd

|v|2f(t, v) dv ≤ E0, ‖f‖L2(Rd) ≤ L0,

the following upper bound holds:

f(t, v) ≤ N
(

t−d/(2s) + 1
)

,

for some N > 0 depending only on d, γ, s, M0, E0, and L0.

Note that the first condition γ + 2s > −d
2 + s in (4.1) follows from our condition 

γ ≥ −d+4s
3 in Theorem 1.1.

Proof. First, note that the bound for f in L2(Rd) implies an upper bound on the entropy ∫
Rd f log f dv, which will allow us to apply Lemma 4.1.

Following [43], let

h(t) = N
(

t−d/(2s) + 1
)

,
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with N ≥ 1 to be chosen later. We claim that f(t, v) < h(t) for all (t, v) ∈ [0, T ] × Rd. 
Since f is bounded, the inequality f < h must be true on some small time interval near 
zero, so if our claim is false, there is a point (t0, v0) where f(t0, v0) = h(t0) for the first 
time. At this point, we must have

∂tf(t0, v0) ≥ ∂th(t0) = −dN

2s
t
−1−d/(2s)
0 . (4.2)

From the equation, we have

∂tf(t0, v0) = Q1(f, f)(t0, v0) + Q2(f, f)(t0, v0).

We will find an upper bound for Q1 + Q2 at the crossing point (t0, v0) that contradicts 
(4.2).

First, we consider the case where |v0| is large, i.e. |v0| ≥ R for an R > 1 that will be 
chosen below. For the term Q1(f, f), we note that f(t0, v) ≤ h(t0) for all v ∈ Rd, which 
implies

Q1(f, f)(t0, v0) ≤ −
∫
Rd

Kf (t0, v0, w)[h(t0) − f(t0, v0 + w)] dw

≤ −c0|v0|γ+2s

∫
Rd

|w|−d−2s[h(t0) − f(t0, v0 + w)] dw,

(4.3)

with c0 as in Lemma 4.1. This principal value integral is well-defined because f(t0, v0) =
h(t0). To get a good (negative) upper bound for this integral, we apply an argument 
inspired by [32, Proposition 3.3]. The idea is to find a set where (i) f(t0, v0+w) < h(t0)/2
and (ii) |w| is relatively small, so that |w|−d−2s is large. With r ∈ (0, |v0|/4) to be chosen 
later, Chebyshev’s inequality implies

|{w : f(v0 + w) ≥ h(t0)/2} ∩ (B2r \ Br)| ≤ 2
h(t0)

∫
B2r\Br

f(v0 + w) dw

≤ 8
|v0|2h(t0)

∫
B2r\Br

|v0 + w|2f(v0 + w) dw

≤ 8E0

|v0|2h(t0) ,

where in the second line, we used that |v0 + w| ≥ |v0|/2 when |w| ≤ 2r ≤ |v0|/2. Letting 
cd be the constant such that |B2r \ Br| = cdrd, we want to choose r such that

4|{w : f(v0 + w) ≥ h(t0)/2} ∩ (B2r \ Br)| ≤ 32E0
2 ≤ |B2r \ Br| = cdrd.
|v0| h(t0)
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This will imply that f(v0 + w) < h(t0)/2 in at least three fourths of the set B2r \ Br. 
The appropriate choice of r is given by

r =
(

32E0

cd|v0|2h(t0)

)1/d

.

We also choose

R = 1 + 4d/(d+2)
(

32E0

cd

)1/(d+2)

,

so that |v0| ≥ R implies |v0|d+2 ≥ 4d · 32E0/(cdh(t0)) (recall that h(t0) ≥ 1), which 
implies r < |v0|/4.

Returning to (4.3), since the integrand h(t0) −f(t0, v0+w) is non-negative everywhere, 
we can write

Q1(f, f)(t0, v0) ≤ −c0|v0|γ+2s h(t0)
2

∫
(B2r\Br)∩{f(v0+w)<h(t0)/2}

|w|−d−2s dw

≤ −c0|v0|γ+2s h(t0)
2 r−d−2s|(B2r \ Br) ∩ {f(v0 + w) < h(t0)/2}|

≤ −c0|v0|γ+2s h(t0)
2 r−d−2s 3

4cdrd

≤ −c0|v0|γ+2s+4s/dh(t0)1+2s/d,

by our choice of r. The value of c0 has changed line by line, but still depends only on d, 
γ, s, M0, E0, and L0.

For the term Q2(f, f) ≈ f [f ∗| · |γ ], Lemma 4.2 implies, for some σ to be chosen below,

Q2(f, f)(t0, v0) ≤ Ch(t0)1−2σγ/(d(1+σ))|v0|max{γ,−2−4γ/(d(1+σ))},

since ‖f(t0, ·)‖L∞(Rd) ≤ h(t0). We want to choose σ so that the positive term coming 
from Q2 is smaller than the negative term from Q1. Since h(t0) ≥ 1, this means we need

γ + 2s + 4s

d
> −2 − 4γ

d(1 + σ) and 1 + 2s

d
> 1 − 2σγ

d(1 + σ) .

After some straightforward algebra using γ + 2s + 2 > 0 (which follows from (4.1)), this 
translates to

s
< σ <

−4γ − 1. (4.4)
−s − γ 4s + d(γ + 2s + d)
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A number σ satisfying both these inequalities exists exactly when γ + 2s > −2d/(d + 4), 
which is true by our assumption (4.1).2 In addition, we need σ to satisfy the following 
condition in order to apply Lemma 4.2:

(
−2γ

d
− 1

)
+

< σ ≤ 1. (4.5)

Since γ + 2s < 0, we have 
s

−s − γ
< 1. By our assumption that γ + 2s > −d

2 + s (which 

is part of (4.1)), we also have (−2γ/d − 1)+ <
s

−s − γ
, so there is always a σ satisfying 

both (4.4) and (4.5).
With such a choice of σ, we combine our estimates of Q1(f, f) and Q2(f, f) and use 

h(t0) = N(t−d/(2s)
0 + 1) to obtain

Q(f, f)(t0, v0) ≤ −1
2c0N1+2s/d

(
t
−d/(2s)
0 + 1

)1+2s/d

|v0|γ+2s+4s/d,

if N is chosen sufficiently large. This estimate holds whenever |v0| ≥ R.
When |v0| ≤ R, we obtain a negative upper bound for Q1(f, f) using the mass bound 

rather than the energy: for some ρ > 0 to be determined, Chebyshev implies

|{w : f(v0 + w) ≥ h(t0)/2} ∩ (B2ρ \ Bρ)| ≤ 2
h(t0)

∫
B2ρ\Bρ

f(v0 + w) dw ≤ 2M0

h(t0) .

With the choice ρ = (8M0/(cdh(t0)))1/d, with cd as above, we have

4|{w : f(v0 + w) ≥ h(t0)/2} ∩ (B2ρ \ Bρ)| ≤ 8M0

h(t0) ≤ cdρd = |B2ρ \ Bρ|.

Proceeding as above, we obtain

Q1(f, f)(t0, v0) ≤ −c0〈R〉γ+2s h(t0)
2

∫
(B2ρ\Bρ)∩{f(v0+w)<h(t0)/2}

|w|−d−2s dw

≤ −c0〈R〉γ+2s h(t0)
2 ρ−d−2s 3

4cdρd

≤ −c0h(t0)1+2s/d.

Combined with Lemma 4.2, we have

Q(f, f)(t0, v0) ≤ −c0h(t0)1+2s/d + Ch(t0)1−2σγ/(d(1+σ)),

2 Indeed, as functions of s, the lines −d/2 − s and −4s/d cross at s = −d2/(2(d + 4)) with height exactly 
−2d/(d + 4).
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for the same value of σ chosen above. In particular, the exponent 1 − 2σγ/(d(1 + σ))
is strictly less than 1 + 2s/d, so that the negative term dominates for N (and therefore 
h(t0)) sufficiently large. We have shown, in both cases |v0| ≥ R and |v0| < R,

Q(f, f)(t0, v0) ≤ −1
2c0N1+2s/d

(
t
−d/(2s)
0 + 1

)1+2s/d

〈v0〉γ+2s+4s/d.

Combining this with (4.2), we have

−dN

2s
t
−1−d/(2s)
0 ≤ −1

2c0N1+2s/d
(

t
−d/(2s)
0 + 1

)1+2s/d

〈v0〉γ+2s+4s/d,

which is a contradiction for N large enough, since γ + 2s + 4s/d ≥ 0 by assumption 
(4.1). �

Next, we prove polynomial decay estimates for f . In our proof of global existence, we 
will work with local solutions that satisfy a qualitative assumption of rapid decay on 
some time interval [0, T∗), but the following proposition is necessary to ensure the decay 
estimates for f do not degenerate as t → T∗.

This proposition is rather flexible in terms of the allowable values of γ and s, but in 
order to be useful, it requires f to already satisfy a quantitative L∞ bound.

Proposition 4.4. For any d ≥ 2 and (γ, s) ∈ (−d, 0) × (0, 1) such that γ + 2s < 0, 
let f : [0, T ] × Rd → [0, ∞) be a bounded solution of (1.14). Assume in addition that 
fin ∈ L∞

q (Rd) for some q > 0, and that the solution f ∈ L∞
q+ε([0, T ] × Rd) for some 

ε > 0. Then

‖f(t)‖L∞
q (Rd) ≤ ‖fin‖L∞

q (Rd) exp(C0t), t ∈ [0, T ],

where C0 > 0 depends on M0 =
∫
Rd f(t, v) dv and ‖f‖L∞([0,T ]×Rd). In particular, C0

does not depend quantitatively on the assumption f ∈ L∞
q+ε([0, T ] × Rd).

Proof. We use a barrier argument of a somewhat different style than the proof of Propo-
sition 4.3. Define

h(t, v) = Neκt〈v〉−q,

with N = (1 + ν)‖fin‖L∞
q (Rd) with ν > 0 small, and κ > 0 to be chosen below. Clearly, 

the inequality f < h holds at t = 0, so as in the proof of Proposition 4.3, we assume 
by contradiction that f and h cross for the first time at some location (t0, v0). We must 
have t0 > 0 because of our assumption that 〈v〉q+εf ∈ L∞([0, T ] × Rd).

At the crossing point, we have

κNeκt0〈v0〉−q = ∂th ≤ ∂tf = Q(f, f) ≤ Q(f, h), (4.6)
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where the last equality followed from the fact that f(t0, v0) = h(t0, v0) and f(t0, v) ≤
h(t0, v) for all v ∈ Rd. Since (−Δ)s〈v〉−q � 〈v〉−q−2s (see Lemma A.4), we have

Q(f, h)(t0, v0) � Neκt
(
[f ∗ | · |γ+2s](v0)〈v0〉−q−2s + [f ∗ | · |γ ](v0)〈v0〉−q

)
≤ C0N〈v0〉−q,

where we have bounded [f ∗ | · |γ+2s] and [f ∗ | · |γ ] in terms of ‖f‖L∞([0,T ]×Rd) and M0
by a standard convolution estimate. This inequality is a contradiction with (4.6) if we 
choose κ � C0. We conclude

f(t, v) < (1 + ν)‖fin‖L∞
q (Rd)e

κt〈v〉−q, t ∈ [0, T ],

which implies the conclusion of the proposition, after sending ν → 0. �
5. Proof of global existence

This section is devoted to the proof of our main theorem. We start with a local solution 
on a time interval [0, T ], which is constructed in Theorem 1.3 (whose proof is postponed 
to Section 6). To show the solution can be extended past any given time, we need to 
show that the Hd+3

q norm of f remains finite, so that Theorem 1.3 can be reapplied. 
Therefore, one needs some regularization argument to bound Hd+3

q norms in terms of 
the quantities (mass, energy, L∞ norm, etc.) that are globally bounded by our estimates 
from Sections 3 and 4.

One option is to bootstrap regularity estimates in Hölder spaces (i.e. De Giorgi and 
Schauder estimates for parabolic integro-differential equations). This approach is based 
on the uniform ellipticity of the kernel Kf (t, v, w): from Lemma 4.1 and Proposition 4.3, 
one has

c〈v〉γ+2s|w|−d−2s ≤ Kf (t, v, w) ≤ C〈v〉γ+2s|w|−d−2s.

Because the lower ellipticity bounds for Kf (t, v, w) degenerate as |v| → ∞, the regularity 
gained at each step is not uniform in v. To get around this, one would localize around a 
point (t0, v0) and rescale the equation to obtain a new kernel with an ellipticity bound 
that holds locally uniformly. A similar issue occurs for the true Boltzmann equation, but 
in a more challenging way, because the ellipticity degenerates at different rates depending 
on the direction of w relative to v. The authors of [34] developed a change of variables 
to solve this issue, and iteratively applied Hölder estimates to obtain C∞ regularity in 
the inhomogeneous case.

A version of the approach in [34] would work for us, but because we are in the spatially 
homogeneous setting, there is a more self-contained proof that uses L2-based energy 
estimates. The regularization is provided by the following coercivity property of the Q1
term:
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Lemma 5.1. For f ∈ L∞
q (Rd) with q > γ + 2s + d, and h ∈ L2(Rd), there holds

∫
Rd

hQ1(f, h) dv ≤ −Nf
s,γ(h)2 + C‖h‖2

L2(Rd)‖f‖L∞
q (Rd),

for a constant C > 0 depending only on d, γ, s, and q, where

Nf
s,γ(h) :=

⎛
⎝∫
Rd

∫
Rd

Kf (v, w)|h(v + w) − h(v)|2 dw dv

⎞
⎠

1/2

=

⎛
⎝cd,γ,s

∫
Rd

[f ∗ | · |γ+2s]
∫
Rd

|h(v + w) − h(v)|2
|w|d+2s

dw dv

⎞
⎠

1/2

.

(5.1)

Furthermore, for any h ∈ Hs(Rd) and f ∈ L∞
q (Rd), there holds

Nf
s,γ(h) ≤ ‖f‖1/2

L∞
q (Rd)[h]Hs(Rd), (5.2)

and if f additionally satisfies the hypotheses of Lemma 4.1, there holds

Nf
s,γ(h) ≥ c0[h]Hs

(γ+2s)/2(Rd), (5.3)

with c0 > 0 depending on the constants in Lemma 4.1.

Lemma 5.1 can be compared to the well-known entropy dissipation estimate satisfied 
by the Boltzmann collision operator [2].

Proof. From the formula (2.3) for Q1, we have

∫
Rd

hQ1(f, h) dv = cd,γ,s

∫
Rd

∫
Rd

h(v)h(v + w) − h(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

= −cd,γ,s

∫
Rd

∫
Rd

|h(v + w) − h(v)|2
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv

+ cd,γ,s

∫
Rd

∫
Rd

h(v + w)h(v + w) − h(v)
|w|d+2s

[f ∗ | · |γ+2s](v) dw dv.

We observe that the first term on the right is equal to −Nf
s,γ(h)2. In the second term, 

we change variables to swap v ↔ v + w, yielding
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∫
Rd

hQ1(f, h) dv

= −Nf
s,γ(h)2 + cd,γ,s

∫
Rd

∫
Rd

h(v)h(v) − h(v + w)
|w|d+2s

[f ∗ | · |γ+2s](v + w) dw dv

= −Nf
s,γ(h)2 −

∫
Rd

hQ1(f, h) dv

+ cd,γ,s

∫
Rd

∫
Rd

h(v)h(v) − h(v + w)
|w|d+2s

(
[f ∗ | · |γ+2s](v + w) − [f ∗ | · |γ+2s](v)

)
dw dv.

(5.4)

The last integral on the right is equal to

I :=
∫
Rd

∫
Rd

h(v)(h(v) − h(v + w))
∫
Rd

f(v − z) |z + w|γ+2s − |z|γ+2s

|w|d+2s
dz dw dv.

The following analysis of the integral I covers all cases s ∈ (0, 1). If we were only 
concerned with s < 1

2 , the proof would be easier since a first-order cancellation would 
be sufficient to handle the singularity as w → 0.

Using the change of variables w �→ −w, we obtain

2I =
∫
Rd

∫
Rd

h(v)(2h(v) − h(v + w) − h(v − w))

×
∫
Rd

f(v − z) |z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s

|w|d+2s
dz dw dv

≤
∫
Rd

⎛
⎝∫
Rd

h2(v) dv

⎞
⎠

1/2 ⎛
⎝∫
Rd

(h(v) − h(v + w) − h(v − w))2 dv

⎞
⎠

1/2

× sup
v∈Rd

∫
Rd

f(v − z)
∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s

∣∣
|w|d+2s

dz dw

� ‖h‖2
L2(Rd)‖f‖L∞

q (Rd)

∫
Rd

sup
v∈Rd

∫
Rd

〈v − z〉−q

∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s
∣∣

|w|d+2s
dz dw.

We divide this (w, z) integral into three parts: {|w| ≤ 1, |z| ≥ 2|w|}, {|w| ≤ 1, |z| < 2|w|}, 
and {|w| > 1}. For the first part, a Taylor expansion gives

∫
sup

v∈Rd

∫
〈v − z〉−q

∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s
∣∣

|w|d+2s
dz dw
{|w|≤1} {|z|≥2|w|}



S. Snelson / Journal of Functional Analysis 286 (2024) 110423 35
�
∫

{|w|≤1}

sup
v∈Rd

∫
Rd

〈v − z〉−q|z|γ+2s−2|w|2−d−2s dz dw

�
∫

{|w|≤1}

|w|2−d−2s dw � 1,

since |w| ≤ |z|/2 and q > γ + 2s + d. Next, we have

∫
{|w|≤1}

sup
v∈Rd

∫
{|z|<2|w|}

〈v − z〉−q

∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s
∣∣

|w|d+2s
dz dw

�
∫

{|w|≤1}

|w|−d−2s

∫
{|z|<2|w|}

∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s
∣∣ dz dw

�
∫

{|w|≤1}

|w|−d−2s|w|γ+2s+d dw � 1.

For the remaining part,

∫
{|w|>1}

sup
v∈Rd

∫
Rd

〈v − z〉−q

∣∣|z + w|γ+2s + |z − w|γ+2s − 2|z|γ+2s
∣∣

|w|d+2s
dz dw

≤
∫

{|w|>1}

|w|−d−2s sup
v∈Rd

⎛
⎝∫
Rd

〈v − z〉−q|z + w|γ+2s dz

+
∫
Rd

〈v − z〉−q|z + w|γ+2s dz + 2
∫
Rd

〈v − z〉−q|z|γ+2s dz

⎞
⎠ dw

�
∫

{|w|>1}

|w|−d−2s sup
v∈Rd

(
〈v + w〉γ+2s + 〈v − w〉γ+2s + 2〈v〉γ+2s

)
dw

� 1.

Returning to (5.4) and collecting terms, we obtain the first statement of the lemma.
The upper bound (5.2) follows from the convolution estimate of Lemma A.1(a) and the 

definition (5.1) of Nf
s,γ(h). The lower bound (5.3) follows from Lemma 4.1 and (5.1). �

We need the following interpolation lemma to trade decay for regularity. The proof is 
the same as [28, Lemma 2.6].

Lemma 5.2. For any q, m ≥ 0, suppose that g ∈ L∞
m ∩ Hk

q (Rd) and k′ ∈ (0, k). Then if 
� < (m − d/2)(1 − k′/k) + q(k′/k), there holds
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‖g‖Hk′
� (Rd) ≤ C‖g‖1−k′/k

L∞
m (Rd)‖g‖k′/k

Hk
q (Rd) ≤ C

(
‖g‖L∞

m (Rd) + ‖g‖Hk
q (Rd)

)
.

The constant C > 0 depends on d, k, k′, q, and m.

Now we are ready to prove our main theorem:

Proof of Theorem 1.1. By Theorem 1.3, which we prove in Section 6 below, a solution 
f ≥ 0 exists on some time interval [0, T ]. This solution can be extended by re-applying 
Theorem 1.3 for as long as the Hd+3

q (Rd) norm of f(t, ·) remains finite, so we assume by 
contradiction that f exists on some maximal time interval [0, T∗) with T∗ ≥ T , and that

‖f‖L∞([0,t],Hd+3
q (Rd)) ↗ ∞ as t → T∗. (5.5)

From estimate (1.15) in Theorem 1.3, and our assumption on fin, we see that f is C∞

with rapid decay on [0, T∗) × Rd (but this smoothness could a priori degenerate as 
t → T∗). We can therefore apply our estimates from earlier in the paper:

• Conservation of mass on [0, T∗) follows from the formal argument in Section 2.1, 
which is rigorously valid because f is smooth and rapidly decaying.

• Theorem 3.1 implies the L2(Rd) norm of f(t), for any t ∈ [0, T∗), is bounded by its 
value at t = 0.

• Lemma 3.3 provides a bound on the energy E(t) =
∫
Rd |v|2f(t, v) dv for t ∈ [0, T∗), 

that depends on d, γ, s, q, the initial data, and T∗, and is finite since T∗ < ∞.
• Because of the mass, energy, and L2 bounds, we can apply the L∞ estimate of 

Proposition 4.3, which is uniform on [T∗/2, T∗) ×Rd. On the remaining time interval 
[0, T∗/2), the Hd+3

q (Rd) norm of f(t, ·) is uniformly bounded as a result of (5.5), so 
by Sobolev embedding, f is bounded in L∞(Rd) for t ∈ [0, T∗/2) as well.

• With the L∞ bound from the previous bullet point, the decay estimates of Proposi-
tion 4.4 apply: for each q > 0, there is a constant Cq with

‖f(t)‖L∞
q (Rd) ≤ Cq, t ∈ [0, T∗), (5.6)

with Cq > 0 depending on q, d, γ, s, the initial data, and the energy bound.

For the remainder of this proof, we call a constant universal if it depends only on 
d, γ, s, the initial data, and the energy bound on [0, T∗). Quantities that depend only 
on universal constants will be absorbed into inequalities via the � symbol, sometimes 
without comment.

Our goal is to show that all Sobolev norms of f in v remain finite on [0, T∗). We prove 
this by induction. For the base case, we multiply the equation (1.14) by f and integrate 
over Rd to obtain

1
2

d

dt

∫
f2 dv =

∫
fQ1(f, f) dv +

∫
fQ2(f, f) dv.
Rd Rd Rd
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Using the coercivity estimate of Lemma 5.1 for the Q1 term, we have, for q > γ + 2s + d,

1
2

d

dt

∫
Rd

f2 dv ≤ −Nf
s,γ(f)2 + C‖f‖2

L2(Rd)‖f‖L∞
q (Rd) + C

∫
Rd

f2[f ∗ | · |γ ] dv

≤ −c[f ]2Hs
(γ+2s)/2(Rd) + C‖f‖2

L2(Rd)‖f‖L∞
q (Rd) + C‖f‖2

L2(Rd)‖f‖L∞
m (Rd),

where we used the lower bound (5.3) for Nf
s,γ , and Lemma A.1(a) with m > γ + d in the 

last term. Recalling that d
dt

∫
Rd f2 dv = 0, we now have, using (5.6),

T∗∫
0

[f(t)]2Hs
(γ+2s)/2(Rd) dt ≤ C,

for some universal constant C.
Now, we assume by induction that for some k ≥ 1,

‖f(t)‖Hk−1(Rd) ≤ Ck, t ∈ [0, T∗], (5.7)

and that

‖Fk−1(t)‖2
L2([0,T∗)) :=

T∗∫
0

‖f(t)‖2
Hk−1+s

(γ+2s)/2(Rd) dt ≤ Ck, (5.8)

for some Ck depending only on universal constants and k. Letting β = (β1, . . . , βd) be a 
multi-index in the v variable of order k, we differentiate the equation (1.14) by ∂β and 
integrate against ∂βf . It is easy to see that the operator Q satisfies a Liebnitz-type rule 
∂vi

Q(F, G) = Q(∂vi
F, G) + Q(F, ∂vi

G). We then obtain

1
2

d

dt

∫
Rd

(∂βf)2 dv =
∫
Rd

∂βf∂βQ(f, f) dv

=
∑

β′+β′′=β

⎛
⎝∫
Rd

∂βfQ1(∂β′
f, ∂β′′

f) dv +
∫
Rd

∂βfQ2(∂β′
f, ∂β′′

f) dv

⎞
⎠ .

(5.9)

Starting with the terms involving Q1, there are three cases:
If |β′| = 0 and β′′ = β, then we use the coercivity estimate of Lemma 5.1 and obtain, 

for any q > γ + 2s + d,∫
Rd

∂βfQ1(f, ∂βf) dv ≤ −Nf
s,γ(∂βf)2 + C‖∂βf‖2

L2(Rd)‖f‖L∞
q (Rd)

≤ −c0[∂βf ]2Hs (Rd) + C‖f‖2
Hk(Rd),

(5.10)
(γ+2s)/2
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by (5.3) and the decay estimate (5.6). This negative term will absorb the other highest-
order terms that arise in the energy estimates.

If 1 ≤ |β′| ≤ k − 1, then we have, using Lemma A.1(b) (since γ + 2s > −d/2, by our 
assumption γ ≥ −d+4s

3 ),
∫
Rd

∂βfQ1(∂β′
f, ∂β′′

f) dv ≈
∫
Rd

∂βf [∂β′
f ∗ | · |γ+2s](−Δ)s∂β′′

f dv

� ‖∂βf‖L2(Rd)‖∂β′
f ∗ | · |γ+2s−1‖L∞(Rd)‖∂β′′

f‖H2s(Rd)

� ‖f‖Hk(Rd)‖∂β′
f‖L2

m(Rd)‖f‖Hk−1+2s(Rd),

for some m > d/2 + γ + 2s. We also used |β′′| ≤ k − 1. In the last expression, we use 
the interpolation estimate of Lemma 5.2 for the middle factor (since |β′| ≤ k − 1) and 
obtain

‖∂β′
f‖L2

m(Rd) = ‖〈v〉m−(γ+2s)/2∂β′
f‖L2

(γ+2s)/2(Rd)

� ‖f‖Hk−1+s
(γ+2s)/2(Rd) + ‖f‖L∞

m+1−(γ+2s)/2(Rd) � ‖f‖Hk−1+s
(γ+2s)/2(Rd) + 1,

by the decay estimate (5.6). Next, we use a similar interpolation to write ‖f‖Hk−1+2s(Rd)�
‖f‖Hk+s

(γ+2s)/2(Rd) + ‖f‖L∞
1−(γ+2s)/2(Rd) � ‖f‖Hk+s

(γ+2s)/2(Rd) + 1, giving

∫
Rd

∂βfQ1(∂β′
f, ∂β′′

f) dv � ‖f‖Hk(Rd)

(
‖f‖Hk−1+s

(γ+2s)/2(Rd) + 1
)(

‖f‖Hk+s
(γ+2s)/2(Rd) + 1

)

≤ c−1
0 C‖f‖2

Hk(Rd)

(
‖f‖Hk−1+s

(γ+2s)/2(Rd) + 1
)2

+ c0

4dk
‖f‖2

Hk+s
(γ+2s)/2(Rd) + C

≤ c−1
0 C

(
1 + F 2

k−1(t)
)

‖f‖2
Hk(Rd) + c0

4dk
‖f‖2

Hk+s
(γ+2s)/2(Rd) + C,

by Young’s inequality. Here, c0 is the constant appearing in (5.10), Fk−1(t) is defined in 
(5.8), and C is a universal constant.

If |β′| = k and |β′′| = 0, then we need to proceed in two subcases, k = 1 and k ≥ 2. 
When k = 1, we have ∂βf = ∂vi

f for some i. We transfer this derivative from f to the 
convolution kernel |v|γ+2s via (∂vi

f) ∗ | · |γ+2s = f ∗ (∂vi
| · |γ+2s). The new kernel still 

has an integrable singularity because γ + 2s − 1 > −d by our assumption γ ≥ −d+4s
3 . 

We then have∫
Rd

∂vi
fQ1(∂vi

f, f) dv ≈
∫
Rd

∂vi
f [∂vi

f ∗ | · |γ+2s](−Δ)sf dv

�
∫

∂vi
f [f ∗ | · |γ+2s−1](−Δ)sf dv
Rd
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� ‖∂vi
f‖L2(Rd)‖f ∗ | · |γ+2s−1‖L∞(Rd)‖f‖H2s(Rd).

We estimate the convolution with Lemma A.1(a) and (5.6), and absorb this term into 
the constant. We estimate the H2s norm with an interpolation similar to above:

‖f‖H2s(Rd) � ‖f‖H1+s
(γ+2s)/2(Rd) + 1,

by (5.6) again. We now have
∫
Rd

∂vi
fQ1(∂vi

f, f) dv � ‖f‖H1(Rd)‖f‖H1+s(Rd) ≤ c−1
0 C‖f‖2

H1(Rd) + c0

4d
‖f‖2

H1+s(Rd).

When k ≥ 2, we use Lemma A.1(b) with m > γ + 2s + d to estimate the convolution:
∫
Rd

∂βfQ1(∂βf, f) dv ≈
∫
Rd

∂βf [∂βf ∗ | · |γ+2s](−Δ)sf dv

� ‖∂βf‖L2(Rd)‖∂βf ∗ | · |γ+2s‖L∞(Rd)‖f‖H2s(Rd)

� ‖f‖Hk(Rd)‖∂βf‖L2
m(Rd)‖f‖H2s(Rd).

We apply interpolation to the second and third factors, in a similar manner to above, 
and obtain∫

Rd

∂βfQ1(∂βf, f) dv � ‖f‖Hk(Rd)

(
‖f‖Hk+s

(γ+2s)/2(Rd) + 1
) (

‖f‖Hk−1+s(Rd) + 1
)

≤ c−1
0 C‖f‖2

Hk(Rd)
(
F 2

k−1(t) + 1
)

+ c0

4dk
‖f‖2

Hk+s
(γ+2s)/2(Rd) + C.

For the terms involving Q2 in (5.9), we write
∫
Rd

∂βfQ2(∂β′
f, ∂β′′

f) dv ≈
∫
Rd

∂βf∂β′′
f [∂β′

f ∗ | · |γ ] dv.

Again, there are three cases.
If |β′| = k and |β′′| = 0, we pick a constant θ > d/2 + γ and use Lemma A.2 as well 

as the weighted L∞ bounds (5.6) to obtain
∫
Rd

∂βf〈v〉θf〈v〉−θ[∂βf ∗ | · |γ ] dv ≤ ‖∂βf‖L2(Rd)‖f‖L∞
θ (Rd)‖∂βf ∗ | · |γ‖L2

−θ(Rd)

≤ C‖∂βf‖L2(Rd)‖∂βf‖L2
d/2+ε(Rd),

for some small ε > 0. By interpolation (Lemma 5.2), the decay estimate (5.6), and 
Young’s inequality, this expression is bounded above by
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C‖f‖Hk(Rd)
(
‖f‖Hk+s(Rd) + 1

)
≤ c−1

0 C
(

‖f‖2
Hk(Rd) + 1

)
+ c0

4dk
‖f‖2

Hk+s(Rd).

Next, if 1 ≤ |β′| ≤ k − 1, we have |β′′| ≤ k − 1, and
∫
Rd

∂βf∂β′′
f [∂β′

f ∗ | · |γ ] dv ≤ ‖∂βf‖L2(Rd)‖f‖Hk−1(Rd)‖∂β′
f ∗ | · |γ‖L∞(Rd)

≤ Cq‖f‖Hk ‖∂β′
f ∗ | · |γ‖L∞(Rd),

(5.11)

by the inductive hypothesis (5.7). Since γ may be too negative to apply Lemma A.1(b), 
we transfer a derivative from |v|γ to ∂β′

f . In more detail, using the identity

|v|γ = 1
d + γ

∇ · (v|v|γ),

we write

‖∂β′
f ∗ | · |γ‖L∞(Rd) �

d∑
i=1

‖(∂vi
∂β′

f) ∗ | · |γ+1‖L∞(Rd).

From our assumption that −d+4s
3 ≤ γ < −2, we have

−d

2 < γ + 1 < 0,

so we can apply Lemma A.1(b) with μ = γ + 1 and m > γ + 1 + d
2 , and obtain

‖∂β′
f ∗ | · |γ‖L∞(Rd) �

d∑
i=1

‖(∂vi
∂β′

f) ∗ | · |γ‖L∞(Rd) �
d∑

i=1
‖∂vi

∂β′
f‖L2

m(Rd) � ‖f‖Hk
m(Rd).

As above, we apply interpolation (Lemma 5.2) plus the decay estimate of (5.6) to bound 
‖f‖Hk

m(Rd) from above by � ‖f‖Hk+s
(γ+2s)/2(Rd) + 1. Returning to (5.11), we now have

∫
Rd

∂βfQ2(∂β′
f, ∂β′′

f) dv ≤ Ck‖f‖Hk(Rd)

(
‖f‖Hk+s

(γ+2s)/2(Rd) + 1
)

≤ Ck

c0

(
‖f‖2

Hk(Rd) + 1
)

+ c0

4dk
‖f‖2

Hk+s
(γ+2s)/2(Rd).

Finally, if |β′| = 0 and β′′ = β, we have for any q > γ + d,
∫
Rd

∂βfQ2(f, ∂βf) dv ≈
∫
Rd

[f ∗ | · |γ ](∂βf)2 dv

≤ ‖f ∗ | · |γ‖L∞(Rd)‖f‖2
Hk(Rd)
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≤ C‖f‖L∞
q (Rd)‖f‖2

Hk(Rd)

≤ C‖f‖2
Hk(Rd),

by Lemma A.1(a) and (5.6).
Now we collect our upper bounds for the terms in (5.9) and sum over all dk multi-

indices β with |β| = k, to obtain

d

dt

∑
|β|=k

‖∂βf‖2
L2(Rd) ≤ −c0

∑
|β|=k

[∂βf ]2Hs
(γ+2s)/2(Rd) + c0

2 ‖f‖2
Hk+s

(γ+2s)/2(Rd)

+ C(1 + F 2
k−1(t))‖f‖2

Hk(Rd) + C,

for a universal constant C. Noting that ‖f‖2
Hk(Rd) =

∑
|β|=k ‖∂βf‖2

L2(Rd) + ‖f‖2
Hk−1(Rd)

and ‖f‖2
Hk+s

(γ+2s)/2(Rd) =
∑

|β|=k[∂βf ]2Hs
(γ+2s)/2(Rd)+‖f‖2

Hk
(γ+2s)/2(Rd), our inductive hypoth-

esis (5.7) implies

d

dt

∑
|β|=k

‖∂βf‖2
L2(Rd) ≤ −c0

2
∑

|β|=k

[∂βf ]2Hs
(γ+2s)/2(Rd)

+ C(1 + F 2
k−1(t))

∑
|β|=k

‖∂βf‖2
L2(Rd) + C,

(5.12)

since (γ + 2s)/2 < 0. Our second inductive hypothesis (5.8) implies F 2
k−1 is integrable, 

so with Grönwall’s inequality, we now have

∑
|β|=k

‖∂βf‖L2(Rd) ≤ C exp

⎛
⎝C

t∫
0

(1 + F 2
k−1(t′)) dt′

⎞
⎠ ≤ Ck, t ∈ [0, T∗),

for some Ck depending on universal constants and k. Using this bound in (5.12) and 
integrating from 0 to T∗, we find

c0

2

T∗∫
0

∑
|β|=k

[∂βf ]2Hs
(γ+2s)/2(Rd) ≤ Ck,

which allows us to close the induction, since Fk(t) = ‖f(t)‖Hk+s(Rd) � ‖f‖Hk(Rd) +∑
|β|=k[∂βf ]Hs(Rd).
We have shown that all Sobolev norms ‖f(t)‖Hk(Rd) are uniformly bounded in t ∈

[0, T∗). By interpolation (Lemma 5.2), the weighted Hk
q (Rd) norms of f are also bounded 

on [0, T∗), for all k, q > 0. In particular, we can apply short-time existence (Theorem 1.3) 
with initial data f(T∗, ·) to extend our solution to some time interval [0, T ′] with T ′ > T∗, 
contradicting (5.5). This completes the proof. �
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6. Local existence

This section is devoted to the proof of local existence, Theorems 1.2 and 1.3. The proof 
uses L2-based energy estimates, but unlike the proof of Theorem 1.1 above, there is no 
need to obtain an estimate that persists for large t, which leads to some simplifications. 
On the other hand, extra complications arise from the broader range of γ and s, the 
dependence on x, and the need to commute polynomial weights of the form 〈v〉q.

The ideas in this section owe a lot to short-time existence results for the Boltzmann 
equation such as [4–6,42,28] and especially [31], which addressed the case of γ very close 
to −d.

We begin with a commutator estimate for polynomially-growing weights:

Lemma 6.1. If m, q > γ + 2s + d, then

‖〈v〉qQ(f, g) − Q(f, 〈v〉qg)‖L2(Rd)

≤ C
(

‖f‖1/2
L∞

m (Rd)N
f
s,γ(〈v〉qg) + ‖f‖L∞

m (Rd)‖g‖L2
q−2s(Rd)

)
,

for a constant C > 0 depending only on d, γ, s, m, and q.

Proof. It is clear that 〈v〉qQ2(f, g) − Q2(f, 〈v〉qg) = 0, giving

〈v〉qQ(f, g) − Q(f, 〈v〉qg)

= 〈v〉qQ1(f, g) − Q1(f, 〈v〉qg)

=
∫
Rd

Kf (v, w)g(v + w)[〈v〉q − 〈v + w〉q] dw

=
∫
Rd

Kf (v, w)g(v + w)〈v + w〉q[〈v〉q〈v + w〉−q − 1] dw

=
∫
Rd

Kf (v, w)[g(v + w)〈v + w〉q − g(v)〈v〉q][〈v〉q〈v + w〉−q − 1] dw

+ g(v)〈v〉q

∫
Rd

Kf (v, w)[〈v〉q〈v + w〉−q − 1] dw

= I1 + I2.

This decomposition is similar to one that appears in the proof of [44, Lemma 2.12]. 
Taking the L2 norm in v of both terms I1 and I2, we first have, using Cauchy-Schwarz 
in w,
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∫
Rd

I2
1 dv ≤

∫
Rd

⎛
⎝∫
Rd

Kf (v, w)|g(v + w)〈v + w〉q − g(v)〈v〉q|2 dw

⎞
⎠

×

⎛
⎝∫
Rd

Kf (v, w)|〈v〉q〈v + w〉−q − 1|2 dw

⎞
⎠ dv.

Since Lemmas A.1(a) and A.4 imply

〈v〉2q

∫
Rd

Kf (v, w)|〈v + w〉−q − 〈v〉−q|2 dw ≈ 〈v〉2q[f ∗ | · |γ+2s]
∫
Rd

|〈v + w〉−q − 〈v〉−q|2
|w|d+2s

dw

� ‖f‖L∞
m (Rd)〈v〉2q〈v〉−2q−2s � ‖f‖L∞

m (Rd),

we have∫
Rd

I2
1 dv � ‖f‖L∞

m (Rd)

∫
Rd

∫
Rd

Kf (v, w)|g(v + w)〈v + w〉q − g(v)〈v〉q|2 dw dv

= ‖f‖L∞
m (Rd)N

f
s,γ (〈·〉qg)2

.

For I2, we use Lemma A.4 to write

|I2| ≤ |g(v)|〈v〉2q[f ∗ | · |γ+2s](v)(−Δ)s(〈v〉−q) ≤ |g(v)|〈v〉q−2s[f ∗ | · |γ+2s](v)

� ‖f‖L∞
m

|g(v)|〈v〉q−2s,

which gives
∫
Rd

I2
2 dv � ‖f‖2

L∞
m (Rd)‖g‖2

L2
q−2s(Rd).

Combining our estimates for I1 and I2, the proof is complete. �
The key lemma for local existence is the following energy estimate for a modified 

linear version of our equation. The purpose of the parameter σ is to interpolate between 
the linear isotropic Boltzmann equation and the heat equation on R1+6, so that we can 
apply the method of continuity below in the proof of Lemma 6.4.

Lemma 6.2. Let k ≥ 2d + 2, q ≥ m > γ + 2s + d, T > 0, and let f ∈ L∞([0, T ], Hk
m(Td ×

Rd)) be fixed. For any σ ∈ [0, 1] and R ∈ L2([0, T ], L2
q(Td × Rd)), let gσ be a solution of

∂tgσ + σv · ∇xgσ = σQ(f, gσ) + (1 − σ)Δx,vgσ + R, (6.1)

on the time interval [0, T ]. Then the following estimate holds:
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‖gσ(t)‖Hk
q (Td×Rd) ≤

⎛
⎝‖gσ(0)‖Hk

q (Td×Rd) + C

t∫
0

‖R(t′)‖2
L2

q(Td×Rd) dt′

⎞
⎠

× exp

⎛
⎝C

t∫
0

(1 + ‖f(t′)‖Hk
m(Td×Rd)) dt′

⎞
⎠ , 0 ≤ t ≤ T,

where C depends only on k, q, m, d, γ, and s. In particular, C is independent of σ.

Proof. For every multi-index β = (β1, . . . , β2d) in (x, v) variables with |β| =
∑

i βi = k, 
we differentiate (6.1) by ∂β , multiply by 〈v〉2q∂βgσ, and integrate over Td

x ×Rd
v to obtain

1
2

d

dt

∫
Td×Rd

〈v〉2q(∂βgσ)2 dv dx + σ

∫
Td×Rd

〈v〉2q∂βgσ∂β [v · ∇xgσ] dv dx

= σ

∫
Td×Rd

〈v〉2q∂βgσ∂βQ(f, gσ) dv dx + (1 − σ)
∫

Td×Rd

〈v〉2q∂βgσΔx,v∂βgσ dv dx

+
∫

Td×Rd

〈v〉2q∂βgσR dv dx.

(6.2)

The last two terms are handled easily:
∫

Td×Rd

〈v〉2q∂βgσR dv dx ≤ ‖gσ‖Hk
q (Td×Rd)‖R‖L2

q(Td×Rd)

� ‖gσ‖2
Hk

q (Td×Rd) + ‖R‖2
L2

q(Td×Rd),

and ∫
Td×Rd

〈v〉2q∂βgσΔx,v∂βgσ dv dx = −
∫

Td×Rd

〈v〉2q|∇x,v∂βgσ|2 dv dx

− 2q

∫
Td×Rd

∂βgσ〈v〉2q−2v · ∇v∂βgσ dv dx

≤ −q

∫
Td×Rd

〈v〉2q−2v · ∇v(∂βgσ)2 dv dx (6.3)

= Cd,q

∫
Td×Rd

〈v〉2q−2(∂βgσ)2 dv dx

≤ Cd,q‖gσ‖2
Hk

q (Td×Rd),
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since |β| ≤ k.
For the second term on the left in (6.2), we write ∂β = ∂β

x ∂β
v , for multi-indices βx, βv ∈

Nd. With the notation βv = (βv,1, . . . , βv,d) and ei = (0, . . . , 1, . . . , 0), we have ∂β[v ·
∇xgσ] = v · ∇x∂βgσ +

∑d
i=1 βv,i∂xi

∂βx∂βv−eigσ, which implies
∣∣∣∣∣∣∣

∫
Td×Rd

〈v〉2q∂βgσ∂β [v · ∇xgσ] dv dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

Td×Rd

〈v〉2q∂βgσv · ∇x∂βgσ dv dx

+
d∑

i=1
βv,i

∫
Td×Rd

〈v〉2q∂βgσ∂xi
∂βx∂βv−eigσ dv dx

∣∣∣∣∣∣∣ .

The first term on the right is zero after integrating by parts in x. For the second term, 
Cauchy-Schwarz gives an upper bound of

�
d∑

i=1
‖〈v〉q∂βgσ‖L2(Td×Rd)‖〈v〉q∂xi

∂βx∂βv−eigσ‖L2(Td×Rd) � d‖gσ‖2
Hk

q (Td×Rd).

It remains to estimate the first integral on the right in (6.2). As above, we use the 
Liebnitz rule ∂Q(F, G) = Q(∂F, G) + Q(F, ∂G) for x or v derivatives to write

∫
Td×Rd

〈v〉2q∂βgσ∂βQ(f, gσ) dv dx =
∑

β′+β′′=β

∫
Td×Rd

〈v〉2q∂βgσQ(∂β′
f, ∂β′′

gσ) dv dx.

For each pair β′, β′′, we write∫
Td×Rd

〈v〉2q∂βgσQ(∂β′
f, ∂β′′

gσ) dv dx = J1 + J2 + J3, (6.4)

with

J1 =
∫

Td×Rd

〈v〉q∂βgσQ1(∂β′
f, 〈v〉q∂β′′

gσ) dv dx,

J2 =
∫

Td×Rd

〈v〉q∂βgσQ2(∂β′
f, 〈v〉q∂β′′

gσ) dv dx,

J3 =
∫

Td×Rd

〈v〉q∂βgσ

(
〈v〉qQ(∂β′

f, ∂β′′
gσ) − Q(∂β′

f, 〈v〉q∂β′′
gσ

)
dv dx.

The analysis of all three terms splits into cases depending on how the derivatives fall.
We begin with the Q2 terms because they are the simplest. Since k ≥ 2d + 2 and 

|β′| + |β′′| ≤ k, we must have either |β′| ≤ k −d −1 or |β′′| ≤ k −d −2. If |β′| ≤ k −d −1, 
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then Cauchy-Schwarz and the convolution estimate of Lemma A.1(a) (since m > γ + d) 
yield

J2 ≈
∫

Td×Rd

〈v〉q∂βgσ[∂β′
f ∗ | · |γ ]〈v〉q∂β′′

gσ dv dx

≤ ‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′
f ∗ | · |γ‖L∞(Td×Rd)‖〈v〉q∂β′′

gσ‖L2(Td×Rd)

≤ ‖∂β′
f‖L∞

m (Td×Rd)‖gσ‖2
Hk

q (Td×Rd)

≤ ‖∂β′
f‖Hd+1

m (Td×Rd)‖gσ‖2
Hk

q (Td×Rd)

≤ ‖f‖Hk
m(Td×Rd)‖gσ‖2

Hk
q (Td×Rd),

using the Sobolev embedding Hd+1(Td × Rd) ⊂ L∞(Td × Rd).
If |β′′| ≤ k − d − 2, we proceed differently depending on γ. If γ > −d/2, we apply 

Lemma A.1(b) to ∂β′
f , since m > d/2 + γ:

J2 ≤ C

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f ∗ | · |γ‖L∞(Rd)‖〈v〉q∂β′′

gσ‖L2(Rd) dx

≤ C

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f‖L2

m(Rd)‖〈v〉q∂β′′
gσ‖L2(Rd) dx

≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′
f‖L2

m(Td×Rd)‖〈v〉q∂β′′
gσ‖L∞

x L2
v(Td×Rd)

≤ C‖gσ‖Hk
q (Td×Rd)‖∂β′

f‖L2
m(Td×Rd)‖〈v〉q∂β′′

gσ‖
H

�(d+1)/2�
x L2

v(Td×Rd)

≤ C‖f‖Hk
m(Td×Rd)‖gσ‖2

Hk
q (Td×Rd),

where we used the Sobolev embedding H�(d+1)/2�
x (Td) ⊂ L∞

x (Td). Here, �x� denotes the 
smallest integer ≥ x. Note that |β′′| + �(d + 1)/2� ≤ k − d/2 − 1 < k.

If γ ≤ −d/2, we apply the L2 convolution estimate of Lemma A.3 to ∂β′
f with 

θ = m > γ + d:

J2 ≤ C‖〈v〉q∂β′′
gσ‖L∞(Td×Rd)

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f ∗ | · |γ‖L2(Rd) dx

≤ C‖∂β′′
gσ‖Hd+1

q (Td×Rd)

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f‖L2

m(Rd) dx

≤ C‖gσ‖2
Hk

q (Td×Rd)‖∂β′
f‖L2

m(Td×Rd),

where we have applied the Sobolev embedding in Td × Rd to ∂β′′
gσ.

To address the terms J1 and J3 in (6.4), there are four cases:
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Case 1: β′ = (0, . . . , 0), β′′ = β. When all derivatives fall on gσ, we use the coercivity 
estimate of Lemma 5.1, with exponent m > γ + 2s + d:

J1 =
∫

Td×Rd

〈v〉q∂βgσQ1(f, 〈v〉q∂βgσ) dv dx

≤ −
∫
Td

Nf
s,γ(〈v〉q∂βgσ)2 dx + C

∫
Td

‖〈v〉q∂βgσ‖2
L2(Rd)‖f‖L∞

m (Rd) dx

≤ −
∫
Td

Nf
s,γ(〈v〉q∂βgσ)2 dx + C‖〈v〉q∂βgσ‖2

L2(Td×Rd)‖f‖L∞
m (Td×Rd).

For J3, we use the commutator estimate of Lemma 6.1:

J3 =
∫

Td×Rd

〈v〉q∂βgσ[〈v〉qQ(f, ∂βgσ) − Q(f, 〈v〉q∂βgσ) dv dx

≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)

⎛
⎝‖f‖1/2

L∞
m (Td×Rd)

∫
Td

Nf
s,γ(〈v〉q∂βg) dx

+‖f‖L∞
m (Td×Rd)‖∂βg‖L2

q−2s(Td×Rd)

)
≤

∫
Td

Nf
s,γ(〈v〉q∂βgσ)2 dx + C‖f‖L∞

m (Td×Rd)‖∂βgσ‖2
L2

q(Td×Rd),

after using Young’s inequality. Adding J1 and J3, the Nf
s,γ(〈v〉q∂βgσ) terms cancel, and 

applying the Sobolev inequality to f (since k > d + 1), we have

J1 + J3 ≤ C‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd).

Case 2: |β′| = 1, |β′′| ≤ k −1. We consider the worst subcase |β′′| = k −1 since the other 
subcases can be handled by the same method.

In J1, a naive estimate of Q1(∂β′
f, 〈v〉q∂β′′

gσ) would place 2s derivatives on ∂β′′
gσ, 

giving a term that cannot be bounded by the Hk
q norm of gσ when s > 1/2, since 

|β′′| + 2s > k. To get around this issue, we use a symmetrization method3 that exploits 
the fact that ∂βgσ = ∂∂β′′

gσ for some partial derivative ∂ in either x or v. Let us assume 
∂ = ∂vi

for some i, since the case ∂ = ∂xi
is simpler as x derivatives commute with 〈v〉q.

3 A related symmetrization method was applied in [28, Proposition 3.1(iv)] and [31, Proposition 2.9] to 
solve the same issue in the context of the Boltzmann equation.
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Integrating by parts in vi, we have

1
cd,γ,s

J1 =
∫

Td×Rd

〈v〉q∂vi
(∂β′′

gσ)[f ∗ | · |γ+2s](−Δ)s∂β′′
gσ dv dx

= −
∫

Td×Rd

〈v〉q∂β′′
gσ∂vi

(
[f ∗ | · |γ+2s](−Δ)s∂β′′

gσ

)
dv dx

−
∫

Td×Rd

q〈v〉q−2vi∂
β′′

gσ[f ∗ | · |γ+2s](−Δ)s∂β′′
gσ dv dx

=: J1,1 + J1,2.

(6.5)

To bound J1,1, we introduce the abbreviations F = ∂β′
f ∗ | · |γ+2s and G = 〈v〉q∂β′′

gσ

and write

J1,1 = −
∫

Td×Rd

G∂vi
F (−Δ)sG dv dx −

∫
Td×Rd

GF (−Δ)s∂vi
G dv dx

= −
∫

Td×Rd

(−Δ)s(G∂vi
F )G dv dx −

∫
Td×Rd

(−Δ)s(GF )∂vi
G dv dx.

To both of these fractional Laplacians, we apply the formula

(−Δ)s(ζη) = ζ(−Δ)sη + η(−Δ)sζ − E(ζ, η),

with

E(ζ, η) := cs,d

∫
Rd

(ζ(v + w) − ζ(v))(η(v + w) − η(v))
|w|d+2s

dw,

and obtain

J1,1 =−
∫

Td×Rd

G2(−Δ)s(∂vi
F ) dv dx −

∫
Td×Rd

∂vi
FG(−Δ)sG dv dx +

∫
Td×Rd

GE(G, ∂vi
F ) dv dx

−
∫

Td×Rd

F∂vi
G(−Δ)sG dv dx −

∫
Td×Rd

G∂vi
G(−Δ)sF dv dx +

∫
Td×Rd

∂vi
GE(F, G) dv dx.

(6.6)

Taking the terms in this expression one-by-one, for the first term we use

(−Δ)s(∂vi
F ) = (−Δ)s(∂vi

∂β′
f ∗ | · |γ+2s) ≈ ∂vi

∂β′
f ∗ | · |γ ,
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which follows from a calculation that places (−Δ)s onto the convolution kernel, similar 
to the argument in (2.4). Combining this with Lemma A.1(a) and Sobolev embedding 
in Td × Rd, we have

∫
Td×Rd

G2(−Δ)s[∂vi
∂β′

f ∗ | · |γ+2s] dv dx � ‖G‖2
L2(Td×Rd)‖∂vi

∂β′
f‖L∞

m (Td×Rd)

� ‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

since m > γ + d and |β′| + 1 + (d + 1) = d + 3 ≤ k. For the second term in (6.6), we use 
Lemma 5.1 and inequality (5.2):

∫
Td×Rd

∂vi
FG(−Δ)sG dv dx =

∫
Td×Rd

GQ1(∂vi
∂β′

f, G) dv dx

≤
∫
Td

[∣∣∣∣N∂vi
∂β′

f
s,γ (G)

∣∣∣∣
2

+ C‖G‖2
L2(Rd)‖∂vi

∂β′
f‖L∞

m (Rd)

]
dx

�
∫
Td

‖∂vi
∂β′

f‖L∞
m (Rd)

(
‖G‖2

Hs(Rd) + ‖G‖2
L2(Rd)

)
dx

� ‖∂vi
∂β′

f‖L∞
m (Td×Rd)‖G‖2

L2
xHs

v(Td×Rd)

� ‖f‖Hk
m(Td×Rd)‖gσ‖2

Hk
q (Td×Rd),

applying Sobolev embedding to ∂vi
∂β′

f as above. For the third term in (6.6), we use the 
definition of E(ζ, η) to write

∫
Td×Rd

GE(G, ∂vi
F ) dv dx �

∫
Td×Rd

G

⎛
⎝∫
Rd

|G(x, v + w) − G(x, v)|2
|w|d+2s

dw

⎞
⎠

1/2

×

⎛
⎝∫
Rd

|∂vi
F (x, v + w) − ∂vi

F (x, v)|2
|w|d+2s

dw

⎞
⎠

1/2

dv dx.

(6.7)

We estimate the w integral involving ∂vi
F in two pieces. For some small ε > 0 such that 

s + ε < 1, we first have

∫ |∂vi
F (x, v + w) − ∂vi

F (x, v)|2
|w|d+2s

dw
B1
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=
∫

B1

|w|−d−2s

⎛
⎝∫
Rd

∂vi
∂β′

f(v∗)[|v + w − v∗|γ+2s − |v − v∗|γ+2s] dv∗

⎞
⎠

2

dw

≤
∫

B1

|w|−d−2s

⎛
⎝∫
Rd

∂vi
∂β′

f(v∗)|v − v∗|γ+s−ε|w|s+ε dv∗

⎞
⎠

2

dw

≤
∫

B1

|w|−d+2ε dw
(

[∂vi
∂β′

f ∗ | · |γ+s−ε](v)
)2

� ‖∂vi
∂β′

f‖2
L∞

m (Td×Rd),

by Lemma A.1(a). In the third line, we used the Hölder estimate [| · |γ+2s]Cs+ε(v) �
|v|γ+s−ε, which follows from Lemma A.4. Next,

∫
Rd\B1

|∂vi
F (x, v + w) − ∂vi

F (x, v)|2
|w|d+2s

dw

≤ ‖∂vi
∂β′

f‖2
L∞

m (Rd)

∫
Rd\B1

|w|−d−2s

⎛
⎝∫
Rd

〈v∗〉−m[|v + w − v∗|γ+2s − |v − v∗|γ+2s] dv∗

⎞
⎠

2

dw

� ‖∂vi
∂β′

f‖2
L∞

m (Rd)

∫
Rd\B1

|w|−d−2s dw

� ‖∂vi
∂β′

f‖2
L∞

m (Rd),

where in the third line, we used Lemma A.1(a) with f(v) = 〈v〉−m. Returning to (6.7), 
we have

∫
Td×Rd

GE(G, ∂vi
F ) dv dx ≤

∫
Td

‖G‖L2(Rd)‖G‖Hs(Rd)‖∂vi
∂β′

f‖L∞
m (Rd) dx

≤ ‖G‖L2(Td×Rd)‖G‖L2
xHs

v(Td×Rd)‖∂vi
∂β′

f‖L∞
m (Td×Rd)

≤ ‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

using Sobolev embedding as above, and the inequality ‖G‖L2
xHs

v(Td×Rd)�‖gσ‖Hk
q (Td×Rd), 

which can be proven in a straightforward way using interpolation.
The fourth term in (6.6) is equal to − 1

cd,γ,s
J1, so we absorb it into the left-hand 

side of (6.5). The fifth term is bounded in a similar manner to the first term: since 
(−Δ)sF ≈ ∂β′

f ∗ | · |γ ,
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∫
Td×Rd

G∂vi
G(−Δ)sF dv dx � ‖G‖L2(Td×Rd)‖∂vi

G‖L2(Td×Rd)‖∂β′
f‖L∞

m (Td×Rd)

� ‖g‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

by Lemma A.1(a) and Sobolev embedding. Finally, the sixth term in (6.6) is bounded 
by exactly the same argument as the third term.

Next, we note that the term J1,2 in (6.5) can be bounded by the same method as J1,1
(but simpler) because it has fewer derivatives and a smaller exponent of 〈v〉. Returning 
to (6.5), we now have

2J1 ≤ C‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

as desired.
For the commutator term, Lemma 6.1 implies

J3 ≤ ‖〈v〉q∂βgσ‖L2(Td×Rd)‖〈v〉qQ(∂β′
f, ∂β′′

gσ) − Q(∂β′
f, 〈v〉q∂β′′

gσ)‖L2(Td×Rd)

� ‖〈v〉q∂βgσ‖L2(Td×Rd)

⎛
⎝‖∂β′

f‖1/2
L∞

m (Td×Rd)

∫
Td

Nf
s,γ(〈v〉q∂β′′

gσ) dx

+‖∂β′
f‖L∞

m (Td×Rd)‖∂β′′
gσ‖L2(Td×Rd)

)
.

Using the upper bound (5.2) for Nf
s,γ(〈v〉q∂β′′

gσ), we obtain

J3 � ‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′
f‖L∞

m (Td×Rd)

×
(

‖〈v〉q∂β′′
gσ‖Hs(Rd) + ‖〈v〉q∂β′′

gσ‖L2(Td×Rd)

)
� ‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′

f‖Hd+1
m (Td×Rd)

×
(

‖〈v〉q∂β′′
gσ‖H1(Rd) + ‖〈v〉q∂β′′

gσ‖L2(Td×Rd)

)
� ‖gσ‖2

Hk
q (Td×Rd)‖f‖Hk

m(Td×Rd),

after using the standard interpolation inequality ‖ · ‖2
Hs � ‖ · ‖2

H1 + ‖ · ‖2
L2 and Sobolev 

embedding for ∂β′
f (since |β′| + d + 1 = d + 2 < k).

Case 3: 2 ≤ |β′| ≤ k − d − 1. In this case, there is room to apply 2s derivatives to ∂β′′
gσ, 

so we use the inequality

‖Q1(F, G)‖L2(Rd) ≈ ‖[F ∗ | · |γ+2s](−Δ)sG‖L2(Rd) ≤ C‖F‖L∞
m (Rd)‖G‖H2s(Rd),

which follows from Lemma A.1(a) since m > γ + 2s + d. This gives
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J1 ≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)

⎛
⎝∫
Td

‖∂β′
f‖2

L∞
m (Rd)‖〈v〉q∂β′′

gσ‖2
H2s(Rd) dx

⎞
⎠

1/2

≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′
f‖L∞

m (Td×Rd)

×

⎛
⎝∫
Td

(
‖〈v〉q∂β′′

gσ‖2
H2(Rd) + ‖〈v〉q∂β′′

gσ‖2
L2(Rd)

)
dx

⎞
⎠

1/2

≤ C‖〈v〉q∂βgσ‖2
L2(Td×Rd)‖∂β′

f‖Hd+1
m (Td×Rd),

by Sobolev embedding and the interpolation inequality ‖ · ‖2
H2s � ‖ · ‖2

H2 + ‖ · ‖2
L2 . The 

commutator term is handled exactly as in Case 2, since |β′| + d + 1 ≤ k, and we obtain

J1 + J3 ≤ C‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd).

Case 4: k − d ≤ |β′| ≤ k. By our condition on k, we must have |β′′| ≤ k − d − 3 in this 
case. As in the analysis of J2 above, we split this case into sub-cases based on γ + 2s.

Starting with J1, if γ + 2s > −d/2, we apply Lemma A.1(b), since m > γ + 2s + d >
γ + 2s + d/2:

J1 ≈
∫

Td×Rd

〈v〉q∂βgσ[∂β′
f ∗ | · |γ+2s](−Δ)s(〈v〉q∂β′′

gσ) dv dx

≤
∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f ∗ | · |γ+2s‖L∞(Rd)‖(−Δ)s(〈v〉q∂β′′

gσ)‖L2(Rd) dx

≤ C

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f‖L2

m(Rd)‖〈v〉q∂β′′
gσ‖H2s(Rd) dx

≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′
f‖L2

m(Td×Rd)‖〈v〉q∂β′′
gσ‖L∞

x H2s
v (Td×Rd)

≤ C‖gσ‖Hk
q (Td×Rd)‖f‖Hk

m(Td×Rd),

where we used the Sobolev embedding H�(d+1)/2�
x (Td) ⊂ L∞

x (Td) and |β′′| + 2s + �(d +
1)/2� ≤ k − d/2 − 2 + 2s < k.

If γ+2s ≤ −d/2, we apply Lemma A.3 to ∂β′
f and the Sobolev embedding Hd+1(Td×

Rd) ⊂ L∞(Rd) to ∂β′′
gσ:

J1 � ‖(−Δ)s(〈v〉q∂β′′
gσ)‖L∞(Td×Rd)

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f ∗ | · |γ+2s‖L2(Rd) dx

≤ C‖(−Δ)s(〈v〉q∂β′′
gσ)‖Hd+1(Td×Rd)

∫
Td

‖〈v〉q∂βgσ‖L2(Rd)‖∂β′
f‖L2

m(Rd) dx

≤ C‖〈v〉q∂β′′
gσ‖H2s+d+1(Td×Rd)‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′

f‖L2 (Td×Rd)
m
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≤ C‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

since |β′′| + d + 1 + 2s ≤ k − 2 + 2s < k.
For the commutator term, there are again two sub-cases. If γ + 2s ≤ −d/2, we repeat 

a simple calculation from the proof of Lemma 6.1 to write

|〈v〉qQ(∂β′
f, ∂β′′

gσ)−Q(∂β′
f, 〈v〉q∂β′′

gσ)|

≈ [∂β′
f ∗ | · |γ+2s]

∫
Rd

∂β′′
gσ(t, x, v + w) 〈v〉q − 〈v + w〉q

|w|d+2s
dw.

(6.8)

By Hölder’s inequality and Lemma A.4, we have

|〈v〉qQ(∂β′
f, ∂β′′

gσ)−Q(∂β′
f, 〈v〉q∂β′′

gσ)|

� ‖∂β′′
gσ‖L∞

q (Rd)[∂β′
f ∗ | · |γ+2s]〈v〉q

∫
Rd

〈v + w〉−q − 〈v〉−q

|w|d+2s
dw

� ‖∂β′′
gσ‖L∞

q (Rd)〈v〉−2s[∂β′
f ∗ | · |γ+2s].

Taking the L2 norm in v and applying Lemma A.3 with θ = m > γ + 2s + d, we have, 
for each fixed x ∈ Td,

‖〈v〉qQ(∂β′
f, ∂β′′

gσ) − Q(∂β′
f, 〈v〉q∂β′′

gσ)‖L2(Rd) ≤ C‖∂β′′
gσ‖L∞

q (Rd)‖∂β′
f‖L2

m(Rd),

and as a result,

J3 ≤ C‖〈v〉q∂βgσ‖L2(Td×Rd)‖∂β′′
gσ‖L∞

q (Td×Rd)‖∂β′
f‖L2

m(Td×Rd)

≤ C‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

by Sobolev embedding, since |β′′| + d + 1 ≤ k − 2 < k.
If γ + 2s > −d/2, we have (6.8) as above. We then write, omitting the dependence of 

gσ on t and x,
∫
Rd

∂β′′
gσ(v + w) 〈v〉q − 〈v + w〉q

|w|d+2s
dw

= 〈v〉q

∫
Rd

∂β′′
gσ(v + w)〈v + w〉q 〈v + w〉−q − 〈v〉−q

|w|d+2s
dw

= 〈v〉q

∫
Rd

(∂β′′
gσ(v + w)〈v + w〉q − ∂β′′

gσ(v)〈v〉q) 〈v + w〉−q − 〈v〉−q

|w|d+2s
dw

+ 〈v〉2q∂β′′
gσ(v)

∫ 〈v + w〉−q − 〈v〉−q

|w|d+2s
dw
Rd
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� 〈v〉−s

⎛
⎝∫
Rd

|∂β′′
gσ(v + w)〈v + w〉q − ∂β′′

gσ(v)〈v〉q|2
|w|d+2s

dw

⎞
⎠

1/2

+ 〈v〉q−2s∂β′′
gσ(v),

using Lemma A.4 again. Using this in (6.8) and integrating against 〈v〉q∂βgσ, we have, 
using Lemma A.1(b),

J3 �
∫
Td

‖〈v〉q∂βgσ‖L2
v(Rd)‖∂β′

f ∗ | · |γ+2s‖L∞
v (Rd)

×
(

‖〈v〉q∂β′′
gσ‖Hs

v(Rd) + ‖〈v〉q−2s∂β′′
gσ‖L2

v(Rd)

)
�

∫
Td

‖〈v〉q∂βgσ‖L2
v(Rd)‖∂β′

f‖L2
m(Rd)

(
‖〈v〉q∂β′′

gσ‖Hs
v(Rd) + ‖〈v〉q−2s∂β′′

gσ‖L2
v(Rd)

)
dx

� ‖〈v〉q∂βgσ‖L2(Td×Rd)‖〈v〉m∂β′
f‖L2(Td×Rd)‖〈v〉qgσ‖L∞

x Hs
v(Td×Rd)

� ‖gσ‖2
Hk

q (Td×Rd)‖f‖Hk
m(Td×Rd),

by the Sobolev embedding H�(d+1)/2�
x (Td) ⊂ L∞

x (Td), since |β′′| + 2s + �(d + 1)/2� < k.
Returning to (6.2) and adding up all multi-indices β with |β| ≤ k, we have shown

1
2

d

dt
‖gσ‖2

Hk
q (Td×Rd) ≤ C

(
(‖f‖Hk

m(Td×Rd) + 1)‖gσ‖2
Hk

q (Td×Rd) + ‖R‖2
L2

q(Td×Rd)

)
,

with C as in the statement of the lemma. Grönwall’s inequality completes the proof. �
The following (somewhat crude) estimates on the collision operator will be helpful in 

our proof of local existence:

Lemma 6.3. The estimates

‖Q(F, G)‖L2
q(Td×Rd) ≤ C‖F‖Hd+1

m (Td×Rd)‖G‖H2
q (Td×Rd),

‖Q(F, G)‖L∞(Td×Rd) ≤ C‖F‖Hd+1
m (Td×Rd)‖G‖Hd+3(Td×Rd),

hold, for any q, m > γ + 2s + d and any F, G : Td × Rd → R such that the right-hand 
sides are finite. The constant C > 0 depends only on d, γ, s, q, and m.

Proof. Writing

Q(F, G) ≈ [F ∗ | · |γ+2s](−Δ)sG + [F ∗ | · |γ ]G,

the conclusion follows from Lemma A.1(a), the Sobolev embedding Hd+1(Td × Rd) ⊂
L∞(Td ×Rd), and standard interpolation estimates for (unweighted) Sobolev norms. �
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Next, we prove existence for the linear isotropic Boltzmann equation:

Lemma 6.4. Let T > 0, m > γ + 2s + d, and q > max{γ + 2s + d, 1} be arbitrary. For 
any f ∈ L∞([0, T ], H2d+2

m (Td × Rd)) and gin ∈ H2d+2
q (Td × Rd) with f, gin ≥ 0, there 

exists a solution

g ∈ L∞([0, T ], H2d+2
q (Td × Rd)) ∩ W 1,∞([0, T ], L2

q−1(Td × Rd))

to the initial value problem

{
∂tg + v · ∇xg = Q(f, g),
g(0, x, v) = gin(x, v).

(6.9)

Furthermore, g ≥ 0.

Proof. For T > 0, define the Banach spaces

XT := L∞([0, T ], H2d+2
q (Td × Rd)) ∩ W 1,∞([0, T ], L2

q−1(Td × Rd)).

YT := L2([0, T ], L2
q−1(Td × Rd)) × H2d+2

q (Td × Rd).

For fixed σ ∈ [0, 1] and f ∈ L∞([0, T ], H2d+2
m (Td × Rd)), define the linear operator

Lσ : XT → YT ,

by

Lσ(g) =
(

∂tg + σv · ∇xg − σQ(f, g) − (1 − σ)Δx,vg, g
∣∣∣
t=0

)
.

To verify that Lσ(g) is indeed an element of YT , we note the following: for g ∈ XT , we 
have from Lemma 6.3 and the fact that H2d+2(Td × Rd) embeds in C2(Td × Rd), the 
inequality

‖σv · ∇xg−σQ(f, g) − (1 − σ)Δx,vg‖L2
q−1(Td×Rd)

≤ C
(

‖f‖H2d+2
m (Td×Rd) + 1

)
‖g‖H2d+2

q (Td×Rd), 0 ≤ t ≤ T.
(6.10)

The loss of one moment comes from the term σv · ∇xg. We also have ∂tg ∈
L2([0, T ], L2

q−1(Td × Rd)) as a result of the W 1,∞ norm included in the definition of 
XT . Finally, the function g is continuous as t → 0 from the time regularity included in 
the definition of XT , and since g(t) ∈ H2d+2

q (Td × Rd) uniformly in t, we indeed have 

g
∣∣∣ ∈ H2d+2

q (Td × Rd).

t=0
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From Lemma 6.2, we have for any g ∈ XT ,

‖g‖L∞([0,T ],H2d+2
q (Td×Rd)) ≤ ‖Lσ(g)‖YT

exp

⎛
⎝C

T∫
0

(1 + ‖f(t′)‖H2d+2
m (Td×Rd) dt′

⎞
⎠ .

(6.11)
Next, we use the definition of Lσ and (6.10) to write

‖∂tg‖L∞([0,T ],L2
q−1(Td×Rd))

≤ ‖∂tg + σv · ∇xg − σQ(f, g) − (1 − σ)Δx,vg‖L∞([0,T ],L2
q−1(Td×Rd))

+ ‖v · ∇xg + Q(f, g) + Δx,vg‖L∞([0,T ],L2
q−1(Td×Rd))

≤ ‖Lσ(g)‖YT
+ C(‖f‖Hd+1

m (Td×Rd)‖g‖L∞([0,T ],H2d+2
q (Td×Rd))

≤ C‖Lσ(g)‖YT
,

using (6.11) in the last line, with C > 0 depending on f . Combining the last two esti-
mates, we have

‖g‖XT
≤ C‖Lσ(g)‖YT .

Note that L0 is a surjective map from XT to YT , as this fact corresponds to the 
solvability of the heat equation in R1+6 with a source term R ∈ L2([0, T ], L2

q−1(Td×Rd)). 
Therefore, the method of continuity [19, Theorem 5.2] implies L1 is surjective from XT

to YT , which means there is some g ∈ XT with L1(g) = (0, gin). This function g solves 
(6.9), as desired.

The nonnegativity of g now follows from classical maximum principle arguments, 
using the monotonicity of the operator Q(f, g), i.e. Q(f, g) ≥ 0 at a nonnegative global 
minimum of g in v. We omit the details. �

Now we are ready to prove local existence for the nonlinear equation:

Proof of Theorem 1.2. Let C be the constant from Lemma 6.2, and define

T = log 2
2C‖fin‖H2d+2

q (Td×Rd)
.

Define f0(t, x, v) = fin(x, v), and for each n, let fn+1 solve the initial value problem
{

∂tfn+1 + v · ∇xfn+1 = Q(fn, fn+1),
f(0, ·) = fin,

(6.12)

on the time interval [0, T ]. The solution fn+1 exists and is nonnegative by Lemma 6.4. 
By induction, assume
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‖fn‖L∞([0,T ],H2d+2
q (Td×Rd)) ≤ 2‖fin‖H2d+2

q (Td×Rd). (6.13)

From Lemma 6.2 with σ = 1, R = 0, and m = q, we have

‖fn+1(t)‖H2d+2
q (Td×Rd) ≤ ‖fin‖H2d+2

q (Td×Rd) exp

⎛
⎝C

t∫
0

(‖fn(t′)‖H2d+2
q (Td×Rd) + 1) dt′

⎞
⎠ ,

0 ≤ t ≤ T.

By our choice of T , and our inductive hypothesis on fn, this implies

‖fn+1(t)‖H2d+2
q (Td×Rd) ≤ ‖fin‖H2d+2

q (Td×Rd) exp(2C‖fin‖H2d+2
q (Td×Rd)T )

≤ 2‖fin‖H2d+2
q (Td×Rd),

and we have shown that (6.13) holds for all n.
To prove regularity in t, we differentiate the equation ∂tfn+1+v·∇xfn+1 = Q(fn, fn+1)

by some partial derivative ∂β in (x, v) variables with |β| ≤ d + 1. Using Lemma 6.3 and 
the triangle inequality, it is straightforward to show

‖∂β∂tfn+1(t)‖L2
q−1(Td×Rd)

≤ C
(

‖fn+1‖
H

|β|+1
q (Td×Rd) + ‖fn‖

H
|β|+d+1
q (Td×Rd)‖fn+1‖

H
2+|β|
q−1 (Td×Rd)

)
,

uniformly in t. Since |β| ≤ d + 1, we conclude fn is bounded in W 1,∞([0, T ], Hd+1
q−1 (Td ×

Rd)), uniformly in n.
Therefore, a subsequence of fn converges weak-∗ in L∞([0, T ], H2d+2

q (Td × Rd)), 
strongly in L∞([0, T ], Hd+1

q−1 (Td × Rd)), and pointwise a.e. to a limit f ∈ L∞([0, T ],
H2d+2

q (Td × Rd)). To take the limit in the equation, we use the distributional form: for 
any smooth ϕ with compact support in (0, T ) × Td × Rd, we have

−
∫

[0,T ]×Td×Rd

fn+1(∂t + v · ∇x)ϕ dv dx dt

=
∫

[0,T ]×Td×Rd

(ϕQ(fn, fn) + ϕQ(fn, fn+1 − fn)) dv dx dt

=
∫

[0,T ]×Td×Rd

∫
Rd×Rd

B(v, v∗, w)fn(fn)∗[ϕ′
∗ + ϕ′ − ϕ∗ − ϕ] dw dv∗ dv dx dt

+
∫

[0,T ]×Td×Rd

ϕQ(fn, fn+1 − fn) dv dx dt,

(6.14)
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by (2.2). For the first term in this right-hand side, since ϕ is smooth, a second-order 
Taylor expansion shows that B(v, v∗, w)[ϕ′

∗ +ϕ′ −ϕ∗ −ϕ] ≈ |v −v∗ +w|γ+2s|w|−d−2s|w|2
is integrable near w = 0. The convergence of this term then follows from the point-
wise convergence of fn → f . The second term on the right in (6.14) converges to zero 
because of Lemma 6.3, the uniform bound (6.13), and the strong convergence of fn in 
L∞([0, T ], Hd+1

q−1 (Td × Rd)). The left-hand side of (6.14) converges as a result of the 
weak-∗ convergence of fn in L∞([0, T ], H2d+2

q (Td × Rd)). In the limit, we obtain (after 
using (2.2) again)

−
∫

[0,T ]×Td×Rd

f(∂t + v · ∇x)ϕ dv dx dt =
∫

[0,T ]×Td×Rd

ϕQ(f, f) dv dx dt. (6.15)

We claim that f is continuous in all three variables on [0, T ] ×Td×Rd. Indeed, the uniform 
bound for fn in W 1,∞([0, T ], Hd+1

q−1 (Td×Rd)), combined with Sobolev embedding, implies 
that fn are uniformly Hölder continuous in (t, x, v), so the subsequential limit f is also 
continuous. Sending t → 0, this implies f(0, x, v) = fin. Also, since f is continuous in t
and satisfies (6.15) for any smooth ϕ, a standard argument implies f is differentiable in 
t, and therefore we can integrate by parts on the left side of (6.15).

We have shown that f solves the nonlinear equation (1.11) pointwise. This so-
lution f is naturally entitled to the energy estimate of Lemma 6.2 with σ = 1, 
f = gσ, and R = 0, and the same argument that was applied above to ∂tfn+1 implies 
f ∈ W 1,∞([0, T ], Hd+1

q−1 (Td × Rd)).
Next, we prove uniqueness. If f and g are two solutions in L∞([0, T ], H2d+2

q (Td ×Rd))
with the same initial data fin, then h = f − g solves

∂th + v · ∇xh = Q(h, f) + Q(g, h),

with initial data hin ≡ 0. By Lemma 6.2 with R = Q(h, f), we have for any t ∈ [0, T ],

‖h(t)‖H2d+2
q (Td×Rd)

≤ C

t∫
0

‖Q(h, f)(t′)‖L2
q(Td×Rd) dt′ exp

(
CT‖g‖L∞([0,T ],H2d+2

q (Td×Rd))

)

≤ C

t∫
0

‖h‖Hd+1
q (Td×Rd)‖f‖H2

q (Td×Rd) dt′ exp
(

CT‖g‖L∞([0,T ],H2d+2
q (Td×Rd))

)
,

by Lemma 6.3. Using our assumption that f and g are bounded in L∞([0, T ], H2d+2
q (Td×

Rd)), together with interpolation and Grönwall’s inequality, we conclude h ≡ 0 on [0, T ] ×
Td × Rd.

Now, let q0 denote the value of q used above, such that fin ∈ H2d+2
q0

(Td × Rd). The 
foregoing proof provides a time of existence T > 0 depending on the H2d+2

q norm of the 

0



S. Snelson / Journal of Functional Analysis 286 (2024) 110423 59
initial data. For initial data with more regularity and decay, we would like to propagate 
all weighted Sobolev norms that are finite at t = 0 to this same time interval [0, T ]. 
Suppose that the Hk

q′(Td × Rd) norm of fin is finite, for some k ≥ 2d + 2 and q′ ≥ q0. 
We prove by induction that

‖f(t)‖Hj

q′ (Td×Rd) ≤ Cj,q′,T , t ∈ [0, T ], (6.16)

for all 2d + 2 ≤ j ≤ k, for a family of constants Cj,q′,T . The base case j = 2d + 2 follows 
immediately from the energy estimates of Lemma 6.2 with σ = 1, gσ = f , R = 0, m = q0, 
and q = q′. Assuming (6.16) holds for some j, we differentiate the equation (1.11) by a 
single partial derivative in v, giving

∂t(∂vi
f) + v · ∇x(∂vi

f) = Q(f, ∂vi
f) + R,

with

R = Q(∂vi
f, f) − ∂xi

f = c1[∂vi
f ∗ | · |γ+2s](−Δ)sf + c2[∂vi

f ∗ | · |γ ]f − ∂xi
f,

for constants c1, c2 defined above, depending only on d, γ, and s. For θ > d/2 + γ + 2s, 
we write

‖R(t)‖L2
q′ (Td×Rd) � ‖(−Δ)sf‖L∞

q′+θ
(Td×Rd)‖∂vi

f ∗ | · |γ+2s‖L2
−θ(Td×Rd)

+ ‖∂vi
f ∗ | · |γ‖L∞(Td×Rd)‖f‖L2

q′ (Td×Rd) + ‖∂xi
f‖L2

q′ (Td×Rd).

To bound this expression, we apply Sobolev embedding to (−Δ)sf , Lemma A.2 to ∂vi
f ∗

| · |γ+2s (since q′ ≥ q0 > d/2 + γ + 2s), and Lemma A.1(a) to ∂vi
f ∗ | · |γ . Overall, we 

obtain

‖R(t)‖L2
q′ (Td×Rd) � ‖(−Δ)sf‖Hd+1

q′+θ
(Td×Rd)‖∂vi

f‖L2
q′ (Td×Rd)

+ ‖∂vi
f‖L∞

q′ (Td×Rd)‖f‖L2
q′ (Td×Rd) + ‖∂xi

f‖L2
q′ (Td×Rd)

� ‖f‖2
H2d+2

q′ (Td×Rd) + ‖f‖H2d+2
q′ (Td×Rd),

after another Sobolev embedding applied to ∂vi
f . We have used the fact that d +1 +2s <

2d + 2. We conclude R is bounded in L∞([0, T ], L2
q′(Td × Rd)), so in particular it is in 

L2([0, T ], L2
q′(Td × Rd)).

We apply Lemma 6.2 to ∂vi
f , with j playing the role of k, which yields

‖∂vi
f(t)‖Hj

q′ (Td×Rd) ≤

⎛
⎝‖∂vj

fin‖Hj

q′ (Td×Rd) + C

t∫
0

‖R(t′)‖2
L2

q′ (Td×Rd) dt′

⎞
⎠

× exp

⎛
⎝C

t∫
(1 + ‖f(t′)‖Hj

m(Td×Rd)) dt′

⎞
⎠ .
0
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The inductive hypothesis (6.16) and the assumption ∂vi
fin ∈ Hj

q′(Td × Rd) implies 
‖∂vj

f(t)‖Hj

q′ (Td×Rd) is uniformly bounded on [0, T ]. The same argument (but slightly 

simpler since the remainder R has one fewer term) applies to first-order partial derivatives 
of f in x. Therefore, the inequality (6.16) holds for j + 1, and the proof is complete. �

Finally, we address the spatially homogeneous case, Theorem 1.3. On the one hand, 
existence for the homogeneous equation is a special case of the inhomogeneous problem. 
However, by repeating the argument above and using Sobolev embeddings in Rd instead 
of Td × Rd, we can improve the regularity requirement on fin to Hd+3

q (Rd). The case 
analysis in the proof of Lemma 6.2 breaks down in a similar way, with the Sobolev 
exponent �(d + 1)/2� replacing d + 1. Other than this, the only changes to the proof are 
(i) fewer applications of Hölder’s inequality needed because there is no x dependence, 
(ii) the second term on the left in (6.2) does not appear, and (iii) there is no moment 
loss in the proof of Lemma 6.4. We omit the details because the proof is strictly simpler 
than in the inhomogeneous case.
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Appendix A. Technical lemmas

First, we collect two standard upper bounds for convolutions with power functions 
| · |μ. We omit the proof, which is elementary.

Lemma A.1. Let f : Rd → R and −d < μ < 0.

(a) If f ∈ L∞
q (Rd) for some q > d + μ, then

‖f ∗ | · |μ‖L∞(Rd) ≤ C‖f‖L∞
q (Rd),

for a constant C > 0 depending only on d, μ, and q.
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(b) If f ∈ L2
q(Rd) for some q > d/2 + μ, then

‖f ∗ | · |μ‖L∞(Rd) ≤ C‖f‖L2
q(Rd),

for a constant C > 0 depending only on d, μ, and q.

The following is a weighted version of Young’s inequality for convolutions. The proof 
is the same as [31, Lemma 4.2], which addressed the case d = 3.

Lemma A.2. If −d < μ < 0, m > d/2 + μ, and � > d/2 + μ + (d/2 − m)+, then for any 
g ∈ L2

m(Rd), there holds

‖g ∗ | · |μ‖L2
−�(Rd) ≤ C‖g‖L2

m(Rd),

for a constant C > 0 depending only on d, μ, m, and �.

Next, we have an estimate similar to the previous lemma, that is somewhat sharper 
in terms of weights:

Lemma A.3. For −d < μ ≤ −d/2, θ > μ + d, and g ∈ L2
θ(Rd), one has

‖g ∗ | · |μ‖L2(Rd) ≤ C‖g‖L2
θ(Rd).

Proof. Dividing the convolution integral into regions with |w| ≥ |v|/2 and |w| < |v|/2, 
we first have

∫
{|w|≥|v|/2}

g(w)|v − w|μ dw ≤ 〈v〉−θ

∫
{|w|≥|v|/2}

〈w〉θg(w)|v − w|μ dw

≤ 〈v〉−θ[〈·〉θg ∗ | · |μ](v),

so that, by Lemma A.2 with m = 0 and � = θ,

∫
Rd

⎛
⎜⎝ ∫

{|w|≥|v|/2}

g(w)|v − w|μ dw

⎞
⎟⎠

2

dv ≤
∫
Rd

〈v〉−2θ[〈·〉θg ∗ | · |μ]2 dv ≤ ‖〈v〉θg‖2
L2(Rd),

where we could apply Lemma A.2 because μ < −d/2 and θ > μ + d. For the integral 
over {|w| < |v|/2}, we use |v − w| ≥ |v|/2 to write

∫
g(w)|v − w|μ dw ≤

∫
g(w)|w|θ|w|−θ|v − w|μ dw
{|w|<|v|/2} {|w|<|v|/2}
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≤ ‖g|w|θ‖L2(Rd)

⎛
⎜⎝ ∫

{|w|<|v|/2}

|w|−2θ|v − w|2μ dw

⎞
⎟⎠

1/2

≤ ‖g‖L2
θ(Rd)〈v〉μ

⎛
⎜⎝ ∫

{|w|<|v|/2}

|w|−2θ dw

⎞
⎟⎠

1/2

≤ ‖g‖L2
θ(Rd)〈v〉μ−θ+d/2,

and therefore

∫
Rd

⎛
⎜⎝ ∫

{|w|<|v|/2}

g(w)|v − w|μ dw

⎞
⎟⎠

2

dv ≤ ‖g‖L2
θ(Rd)

∫
Rd

〈v〉2(μ−θ)+d dv � ‖g‖L2
θ(Rd),

since θ > μ + d. Combining our estimates for {|w| ≥ |v|/2} and {|w| < |v|/2} implies 
the conclusion of the lemma. �

Finally, we collect three estimates about the regularity of the functions 〈v〉−q and 
|v|−q. We omit the proofs, which are elementary.

Lemma A.4. For q > 0 and s ∈ (0, 1),

(−Δ)s〈v〉−q ≤ C〈v〉−q−2s,∫
Rd

(〈v + w〉−q − 〈v〉−q)2

|w|d+2s
dw ≤ C〈v〉−2q−2s,

[|v|−q]Cs(z) ≤ C|z|−q−s, z ∈ Rd,

where the constant C depends on d, s, and q. In the last inequality, we use the notation

[g]Cs(z) = sup
v∈Rd

|g(v) − g(z)|
|v − z|s .
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