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Fig. 1. The collision geometry corresponding to the Boltzmann collision operator.

1. Introduction
1.1. Motivation: the non-cutoff Boltzmann equation

The Boltzmann equation is a fundamental kinetic model in statistical physics. The
unknown function f(¢,2,v) > 0 represents the particle density of a diffuse gas as it
evolves in phase space. The equation reads

OWf+v-Vof =Qs(f, ) (1.1)

where Qp(f, f) is Boltzmann’s collision operator, a nonlinear, nonlocal operator that
acts in the velocity variable. For any two functions f, g, the operator is defined by

Q1.9 = [ [ Blov.o)lfegle) - f0)g(0))do do.

Rd Sd—1

Because collisions are assumed to be elastic, momentum and energy are conserved, which
implies the four pre- and post-collisional velocities v, vy, v, v. lie on a sphere of radius
|v — v4|/2. (See Fig. 1.) Parameterizing this sphere by o € S9~!, one has the formulas

;o vl v — vy
T2 2 7
(1.2)
;o UvFue v —
v, = —
* 2 2

The non-cutoff collision kernel B(v,v., o) is not integrable over S?~!. For constants
~v> —d and s € (0,1), it takes the form

B(v,0s,0) = [v — v, "b(cos 0), b(cosf) ~ 747D 725 a5 9 — 0, (1.3)



S. Snelson / Journal of Functional Analysis 286 (2024) 110423 3

where 6 is the deviation angle between pre- and post-collisional velocities:

UV — Vg

cosf = 0.

.
This paper is (mostly) focused on the space homogeneous regime, where the system is
constant in x. In this case, the Boltzmann equation reduces to

Of =Qs(f, )

Global existence of classical smooth solutions is known for this homogeneous equation
only when v 4 2s > 0: see e.g. [14,13,27]. Regarding other notions of solution, measure-
valued solutions are known to exist globally when v > —2 [38,41], and H-solutions exist
for any v > —d and s € (0,1) [46]. Thanks to the recent result of [9], H-solutions are
in fact weak solutions in the usual sense (integration against smooth test functions)
when v + 2s > —2. For more on the existence and regularity theory of the spatially
homogeneous Boltzmann equation, see [12,17,40,10,20,8,7] and the references therein.

We are interested in the problem of constructing global smooth solutions, so we restrict
our attention to the range

v+ 25 <0,

"1 The regularity of the generalized solu-

sometimes referred to as “very soft potentials.
tions discussed above is not understood in this parameter regime.

The main extra difficulty in the case of very soft potentials comes from the singularity
|v — v.|7 in (1.3), which becomes more severe when + is more negative. To control this
singularity, one would need higher integrability estimates for the solution f, but it is
not clear how to obtain this higher integrability unconditionally, when v + 2s < 0. For
the model equation we introduce below, the desired higher integrability estimates are
available.

For the full inhomogeneous equation (1.1), global existence remains unknown in the
case of general (far from equilibrium) initial data, regardless of v and s. A more at-
tainable, but still difficult, goal is to prove regularity conditional to uniform control on
the mass, energy, and entropy densities of f, i.e. show that the solution is smooth and
can be continued past any given time, as long as these densities satisfy uniform bounds.
This has been accomplished for the case v+ 2s € [0,2] in the breakthrough result [34],
but is still open in the case 7 + 2s < 0. This open problem is discussed in the review
article [33], Section 12.2. The extra obstacle is, once again, the more severe singularity
in the collision operator as v, ~ v. We believe that the model equation introduced in
the present article may provide a useful stepping stone for this problem as well.

1 If the interaction potential between particles is taken to be an inverse power law o(r) = r1=P then the
assumption v 4+ 2s < 0 corresponds to p < 3.
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Fig. 2. The collision geometry corresponding to the isotropic collision operator. Momentum is conserved by
the collisions, but energy is not.

1.2. An isotropic Boltzmann model

We now introduce a model equation that—although not necessarily relevant from
the point of view of physics—is more tractable than the Boltzmann equation while still
encapsulating many of the key mathematical difficulties.

To derive our equation, we begin by relaxing the requirement that the four pre- and
post-collisional velocities lie on a sphere, i.e. we replace ¢ in (1.2) with any z € R%,

yielding
Ut U —
V= 5 %
(1.4)
o - VU U= o
2 2

(See Fig. 2.) This amounts to discarding energy conservation while still requiring mo-
mentum conservation (since v + v, = v' + v}, is still true in (1.4)).

Next, we look at the Boltzmann collision kernel (1.3), which in light of Fig. 1 and
0 ~ sin § can be rewritten as

!/ —(d—l)—2s
u) . (1.5)

|[v — vy

B(v,v.,0) ~ [v —v,|” <

Since we will integrate over z € R? rather than o € S !, dimensional analysis tells us
that we should replace the exponent —(d — 1) — 2s with —d — 2s. Next, we make the
change of variables

Ve — U U — v
z
2 2 ’

zw=v —v=
which gives

vV =0+ w,
(1.6)

~

V, = Uy — W,
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|=¢ into

and noting that dz = 2¢|v — v.|~@ dw, we absorb this extra factor of ~ |v — v,

the collision kernel, giving B & |v — v,|725|v/ —v|~9725

. Finally, we need to change the
factor |[v — v,| in order to recover micro-reversibility, i.e. the property that a collision
and its reverse are weighed the same amount by the collision kernel. It would be difficult
to obtain a well-behaved operator without micro-reversibility. Since |v" — v} | # |v — vs]
in our collision geometry, we replace [v — v,| in the collision kernel with |v — v|, or

equivalently, |v" — v,|. This is the length of the dashed lines in Fig. 2.

For simplicity, we choose our kernel to be a product of power laws:
B(0,v4,w) = ¢y s|v — v [Ty — g 70728

3

and our collision operator finally becomes

Q(f,9) = Cap,s / / [v — vs 4+ w72 w| "2 g (v + w) f(ve — w) — g(v) f(v,)] dw dvs,
R4 R4
(1.7)
with v, v/, defined in (1.6), and

1—3)T d+2s r _ y+2s
P G L i i (1.8)
7Td2d+7r (d+v2+2s)

The value of the constant cq s does not play an important role, as long as one studies
the equation for fixed v and s. The choice we make for ¢q s ensures that Q(f,g) has a
well-defined limit as s — 1 (see (1.18) below).

The following alternate form of the operator @ is justified in Section 2.2:

Q(f.9) = allf |- ""*](=A)*g + calf = |- ["g, (1.9)

where throughout this paper, we use the notation [gx|-|*] or [gx]-|*](v) for convolutions
over R? with power functions |v|#, and the constants ci, ¢, are defined by
+2
(1= s)[C(=s) (- 25)
7d/20d4y+2sT (d+v2+2s) ’

(1=3)T(=s)I (—3)
7d/29d+T (dJrT’Y) )

(1.10)

Both representations (1.7) and (1.9) of Q(f, g) are useful in our analysis.
The goal of this paper is to study the equation
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with Q(f, f) defined as in (1.7) or equivalently, (1.9). We call (1.11) the isotropic Boltz-
mann equation.

»

To justify the use of the term “isotropic,” recall that the true Boltzmann collision

operator can be written in the Carleman representation (see, e.g. [43]) as follows:

glv+w
/ Kol g |d)+28 AT~ IO ot el |-l (112)
Kp(v,w) =~ /f(v+z)|z|7+2$+1dz Jw| 472, (1.13)

{zLlw}

This integral kernel Kp(v,w) consists of the standard singularity of order 2s, weighted
by a function depending nonlocally on f. The kernel is anisotropic because the weight
depends on the direction of w relative to v, and this leads to nontrivial complications
in the analysis of @Qp. On the other hand, the isotropic collision operator (1.9) can be
written in the same form (1.12), with Kp(v, w) replaced by

Ki(v,w) :=cgn,s (‘R/ f(v+z)|z‘7+25 dz |w|’d*2s_
d

Note that this weight function cg s[f * |- [772¢](v) is independent of w.
1.8. Main result

Recall the notation (v) = /1 + |v|?. Our main result is the existence of global solu-
tions in the homogeneous case, for part of the very soft potentials regime:

Theorem 1.1. Let d > 3 be an integer, and let v € (—d,0) and s € (0,1) satisfy

d+4 4
max{— + S,—2s—§}§’y<—2.

3

Then, for any fin : RY — [0,00) with (v)fy, € C®(R?) for all ¢ > 0, there is a unique
smooth solution f > 0 of the homogeneous isotropic Boltzmann equation

hf=Q(f, ) (1.14)

on [0,00) x R? with f(0,v) = fin(v), where Q(f, f) is defined in (1.7). This solution has
nonincreasing L*>(RY) norm:

/fg(tw)dvs/fii(u)du, t > 0.
R4 Rd
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We emphasize that global existence of classical solutions is not known for the homo-
geneous Boltzmann equation in the range of v and s covered by Theorem 1.1. For the
most important case d = 3, our condition on « and s simplifies to

4
1o Zs<~y <o
3%=7

Some of our intermediate results apply also to the case d = 2, which is ruled out in our
main theorem by the condition v < —2.

The requirement that fi, is smooth with rapid decay is certainly not sharp. We take
very smooth initial data to avoid some technical difficulties, and to obtain a clean state-
ment of our result.

The key step in the proof of Theorem 1.1 is an estimate in L?(R%) that holds for all
t > 0 (Theorem 3.1 below). This estimate and its proof are inspired by a recent result for
the isotropic Landau equation by Gualdani-Guillen [22]. The proof in [22] is based on a
clever application of a weighted Hardy inequality, and our proof of Theorem 3.1 applies
an analogous strategy, using a weighted fractional Hardy inequality that was recently
proven in [16].

After proving the L? estimate, we show that the energy [p. |v|>f(t,v)dv (which is
not conserved by the flow) remains bounded on finite time intervals. Next, we adapt
techniques from Boltzmann theory to prove global boundedness and polynomial decay.
Finally, by bootstrapping L?-based energy estimates, we show that these global estimates
imply continuation of solutions for large times.

1.4. Local existence

A local existence theorem is naturally needed as part of the proof of our main result.
For the sake of potential future applications, we prove local existence under much weaker
hypotheses than our global existence theorem. In particular, we construct a solution for
both the homogeneous and inhomogeneous equations, and for all d > 2 and (v,s) €
(=d,0) x (0,1) such that v + 2s < 0, i.e. all relevant values of d, v, and s.

Let T? denote the d-dimensional torus of side length one, and define the weighted L?
and Sobolev spaces

LA(T?x RY) = {f : TS x RS = R : |[(0)? f (2, v) || o (Taxrae) }
HETYxRY) = {f : TI xR > R:0°f € L2(T? x RY) for all B € N?? with |8| < k}.
For functions of v only, let LF(R?) and HY(R?) be defined in the analogous way, with

norms over R and with 8 € N instead of N2, For the inhomogeneous equation, we
have

Theorem 1.2. Let d > 2 and (v, s) € (—d,0) x (0,1) be such that v+ 2s < 0. For any
q > max{y + 2s + d, 1}, and any nonnegative initial condition fi, € H2 (T x R?),
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there exists a T > 0 depending only on ||fin||H§d+2(Td><Rd)f and a unique nonnegative
solution

fFeL=(0,T)], HHT? x RY) nWh([0,T], HiH (T4 x R?))
to

OWf+v-Vaof =Q(f, )

In addition, if fi, € Hé“,(deRd) forany k > 2d+2 and ¢’ > q, then f(t) € Hé“,(TdX]Rd)
for allt € [0,T], and

1@z, (raxray < [ finllm, (waxray PO+ fll oo 0,11, 2442 (mwray))s - ¢ € [0, T

In particular, if (V)7 fin € C(T4xRY) for all ¢ > 0, then (v)9 f € C°([0, T]x T¢xR%)
for all ¢ > 0, with the same T as above.

For the homogeneous equation, we have essentially the same result, with weaker reg-
ularity assumptions on fi, needed because the domain is of smaller dimension. Letting
[2] denote the smallest integer > x, we have:

Theorem 1.3. Let d > 2 and (v,s) € (—d,0) x (0,1) be such that v + 2s < 0. For
any q > v+ 2s + d, and any nonnegative initial condition fi, € Hg+3(Rd), there
exists a T > 0 depending only on HfinHHg%(]Rd); and a unique nonnegative solution

£ e L2([0,T), HA3(R4) n Whee ([0, T], H{"TV/?1(R)) to

In addition, if fin € H;f/ (R?) for any k > d+3 and ¢’ > q, then f(t) € Hg, (R%) for all
te€[0,7T], and

1F Ol ey < [ finllzrs, ey exp(CHL + 1 Fll Lo 0,4, g3 @ay))s € [0,T]. (1.15)

In particular, if ()7 fin € C®°(R?) for all ¢' > 0, then (v)? f € C°°([0,T] x RY) for all
q' > 0, with the same T as above.

In these results, we have made no attempt to optimize the regularity requirements on
fin, since our main focus in this paper is the continuation of smooth solutions for large
times. For the inhomogeneous Boltzmann equation (1.1), short-time existence has been
proven under much weaker regularity assumptions (fi, € Lg° for some ¢ > 3 + 2s, and
fin is uniformly positive in some small ball in T3 x R3), see [30]. A similar existence
result could be derived for our isotropic model, thereby extending the existence part of
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Theorem 1.2 to irregular initial data, by adapting the proofs in [30] (and the companion
paper [29] about pointwise lower bounds, which are used in [30]), replacing the Boltzmann
operator Qp(f, f) with our isotropic Q(f, f). As in [30], a uniqueness result in relatively
low-regularity spaces would require Holder continuity and uniform-in-z positivity for fi,,
at least with current techniques. We do not explore the details here. See also [14,13] for
existence results on homogeneous Boltzmann with irregular initial data.

These local results should not be considered as novel as our Theorem 1.1, since they
are similar in spirit to known results for the true Boltzmann equation, e.g. [42,28,31].
(However, these cited results specialize to d = 3, while we give a proof for any d > 2.)
We have highlighted these local existence results in the introduction because they may
be useful for future research.

1.5. Comparison with Landau and isotropic Landau equations

The Landau equation is the plasma physics counterpart of the Boltzmann equation.
It reads

Ohf+v-Vaof =Qu(f, [), (1.16)

where for some v > —d, the Landau collision operator can be written

QL(f,9) = aaqtr ([IL()] - 772« f1DZg) + caqy[f |- ]9,

1

where TI(z) is the projection matrix onto z=, and

T (-3)
dy+2)’
(= = 2)2+741T (4352

Ad,y =

iy = (=7 = 2)(d+7)aa-

When v = —d, the second term in Qr(f, f) must be replaced by f2.

In 2012, Krieger and Strain [35] introduced a spatially homogeneous model equation
that has since come to be known as isotropic Landau. It is obtained by removing the
projection matrix from Qp.:

Oif = Q1r(f, f),

(1.17)
Qrr(f,9) = aaqlf * |- " 1Ag + caq[f = |- g

As above, in the case v = —d, one replaces cq[f * | - []f with f2. Note that [35] only
considered the case d = 3,y = —3.

Some regularity and existence results for (1.17) were later obtained in [21,24,25,22].
See also the review [23]. For Coulomb potentials (d = 3,7 = —3, the most physically
relevant case), global existence has been proven only in the case of radially decreasing
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initial data [24]. Global existence was shown in [22] for part of the parameter range
v € [—d,—2), which is striking because at that time, global existence was not known
for homogeneous Landau in this parameter range. Very recently, global existence for
homogeneous Landau was established in the breakthrough result [26] for any v € [—3, 1].

The Landau collision term Qr(f, f) can be seen as the limit of the Boltzmann operator
Qp(f, f) when grazing collisions (collisions with § ~ 0 in (1.3)) predominate [11,3]. For
our isotropic collision operator (1.7), a true grazing collisions limit does not make sense
because the angle between velocities plays no role. The correct analogy to the grazing
collisions limit is a rescaling that focuses on the singularity at w = 0 (equivalently,
z = 0), which becomes a delta function in the limit. With our choice of normalization
constant cg s, this is exactly the limit s — 1 in (1.7). Then one has (—A®)f — —Af
and [f * |- |772] — [f * | - |"*?], and taking the limit in ¢; and ¢y in (1.10), we obtain

the following important fact:

Q(f,9) = QiL(f.g), ass—1, (1.18)

for any sufficiently smooth functions f and g.

In light of this convergence, one may compare our results to the main result of [22].

_ d+4s
3

Sending s — 1 in the condition vy > in our Theorem 1.1, this would converge to

v > —%, which is slightly worse than the condition obtained in [22] for the isotropic

Landau equation. This gap exists because we need to use the L? norm in our proof (see
Theorem 3.1), whereas in [22] they manage to bound any LP norm with 1 <p < %.
By tracing the proof in [22] and insisting on using only the L? norm, one would get the

d+vy d+4
2

condition 2 < = —S,ory > -5, as expected.

3
It is interesting to note that if the Boltzmann collision operator is written in the

Carleman form (1.12), all four equations (Boltzmann, Landau, isotropic Boltzmann, and
isotropic Landau) have the same reaction term f[f«|-|7] up to a constant, at least when
v > —d.

1.6. Open problems

1.6.1. Expanding the allowable range of v and s in our main result
The restrictions on v and s in Theorem 1.1 come from the following obstructions:

e The condition v > arises in our proof that the L? norm is nonincreasing

d+4s
(Theorem 3.1). Extendir?g our L? bound to higher LP norms, as is done for isotropic
Landau in [22], would improve the allowable range of v and s. To do this, one would
likely need to understand a “divergence form” type of structure of Q(f, f), by analogy
with the form Qrr(f, f) = eV - ([f * |- PT2IVF — F[VSf x| - ["7?]) used in [22].
 The condition v < —2 arises from our estimate on the energy [p.[v[*f(t,v)dv,
Lemma 3.3. It is not clear whether this estimate would be true for v > —2. Without

a bound on the energy, it is difficult to control the collision kernel Ky(v,w) ~ [f * |-
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|7+25](v)|w|~4~2% either from above or below. Note that this issue does not arise for
the homogeneous Boltzmann equation, which conserves energy.

o The condition v > —2s — 4s/d is needed for our proof that f is globally bounded,
Proposition 4.3. This proof uses a barrier argument. A different proof of this L
estimate (for example, using De Giorgi or Moser iteration) could possibly allow one
to weaken or remove this condition.

We should note that the constant in the fractional Hardy inequality degenerates as
v — —d (i.e. the constant Cy in Theorem 2.1 approaches 0), which suggests our approach
cannot be extended to very negative values of ~.

1.6.2. The radially symmetric case

The first global existence result for the isotropic Landau equation (1.17) was obtained
in [24] under the assumption of initial data that is radially symmetric and monotone
decreasing in |v|. See also the earlier works [35,21] which proved a similar result for
modified versions of (1.17). These results all apply to the Coulomb case d = 3,y = —3.

Based on these results, it is natural to conjecture that global existence for the (ho-
mogeneous) isotropic Boltzmann equation for very negative values of v may be more
tractable in the case of radially decreasing initial data.

1.6.3. The spatially inhomogeneous case

As mentioned above, the inhomogeneous case of the isotropic Boltzmann equation
may provide a useful model for the problem of conditional regularity in the very soft
potentials regime. We have constructed a local classical solution for the inhomogeneous
equation in Theorem 1.2 with the goal of inspiring future work on this question.

1.6.4. Results for the true Boltzmann equation

As with any model problem, the eventual goal is to gain insights that can be applied
to the actual Boltzmann equation. One interesting, but speculative, direction is to seek
an “anisotropic fractional Hardy inequality” adapted to the specific structure of the
Boltzmann collision operator, which could play a role similar to the weighted fractional
Hardy inequality of [16] in the present work.

1.7. Notation

/

We sometimes use the abbreviations ¢’ = ¢(v'), @) = (v.), Y. = @(vi), and ¢ =
©(v), where v and v, are defined by (1.6).
For ¢ € R, we let L} (R?) denote the polynomially-weighted L? spaces with norm

||h||Lg(Rd) = ||<U>qhHLP(]Rd)a

and similarly, for integer k& we define the weighted Sobolev norms
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HhHHg(Rd) = ||<U>qh”Hk(Rd)~

For s € (0,1), we use the standard H*(R?) seminorm

(v +w) — h(v)?
[ Hs Rd) / |w|d+2s dw dv,

Rd R4

and define

(M sy = [(v) ] = (Ra)

as well as

Hh||§{5+s<Rd) = ||h||§15;(Rd) + Z [3%]?{;0@)7
|B]=k

where || denotes the order of the multi-index 8 = (81,..., B4)-

We often use the notation A < B to indicate A < C'B for a constant depending on d,
v, s, and sometimes additional quantities in the statement of a given theorem or lemma.
We also use A~ B to mean A < B and B < A.

1.8. Organization of the paper

In Section 2, we derive some general properties of our equation, and discuss the
weighted fractional Hardy inequality that we need in our proof. Section 3 proves that
the L2(R?) norm of our solution is nonincreasing, and establishes a bound on the energy
(second moment) of the solution. In Section 4, we prove an L™ estimate and propagation
of polynomial decay estimates. Section 5 contains the proof of global existence (Theo-
rem 1.1), and Section 6 contains the proof of short-time existence (Theorems 1.2 and
1.3), which is given outside its proper logical order because of its length. Appendix A
contains some technical lemmas.

2. Fundamental properties and tools
2.1. Weak formulation and conservation laws

It is well known that the Boltzmann collision operator Qg(f, f) has a useful weak
formulation (originally written down by Maxwell [39]) that allows one to make sense
of fRd ©Q(f, f) dv without using any regularity of f. Our collision operator satisfies
an analogous property. To see this, we use the pre-post-collisional change of variables
(0, Vi, w) = (V, v, —w), with unit Jacobian, to write
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[eauna=[ [ [Boowfrl - ddud do (2.1)

Rd Rd R4 R4

Symmetrizing this expression again with the change of variables (v, v") <> (v, v, ), which
also has unit Jacobian, gives

/ch (f. f) /// (v, v, W) [ il + @l = ¢ — pu] dw dvs dw. (2:2)
Rd

R4 R4 R4

From (2.2) with the choices ¢(v) = 1 and ¢(v) = v, we see that [p, Q(f, f)dv =0
and [p. vQ(f, f)dv = 0. As a result, integrating the equation (1.14) against 1 and v
shows that the evolution formally conserves mass and momentum. Note, however, that
[0/ |2 + |02 — [v]? — |vs|? # 0, so the energy is not conserved.

We can show that the evolution of (1.14) dissipates entropy by the same formal argu-
ment as in the Boltzmann equation: symmetrizing (2.2) again with the pre-post collisional
change of variables, one has

[eatpav=—1 [ [ [Bowaww s -1l +e - o - el dudo, .
R4 R< Rd R4
The choice p(v) = log f(v) then gives

/long(ﬁf)dv——%JR/OLR[B(v,v*,w)(f’fi—ff*)log<];f) dwdv, dv <0,

Rd

since (x — y)(log x —logy) > 0 for any x,y > 0. As a result, the entropy [, flog f dv is
non-increasing in ¢ for solutions of (1.14).

2.2. Integro-differential form

In this section, we justify the formula (1.9) for Q(f, f), that is analogous to the
Carleman representation for the Boltzmann collision operator. Starting with (1.7), we
add and subtract f(v.—w)g(v) inside the integral to write Q(f,g) = Q1(f,9)+Q=(/f, 9),
with

Q1(f,9) = cdr.s / / [v — vy 4 w| 25w 72 f (v, — w)[g(v + w) — g(v)] dw dw,,
RY Rd

Qa(f.9) = car.s9(v) / / v — v, + w72 w2 (v, — w) — f(o)] dwdo,.

R4 R4

In Q1, we reverse the order of integration and observe that [p, [v — vs + w725 f (v, —
w)dv, = [f * |- ["*2)(v), yielding
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Ql(f,g) = Cdy,s /[f * | . |V+25](U)W dw

R (2.3)

7420 (—s
= o iz U 1Py

Alternatively, one could write

Q.9 = [ Ky(ww)lglo -+ w) - g(0) du,

Rd

with
Ky(v,w) := cdms|w|7‘i*25 [f * | - \'”25} (v).

For )2, we separate terms and make the change of variables v, — v, — w in the first
term. To avoid divergent integrals, we write the w integral as a limit:

Q2(f,9) = cay,s9(v) hm / / |v — v, + w|" T2 w|~ 4=25 £y, —w) dw do,

4{lw|>e}

- |v — v, + w| 25| w| 742 f(v,) dwdu, |,

R4 {|w|>e}
= cay.09(0) lim [Jo = 0,742 = [0 — v, + w2 w2 f(v,) dw du..
e—
Ré {|w|>e}
(2.4)
Next, we use the known formula for (—A)*|v|7+2% [36, Table 1] to write
y+2s _ y+2s d/2 (-
lim |U‘ |U + w‘ dw = ™ | ( 5)| (_A)s|v|'y+2s
e—0 |w|d+23 45F(dJ525)
{lwl=e}
= cglv|”,
with cg, the constant corresponding to the reaction term, given by
d/2 +25+d -y
en = g g 25)
NP0 (=57)

Evaluating this at v — v,, we now have
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Qa(1:9) = canscrg(o) [ o= v, flo) do,
Rd
The preceding (relatively simple) calculation to write Q2 (f, g) in a convenient form, plays

the same role as the Cancellation Lemma [2] for the Boltzmann collision operator.
Combining the formulas for Q; and @2, we have, as claimed above in (1.9),

Q(f.9)(w) = er[f = |- *2)(0)(=A) g + eaf | - "](v)g(v),

with ¢; and ¢y as in (1.10). It is convenient to write Q(f, g) without the normalization
constant of (—A)*, i.e.

QU9) = cana | 111172100 [HETESHD dwbenl e PN )

Rd
where ¢q s is given by (1.8) and cp is given by (2.5). This form is useful because the

value of cq s does not affect the structure of the equation, but the balance of constants
between the terms @1 and Q)2 plays an important role.

2.3. Fractional Hardy inequality

A functional inequality of Hardy type plays a crucial role in our proof of Theorem 3.1
below. Let us quote from the recent work of Dyda-Kijaczko [16], specialized to the case
p:27 OéZO, 6:_(7—1_28)

Theorem 2.1. [16, Theorem 5] Let 0 < s < 1. For allu € C.(R%), the following inequality
holds:

|u()® u(v +w) — u(v)? s
Cn N | i |w|d+2~; [o[7*** dw dv,
R4

where

H =

/2|0 (—s)| [QF(d) (fhrbds)  p(oayp(dbz2:)
L(H2) F(%)I‘(%) () (222

Furthermore, the constant C'y is optimal.

This result can easily be extended to non-compactly supported w by density, as long
as both sides of the inequality are finite.

Fractional inequalities of this general type have a long history. See e.g. the result of
Stein-Weiss [45] from 1958, as well as some more recent works such as [18,37,15,1]. For
our purposes in this article, we need an inequality featuring weights of a general enough
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form, and we need an optimal constant. It seems that [16] is the first result satisfying
both these requirements.

To derive the form of the inequality that we use below, for each v, € R%, we apply
Theorem 2.1 to u(v — v, ) and change variables to obtain

2
CH/Iu o v, I”dv</ |M+|u|)d+2 SO, g, 425 du d.
w S

Multiplying this inequality by f(v.) and integrating in v., we obtain

ulv w v 2
Ci [ WPl |- Pl do < [ [Pt O ) dude. (26)
R4

Rd R4

3. Time-independent L? bound

This section is devoted to the L? estimate for solutions of (1.14), which is the key
step in proving global existence.
In the following proof, we need to use an alternate form of identity (2.1):

/ wQUD I =car [ [ [ 101 vwﬂf( AV W) 20y, w2 dwdv, v
Rd R4 R4
—cane [ [ 11710 0 22
R4 R4
(3.1)

Theorem 3.1. Let v and s satisfy

_d—|—4s
Y= 3

and let f > 0 be a classical solution to the (homogeneous) isotropic Boltzmann equation
(1.14) in CY([0,T), C*(R%)), with T < +o0, such that [p. f*(0,v)dv < +o0.
Then the L? norm of f is non-increasing in time, and

/fQ(t,v)dvg/f2(O,v)dv, te[0,T).
Ré Ré

Proof. Integrate the equation against f:

Zdt/fzdv—/fQ f, f)dv. (3.2)
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With the Q1 + Q2 decomposition discussed in Section 2.2, this right-hand side equals

/fQ (4. 1) dv—/f (Qi(f, 1)+ Qs(f, 1)) dv

— //f |- 729 (v )%dwdv (3.3)

dRd

+CR/f2(v)[f* |- I”](v)dv) :
R4

Applying the Hardy inequality (2.6) to the second term on the right, with v = f, we
obtain

v w 2
en [ PO 1@ <—//'f O ] ) dudo
Rd

flo+w) = f(v) s
_CH ({R//fv—l— T e [f * |- "] (v) dw dv

+ [ [P BT ) dw dv) .

Rd R4

We notice that cg s times the second integral on the right is equal to — f]Rd fQ1(f, f)dv
For the first integral on the right, we change variables to exchange v and v + w and use
formula (3.1) with ¢ = f to write

Cams / / flotw vm)mf Hodw) = FO) p ) pe2s) () dun

Rd R4

flo4+w s
_Cd’ys//f |w|d+29 )[ |- 725 (v 4+ w) dw dv

Rd R4
- / FQUf. f) dv
Rd

We therefore have

/ QU 1 dv < (1 —) / FQu(f, fydv — 2 / FQUf. ) dv,
J

or
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[ e s (1 ¥ g—’;) (1 - —) / @i/, f)d (3.4)
J

Next, we claim that [, fQ1(f, f) dv < 0. Indeed, using (3.1) with the change of variables
v <> v + w again,

/le f.f dv_cdm//f ”Twﬁ‘;mﬂ”)[ fl- ) (v) dw do

R4 R4
2
Cd'ys// ‘f vﬁufljfd+25 ( )| [f* | ' |’y+28](v)dUJdU
R4 R4
teans [ [ 1) ”Tﬁﬁ%ﬂw[*|-“%uwdv
R4 R4

- / FQU. ) du
Ré

- / FQu f) dv— / FQa(f, f) dw
R4 R4

which implies 2 [, fQ1(f, f) dv < — [pa fQ2(f, f) dv = — [pa f2[f * |- []dv < 0.
We conclude [, fQ(f, f)dv < 0 whenever cg/Cy < 1. Using this in (3.2), we see
that

2
<
i [ 1 <0

as desired. From Lemma 3.2 below, the condition cg/Cyx < 1 is true exactly when
> __d+4s
v > 22O

Lemma 3.2. For d, s, and v such that

d+4
72S>727 —;)Sa

one has cg < Cyy, where cg is defined in (2.5) and Cy is the constant from the weighted
fractional Hardy inequality, Theorem 2.1.

Numerical computations show that this lemma is sharp, i.e. cg > C'y whenever v €
(~d, i)
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Proof. Recalling (2.5) and Theorem 2.1, we have

cn _ mPID(=s) PR T(5)
On — T(E2)T () r(-152)

y <ﬂd/2r<—s> [w@)n—dﬂ*“) r(%)r(—%“wbl
)

F( dEQS -

D(Er(E2-1s) r(E)r(=322)

_ ()

CD(r(-2)

e oG Il e NI
P(T)D (3 )r ()r(F ) |

<2F(d_)r(d+’y+43) r

(
D(ENP(EEE) - r(E)n(=52)

4

This expression is < 1 whenever

d—y d+~+4s d+y —v—2s
O(d,s, ) = F(div F(d—jﬂs)r(}v )Fdﬂizs) > L (3.5)
M(EDT(==)(F)0(=F)

For v € (—%22 —25), all of the evaluations of the I' function in (3.5) are well-defined
and nonzero. We also observe directly that

3 (2T (2T (ST (4)

o (d ) _d+48> _ F( - ) (d+4s) (d*gQS)F(d*GQS) B

Therefore, the lemma will follow from showing ®(d, s, ) is increasing in v € (—%7

—2s), for each fixed d and s. Taking derivatives, and letting ¢ denote the digamma
function, ¥ = I'/T", we have

d d d de—my—4

0,®(d, s,7) = ®(d, 5,7) { <TW) iw (%) +-9 (LZHS) +iw (—1 8)
¥ 1
2

1
4
d+ y 1 v —2s 1 d+v+2s
(1) (2) () b ()]

It is well-known that the digamma function ¢ is strictly concave on (0,00), so v’ is
decreasing. To use this fact, we consider the first four terms on the right in (3.6), in two
cases. If v < —4s, then for some z1, zo with

d+~ d+~v+4s d—vy—4s d—~
—4 <z < 1 < 1 <22<—4 s

there holds
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1 d—~ d+~ 1 d+~vy+4s 1 d—vy—4s
(5 (55) - (£55) 1 ()
s

21/ (1) — ¥/ ()] > 0,

since 9’ is decreasing. On the other hand, if v > —4s, we pair the four terms differently
and find z3, z4 with

d+~vy d—vy—4s d+~v+4s d—r
- < _
1 << 4 4 s

such that

——zp< —7) _iw(clerv)+4w(d+74+4s> +§¢ (d—74—43)
=1 (F-s) W - vftan) >0,

since 5! — s > 0. We analyze the last four terms in (3.6) in a similar manner: if —% <
v < —2s, then there exist z5, zg such that

—y =2 — d d 2
¥<25<_7<ﬂ<2< +’7+S

2 2~ 2 0 2
and
1 d+~ 1 — 1 —y —2s 1 d+v+2s
zw( 2 )+2¢(2 2\ 72 3V 2
s
= 5[77//(25) — ' (2)] >0
If —% — s <7y < —%, then there exist z7, zg with
—y —2s d+vy —v d+y+2s
g << <4 << 5 ,
and
1 d+~ 1 — 1 —y —2s 1 d+v+2s
2w< 2 )+2w(2 2\ T2 3V 2
s
= 20/ (ar) — ¥/ (a8)] > 0.
We have shown 0,®(d, s,7v) > 0 whenever v > —% —s Since — d+4s > —% — s, the proof
is complete. O

Next, we show that our L? bound implies a bound on the energy [p. |v]?f(t,v) dv on
any finite time interval:
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Lemma 3.3. Assume
d
max{—§ —1,—-d—-1-2s} <y < -2,

and let f >0 be a classical solution of (1.14) in C*([0,T),C?*(R%)) with finite mass and
energy att =0, i.e.

/(1 +|v|*) £(0,v) dv < 400,
Rd

and whose L* norm is nonincreasing, [gpa f2(t,v)dv < [pq f2(0,v) dv.
Then the energy of f satisfies the inequality

/ wf2f dv < exp (Ct (|| funllr ey + | finll o))
Rd

X (R/U|2f(07v)dv+c(|fin|L1(]Rd) + || finllz2ra)) |
d

for a constant C' > 0 depending only on d, v, and s.

Note that this lower bound on ~ follows from our assumption v > fd'*'% in Theo-
rem 1.1.

Also, note that the condition v < —2 is really needed for our proof. Indeed, the
right-hand side of (3.7) can in general be infinite if v > —2.

Proof. Integrating equation (1.14) against |v|2, and using (2.1), gives

d
G Jukrav= [1rQu.
Ré Ré

- d/ / / [0 — va + w12 w742 () £ (v,) (3.7)
R4 R4 R

x [|v 4+ w|? = [v]*] dw dv, dv.
Let us consider the inner w integral, which we denote
= / [0 — 0. + w2 w42 o + w]? — [o]2] duw.
Ra

With r = 2|v — v, we divide I as follows:
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I'=1 + Iy + I3,
with

I = / v — v, + w| 25| w|?>~ 1728 dw,

By

I 2/ [v — v, + w12 w7425 - w dw,

B,

I; = / v — v — % + w| T [|w]* + 20 - w] dw.

R4\ B,

For I, we subdivide B, = B,.(0) into B,(0) \ B,/4(v —v«) and B, /4(v —v). The first
part is bounded using |v — v, + w| > r/4 = |v — v,|/2:

/ v — v, 4+ w| 2 w228 du < 2 / lw|>~ 12 dw < v — v, |72
B \By/4(v—vy) B,
Next, for w € B,/4(v — v.), we must have |w| > |v —v.[/2, so
v — vy + w25 w242 dw < v — v, [PHE28 / lu[ "2 du < v — v, |72
B, a(v—v) B,.;4(0)
We conclude

I S v —w T2

For I, which is more singular as w — 0, we use the fact that

p.v. / lw| =425 wlv — v, dw = 0,

By

to write

Iy=2 /|w|_d_28v cw [[v— v+ wF — o — v, [71?] dw.
B,

Now we make the same splitting into B, 4(v — v,) and B,(0) \ B, 4(v — v.) that was
used to estimate I1. In B,.(0) \ B,/4(v — v,), letting F(z) = |2[7*?, we can differentiate
F because v+ 2s — 1 > —d, by assumption. We therefore have
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v — v, + w1 = v — 0,7 <|w| m[ax] |DF (v — vy + ow)]
c€l0,1

< Clwljo — v, 7727,
since |[v — vy 4+ ow| > 1|v — v, for all & € [0,1]. This implies
[w|= 250w [|[v — v, 4+ w2 — o — v, 2] dw
B’V‘\BT‘/4(U_U*)

S O|U _ U*|7+2571|U| / |w‘7d72s+2 dw
BT\BT/4(v7v*)

< Clv — v o).

Next, in B, /4(v — v,), we use once again that |w| > 1|v — v.|:

/ |w|fd72sv Cw Uv — v, + w|'y+2s o |U . v*|7+25} dw
By jy(v—v.)
N / [v — v + w2 dw + v — v, 1T dw
BT/4(U7U*) Br/4(’U7’U*)

< Clo — v 7T Hol.
We have shown
I < v —wv ] ol
Next, we estimate Is. In this domain, we have |w| > r = 2|v — v,|, which implies

v — v +w| > |w| — v — v, > L|w|. We also have [v — v, + w| < 3|w|, so in fact
|v — vy + w| & |w| in this region. This gives

I; = / lw| =425 — v, 4+ w| T (Jw)|? 4 20 - w) dw

R\ B,

S B R A
R4\ B, R\ B,

Sl = .2 4 ol — v

since r & |v — v,| and v 4+ 2 < 0.
Returning to (3.7) and collecting our upper bounds for Iy, I, and I3, we have

%/ lv2f dv < C//f(v)f(v*) (\v — 0,72 4 Jo||v — ’U*"Y+1) dv, dv. (3.8)
Rd

R4 Rd
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The right hand side can be bounded by standard convolution estimates. In detail, dividing
the v, integral into B;(v) and R?\ By(v), since v +2 > v+ 1 > —%, we have

1/2

/ Fwdlv = o2 dvw < || fll L2 way / v — 0. 20F2 do, < Ol fllz>mey
Bl(v) Bl(’U)

and

/ F(o)o — 0.2 dv, < / f(o) dv. < ]l ).

R4\ B (v) R\ By (v)
For the second term in (3.8), we proceed similarly, since v + 1 > —%l:

1/2

o / o — 0.7 dv, < [olllf]] 2 ey / v — 0,207 do,
Bl('U) Bl(v)

< Ol fll 2 ey

and

of [ f@l - e dv. < ol e

R4\ By (v)
and we finally have
1d 9
53 | PP < Cf @ + 1/ l2@s) [0 +l0)f()dv
R4 R4

< C (1 lmey + 1o | Ifllse + [ Iof o
Rd

Gronwall’s inequality implies the conclusion of the lemma, since |[|f(t)[/z1(ga) and
| f(#)||2(re) are bounded by their values at t = 0. O

4. Global upper bounds
This section establishes bounds for our solution f(¢) in L>(R?), using a barrier

method inspired by the approach of [43] and [32]. We also establish estimates in
polynomially-weighted L>(R?) spaces.
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Lemma 4.1. Let f : RY — R be nonnegative and satisfy
mo < /fdv < My,
Rd

/ o2 f dv < B,
Rd

/flogfdngo,

R4

for some positive constants mqg, My, Ey, Hy. Then there exists a constant cg > 0 depend-
ing on mg, My, Eqy, and Hy, such that

Ky (v,w) > co(v) ™ w| =472,
for any w € RY.

Proof. With f as in the statement of the lemma, [43, Lemma 4.6] states that there exist
r, 0, u > 0 depending on mg, My, Ey, and Hy, such that

{veRY: f() > £} N B, = p.
Let S = {f(v) > £} N B,. Since f > {xg, we clearly have
Ki(v,w) > Koy s (v,0) = cg sllw| 972 /Xs(u)\v — w72 du.
Ra

Since S C By, we have |v —u| < |[v| + 7, and

/XS(u)Iv — " du = / v —ul" du < (Jv| +7)7F2[S] = p(lv] + 1)+,

R4 S
since v + 2s < 0. The conclusion of the lemma follows. O

The following upper bound for Qs(f, g) will be needed in the proof of the L> bound,

Proposition 4.3. The key point is that using the L? estimate for f (rather than the L!
estimate provided by conservation of mass) leads to a less severe dependence on || f|| .

Lemma 4.2. If f € L*(RY) satisfies the bounds [p, fdv < My and [, |v]*fdv < E,
then for any o satisfying
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there holds
Qalf,9)(v) < Cglu) w024/ ey (1 | | 200
where the constant C' depends on ca s, 0, Mo, Eo, and || f| 12 (ra)-

Proof. Recall that Q2(f, g)(v) = g(v)[f *| - |7](v).
First, assume |v| > 1. Letting

— i || ) T A
p= o] 7T | fll L=
we divide the integral defining [f % | - |?](v) into
n=[llfe-wi b= [ uPie-wde
B, Byj/2\B)

I3 = / |w]” f(v — w) dw.

RIABy) /2

For I;, we use both the L? and L® bounds for f:
B <10 [ ol 00— w)du
B

(1+0)/2
<A A1 | [ P04 dw
BP
S p7+d(1+0)/2||f‘|zw||fH1L;

< |,U|7274'y/(d(1+cr)) ”fHZon’Y/(d(l""U)).

The condition o > —277 — 1 ensures that [w|?"/(+9) is integrable near w = 0.
For I, we use the energy bound. Since |v — w| 2 |v| when |w| < |v]/2,

I < p7[o] 2 / o — wl? f(v — w) dw < p7[o] 2By
Biy)/2\B)p

< |v|—2—4v/(d(1+<7))||f||zfoﬂ/(d(1+0)).
Finally, for I3, we use the bound on the mass:

Is < |” / fv—w)dw < Mp|v|”.

RAB|y|/2
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—20/(d(140))
LOO

In the case |v| < 1, we choose p' = || f|| , and proceed as in the estimate of

I to write

o o —207/(d o
/ lw|? f(v—w)dw < (p))I+HIA+I2| f19 .. < ||f||L3o v/(d(1+0))

B,

as well as

|’U)|'Yf(’l) — w) dw 5 (p/)’yMO 5 ”fH;iary/(dquU))’

RY\B,,
as desired. O

Next, we prove a global upper bound that is valid away from ¢ = 0. We assume f
is a classical solution that is smooth enough that conservation of mass holds, by the
argument in Section 2.1.

Proposition 4.3. Assume

d d 4
sy r2s<0, if —Sqps> 22

2 2 d (4.1)
7£< +25<0 z’f—g+s<—§

da=" ’ 2 d’

For any bounded classical solution f of (1.14) on [0,T] x R? satisfying

/ F(t,v)dv = M, / w2£(t,0)dv < Eo, | fllz2@a < Lo,
]Rd ]Rd

the following upper bound holds:
flto) < N (t*d/@S) + 1) :
for some N > 0 depending only on d, v, s, My, Ey, and Lg.

Note that the first condition v + 2s > —% + s in (4.1) follows from our condition
v > 7% in Theorem 1.1.
Proof. First, note that the bound for f in L2(R?) implies an upper bound on the entropy
Jra flog f dv, which will allow us to apply Lemma 4.1.

Following [43], let

h(t) = N (t—d/@s) + 1) :
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with N > 1 to be chosen later. We claim that f(t,v) < h(t) for all (t,v) € [0,T] x R%.
Since f is bounded, the inequality f < h must be true on some small time interval near
zero, so if our claim is false, there is a point (g, vg) where f(to,v0) = h(to) for the first
time. At this point, we must have

AN —1-d/(25)

atf(tO?UO) Z 8th(t0) = — 9 0

(4.2)
From the equation, we have

O¢ f(to,vo) = Q1(f, f)(to,vo) + Q2(f, f)(to,vo).

We will find an upper bound for Q1 + Q2 at the crossing point (¢, vp) that contradicts
(4.2).

First, we consider the case where |vg| is large, i.e. |vg| > R for an R > 1 that will be
chosen below. For the term Q;(f, f), we note that f(ty,v) < h(to) for all v € R?, which
implies

Qi(f. f)(to.v0) < — / K 5 (to, vo, w)l(to) — f(to, vo + w)] duw
Re (4.3)

IN

~eolool? 2 [ ol 1 {h(te) = f(to, 00 + w)] duv
Rd

with ¢ as in Lemma 4.1. This principal value integral is well-defined because f(to,vo) =
h(tg). To get a good (negative) upper bound for this integral, we apply an argument
inspired by [32, Proposition 3.3]. The idea is to find a set where (i) f(to, vo+w) < h(to)/2
and (ii) |w]| is relatively small, so that [w|~9=2% is large. With 7 € (0, |vg|/4) to be chosen
later, Chebyshev’s inequality implies

H{w: f(vo +w) > h(to)/2} N (B2 \ By)| < h(io) / f(vo +w) dw
B3, \B,
< W / |U0+w|2f(vg+w)dw
Bay\B,
8F)
= vol?h(to)’

where in the second line, we used that |vg + w| > |vg|/2 when |w| < 2r < |vg|/2. Letting
¢q be the constant such that | By, \ B| = cdrd, we want to choose r such that

A{w : fvo +w) = h(to)/2} N (Bar \ By)| < \v32EO < |Bar \ By| = car.

o|2h(to)
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This will imply that f(vo + w) < h(tp)/2 in at least three fourths of the set Bs, \ B;.
The appropriate choice of r is given by

r_( 32E, >1/d
Cd|1)0‘2h(to) ’

We also choose

b

R 14 4d/(d+2) (%) e

Cd

so that |vg| > R implies |vg|?*2 > 44 . 32Ey/(cqh(to)) (recall that h(tg) > 1), which
implies r < |vg|/4.
Returning to (4.3), since the integrand h(to)— f (to, vo+w) is non-negative everywhere,

we can write

h(t .
Qu(F. 1) (10, 0) < —cofup+2:1L0) / w2 dw
(B27‘\Br)n{f(7}0+w)<h(t0)/2}
h(to) g
< —cpluo 2 M) o2 (g, \ By (o + w) < lto) 2}
h(t
< _CO|UO|7+28%T7d72S%Cde

S _CO|UO|’Y+2s+4s/dh(t0)1+25/d’

by our choice of r. The value of ¢y has changed line by line, but still depends only on d,
Vs S M07 E07 and Lo.
For the term Q2(f, f) = f[f*]|-|?], Lemma 4.2 implies, for some o to be chosen below,

Qa(f. f)(to,v0) < Chte)t 207/ (A0F)) g maxty,=2=4y/(d(1+o))}

since || f(to, ")l e (r) < h(to). We want to choose o so that the positive term coming
from @), is smaller than the negative term from Q. Since h(tp) > 1, this means we need

4y 2s 207y
— d 1+4—>1————.
di+o) M 17y A1+ o)

4
v+ 2s+ = > -2 —
d
After some straightforward algebra using v + 2s + 2 > 0 (which follows from (4.1)), this
translates to

S —4y

-1 4.4
—s—7<0<4s+d(’y+25+d) (44)
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A number o satisfying both these inequalities exists exactly when v+ 2s > —2d/(d +4),
which is true by our assumption (4.1).? In addition, we need o to satisfy the following
condition in order to apply Lemma 4.2:

(-%7—1>+<a<1. (4.5)

Since v + 2s < 0, we have < 1. By our assumption that v+ 2s > f% + s (which

is part of (4.1)), we also have (—2v/d —1); <

both (4.4) and (4.5).
With such a choice of o, we combine our estimates of Q1(f, f) and Q2(f, f) and use
h(to) = N(to_d/@s) + 1) to obtain

, S0 there is always a o satisfying
—s—~

1 _ 142s/d
Q(f, f)(to, vo) < 7500N1+25/d (to d/(2s) | 1) g [1H2545/4,

if N is chosen sufficiently large. This estimate holds whenever |vg| > R.
When |vg| < R, we obtain a negative upper bound for Q1 (f, f) using the mass bound
rather than the energy: for some p > 0 to be determined, Chebyshev implies

2
h(to)

2M,
h(to)

[{w (oo +w) > h(t)/2} 0 (Bay \ By)| < [ s waws

B2P\BP

With the choice p = (8 Mo/ (cqah(to)))'/¢, with ¢4 as above, we have

w00+ w) = hito) 2} 0 (Bay \ By)| < o < ca = By \ 5.
)

Proceeding as above, we obtain
h(to)

Ql(fa f)(thUO) < —00<R>’Y+QST / |w‘—d—25 dw
(B2p\B,)N{f(vo+w)<h(to)/2}

h(to) _g_2s3
_CO<R>'Y+2S (20)p d—2 chpd

< —Coh(t0)1+28/d.

IN

Combined with Lemma 4.2, we have

Q(f, f)(to,v0) < —coh(to) T2%/4 4 Chto)t—2e7/ (1)),

2 Indeed, as functions of s, the lines —d/2 — s and —4s/d cross at s = —d>/(2(d +4)) with height exactly
—2d/(d + 4).
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for the same value of o chosen above. In particular, the exponent 1 — 20/(d(1 + o))
is strictly less than 1+ 2s/d, so that the negative term dominates for N (and therefore
h(to)) sufficiently large. We have shown, in both cases |vg| > R and |vg| < R,

1 } -~ s 14+2s/d stds
Q(f, f)(to,vo) < —§CON1+26/d (to /) 4 1) (vp)yH2stas/d,

Combining this with (4.2), we have

——t
25 0

AN | _1_q/(2s) < _160N1+2s/d (tad/(%) n 1) 1+2s/d () 1+25+4s/d
2 b

which is a contradiction for N large enough, since v + 2s + 4s/d > 0 by assumption
(4.1). O

Next, we prove polynomial decay estimates for f. In our proof of global existence, we
will work with local solutions that satisfy a qualitative assumption of rapid decay on
some time interval [0, T}), but the following proposition is necessary to ensure the decay
estimates for f do not degenerate as t — T.

This proposition is rather flexible in terms of the allowable values of v and s, but in
order to be useful, it requires f to already satisfy a quantitative L°° bound.

Proposition 4.4. For any d > 2 and (v,s) € (—d,0) x (0,1) such that v + 2s < 0,
let f:[0,T] x RY — [0,00) be a bounded solution of (1.14). Assume in addition that
fin € LP(RY) for some q > 0, and that the solution f € L5 _([0,T] x R?) for some
€ > 0. Then

1f @)l Lo ey < [ finllpee ey exp(Cot), T € (0,77,

where Cy > 0 depends on My = [ga f(t,v)dv and | f|| Lo (jo,11xra)- In particular, Cy
does not depend quantitatively on the assumption f € L3S ([0,T] x R9).

Proof. We use a barrier argument of a somewhat different style than the proof of Propo-
sition 4.3. Define

h(t,v) = Ne {v) ™,

with N = (14 l/)||fin||Lg°(Rd) with v > 0 small, and & > 0 to be chosen below. Clearly,
the inequality f < h holds at ¢ = 0, so as in the proof of Proposition 4.3, we assume
by contradiction that f and h cross for the first time at some location (tg,vp). We must
have to > 0 because of our assumption that (v)?+¢f € L°°([0,T] x R?).

At the crossing point, we have

KNe 0 (vg) ™% = 0th < 8, f = Q(f, f) < Q(f, h), (4.6)
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where the last equality followed from the fact that f(to,vo) = h(to,vo) and f(to,v) <
h(to,v) for all v € RY. Since (—A)*(v)~7 < (v) 7972 (see Lemma A.4), we have

Q(f,h)(to,v0) S Ne™ ([f * |- |77 (vo)(vo) =42 + [f * | - ["](vo){vo) ~7)
< CoN(vg) ™1,

where we have bounded [f |- ["*2*] and [f * | - |7] in terms of || f|| Lo (jo,7)xr®) and My
by a standard convolution estimate. This inequality is a contradiction with (4.6) if we
choose k 2 Cy. We conclude

ft,v) < @+ )| finll Lo maye™ ()77, t€[0,T],
which implies the conclusion of the proposition, after sending v — 0. O
5. Proof of global existence

This section is devoted to the proof of our main theorem. We start with a local solution
on a time interval [0, T, which is constructed in Theorem 1.3 (whose proof is postponed
to Section 6). To show the solution can be extended past any given time, we need to
show that the Hg+3 norm of f remains finite, so that Theorem 1.3 can be reapplied.
Therefore, one needs some regularization argument to bound H, g+3 norms in terms of
the quantities (mass, energy, L> norm, etc.) that are globally bounded by our estimates
from Sections 3 and 4.

One option is to bootstrap regularity estimates in Holder spaces (i.e. De Giorgi and
Schauder estimates for parabolic integro-differential equations). This approach is based
on the uniform ellipticity of the kernel K;(¢,v,w): from Lemma 4.1 and Proposition 4.3,
one has

ov) T w| T < Ky (v, w) < Cfu) T ] TR

Because the lower ellipticity bounds for Ky (¢, v, w) degenerate as |v| — oo, the regularity
gained at each step is not uniform in v. To get around this, one would localize around a
point (tg,v0) and rescale the equation to obtain a new kernel with an ellipticity bound
that holds locally uniformly. A similar issue occurs for the true Boltzmann equation, but
in a more challenging way, because the ellipticity degenerates at different rates depending
on the direction of w relative to v. The authors of [34] developed a change of variables
to solve this issue, and iteratively applied Holder estimates to obtain C'*° regularity in
the inhomogeneous case.

A version of the approach in [34] would work for us, but because we are in the spatially
homogeneous setting, there is a more self-contained proof that uses L2-based energy
estimates. The regularization is provided by the following coercivity property of the @4
term:
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Lemma 5.1. For f € L°(RY) with ¢ > v+ 2s +d, and h € L*(R?), there holds
/th(f’ h)dv < _N.éf,'y(h)Q + C||hH%2(Rd)||f||Lgo(Rd),

for a constant C' > 0 depending only on d, v, s, and q, where

1/2
st,fy(h) = //Kf(vaw”h(v"_w)_h('U)|2dU}dU
dRd
12 (5.1)
h( 2
= | ¢y, s/ * |- |7+29 / [alo + ufdJrzs A) dwdv
Furthermore, for any h € H*(R?) and f € L (R?), there holds
st, ( ) < ||f||Loo ]Rd)[ }HS(Rd)a (5.2)
and if [ additionally satisfies the hypotheses of Lemma 4.1, there holds
NI, (h) = co (Mg ., R (5.3)

with c¢o > 0 depending on the constants in Lemma j.1.

Lemma 5.1 can be compared to the well-known entropy dissipation estimate satisfied
by the Boltzmann collision operator [2].

Proof. From the formula (2.3) for Q;, we have

/ RQu( e = s [ [ 10 vﬂfmsh( Mot w) —hO) | p425) o) du do

R4 R4
h(v 4+ w) — h(v)|? s
——cane [ [P O e ) duwa
R4 R4
h(v+w) — h(v o
e [ [+ )G O ) dwan
Rd R4

We observe that the first term on the right is equal to —N gf ,y(h)2. In the second term,
we change variables to swap v <> v + w, yielding
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/ hQu (f, h) dv
R4

h(v+w s
+Cd,’)’, //h |d+2s )[f* | . "H_Qk](U‘F’LU)dde
R4 R4

— N{L(h)? - / hQu(f, h) du

T s / / |w|df$f D) (1f 5 |- 420+ w) — [ %] ](0)) duwdv.
R4 Rd
(5.4)

The last integral on the right is equal to

o —h(v+w v—2z [+ w0 — o zdwdv
I._//h(v)(h(v) hv+ ))R/df( ) dz dw do.

|w|d+25
R4 R4

The following analysis of the integral I covers all cases s € (0,1). If we were only
concerned with s < %, the proof would be easier since a first-order cancellation would
be sufficient to handle the singularity as w — 0.

Using the change of variables w — —w, we obtain

of = //h(v)(Qh(v) (o +w) = h(v — w))

R4 Rd
y+2s _ Y+2s __ 2 v+2s
/f(v—z)|z+w| +||Z |diu2| 2 dz dwdv
w S
Rd
1/2
< / /hQ(v) dv / h(v +w) — h(v — w))?dv
Rd d
Hz +w|7T2 4 |z — w72 — 2|z|’7+25‘
X vseungd/f PG dz dw
|z + w12 4 |2 — w[1T28 — 2z H28
< Il o 1 et / up / = 42 du.

We divide this (w, z) integral into three parts: {|w| < 1, |z| > 2|wl|}, {|w| < 1, |z| < 2|w]|},
and {|w| > 1}. For the first part, a Taylor expansion gives

3 ’|Z+w|7+23+ |Z—’U}"Y+28 _2|Z|"/+28’
vseungd / (v—2)"1 P dz dw
{lw|<1} {lz1>2]w[}
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< / sup /(v — 2) T2 22w 22 Az dw
veR4
{lw|<1} R4

< |,w‘2—d—25 dw g 1,

~

{lwl<1}

since |w| < |z|/2 and ¢ > v + 25 + d. Next, we have

L llz w7 4 g — RS — 22
/ Usu]é)d / (v—2)71 | = | dz dw
{lw[<1} {lzl<2lw|}

< |42 |12+ w7T2% + [z — w2 — 2|2[7F?9| dzdw
{lw|<1} {lzl<2lw]}

S |w|fd72s|w|'y+25+d dw 5 1.
{lw|<1}

For the remaining part,

|z + w2 + |2 — w[1F25 — 2\z|’Y+2S‘

oo dTes dz dw

sup [ (v—2)71 |
veRd
{lw|>1} R4

< / lw| =972 sup /(v —2)7 Yz 4 w7 dz
veERE
{lw|>1} d

+/<v—z)7q\z+w|7+23 dz—|—2/<v—z>7q|z|7+25dz dw

Rd R4
< |w|_d_2$ sup ((v + w>7+2$ + (v — w>’*+25 + 2<U>7+2s) dw
Rd
{lwl>1) e
<1.

Returning to (5.4) and collecting terms, we obtain the first statement of the lemma.
The upper bound (5.2) follows from the convolution estimate of Lemma A.1(a) and the

definition (5.1) of stﬁ (h). The lower bound (5.3) follows from Lemma 4.1 and (5.1).

We need the following interpolation lemma to trade decay for regularity. The proof is

the same as [28, Lemma 2.6].

Lemma 5.2. For any q,m > 0, suppose that g € Lys N HF(R?) and k' € (0,k). Then if

¢ < (m—d/2)(1 —K'/k)+ q(k'/k), there holds

35

O
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1—-k"/k k' /k
Il ey < Cllallz st gl iy < © (Nallzsscme + lolazcas ) -

The constant C > 0 depends on d, k, k', q, and m.
Now we are ready to prove our main theorem:

Proof of Theorem 1.1. By Theorem 1.3, which we prove in Section 6 below, a solution
f > 0 exists on some time interval [0, 7). This solution can be extended by re-applying
Theorem 1.3 for as long as the HJ™?(R?) norm of f(t, ) remains finite, so we assume by
contradiction that f exists on some maximal time interval [0, T,) with T, > T, and that

||fHL°°([O,t],Hg+3(Rd)) / o0 ast — T* (55)

From estimate (1.15) in Theorem 1.3, and our assumption on fi,, we see that f is C™
with rapid decay on [0,7.) x R? (but this smoothness could a priori degenerate as
t — T.). We can therefore apply our estimates from earlier in the paper:

o Conservation of mass on [0,7%) follows from the formal argument in Section 2.1,
which is rigorously valid because f is smooth and rapidly decaying.

e Theorem 3.1 implies the L2(R?) norm of f(t), for any ¢ € [0,7}), is bounded by its
value at ¢t = 0.

« Lemma 3.3 provides a bound on the energy E(t) = [p. [v]*f(t,v) dv for t € [0,T),
that depends on d, 7, s, ¢, the initial data, and T}, and is finite since T, < co.

o Because of the mass, energy, and L? bounds, we can apply the L™ estimate of
Proposition 4.3, which is uniform on [T /2, T.) x R%. On the remaining time interval
[0,7%/2), the HS3(R?) norm of f(t,-) is uniformly bounded as a result of (5.5), so
by Sobolev embedding, f is bounded in L (R?) for ¢ € [0,T./2) as well.

e With the L bound from the previous bullet point, the decay estimates of Proposi-
tion 4.4 apply: for each g > 0, there is a constant C; with

1f Ol Lge ey < Cy,  t€[0,T5), (5.6)

with C; > 0 depending on ¢, d, v, s, the initial data, and the energy bound.

For the remainder of this proof, we call a constant universal if it depends only on
d, 7, s, the initial data, and the energy bound on [0, T}). Quantities that depend only
on universal constants will be absorbed into inequalities via the < symbol, sometimes
without comment.

Our goal is to show that all Sobolev norms of f in v remain finite on [0, T}). We prove
this by induction. For the base case, we multiply the equation (1.14) by f and integrate
over R to obtain

2dt/f2dv_/fQ1 f.f dv+/f@z £.6)
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Using the coercivity estimate of Lemma 5.1 for the Q1 term, we have, for ¢ > v+ 2s+d,
2o / £2dv < =N (P + Cl B I lqmoy + € [ 7] -] do
Rd

< —f];

< —clffe . mo) + OB 1 gy + CU a1 s ey,

where we used the lower bound (5.3) for Néfw and Lemma A.1(a) with m > v+ d in the

last term. Recalling that 2 T fRd f?dv = 0, we now have, using (5.6),

T

2
/“@Mmﬁwmﬁﬁfc’

0

for some universal constant C.
Now, we assume by induction that for some k& > 1,

1O zr-1 ey < Cr,  t €[0,T4], (5.7)
and that
1Fk-1 (D172 (0,7, ) ||f ()50 v ey 48 < G, (5.8)
('v+ R )
for some C}, depending only on universal constants and k. Letting 8 = (51,...,084) be a

multi-index in the v variable of order k, we differentiate the equation (1.14) by 97 and
integrate against 07 f. It is easy to see that the operator @ satisfies a Liebnitz-type rule
0y, Q(F,G) = Q(0y, F,G) + Q(F, Dy, G). We then obtain

s @17 / 9 10°QJ. /) dv

Rd

- 0 1Qu(07 1,0 o+ [ 0°1Qu(0” 1,07 v
BI+B= B
(5.9)

Starting with the terms involving @)1, there are three cases:
If |5’ = 0 and B8 = 3, then we use the coercivity estimate of Lemma 5.1 and obtain,
for any ¢ > v + 2s + d,

/8ﬁfQ1(f, 0% f)dv < =N/ (0°f)* + CHaﬂin?(]Rd)||f||Lg°(]Rd)
(5.10)

= —Co[aﬁf] Rd) + C||f||§{k(Rd)7

HE, a5y /2(
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by (5.3) and the decay estimate (5.6). This negative term will absorb the other highest-
order terms that arise in the energy estimates.
If 1 <|p'| <k —1, then we have, using Lemma A.1(b) (since v + 2s > —d/2, by our
_ d+4s )
3

assumption v > ,

/ 0 fQu(0” £,07 f)dv ~ / O F10% f x| 42 (=A) 0" f d
Rd R4
/S ||6Bf||L2(Rd)||85/f * | ! |’Y+2871||L°°(Rd)|‘aﬁ”f”H2s(Rd)

S ||f||H’C(]Rd)”aﬁ/f”L';’n(]Rd)||fHH’“—1+2-*(Rd)a

for some m > d/2 + v + 2s. We also used |5”| < k — 1. In the last expression, we use
the interpolation estimate of Lemma 5.2 for the middle factor (since |3'| < k — 1) and

obtain
107 Fllzz, ey = 10)™ 2207 flla gy
< ||fHHk 12+§/2(Rd) + ||fHLm+1 (v+2s),2 (RE < ||fHH("H1;r§/2(Rd) +1,

by the decay estimate (5.6). Next, we use a similar interpolation to write || f[| grr-1+2:(ray S

||f||H(’“++a2 /2 (R4) + HfHL1 (rr2sy /2R < HfHH’“ ey 2(RY) + 1, giving

[ 011" 1.0 v s (1o o + 1) (1 g, ey + 1)

(v+2s)/2
Rd

2
< 0510”][“%{16(11@) (HfHHk L (Ra) T 1)

(v+23)/2
HfHH(k:r-:zs)/z)(Rd) +C
< 6610 (1+ FZ. (1)) ||f||%{k(]Rd ||f||Hk7++s2 | a(R) +C,

by Young’s inequality. Here, ¢ is the constant appearing in (5.10), Fy_1(t) is defined in
(5.8), and C is a universal constant.

If || = k and || = 0, then we need to proceed in two subcases, k = 1 and k > 2.
When k = 1, we have 9° f = 0, f for some i. We transfer this derivative from f to the
convolution kernel [v|Y*2% via (9,,f) * | - 725 = f % (0,,| - [772%). The new kernel still
has an integrable singularity because v 4+ 2s — 1 > —d by our assumption y > —%.
We then have

/ Do, fQL(Do f. f) dv ~ / By, fl0n ]+ - [7H) (=) f do

/a U+ |- PP (=AY fdo
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|2 @allf #1257 oo ety L f [ 22 (R -
We estimate the convolution with Lemma A.1(a) and (5.6), and absorb this term into

the constant. We estimate the H2* norm with an interpolation similar to above:

1F 2o ey S Wi, ey + 14

by (5.6) again. We now have

_ C
/&;ile(avif, £ dv S e @allflges ey < ¢ CllFIH gay + 4—2||f|\§{1+s(ﬂw)-
Rd

When k > 2, we use Lemma A.1(b) with m > v 4 2s + d to estimate the convolution:

/ 9% £Qu(0° f. ) dv ~ / O J0° x| - [P (—A)* f dv

R R
SO FllLeway 107 F # |+ 7725 poo ety | £ pr2e ()
SN ar ey 10° Fll 22, ey | 1 mr2e ety -

We apply interpolation to the second and third factors, in a similar manner to above,
and obtain

[ 0°1@u@ 1.0 a0 S 1wy (1 g, ey + 1) (1 a0y + 1)
Rd

S CO_ICHf”%I’“(]Rd) (Figq(t) + ) 4dk Hf||2 k+< (R4) + C.

v+2s)/2

For the terms involving Qs in (5.9), we write
[0°1Qa0” .07 1y do~ [ 9°507 1197 1+ 1w
R4 R4

Again, there are three cases.
If |8'| = k and |B”| = 0, we pick a constant § > d/2 + v and use Lemma A.2 as well
as the weighted L> bounds (5.6) to obtain

/ 0% F(0)" 1 (o) ~710°F x| ) do < 10 fl ooyl oy |O°F |- P2, cmy

< C10° fll 2 ey 10° £ 2

d/2+5 R4),

for some small ¢ > 0. By interpolation (Lemma 5.2), the decay estimate (5.6), and
Young’s inequality, this expression is bounded above by
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_ Co
Cll flrway (I1f |zrw+eay + 1) <5 C (HfH%Ik(]Rd) + 1) + @Hf”?qws(wy

Next, if 1 < || <k —1, we have |8”| <k —1, and

/3Bf55//f[55/f 7] dv < ||a'8f||L2(Rd)”f”H’C*l(]Rd)”aB/f | 7] oo (R
R (5.11)

< Cq”f”H’“HaB/f | 7| oo (R4,

by the inductive hypothesis (5.7). Since v may be too negative to apply Lemma A.1(b),
we transfer a derivative from |v|” to P f- In more detail, using the identity

1
ol =25 V- lel),

d+
we write
d
107 f 5 |- Il oo may S D 10007 f) % |- 77| oo (.
i=1
From our assumption that —% <7 < —2, we have
d
,§<7+1<Q

so we can apply Lemma A.1(b) with p=~v+1land m >~y +1+ %7 and obtain

d d
107 f 5| |7l Lo Ry S Z 100,07 ) |- [ | oo (mey S Z 00,0 fllrz, ey S If e (mey-

i=1 i=1

As above, we apply interpolation (Lemma 5.2) plus the decay estimate of (5.6) to bound
| f1l £ ey from above by < Hf|\H(k+s @)+ 1. Returning to (5.11), we now have
m ~+2s)/2

(v+2s)/2

/aﬁsz(ag/ﬁ 0" fyav < Cull fllmsceay (1 s,y +1)
Rd

Ck

Co

2 o 2
(1) +1) + G 1 e, ey

(v+2

<
Finally, if |’| = 0 and 8" = 3, we have for any ¢ > v + d,

/ 0% £Qa(f, 0% f) duv ~ / [ %] (07 )2
]Rd

R4

<N 1 Pl ey | e ray
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< CHfHLgO(]Rd)”fH%{k(Rd)
< ClIflEn ways

by Lemma A.1(a) and (5.6).
Now we collect our upper bounds for the terms in (5.9) and sum over all d¥ multi-
indices 8 with |8| = k, to obtain

— Z 107 F 172 ey < —co D0 fl%ye , @yt 5 F e @

( +2s)/2
\,3| k |Bl=k

+ O+ ) Iy + C

for a universal constant C. Noting that || ||, (Rd) = 2o |5=k 107 £1|2, Temay t | F112— L(RY)

B -
and |(|f|1)qk+e /2 (RY) Z|ﬁ| k0 f] HE oo ]Rd)+||f||H( 20y/2(RE)? our inductive hypoth
esis (5.7) implies

S 10 ey < % Y 0°11%
dt ~, L2R) =9 f HE, g /2(RY)
18l= 1Bl= (5.12)
+ O+ F1 () D 107 fl72 ey + C,

|Bl=k

since (7 + 2s)/2 < 0. Our second inductive hypothesis (5.8) implies F2_, is integrable,
so with Gronwall’s inequality, we now have

t

Z ||65f||L2(Rd) < Cexp C/(l +F,3_1(t/)) dt’ <Cp, tEe€ [O,T*),
|Bl=Fk 0

for some Cj depending on universal constants and k. Using this bound in (5.12) and

integrating from 0 to T, we find

T,
i 8
2 / Z [0 f HE 1 20)/2(RY) < Ch,
o Bl=k
which allows us to close the induction, since Fy(t) = [|f(¢)|lgr+s@re)y S IIfllmr@mey +

> 18=k10” Flas ey

We have shown that all Sobolev norms || ()| g»®«) are uniformly bounded in ¢ €
[0, 7). By interpolation (Lemma 5.2), the weighted H, 5 (R%) norms of f are also bounded
on [0,T,), for all k,q > 0. In particular, we can apply short-time existence (Theorem 1.3)
with initial data f(T,-) to extend our solution to some time interval [0, T’] with T > T,
contradicting (5.5). This completes the proof. O
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6. Local existence

This section is devoted to the proof of local existence, Theorems 1.2 and 1.3. The proof
uses L%-based energy estimates, but unlike the proof of Theorem 1.1 above, there is no
need to obtain an estimate that persists for large ¢, which leads to some simplifications.
On the other hand, extra complications arise from the broader range of vy and s, the
dependence on z, and the need to commute polynomial weights of the form (v)?.

The ideas in this section owe a lot to short-time existence results for the Boltzmann
equation such as [4-6,42,28] and especially [31], which addressed the case of 7 very close
to —d.

We begin with a commutator estimate for polynomially-growing weights:

Lemma 6.1. If m,q > v+ 2s + d, then

[{0)*Q(f,9) — Q(f, () 9) || L2 (m)

< C (112 @y N, (@)79) + Il gz, ey )

q—2s

for a constant C' > 0 depending only on d, v, s, m, and q.

Proof. It is clear that (v)9Q2(f, g) — Q2(f, (v)?g) = 0, giving

(0)7Q(f, 9) — Q(f, {v)9)
= ()I1Q1(f,9) — Q1 (f, (v)"9)

_ /Kf(v, w)g(v + w)[(V) — (v + w)] duw
Rd

= [ Kso.wiglo+ w)to + w0+ w) 7 - 1w
Rd

= /Kf(% w)g(v+w)(v +w)* = g(v) ()] [(v)* (v +w)~" = 1] dw
Rd
+9)0)? [ Ky w)[0)0+ )7 - 1)dw
Rd
=1 + Is.
This decomposition is similar to one that appears in the proof of [44, Lemma 2.12].

Taking the L? norm in v of both terms I; and I», we first have, using Cauchy-Schwarz

in w,
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/Il dv</(R Ky (w,w)lg(v + w)(w +w)? — g(0) ()7 duw

/Kf(v,w)|<v>q<v +w) =12 dw | dv.

Since Lemmas A.1(a) and A.4 imply

v+w)" 71— (v)"9?
2 [ Ko, wllo-+u) ™0 = )1 dw s fopafp ] ) [ L0220 g,
R4

Rd

S ||fHLfg(Rd)<v>2q<v>_2q_2s S fllzee rey,s

we have

/ 2 dv < || ) / / K1 (0,0)]g(v +w) (0 + w)7 — g(v) ()7 dw d

Rd Rd R4
= ||| LOO(Rd)N ((-)1 9)2-

m

For I, we use Lemma A.4 to write

L] < lg(@)|@)2[f +] - F2)(0) (~A) ((0) ) < lg(@)| )72[F | - 2] (0)
< 11/l 2se g (0) (27,
which gives
[ B S 1wl o
R4

Combining our estimates for I; and Is, the proof is complete. O

The key lemma for local existence is the following energy estimate for a modified
linear version of our equation. The purpose of the parameter ¢ is to interpolate between
the linear isotropic Boltzmann equation and the heat equation on R'*%, so that we can
apply the method of continuity below in the proof of Lemma 6.4.

Lemma 6.2. Let k > 2d+2,q>m >~y+2s+d, T >0, and let f € L>([0,T], H* (T9 x
R%)) be fired. For any o € [0,1] and R € L*([0,T], LZ(T® x RY)), let g» be a solution of

019 + 0V -Vage = 0Q(f, 95) + (1 — 0)Az w95 + R, (6.1)

on the time interval [0, T]. Then the following estimate holds:
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i

196 )z (Taxray < | (196 (O] m5 (T2 xRA) +C/||R(t/)||2Lg(deRd) dt’
0

t
X exp C/(l ) ek (raxray) dt’ |, 0t <T,
0

where C' depends only on k, q, m, d, v, and s. In particular, C is independent of o.

Proof. For every multi-index 8 = (f1,...,f2q) in (x,v) variables with |3| = >, 8; =k,
we differentiate (6.1) by 9°, multiply by (v)290”g,, and integrate over T x R? to obtain

%% / (v>2q(aﬁgg)2 dvde + o / <v>2qaﬁggaﬁ[1j - Vago] dvdz
TdxRd TdxRd
=0 / (v)?10°9,0°Q(f, go) dvdz + (1 — 0) / (0)290% gy Ay 0% gy dv da
TR T4 xR4

+ / ()219P g, R dv dz.

TdxRd
(6.2)
The last two terms are handled easily:
| 0110%g, Rvds < lga g recin 1Rl zcroneey
TdxRd
S ||QUH%{];(T‘1><R‘1) + ||R||2Lg(1rded)v
and
0)2190°g, A, 0% g, dvda = — / ()21 V0% g, | dv da
TdxR4 TdxRd
—2q / 9P g, (1)297 2%y . V,0% g, dv dz
TdxRd
<—g / (0292 .V, (0%, )2 dvdz (6.3)
TdxRd
=Cayq / ()277%(9%g,)? dv da
TdxR4

B Cda’]”ga”?{f;(TdXRd)’
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since |8] < k.

For the second term on the left in (6.2), we write 9” = 9297, for multi-indices 3,, 3, €
N<. With the notation 8, = (Bv.1,--.,Bv.a) and ¢; = (0,...,1,...,0), we have 9°[v -
Vigo| =v- V059, + Zle ,Bv7i8xi85“" dBv=cig, which implies

/ (0)299P g,0°[v - V 19o] dv dz| = / ()2198 gyv - V,0° g, dvda

dxRd dxR4

d
+ Z Buo,i / (v)219° g, 0,,0°= 0P =% g, dv dx|.
=l paxRa

The first term on the right is zero after integrating by parts in x. For the second term,
Cauchy-Schwarz gives an upper bound of

S Z ||<U>q3ﬁga\|L2(deRd)||<”>q3xi35135”76i90||L2(deRd) S ngaH?{g(deRd)-
i=1

It remains to estimate the first integral on the right in (6.2). As above, we use the

Liebnitz rule 0Q(F, G) = Q(OF, G) + Q(F, 0G) for x or v derivatives to write
(0)210° g,0°Q(f, go) dvdw = Y ()*10°9,Q(0° f,0°" g5) dv da.

TdxRd B'+B"=Pra <Rd

For each pair ', 8", we write
()21079,Q(0” f,0" g;) dvda = Jy + Jo + J3, (6.4)
TdxRd

with

J1 = / <U>qaﬂgoQ1(56,f, <v>qaﬁ”gg)dv dz,

TdxRd

Ja = / <U>qaﬂgaQ2(8ﬁ,f, <v>q65//gg) dvde,
TdxRd

Js = / (0)19%g, ((0)1Q0" 1,07 g5) = QO 1, (v)19"g, ) dvda.
TdxRd

The analysis of all three terms splits into cases depending on how the derivatives fall.
We begin with the Q)2 terms because they are the simplest. Since & > 2d + 2 and
|8'|+|8"| < k, we must have either || < k—d—1or |f"| <k—d-2.1f|p'| < k—d—1,
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then Cauchy-Schwarz and the convolution estimate of Lemma A.1(a) (since m > v + d)
yield

Jo / (v)qaﬁgg[aﬁlf * | - |V](v>‘3’36”g(7 dvdz
TdxRd

< ||<U>qaﬁga|\L2(deRd)||8B [l |’YHL°°(Td><Rd)”<U>q85 ga||L2(Td><Rd)
|l Fllzge (raxwray 190 I3 (raxmra)y

< [[0” f|

2
Hgfl(jrdx]gd)HgaHHg(deRd)

< ”fHan(de]Rd)”gtf”?ﬁlg(deRd)v
using the Sobolev embedding H+1(T? x RY) ¢ L>°(T? x R?).

If |5”] < k —d — 2, we proceed differently depending on . If v > —d/2, we apply
Lemma A.1(b) to 87 f, since m > d/2 + ~:

Jo < C/ 1(0)90° g || 12 @y 107" f | - |7 ]| oo () 1 (0) 707 go || 2 (Ra) e
']I‘d

< C/ ||<U>qaﬁga||L2(Rd)”6'8,f||L$n(Rd)H<U>qaﬁ”g¢7“L2(Rd) dx

Td
< C||<U>q8690”L2(’]I‘d><Rd)||6'8/f||L’¢’n(Td><Rd)H<U>q86/l90|‘Lg°L§(Td><Rd)
< CHgUHH(’;(TdXRd) ||8ﬁlf||L3n(Td><]Rd) ||<’U>qaﬁ”go'||H£(d+l)/ﬂ L2(T4xR4)

< C|fllax (Taxr) ||gg||§fg(1rdxn«d)v

where we used the Sobolev embedding HL“TH/21(Td) ¢ £o°(T4). Here, [2] denotes the
smallest integer > x. Note that |8”|+ [(d+1)/2] <k—-d/2—-1< k.

If v < —d/2, we apply the L? convolution estimate of Lemma A.3 to 65/]‘ with
0=m>~v+d:

Jo < C|[(0)10%" gol| poo (TaxRA) / 1(0)10% g5 || 2wy |07 f % | - 7| 2 (ay da
’]I‘d

< C||85”g[,||Hg+1(deRd) / ||<v>q8690“L2(]Rd)||aﬁlf||L$n(Rd)dx
Td
< CHgaHlQ‘I];(TdX]Rd)||a[3/f||L,2n(Td><Rd)7

where we have applied the Sobolev embedding in T4 x R? to 82" g,,.
To address the terms J; and J3 in (6.4), there are four cases:
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Case 1: B/ = (0,...,0), 8” = 8. When all derivatives fall on g,, we use the coercivity
estimate of Lemma 5.1, with exponent m > v + 2s + d:

h= [ @00 ) dvds

TdxRd
<- / 0)107g,) o + C / 1(0)70° 9o |22 gy | 15 ey e
<- / 0110%g0)2 i+ CI0)0° g s oo | 155 ro iy

For J3, we use the commutator estimate of Lemma 6.1:

Js = / (0)910° 9o [(0)1Q(F, 0% g0) — QU (1)70%g,) dv dz

TdxRd

< O(0)70° go | ecraxray | 1712 i / NI ((0)10%g) da

+I11

Loo(T4xR4) HaﬁgHL§ 2S(deRd))

m

/ NL(0)70%90)? dz + O f s (xaxmoy 19790 |23 oy

after using Young’s inequality. Adding J; and J3, the N, sf 4 ( (v)90%g,) terms cancel, and
applying the Sobolev inequality to f (since k > d + 1), we have

Ji+ I3 < Cligo g (raxra) | 1, (raxra).-

Case 2: 18| = 1,|8"| < k—1. We consider the worst subcase |3”| = k — 1 since the other
subcases can be handled by the same method.

In Ji, a naive estimate of Q1(8° f, (v)90%" g,) would place 2s derivatives on 8% g,,
giving a term that cannot be bounded by the H§ norm of g, when s > 1/2, since
|8"| + 2s > k. To get around this issue, we use a symmetrization method”® that exploits
the fact that 0%g, = 09°" g, for some partial derivative 9 in either x or v. Let us assume
0 = 0,, for some i, since the case 0 = 0, is simpler as x derivatives commute with (v)9.

3 A related symmetrization method was applied in [28, Proposition 3.1(iv)] and [31, Proposition 2.9] to
solve the same issue in the context of the Boltzmann equation.
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Integrating by parts in v;, we have

Ji = / ()90, (0 go)[f * | - [1F2](=2)°0"" g, dv da

== / ()10 9oy, (1f |- [H2](=2)'0""g, ) dvda
T4 xR4 (6.5)

- / 0(0)? 20,07 g [f | - [T (~2)*0"" g, dv da
TdxRd

=: J171 + J172.

To bound J; 1, we introduce the abbreviations F = 9% f % | - 725 and G = (v)79°" g,
and write

Jig=— / GO, F(-A)*Gdvdz — / GF(-A)%0,,Gdvdx
TdxR4 TdxR4

== / (=A)* (GO, F)G dvdx — /(—A)S(GF)&Jideda:.

TdxRd TdxRd

To both of these fractional Laplacians, we apply the formula

(=8)*(Cn) = C(=A)°n +n(=A)*C = E(¢n),

with

Rd
and obtain
Jii=— /GQ(*A)S(aviF)dvdzf /6viFG(*A)Sdedx+ /GE(G,amF)dvdz

TdxRd TdxRd TdxRd

- /F&UiG(fA)Sdedo:f /G&,iG(fA)Sdedz+ /&,iGE(F,G)dvdx.
TdxRd TdxRd TdxRd
(6.6)

Taking the terms in this expression one-by-one, for the first term we use

(=8)° (0, F) = (=28)%(@,,0 f % |- ["72) 2 0,07 [ +| - |7,
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which follows from a calculation that places (—A)® onto the convolution kernel, similar
to the argument in (2.4). Combining this with Lemma A.1(a) and Sobolev embedding
in T% x R%, we have

G*(=0)%[0,,07 f+ |- ") dvdz < |GIF2(parma100,0% Fll Lo (Toxmra)

TdxRd

S ”gU”?{(’;(deRd) ”f”an(deRd)a

since m > y+d and |f'|+ 14 (d+ 1) = d+ 3 < k. For the second term in (6.6), we use
Lemma 5.1 and inequality (5.2):

8y, FG(—A)*G dv da = / GQ1(8,,0° f,G) dvdx

TdxRd TdxRd

U avla f

< / 100.0% FlL5: ey (16 ey + 1€ gy )
d

+ C||G|%2(Rd)||awaﬁ/f||L;-,§>(]Rd)] dz

S 100,07 fllpse raxry |GlI72 prs(raxray

S /]

HE (T4xR4) ||ga||Hk(1rded)a

'm.

applying Sobolev embedding to 0, P f as above. For the third term in (6.6), we use the
definition of E({,n) to write

1/2
|G(z,v+w) — G(z,v)]?
/ GE(G,0,,F)dvdx < / P dw

TdxRd TdxRd

|w|d+25

1/2
2
([R/ |0, F (2,0 + w) — Oy, F(x, )] dw doda.
(6.7)

We estimate the w integral involving 0,, F' in two pieces. For some small € > 0 such that
s+ e < 1, we first have

dw

|0y, F(z,v + w) — 8y, F(z,v)]?
|w|d+2s
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2
N / o] 7472 /8111-5[3,]”(”*)[\” tw =07 — o — 0[] dv, | dw
By d
2
S/w%* /%WﬂmwﬂmﬁﬂW“m*dw
B, d
, 2
< [ 1ol 442 dw (19,07 £ ] -] (0)
B1
S 100,07 fllZ oo (raxrays
by Lemma A.l(a). In the third line, we used the Hélder estimate [| - |77 ]cesre(y) <
|v|7T$7¢, which follows from Lemma A.4. Next,
Wa — 8y, F(z,0)[?
[0v, F'(x,v + w) — 8, Fz,0)]" o
[wld+2s
R\ B,
2
snawaﬁfniﬁm@>t/ I /Yv»*"ﬂw—%w——v**”S—wv—wuw+%}dm dw
R\ B, a
S 10.0% ey [ ol dw

R4\ B,

S 100,07 fI] o ey

where in the third line, we used Lemma A.1(a) with f(v) = (v)~™. Returning to (6.7),
we have

GE(G, 0y, F)dvdx < /HGHLZ(Rd)HGHHS(Rd)Haviaﬂlf”Lfno(Rd) da
Td

TdxRd

<Gl p2craxray |GllLz s (raxra) 100, 0% fll poo (T xra)

< ||gg||§1g(1rd w«ra) L fll 2% (Ta xRS

using Sobolev embedding as above, and the inequality [|G|| 22 g5 (T xR ) S90 ||H§(Td <R)5
which can be proven in a straightforward way using interpolation.

The fourth term in (6.6) is equal to —ﬁ{h, so we absorb it into the left-hand
side of (6.5). The fifth term is bounded in a similar manner to the first term: since
(—A)F 0% fx| |,
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GO, G(—A)*F dvdz < |G| 2(raxra) 00, Gll 2 (raxray [0% 1 poo (1axray
TdxRd

N H9||izg(1rded)Hf||H;;(1rded),

by Lemma A.1(a) and Sobolev embedding. Finally, the sixth term in (6.6) is bounded
by exactly the same argument as the third term.

Next, we note that the term Jy 2 in (6.5) can be bounded by the same method as Ji 1
(but simpler) because it has fewer derivatives and a smaller exponent of (v). Returning
to (6.5), we now have

2J1 < C||ga|@15(1rdxkd)||f||H;gl(1rded)’

as desired.
For the commutator term, Lemma 6.1 implies

I3 < [[(0)10° go || 2 raxray 1) 2Q(D7 £,8% g5) — Q07 f. (v)10%" gy )|l L2 (T a xR

’ 1 2 "
SN0 gellacmanmr | 107 F12 panm | V(01707 g0) o
’]I‘d

107 Fllzss (raxma) 107 9o 2 ramay ) -
Using the upper bound (5.2) for stjw(@)qaﬁ”ga), we obtain

J3 < ||<'U>qa'690||L2(Td><]Rd)HaB/fHL%(deRd)
% (I160) 107" go lsre ey + 1090 goll2raxm))
< ||(v)qaﬂggHLz(deRd)H85/f||Hi+1(deRd)
% (I160)107” go L an ety + 1090 goll 2 raxmy)

< llgo ||?qg(1rd «Ra) | fl| 5, (T2 xR3),

after using the standard interpolation inequality || - [|3,. < || - |52 + || - |32 and Sobolev
embedding for 9% f (since |B'| +d+1=d+2 < k).

Case 3:2 < |B'| < k—d—1. In this case, there is room to apply 2s derivatives to 85”90,
so we use the inequality

1QL(F, G)l L2 ay = I[F |- "7*](=A)° Gl 2ra) < CllF || o Ry |Gl 112 (ma),

which follows from Lemma A.1(a) since m >« + 2s + d. This gives
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1/2

J1 < Cll(v)10° go || 2 (T axwa) /||aﬁlf||%;§(]Rd)||<U>qaﬁ”go”%12s(Rd) dz
d

< C||<U>qaﬁgal|L2(deRd)||aﬂ/f||L$,§f(Td><]Rd)
1/2

< [ (10707 gl oy + 10070 g0 2 gy) o

d
< C||<U>qaﬁgtf”%2(']l"d><Rd)”aﬁ Sl paxmrays

by Sobolev embedding and the interpolation inequality || - |32 < ||+ |32 + || - [|32. The

commutator term is handled exactly as in Case 2, since |f'| +d + 1 < k, and we obtain

Ji+J3 < CHQGH?{(’;(deRd)”f”H,’ﬁL(TdXRd)'

Case 4: k —d < |B'| < k. By our condition on k, we must have |5”| < k —d — 3 in this
case. As in the analysis of J; above, we split this case into sub-cases based on v + 2s.

Starting with Jy, if v+ 2s > —d/2, we apply Lemma A.1(b), since m > v+ 2s +d >
v+ 25+ d/2:

B [ @07 f <] - ()0 g,) duda
TdxRd

< / ||<'U>qaﬂga“L2(Rd)”aB/f* | - "Y+2S||L°°(]Rd')H(_A)S(<U>qaﬂ”go)”L?(Rd) dx
’]I‘d

< C/ ||<v>qa’890”L2(Rd)||8B/f||L$n(Rd)H<v>qaﬂ”ga‘|H2a‘(Rd) dx
Td
< Cl[()70% go |l 2 axray 107 fllzz, (raxray [(0)207” goll Lo pr2e (1 xra
< Cllgoll me(raxray [ £l e (Taxr )
where we used the Sobolev embedding HL*™/21(T4) ¢ £°(T9) and |8"| + 25 + [(d +
1)/2] <k —d/2—2+2s < k.

If y+2s < —d/2, we apply Lemma A.3 to &7 f and the Sobolev embedding Ho+1 (T % x
RY) ¢ L=(RY) to 8% g,:

T1 S N(=A) ((0)10% go) | Loe (raxmey / 1€0)10° o | 2 ma) 107 # | - 72| p2 ety d
Td

< C||(—A)S(<U>q3ﬁ”ga)HHd+1(de1R<d) / ||<U>qaﬁg<7”L2(]Rd)||6ﬁlf||L$n(Rd) dx
Td

< C0)10™" go | 2erars (rasra) [ (0)70° o | p2rasma) 107 Il 2, (TaxRa)
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< C||gg||§{§(deRd) 1f 1z, (T2 xR ),

since || +d+1+2s<k—2+2s<k.
For the commutator term, there are again two sub-cases. If v+ 2s < —d/2, we repeat
a simple calculation from the proof of Lemma 6.1 to write

[(0)1Q(0% £,0°" 95)—Q(8” £, (v)19%" ¢,)|

, " v)? — (v + w)? 6.8
z[@ﬁf*||“’+2s]/aﬁ ga(tyx,v—i—w)%dw. ( )
Rd
By Hoélder’s inequality and Lemma A.4, we have
|(0)1Q(0™ 1,07 95)~Q(0” f.(v)10™ g, )
" ’ V4w -9 _ (p)\4
10 gzl 1 ] I [ T g

Rd
SN0 goll Loe ey (0) 107 f x| - [1729].

Taking the L? norm in v and applying Lemma A.3 with = m > v + 2s + d, we have,
for each fixed z € T?,

[(©)9Q(% £,0 g5) — Q" £, (v)70” go) |l L2mey < Cl10% 9ol Lo )07

2 (R4)s
and as a result,
I3 < Cll(v)10° go |l L2(raxry 107 ol Lo (raxray 107 fl| L2, (T xR
< C”QU”%}];(TdXRd)”f”HT’jl(Td'de)v

by Sobolev embedding, since ||+ d+1<k—2< k.
If v+ 2s > —d/2, we have (6.8) as above. We then write, omitting the dependence of
gs on t and x,

/8 Jgo (v + w) < )1 = (vt w)? dw

| |d+2s
= (v)? / 8% go (v + w) (v + w)? {v+ wli';; 7 1
Rd
— (o)1 [0 g0+ w)lo + 01 = 0 g0} (0)) L ZE O

Rd

#1020 got0) [ 2 g

Rd
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1/2

e 97" g (v 4 w) (v + )4 — 8% g, (v)(v)9]? g ap
Sy | [ttt SE O e | 010 g0 0),
d

using Lemma A .4 again. Using this in (6.8) and integrating against (v)?0%g,, we have,
using Lemma A.1(b),

Jo % [ 160199 golzzmal 0 £ 117+
Td

X (I0)0%" go gy + 110} =20% g5 | 3 ey

LR

§/||<”>q3590||L3(Rd)H55 f||L%l(Rd)(||<U>qaﬁ gcr”Hg(Rd) + ||<U>q72saﬁ 9a||Lg(Rd)> dz
’]I‘d

S ||<U>q859cr|\L2(deRd)||<’U>maﬂ fHLZ(deRd)H<”>qga||Lch5(1rded)

S ||ga||§{§(’]l‘d><Rd)”f”H,’;(de]Rd)v

by the Sobolev embedding HL*™)/?] (T9) ¢ L(T?), since |8"| +2s+ [(d+1)/2] < k.
Returning to (6.2) and adding up all multi-indices 5 with |5| < k, we have shown

1d
5 190 13 axiay < C (Ul craxrany + Dligo Wrs raxmay + I BIZacraxrs )

with C' as in the statement of the lemma. Gronwall’s inequality completes the proof. O

The following (somewhat crude) estimates on the collision operator will be helpful in
our proof of local existence:

Lemma 6.3. The estimates

|QUF, G)llzz(raxra) < CIF | gass cpasga |G azcraxea.

[QE, G)llLee(raxray < ClIF || gasr (pasra) |Gl raes(raxray,

hold, for any g,m > v +2s+d and any F,G : T% x R* = R such that the right-hand
sides are finite. The constant C > 0 depends only on d, v, s, q, and m.

Proof. Writing
Q(F,G) = [F x| [""*](=A)*G + [F | - |"]G,

the conclusion follows from Lemma A.1(a), the Sobolev embedding H4T(T9¢ x R%) C
L>(T%xR%), and standard interpolation estimates for (unweighted) Sobolev norms. O
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Next, we prove existence for the linear isotropic Boltzmann equation:

Lemma 6.4. Let T > 0, m > v+ 2s + d, and ¢ > max{y + 2s + d, 1} be arbitrary. For
any f € L>([0,T], HZ2(T% x RY)) and g € HZT2(T? x RY) with f, g > 0, there
exists a solution

g € L=([0,T], HX*2(T* x RY)) nWh>2([0,T), L2_, (T x R?))

qg—1

to the initial value problem

{81:9 +v- vxg = Q(fa g)a
g(o,.’L’,U) = gin($7v)'

Furthermore, g > 0.
Proof. For T > 0, define the Banach spaces
Xr o= L®([0,T], H}* (T4 x RY) n Wh>([0,T], L2_,(T* x RY)).

q—1

Yp = L*([0,T], L2_;(T* x RY)) x H2*"*(T* x RY).

For fixed o € [0,1] and f € L>([0,T], H24*2(T? x R)), define the linear operator
Lo : X7 — Yy,
by
La(g) = (019 +0v- Vog —0Q(f19) = (1= )Asug 9| _ )

To verify that £,(g) is indeed an element of Y7, we note the following: for g € Xr, we
have from Lemma 6.3 and the fact that H24t2(T? x R9) embeds in C?(T¢ x R%), the
inequality

lov - Vag—0Q(f,9) — (1 = 0)Asagllrz | (Taxre
(6.10)
<cC (Hf”H,%nd“(deRd) + 1) lgll grzav2(paymay, 0<t<T.

The loss of one moment comes from the term ov - V,g. We also have O0;g €
L2([0,T),L2_;(T% x R?)) as a result of the W' norm included in the definition of
X7p. Finally, the function g is continuous as t — 0 from the time regularity included in
the definition of X7, and since g(t) € H7**?(T? x R?) uniformly in ¢, we indeed have

9),_, € H22(T4 x RY).
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From Lemma 6.2, we have for any g € X,

m

T
191l Lo (0,11, 1202 (axmay) < I£o(9) vz exp | © / (L4 1) 22 pa gy A
0

(6.11)
Next, we use the definition of £, and (6.10) to write

10l Loe (fo,71,12_, (TaxR4))
<||0g +ov-Vig—0Q(f,g9) — (1 — J)Az,ngL&([O,T],Lgfl(’]l‘dx]Rd))
+ v Vag + Q(f, 9) + Aawgllre(o,1),02_ (TexR))

< Lo (9)llve + C(HfHH,:f,fl(deRd)||9||Lm([o,T],H§d+2(Td><Rd))
< ClLs(9)llves

using (6.11) in the last line, with C' > 0 depending on f. Combining the last two esti-
mates, we have

19llx+ < CllLo(9)llvz.

Note that Ly is a surjective map from Xp to Yp, as this fact corresponds to the
solvability of the heat equation in R'*¢ with a source term R € L*([0,T], L2_, (T“xR?)).
Therefore, the method of continuity [19, Theorem 5.2] implies £; is surjective from X
to Y7, which means there is some g € Xt with £1(g) = (0, gin). This function g solves
(6.9), as desired.

The nonnegativity of g now follows from classical maximum principle arguments,
using the monotonicity of the operator Q(f, g), i.e. Q(f,g) > 0 at a nonnegative global
minimum of g in v. We omit the details. O

Now we are ready to prove local existence for the nonlinear equation:

Proof of Theorem 1.2. Let C be the constant from Lemma 6.2, and define

log 2

= QC’”finHHngrz(TdXRd) .

Define fo(t, z,v) = fin(x,v), and for each n, let f,41 solve the initial value problem

{atfn+1 + v Vafot1 = Q(fn, frt1), (6.12)

f0,) = fin,

on the time interval [0,T]. The solution f,41 exists and is nonnegative by Lemma 6.4.
By induction, assume
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1Fnll oe o1, 13042 (paxray) < 2l finll pzas2 pasray: (6.13)
From Lemma 6.2 with ¢ = 1, R =0, and m = ¢, we have

t

||fn+1(t)||Hgd+2(deRd) < HfinHHgd+2(Td><Rd)eXP C/(||fn(t/)||H§d+2(TdXRd) +1)dt’ |,
0

0<tLT.

By our choice of T, and our inductive hypothesis on f,, this implies

| frtr Ol zesz paxma < il gz paa) XN finllgzerz o,z T)

S 2HfinHH§d+2(Td><]Rd')’

and we have shown that (6.13) holds for all n.

To prove regularity in ¢, we differentiate the equation 9; f,4+14+v-Vy fns1 = Q(fn, fr+1)
by some partial derivative 9° in (x,v) variables with |3| < d + 1. Using Lemma 6.3 and
the triangle inequality, it is straightforward to show

10704 frsr ()22, (Taxme)

<C (||fn+1HH(\1ﬁ\+1(deRd) + ||fn||H(|IB|+d+1(']I‘dXRd)||fn+1||Hjir‘lm(’]I‘ded)) )

uniformly in ¢. Since |3| < d + 1, we conclude f,, is bounded in W1°°([0,T7, Hgfll(Td X
R%)), uniformly in n.

Therefore, a subsequence of f, converges weak-x in L*([0,T], H}**?(T¢ x R?)),
strongly in LOO([O,T],Hgfll(Td x R%)), and pointwise a.e. to a limit f € L>([0,T],
Hgd“(Td x R%)). To take the limit in the equation, we use the distributional form: for
any smooth ¢ with compact support in (0,7) x T x R?, we have

- / frt1(0r +v - Vy)pdodadt

[0,T]xTdxR4

= / (PQ(fry fr) + PQ(frs fn1 — fn)) dodzdt

[0,T]x T4 xR

[0,T]xTdxRe R4 xR4

+ / OQ(frns fat1 — fn)dvdadt,
[0,T]xT4xRe
(6.14)
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by (2.2). For the first term in this right-hand side, since ¢ is smooth, a second-order
Taylor expansion shows that B(v, v., w)[@) + ¢ — s — @] & [0 — v, +w| 72 |w| =925 |w)|?
is integrable near w = 0. The convergence of this term then follows from the point-
wise convergence of f, — f. The second term on the right in (6.14) converges to zero
because of Lemma 6.3, the uniform bound (6.13), and the strong convergence of f,, in
L”([O,T],Hgfll(?l“d x R%)). The left-hand side of (6.14) converges as a result of the
weak-# convergence of f,, in L*°([0,T], H2*"2(T% x R%)). In the limit, we obtain (after
using (2.2) again)

— / fOr+v-Vy)pdvdrdt = / eQ(f, f) dvdz dt. (6.15)

[0,T7)xTdxR4 [0,T7)xTdxR4

We claim that f is continuous in all three variables on [0, T]x T¢xR?. Indeed, the uniform
bound for f,, in Wtee([0, T, ijll(Td xR%)), combined with Sobolev embedding, implies
that f, are uniformly Holder continuous in (¢, x,v), so the subsequential limit f is also
continuous. Sending ¢t — 0, this implies f(0,z,v) = fi,. Also, since f is continuous in ¢
and satisfies (6.15) for any smooth ¢, a standard argument implies f is differentiable in
t, and therefore we can integrate by parts on the left side of (6.15).

We have shown that f solves the nonlinear equation (1.11) pointwise. This so-
lution f is naturally entitled to the energy estimate of Lemma 6.2 with ¢ = 1,
f = go, and R = 0, and the same argument that was applied above to 0:f,+1 implies
fewr=([0,T], H{ (T x RY)).

Next, we prove uniqueness. If f and g are two solutions in L>([0,T], H2*+?(T*xR%))
with the same initial data fi,, then h = f — g solves

with initial data hyy, = 0. By Lemma 6.2 with R = Q(h, f), we have for any t € [0, T],

1R 2042 (T a xRay

< C [ [1Q(h, f)(t")L2(raxray dt’ exp (CT||9||Loo([o,T],H3d+2(1rdde)))

<C ||h||Hg+1(Td><Rd)||fHH§(Td><Rd) dt’ exp (CTHg”LOO([o,T],Hgd”(Tdde))) )

S, O~

by Lemma 6.3. Using our assumption that f and g are bounded in L>°([0, T7, H3d+2(Td X
R%)), together with interpolation and Grénwall’s inequality, we conclude h = 0 on [0, T x
T? x RY.

Now, let go denote the value of ¢ used above, such that fi, € Hgod"'z(?l“d x RY). The
foregoing proof provides a time of existence T' > 0 depending on the H q20d+2 norm of the
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initial data. For initial data with more regularity and decay, we would like to propagate
all weighted Sobolev norms that are finite at ¢ = 0 to this same time interval [0,7].
Suppose that the Hg,('IFd x R%) norm of f;, is finite, for some k > 2d + 2 and ¢’ > qq.
We prove by induction that

”f(t)HHg,(de]Rd) < ijtI’vTa te [OaT]a (6'16)

for all 2d 42 < j < k, for a family of constants C} ;7. The base case j = 2d + 2 follows
immediately from the energy estimates of Lemma 6.2 witho =1, g, = f, R =0, m = qq,
and ¢ = ¢/. Assuming (6.16) holds for some j, we differentiate the equation (1.11) by a
single partial derivative in v, giving

9 (Ov, f) + v Va(Ou, f) =Q(f, 00, f) + R
with
R = Q(avlfv f) - amlf = Cl[avif * | ’ |"/+28](_A)Sf+62[3vif * | ’ |’y]f - axlfv

for constants ¢, co defined above, depending only on d, v, and s. For § > d/2 + v + 2s,
we write

IRl 2, (raxra) S 1(=A)fllLes

A0 f o |- Pl raxray 1 fllL2, (rexra) + 10, fllz2, (xaxre)-

o (TaxR ||, f x| - "2\l 2 , (TaxRa)

To bound this expression, we apply Sobolev embedding to (—A)?® f, Lemma A.2 to 9, f *
| - |7F2% (since ¢’ > qo > d/2 + v + 2s), and Lemma A.1(a) to 0y, f * |- |7. Overall, we
obtain

ROl z2, (raxre) S H(_A)Sf”H;i,Tg(’]rded)”avif”Li,(deRd)
10 fllees (raxmay 1 fll 2, (vaxmay + [100: f L2, (1o xRa)
S Hf||H2d+2 TdxR4) + ||f||H§,d+2(Td><]Rd)7

after another Sobolev embedding applied to 0,, f. We have used the fact that d+1+2s <
2d + 2. We conclude R is bounded in L*([0,T], Lg, (T4 x R%)), so in particular it is in
LQ([O,T},Lg,(Td x R%)).

We apply Lemma 6.2 to 0,, f, with j playing the role of k, which yields

||8'Uif(t)||H;,(Td><Rd) < ||avjfin||H;,(deRd) +C/HR(tl)Hii,(deRd)dt/
0

t

<exp | C / (L £ g, agey) A
0
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The inductive hypothesis (6.16) and the assumption 0, fin € Hg, (T4 x R?) implies
||81,Jf(t)||Hj/(deRd) is uniformly bounded on [0,7]. The same argument (but slightly

simpler since the remainder R has one fewer term) applies to first-order partial derivatives
of f in x. Therefore, the inequality (6.16) holds for j + 1, and the proof is complete. O

Finally, we address the spatially homogeneous case, Theorem 1.3. On the one hand,
existence for the homogeneous equation is a special case of the inhomogeneous problem.
However, by repeating the argument above and using Sobolev embeddings in R? instead
of T4 x R%, we can improve the regularity requirement on fi, to H g+3 (R?). The case
analysis in the proof of Lemma 6.2 breaks down in a similar way, with the Sobolev
exponent [(d+ 1)/2] replacing d 4+ 1. Other than this, the only changes to the proof are
(i) fewer applications of Holder’s inequality needed because there is no x dependence,
(ii) the second term on the left in (6.2) does not appear, and (iii) there is no moment
loss in the proof of Lemma 6.4. We omit the details because the proof is strictly simpler
than in the inhomogeneous case.
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Appendix A. Technical lemmas

First, we collect two standard upper bounds for convolutions with power functions
| - |*. We omit the proof, which is elementary.

Lemma A.1. Let f : R? = R and —d < p < 0.
(a) If f € Lgo(Rd) for some q > d + i, then
[f ] " poe may < CHfHLgO(Rd)a

for a constant C' > 0 depending only on d, u, and q.
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(b) If f € LZ(RY) for some q > d/2 + pu, then

I1f 1 o ay < ClIf [l 2 Ray,
for a constant C' > 0 depending only on d, p, and q.

The following is a weighted version of Young’s inequality for convolutions. The proof
is the same as [31, Lemma 4.2], which addressed the case d = 3.

Lemma A.2. If —d < pu <0, m>d/2+4 u, and £ > d/2+ pu+ (d/2 —m)4, then for any
g € L2 (RY), there holds

lg =1 1"z, may < Cligllzz, ®a),
for a constant C' > 0 depending only on d, p, m, and £.

Next, we have an estimate similar to the previous lemma, that is somewhat sharper
in terms of weights:

Lemma A.3. For —d < u < —d/2, 0 > u+d, and g € L3(R?), one has

g * |- 1“2 ®aey < Cllgllzwe)-

Proof. Dividing the convolution integral into regions with |w| > |v|/2 and |w| < |v|/2,
we first have

g(w)|v — w|* dw < (v)~* () g(w)|v — wl* dw
{lwl>]v|/2} {lwl>]v]/2}
< (o)) g |- M),
so that, by Lemma A.2 with m =0 and £ = 6,

2

g(w)lv —w[*dw | dv < /<U>_29[<~>99 * |- 12 dv < [|(0) glI22(a),
ke \flulZlol/2) Re

where we could apply Lemma A.2 because p < —d/2 and 6 > u + d. For the integral
over {|Jw| < |v|/2}, we use |v — w| > |v|/2 to write

g(w)l — w] dw < / g(w)wl’ |0 — w]# dw

{lwl<[vl/2} {lwl<|vl/2}
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1/2
<lglulliom | [ ol ™o - wPrdw
{wl<|v|/2}
1/2
<lolpmot | [ el dw
{wl<|v]/2}
< Hg||Lg(Rd)<U>“_9+d/Q7
and therefore
2
g(w)lv — w|* dw dv < ||9||L5(Rd) /<”>2(“_9)+d dv < ||9||L§(Rd),
Rd  \{|w|<]|v]/2} Rd

since 0 > p + d. Combining our estimates for {|w| > |v|/2} and {|w| < |v|/2} implies
the conclusion of the lemma. 0O

Finally, we collect three estimates about the regularity of the functions (v)~? and
|v|~2. We omit the proofs, which are elementary.

Lemma A.4. For g > 0 and s € (0,1),
(=A)*(v)"? < Clo)~*%,

/ (<'U +w>—q - <U>_q)2 dw < C<U>_2q_2s,

|w]d+2s =

Rd
[lv]| Y2y < Clz|797°, z€RY,

where the constant C' depends on d, s, and q. In the last inequality, we use the notation

dloncs — sup 1900 91|
- veERE |U - Z|S
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