OPTIMAL DOMAINS FOR ELLIPTIC EIGENVALUE PROBLEMS WITH
ROUGH COEFFICIENTS
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ABSTRACT. We prove the existence of an open set minimizing the first Dirichlet eigenvalue of
an elliptic operator with bounded, measurable coefficients, over all open sets of a given measure.
Our proof is based on a free boundary approach: we characterize the eigenfunction on the
optimal set as the minimizer of a penalized functional, and derive openness of the optimal set
as a consequence of a Holder estimate for the eigenfunction. We also prove that the optimal
eigenfunction grows at most linearly from the free boundary, i.e. it is Lipschitz continuous at
free boundary points.

1. INTRODUCTION

This article is concerned with the problem of minimizing the first Dirichlet eigenvalue of an
elliptic operator L = —V - (A(z)V-) over all open sets of a given measure. More precisely, for
d > 2, suppose A(z) is a symmetric, d X d matrix of bounded, measurable coefficients, with
constants 0 < 6 < © such that |[A(x)] < © and A;;(z)viv; > Olv|? for all z,v € RY  (More
succinctly, 01 < A(z) < ©1.) For any open 2 C R, define

(1.1) A(Q) = inf Jo Vu- (AVu) dz.
werl(@)  Jou?dz
uZ0
Our goal is to find Q minimizing A\{* over the class of open sets with volume 1. The key novelty of
our problem is that no regularity assumptions are placed on A(x).

In the simplest case L = —A, the classical Faber-Krahn Theorem [12, 19] states that for any
open set {2 of finite measure, A1 (2) > A1 (Bgq), where Bq is a ball with the same volume as 2. This
has been followed by a large (and still growing) literature on existence and regularity of optimal
domains for Laplacian eigenvalues, and more generally eigenvalues of elliptic operators, subject to
various constraints and boundary conditions. We give some references below in Section 1.2. To the
best of our knowledge, every prior result on this topic either (i) imposes a regularity assumption on
the coefficients A(z), or (ii) works in the relaxed setting of quasi-open sets and finds a minimizer
in this larger class. The present article is the first to obtain an open minimizer in the general case
of bounded, measurable A(x).

Like many other authors, we use a free boundary approach that is based on a variational
characterization of u,, the first eigenfunction of L on the optimal domain €,. When A(z) is
sufficiently regular, the Lipschitz class arises naturally as the best global regularity one can expect
for w,, since |Vu,| generally has a jump across the boundary of .. In our case, the irregularity
of the coefficient matrix A(x) means that u, is merely Holder continuous. Therefore, common
free boundary techniques that are well-adapted to the Lipschitz regularity class are not applicable,
and we have to replace them with arguments that are compatible with Holder continuous state
functions. After showing u, is Holder and concluding €2, = {u, > 0} is open, we prove in addition
that u, satisfies Lipschitz-like growth bounds at the boundary, i.e. we recover the same upper
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bounds at the boundary that are seen in the Laplacian case. In principle, this is counterintuitive;
a solution is more regular along the free boundary then in its set of positivity.

1.1. Main results. To state our results precisely, we first note that in general, there is nothing
to prevent minimizing sequences from escaping to infinity. It is easy to construct examples where
this occurs: e.g. let B, be a sequence of disjoint balls with volume 1 centered at points x, with
|z, | — 00, and let A(z) = (1+1/n)I in B,, and 21 elsewhere, where I is the d x d identity matrix.
For such A(z), the infimum of A over open sets of volume 1 is not achieved. To prevent this
situation, we could fix a large open ball B C R? with £4(B) > 1, where L% is Lebesgue measure,
and optimize over subsets of B. In fact, our analysis holds true if B ¢ R is any bounded open set
with smooth boundary and volume greater than 1. For such a B, we define our class of admissible
sets as

C:={Q open,Q C B,L%(Q) = 1}.
We also introduce the useful notation
Mg o(B) = {A € L>®(B,R™%) : A(z) symmetric, 0 < A(z) < OI in B.}.
Our main result is as follows:

Theorem 1.1. With A € My e(B), there exists a set Q. € C minimizing \{(Q) over C. Fur-
thermore, the eigenfunction u, € Hg(Qy) corresponding to \{'(), extended by zero in B\ ., is
locally Holder continuous in B, and for any compact K C B,

usllco(rna.) < CllusllLz.),
with o € (0,1) depending only on d, 0, and ©, and C > 0 depending on d, 6, ©, K, and LY(B).

In particular, if the optimal domain 2, does not intersect the boundary of B, then u, is globally
a-Hoélder continuous on €)..

It is also clear from our proof that for any optimal domain (even quasi-open), the corresponding
eigenfunction is entitled to the same Hélder estimate as u,. In particular, any minimizer over the
class of quasi-open subsets of B is in fact open.

As mentioned above, one naturally cannot expect anything better than Hoélder continuity for
the eigenfunction wu, in the interior of 2,. However, our next result shows that u, satisfies a
Lipschitz-like growth estimate along 0f),:

Theorem 1.2. With u, and Q. as in Theorem 1.1, and any boundary point xog of Q. that lies
inside B, there are constants C,r > 0 depending only on d, 0, ©, LY(B), and dist(zo,B) such

that
|us ()|

< C|us , €B .
7 — 0] = lucllz2(0.), @ € Br(zo)

1.2. Related work. Summarizing the large body of work on optimal domains for eigenvalues of
the Laplacian, including higher eigenvalues and functions of eigenvalues, is outside the scope of
this introduction, so we refer to [18, 5, 6, 24, 9, 20, 21, 8, 25] and the references therein, as well as
the surveys [17, 10].

Results that apply to variable-coefficient operators are less common. The well-known general
result of Buttazzo-Dal Maso [11] allows one to minimize A{*(2) over the class of quasi-open subsets
of B that have volume 1. Quasi-open sets are the positivity sets of H! functions; see e.g. [11] or
the book [7] for more information on quasi-open sets and their role in optimization problems. The
result of [11] includes operators with rough coefficients and actually applies to much more general
shape functionals. However, their approach does not guarantee that the minimizer €2 is an open
set.
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Under the assumption that A(z) is Lipschitz continuous, Wagner [31] proved existence of a min-
imizing set for A{* that is open and has finite perimeter, and that the corresponding eigenfunction
is Lipschitz. His proof used a penalized functional of the form

_ J5 Vw - (AVw) dx

(12) Jolw) = P TE  ( fw> 0),
where for € > 0,

e(t—1), t<1.

Minimizers of J. were shown to be Lipschitz continuous using techniques inspired by the study
of Alt-Caffarelli-type free boundary problems, e.g. [2, 3, 1], and since the Lipschitz estimate
is independent of ¢, it also applies to eigenfunctions corresponding to minimal domains for A{'.
However, Wagner’s proof uses the regularity of A in an essential way, so the techniques of [31] are
not applicable to our problem.

More recently, Trey [29, 30] studied optimal domains for the first k eigenvalues of an operator
with Hoélder continuous coefficients, and derived regularity results for both the eigenfunctions and
the optimal sets. In [26], the authors studied a shape optimization problem based on an operator
with drift —A+V (z)-V for some bounded vector field V. We also refer to [22] for the Faber-Krahn
problem on a Riemannian manifold, and [14] on the homogenization of eigenvalue minimizers in
the context of Lipschitz continuous, periodic coefficients A(x).

1.3. Proof summary. The basis of our argument is the following penalized functional: for any
d,e > 0, define

(1.3) Fsc(u) := /B Vu - (AVu) dx—&-%

9 1
/Bu dx—1‘+5(£d({u;«é0})—1)+.

Note that Fs.(|u|) < Fs.(u), so we can always assume minimizers of Fs. are nonnegative. For
technical reasons involving competitor functions that change sign, we use this functional rather
than one defined in terms of £¢({u > 0}).

We prove in Lemma 2.1 that for 4, > 0 small enough, minimizers of Fis . satisfy the constraints
Jpu*dz =1 and L%({u # 0}) < 1. The choice of Fj. and the proof of Lemma 2.1 are inspired by
the work of Briangon-Hayouni-Pierre [4], who studied optimal domains for the first Dirchlet-Laplace
eigenvalue, subject to an inclusion constraint. See also [15, 28] for earlier, related approaches.

Next, we apply a flexible approximation method for proving Holder continuity of minimizers
of Fs.. The key observation is that our functional Fj. behaves well under rescalings of the
form u — v(z) = ku(zo + rz). More precisely, v minimizes a functional of a similar form but
with 72/6 and k2r?/e replacing 1/6 and 1/e. One may then expect that if r%(1 + x?) is small
enough, rescalings of u are approximated by A-harmonic functions, and we prove via that such an
approximation indeed holds, in the L? sense (Lemma 3.3). This approximation is used to prove
Holder continuity for u, which implies {u > 0} is open, and therefore a minimizer of the original
optimization problem.

The scaling property of Fj . described in the previous paragraph corresponds to Lipschitz regu-
larity. (To see this, consider the rescaling u — p~tu(xg + px), which preserves k?r? =1 as p \,0.)
This cannot be fully exploited in general, since the regularity of w is limited by the irregularity of
A(x). However, at boundary points of {u > 0}, we can improve our approximation argument for
rescaled minimizers using our Holder estimate, and conclude the rescaled function v is uniformly
close to a much smoother configuration (Lemma 4.1). This uniform estimate is iterated at small
scales to obtain the Lipschitz growth estimate of Theorem 1.2.
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This strategy for proving regularity is related to earlier work of the second named author: see
[27] which dealt with critical Poisson equations, as well as [23] (joint with Lamboley and Sire) on
Alt-Caffarelli free boundary problems with singular weights.

Let us comment on the dependence of constants in Theorems 1.1 and 1.2 on the measure of B.
This dependence is technical (we believe) and arises from the estimates needed to show minimizers
of our penalized functional satisfy the volume constraint, see Lemma 2.1(b). If B is a sufficiently
large ball, one might expect to prove that minimizers have diameter bounded independently of B,
following an approach like [24], which found that domains of large diameter cannot be minimizers
to a spectral problem involving Laplacian eigenvalues. We do not explore this issue further in the
present article.

1.4. Open questions about the optimal domain. One would like to understand how regular
the boundary of the optimal domain 2, must be. Because we are working in a rough medium, it
is not obvious how much regularity we can expect. In the positive direction, the next step would
be density estimates of the form cL4(B,(z9)) < L4(Qx N B.(w0)) < (1 — ¢)L4(B,(20)) for some
constant ¢ € (0, 1), where zy € 9, and r > 0 is sufficiently small. If we could prove nondegeneracy
estimates that say u. grows at least at some linear rate from 0, then with the matching upper
bounds of our Theorem 1.2, we could derive density estimates for 9€2, by adapting standard proofs
for Alt-Caffarelli minimizers from e.g. [3].

Our functional Fs. is not convenient for proving nondegeneracy because it is not a strictly
monotonic function of £4({u # 0}). A natural idea from the literature would be to use a different
penalization term that rewards volumes less than one by a small amount, such as f.(£¢({u > 0}))
n (1.2) as in [31]. A related approach can be found in [5] where, working in the Laplacian case,
the authors show w, is a local minimizer of a functional like

[ vl = [ wt et > o),

with respect to perturbations v such that 1 —h < L£4({v > 0}) < 1, where A, = A\;(€) and
w > 0 is sufficiently small, depending on h. The proof of this minimization property in [5] uses the
Lipschitz continuity of u, in the interior of €2, and therefore, like [31], it is not directly applicable
in our context.

Whether this obstacle is an artifact of the available methods, or whether nice regularity prop-
erties for 0€), are actually false in the context of discontinuous media, remains an interesting
question for future work.

1.5. Organization of the paper. In Section 2, we show that minimizers of Fjs. satisfy the L?
and volume constraints for small 6 and . In Section 3 we prove that minimizers u are Holder
continuous and conclude Theorem 1.1. In Section 4, we prove the growth estimate of Theorem 1.2.

2. THE PENALIZED FUNCTIONAL

The existence of a minimizer u of Fs. over H}(B) follows by standard arguments. In detail,
taking a minimizing sequence u,,, one extracts a subsequence converging weakly in H!(B), strongly
in L?(B), and pointwise a.e. to a limit u that is nonnegative a.e. It is well known that the first
two terms in Fj . are lower semicontinuous with respect to weak H'(B) convergence. For the last
term, we have 17,201 < lim, o0 144,20} a.e., and Fatou’s Lemma implies (L9{u #0}) — 1), <
limy, 00 (L4({tp, # 0}) — 1)4. We conclude u is a minimizer for Fs.. As mentioned above, we may
assume u > 0.

Next, comparing u to some fixed function v € Hg(B) with [, v?dz =1 and L4 ({v # 0}) =
we see that Fj.(u) < Cj, or equivalently,

(2.1) / Vu - (A(z)Vu)de + — 5 /Bu2 dz — 1‘ + é (£4{u #0}) — 1)+ < Cy,
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for some Cj > 0 independent of € and J.
We now show that minimizers of Fj. satisfy the L? and volume constraints that we want our
optimal eigenfunction to satisfy:

Lemma 2.1. (a) Let Cy be the constant from (2.1). If § < dg :=1/(2Cy), then any minimizer
u of Fs. over H}(B) satisfies
/ uw?dr = 1.
B

(b) Assume § < 1/(2Cy) as in (a). There exists g > 0 depending on d, 0, and L(B), such
that any nonnegative minimizer u of Fs. over H}(B) with € < ¢ satisfies

£4{u>0}) < 1.

Proof. From (2.1) and our assumption § < 1/(2Cp), we conclude [ u?dz > 1, and in particular
u # 0. Therefore, since Fs.(u) < Fs(u/||ull2(B)),

1 Vu|?d
/|Vu|2dx+f /u2dx—1 gw,
B (5 B fBUde
which implies

1
(2.2) /Vu|2dx</ u2dx—1>—|— /qux—ll/qung,
B B 0|/B B

and therefore [, u?daz < 1. Using this in (2.2), we have

(/ u2dx—1) (/ |Vu|2dx—1/u2d:ﬁ)§0.
B B 0JB

If [, u?dz <1, then this implies

[ |Vu|? dz:

(2.3) s
B

1
>77
)

which is a contradiction for § small enough. Indeed, (2.1) implies [, |Vul?dz < Cp and [ B u?dx >
1 — Cyd, so (2.3) cannot happen if 6 < 1/(2Cp). This concludes the proof of (a).

To prove (b), following [4], assume by contradiction that £¢({u > 0}) > 1. Then for ¢ > 0 small
enough depending on u, the function

u' = (u—t)+
also satisfies £¢({u; > 0}) > 1, and the minimizing property implies, using [u*dz = 1,

1
€

[(£4({u' > 0}) = 1) — (£L4{u > 0}) —1)]

/B(ut)2 dz — 1‘

= —éljd({o <u<th)+

! /B(ut)de _ 1‘

/ [Vu - (AVu) — Vu' - (AVu')] dz <

+

1
5
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and, using [u?dz =1 again,

/ Vu - (AVu)dz + 1Cd({O <u<ty) <
{0<u<t} €

[ b = () as
/ u?dx + 2t/ udx
{0<u<t} B
1 2 d/m\1/2
5 (0cuct) u”dx + 2tLY(B) ,

using Holder’s inequality and [, u?dz = 1 in the last inequality. This implies

IN
S e N

IN

1 2 2 d B 1/2
/ {GVUQ—G——U] dr < &
{0<u<t} € d d

Applying the coarea formula for Sobolev functions [13] on the left, we have

2 d(p\1/2
/ / (9|v |+ lVe - |/6) de,ldsg%.
{u=s}

Minimizing the expression g(z) = 0z + (1/e — s%/8)/z over z € (0, 00), we obtain

g(z) > 2[0(1/e — s* /0|2,
and if s <t < ,/0/(2¢), we have g(z) > /20/e. Therefore, for such ¢,

t d 1/2
,/%// dH, s < ZEAB)T
€ Jo J{u=s} d

Applying the isoperimetric inequality® to the left-hand side, this implies
t d(p\1/2
\/5/ Cal?({u > 5})(d71)/dd5 < M
0
Dividing by ¢ and taking the limit as ¢ — 0, we obtain
\/50 f Ed( )1/2
5 )

since £4({u > 0}) > 1. This is a contradiction for ¢ sufficiently small. O

From Lemma 2.1, we immediately obtain the following important fact:

Proposition 2.2. Assume that § and £ are small enough as in Lemma 2.1.
If u is a nonnegative minimizer of Fs. over Hi(B), then Q, = {u > 0} is a minimizer of \{!
over
C':={Q open,Q C B, L) < 1}.

Conversely, if  is a minimizer of M\{* over C', then the L?-normalized first eigenfunction of L on
Q is a minimizer of Fs. over Hi(B).

1Here, we use the standard fact that almost every level set of u € H'(B) is countably (n — 1) rectifiable, in order
to apply the isoperimetric inequality.
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3. HOLDER CONTINUITY

In this section, we prove Holder continuity of minimizers. Throughout this section, w is a
minimizer of Fs. over H}(B), for some 6, > 0. For now, we allow our constants to depend on §
and €, and we do not assume that § and € are small as in Lemma 2.1.

First, we record how the minimization problem transforms under zooming in near a point:

Lemma 3.1. For any xg € B, k>0, £ € R, and 0 < r < dist(z,0B), let
v(x) == ku(xo +ra) — &, x € By.

Then v is a minimizer of

2
Fier(w) = . Vuw - (A(xo + ra)Vw) dz + %

v=r2rd 17/ w?dz |,
B\Br(xo)

v =1L u # 0} \ Br(x0)),

[ wam o] T (e £ € ),

HX(By)={wec H (By):w—v & Hj(By)}.

Proof. Direct calculation. O

Next, we have a Caccioppoli estimate for rescalings of u, which will be needed in our compactness
argument:

Lemma 3.2. With xq, K, r, &£, and v as in Lemma 3.1, we have
(3.1) / |Vo|?dz < C ((H2 +&)r* + (1+1%) / v? da:) )
B2 B,

with C depending only on d, 8, ©, 6, and ¢.

Proof. Let A(x) = A(zo 4+ rx). Let ¢ be a smooth function with compact support in By, with
0 < ¢ < 1, to be chosen later. Letting w = v(1 — ¢?), since w = v on 9By, we have F, ¢ ,(v) <
Fi ¢ r(w), which implies

/Bl[Vw(fle)Vw-(fle)]dx < ? ( /Bl(erf)deu _ /Bl(v+§)2da:y>
F (e # ) ), — (2 # -6 =),
<Z|[ 1w+ o -0 eran
(e # ) - L9 £ ),

Straightforward calculations with w = v(1 — ¢?) now imply
Vo - (AV0)C2(2 - () da < 4/ [zﬂ@vg A(AVE) — vC(1 — )V - (AW)] da
B,

r2

i

By

Clo*(¢* —2) — 2¢v]da
B

+ T (L £ —€)) — Lo £ -€D))
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By the ellipticity of fl(x), Young’s inequality, and 0 < ¢ < 1, we have

0| ¢*Vol*de
B1

9 9 272 5 2522,
<40 (V| + [v[¢| V¢ Vo) dx+—§ vidr 4+ € |v|dx | + 5 LY By)
B, B B,

0 2 2 1 2 2 r’ 2 2 26%1%
<= C*|Vu[*de +40 (14 — vIVC)*de+ — (3 | vidx+&° |+ ——LYBy).
2 20) Jp, ) By €

B
Combining terms, and choosing ( radially decreasing in By such that ( =1 in B; and ¢ = 0 outside
By, with |V(| < 4, we have

2 2,2 2,.2
/ |Vo|?dz < C T——i—l / vzdx—l—g—r—i—ﬁr ,
By ) By ) €

which implies the statement of the lemma. ]

The following key lemma says that up to suitable rescalings, u is locally approximated by Ag-
harmonic functions, for some Aj in the same ellipticity class as A.

Lemma 3.3. Given 7 > 0, there exists M = M (d,0,0,6,e,7) > 0 sufficiently small, such that for
any rescaling v of u, defined as in Lemma 3.1, such that

(14 r*+€%) < M,

][ v2dx < 1,
B,
there holds

(3.2) ][ lv—h]2de <7,
B2

and

where h is a weak solution of
(3.3) —V - (Ao(x)Vh) =0, in By,
for some Ay € My e(By/2), and h satisfies fBl/z h?dx < 2442 In fact, we can take h to be the
Ag-harmonic lifting of v in By .

By a weak solution of (4.3), we mean that fBl/2 V- (Ag(z)Vh) dz = 0 for any ¥ € Hj(By2).
Proof. Let v(x) = ku(xg+rz) be as in the statement of the lemma, and define Ag(z) = A(zo+rx).

We will need the following bound on v in H!(B; /2), which follows from the Caccioppoli estimate
of Lemma 3.2:

(3.4) / |Vo|?dz < C ((H2 +&Hr? + 1+ r2)/ v? dx) <C1+M) (1 —|—/ v? dx) .
Byo B, B,
Next, define h : By, — R as the minimizer of

F(w) = Vw - (Ag(z)Vw) dez,
Bi/s
over
{we H" (By2) : w—v € Hy(By2)}.
Let us also define h(z) = v(x) for x € By \ By3. As usual, this h is the weak solution to

-V (A()(l')vh) == O7 T e B1/2,
h—ve Hol(B1/2)7
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which in particular implies the identity fBl/z V(v = h) - (Ap(x)Vh)dz = 0. Using this identity,
Poincaré’s inequality, and the minimizing property of v (from Lemma 3.1), we have
(3.5)

][ (v—h)*’dz < C V(v —h)]*da
Bl/Q Bl/2
C
< — V(v—h)- - (Ag(z)V(v—h))dz
A B2

= % ( Vo - (Ap(x)Vv)de — Vh - (Ay(z)Vh) dac)
Bys

By/2

T2
SF /Bl(h+§)2dm—y—/}31(v+§)2d:v—1/>
+ 5 (e £ =) =), - (£ £ =€) =),
702 T2Ii2
<5 /191/2(h2 — 0 +2¢(h —v)) dz| + — (Li{n# —€}) — LY v # =€) .,

by the triangle inequality. (Here, v and v are defined as in Lemma 3.1.) To bound the last
expression, we begin with the second term:
212 K2

— (£'({h £ -€h) - LY{v # =€), < =

for some constant C; > 0 depending only on d and . Next, we have

2
gcr</ h2dx+/ v2dm+§2>.
g Bi/2 B2

We need to estimate fBl/z h? dx, and this will be accomplished via a bound for fBl/z (v — h)?dx

that is more crude than (3.5). Another application of the Poincaré inequality gives

7”2!<02

L£YBy) < C1 M,

36) /B (h2 = v® + 26(h — v)) da
1/2

/ (v—h)*de < C |V(v—h)]*da
By /2 By o
<C (IVv]* + |Vh|?) dz
B2
C
<= Vo - (Ag(x)Vv)dr + Vh - (Ao(z)Vh)dx
A B2 B2
2
< ¢ Vo (Ao(x)Vv)dx
A B2
2CA 2CA
gi \Vv|2dx§i(1+M) <1+/ v2dx).
A B2 A By

by the minimizing property of h and by (3.4). This implies

/ h2dx§2/ v2dz+2/ (v—h)*da
By /s B2 By»

4CA
§2/ vzdx—&—c(l—i—M)(l—i—/ Uzdl‘)
B2 A B,
< Caaa(l+ M),
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since JCBl v?dz < 1 by assumption. Taking M < 1, we have shown fBl/Z h?dx < Co for some
constant Co depending only on A, A, and d. Returning to (3.6), we have

T2

0

Cr? 9
ST(02+1+§ ) <C(1+ Co)M,

/ (h? — 02 + 2¢(h — v)) da
B2

by our assumption on r and £. Combining all our estimates, we finally have

][ |v—h|2dx§CM,
B2

for a constant C' > 0 depending on §, €, d, A\, and A. Choosing M < 7/C, we have established
(3.2). We also choose M small enough that

][ h*dz < 2][ (v—h)Qda:—&—Q][ v? dz < 20M + 29+ < 24+2)
B2 B2 B2

as desired. O
The next lemma is a local oscillation estimate that uses the approximation of Lemma 3.3:

Lemma 3.4. There exist M >0, a € (0,1), po € (0,1/4), and K > 0, such that for any xo, k, r,
and & with r*(1 + k2 + £2) < M such that

v(x) = ku(xg +1x) — &, = € By,
satisfies fBl v2dz < 1, there holds

(3.7) Folo—uldr <
By,
for some constant p with |u| < K.
The constants o and K depend on d, 0, and ©. The constants pg and M depend on d, 0, ©, ¢,
and €.

We intend to apply this lemma first to localize around a point xy € B and ensure the rescaled
L? norm is less than 1 by a suitable choice of x, and then iteratively with r and x chosen according
to the scaling of a-Holder continuity.

Proof. Let 7 > 0 be a constant to be chosen later. With v as in the statement of the lemma, let
h: B — R be the solution to =V - (AVh) = 0 with

][ lv — h|?dx < T,
B2

whose existence is guaranteed by Lemma 3.3. The choice of 7 will determine M. Since fBl/2 h?dz <

24+2 the interior regularity estimate for the equation satisfied by h [16, Theorem 8.24] implies
|n(z) = 1(0)] < Clz|?,

for any x € By/4, where C > 0 and 3 € (0,1) depend on d, 6, and ©. With py € (0,1/4) to be

chosen later, we now have

vixr) — 2(1}' ’Ux—flf2flf X)) — 2{E
me h<o>|d<2<f jo(z) h<>|d+f Ih(z) h<o>|d>

PO PO BPO

< oldprdr 4 QCpgﬁ.

1\"” d—2 d+8
00=<40) ;o T=2""py" ",

Choosing
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we have

]i o) — h(O) dz < pf.

PO

Letting o = 8/2 and p = h(0), we have shown (3.7). The bound |u| < K is a result of the interior
L2-to-L> estimate satisfied by h [16, Theorem 8.17]. O

Next, we iterate Lemma 3.4 to show that under the same hypotheses, v is Hélder continuous at
the origin:

Lemma 3.5. Let M, «, and py be the constants granted by Lemma 3.4, and let
v(x) = ku(zg + rz),
be a rescaling of u with r*(1+x2) < M, such that fBl v2dx < 1. Then there exists C > 0 depending
only on d, 0, ©, 6, and €, such that
[v(z) —v(0)| < Clz[*,  if x| < po.
Proof. Our goal is to show by induction that

(3.8) ][ (v —pj)?de < pd?®, j=1,2,...,
B ;
)
for some convergent sequence p;. The base case j = 1 follows directly from Lemma 3.4, with
| < K. 4
Assume by induction that (3.8) holds for some j > 1, with |u;| < K (1 — p}*)/(1 — p§). Note
that the upper bound for p; is the (j —1)th partial sum of the geometric series Zizo Kpi®. Define

o(ohe) =
vj(z) = %
0
ku(To + phre) —
= o , x € Bj.
Po

The inductive hypothesis (3.8) implies

][ U?dx:pa%a][ (v—p;)?de < 1.
By B
£0
Since v; is a rescaling of u with parameters zg, xk; = K‘,paja, & = ,ujpgja, and r; = rpé, we
also need to check that r2(1 + k% + £7) < M. Indeed, since the inductive hypothesis implies

il < K(1—p§)~", we have
(U + €)= 120 (L4 8700 + 1500 7%)
<P+ w0 R - ) 20,
Since pp < 1 and r2(1+k2+£2?) < M, we can choose pg smaller if necessary (depending on K, which
depends only on d, 6, and ©) so that p%(zfa)rzKQ(l —p§)"2 < 1M and r2p3j + ﬁ2r2p(2)j(17a) <

1r2(1 + &%) for any j, and as a result, rjz»(l + Ii? + §J2) <M.
Since all the hypotheses of Lemma 3.4 are satisfied, we obtain

][ |U] —M|2d$§pga7
By,

for some constant p with |u| < K. Translating back to v with the change of variables x +— péx,
this bound becomes

j 2a(j+1
][ o =1y — P4 wl> da < pg° Y,
BP6+1
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and we have shown (3.8) with p; 41 = p; + pjau. Using our upper bound for 1, we have
_ G+ Da

+Kp)* = K—"0
L= pg

— ol
il < lug| + P \/~LI<K1 0

which allows us to close the induction. .

Next, we claim y; is a convergent sequence. Indeed, our work above shows |pj+1 — pj| < pd* K
for all 7 > 1, which implies

+1 j+k—1 P
\#Hk*ug‘lS( C g T )Q)K<1_Op K,

for any k£ > 1, and therefore p1; is a Cauchy sequence. Letting po = lim;_,o p5, we let £ — oo in
our estimate of ;4 — ;| to obtain |ug — ps] < p*(1 — p§) ' K.

Finally, for any p € (0, pg), choose j > 0 such that pé'H < p < p}. From (3.8), we have

24 290 2 2 1 K? 2ja 2a
v — pol? da < o — sl da + 2a; — pol? <2 (5 + s ) P <
B, ' Js py  (1—=pf§)?
£0
with C' depending only on d, 0, O, §, and . This implies the conclusion of the lemma. |

We are ready to prove our main Holder estimate:

Theorem 3.6. Any minimizer u of Fs. over H}(B) is locally Hélder continuous in B, and for
any compact K C B, there holds

[ulloaxnpy < CllullLz(s)-
The constant o € (0,1) depends on d, 0, and ©. The constant C > 0 depends on d, 0, ©, 6, and
€.

Proof. Let xy € B be fixed. To recenter near xg, we define
v(z) = ku(zg + rz),

with x,7 > 0 chosen so that the hypotheses of Lemma 3.5 are satisifed. In particular, letting M
be the constant granted by Lemma 3.4, we take

. dlSt($07aB) M
r:=min | ————— 4/ — |,
2 2

/ 1
K:=min (1, , | 77— |.
( fBr(IO) u? da:)

We then have r2(1 + k?) < M and 5, v?dr < 1, and Lemma 3.5 implies |v(z) — v(0)| < Cl|z|*
whenever |z| < pg, where a and pg are the constants granted by Lemma 3.4, and C' depends only
ond, #, O, d, and €.

Since xg € B was arbitrary and B is a bounded set, the proof is complete after translating from
v back to u. |

and

Now we can prove Theorem 1.1, our main result. Choosing fixed values of § and ¢ that are
small enough as in Lemma 2.1, and letting u, be a nonnegative minimizer of Fs. over H& (B) and
Q. = {ux > 0}, we have fB u2dr =1 and £d(Q*) < 1. Theorem 3.6 implies u, is continuous in
B, and therefore €, is open. The Hélder estimate for u, depends on d, 6, ©, the distance to dB,
and (via €) £4(B). From Proposition 2.2, , is a minimizer of A\{* over C'.

We could have £4(€,) < 1, i.e. Q, € C’'\ C. In this case, we define for r > 0 the open set

= |J B:(@)nB

TEN,
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By continuity, there is some r > 0 with £4(€2,) = 1, and since A\{' is nonincreasing with respect
to set inclusion, ), is a minimizer of A{* over the class C. The eigenfunction u, on €2, is clearly
a minimizer of Fs., and therefore the Holder estimate of Theorem 3.6 applies to the optimal
eigenfunction in this case as well.

4. LINEAR GROWTH AT BOUNDARY POINTS

This section is devoted to the proof of Theorem 1.2. We choose ¢ and ¢ small enough that we
can apply Proposition 2.2. (These values of ¢ and e will remain fixed throughout this section.) We
let w = u, be a minimizer of Fs.. Then u is a solution of the eigenvalue equation

(4.1) -V - (AVu) = \u

in Q, = {u > 0}. By Theorem 1.1, 2, is open.

The proof in this section is based on rescalings of u that are centered around boundary points
with u(xo) = 0. The first step is to revisit the approximation argument of Lemma 3.3 armed with
the Holder estimate of Lemma 3.5:

Lemma 4.1. Given 7 > 0, there exists N = N(d, 0,0, \.,7) > 0 small enough, such that for any
xo € B with u(xg) = 0, and any rescaling

v(z) = ku(zo +12), € By,
of u, with k > 0 and 0 < r < dist(xg, IB) such that
r?*(1+ k%) < N

and fBl v2dx < 1, there holds

supv < T.
Byg

Proof. Since u satisfies (4.1), a direct calculation shows that v satisfies
(4.2) —V - (Ap(2)Vv) = r?A0, x € Bin{v>0},
where Ag(z) = A(zo + rx). Next, let h be the Ap-harmonic lifting of v in By /9, i.e. the weak
solution of
V- (Ao(x)Vh) =0, € By,

4.3)
( h—u € Hy(Bs).

Let us choose N small enough so that, with r%(1 + x2) < N, (i) the Hélder estimate of Lemma 3.5
applies, and (ii) from Lemma 3.3 with £ = 0, the inequality

(4.4) f lv —h|?de < 7/
Bi/s

holds, for some 7’ to be determined below.

The strategy of the proof is as follows: first, show h is small near x = 0, and secondly, leverage
(4.4) to conclude v is also small near z = 0.

To establish the smallness of h, we apply the Harnack inequality [16, Theorem 8.20] followed
by an L?-to-L> estimate [16, Theorem 8.17] to obtain, for any p € (0, 1),

(4.5) sup b < C1h(0) < Cop™ 2|l 12(5,),
1/4
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where C7 and C5 depend only on d, 6, and ©. Next, proceeding in a similar manner to the proof
of Lemma 3.4, we have

/)_d”h”%?(B,,) = wd][ h? dx
BP

(4.6) < 2wy ][ lv — h|*dx + ][ v? dx
B B,

< 2t=dp=dyr + de][ v?dz,
BP

P

by (4.4). Next, we bound the last term on the right in (4.6) by using the Holder estimate of Lemma
3.5 along with the fact that v(0) = u(zp) = 0 to obtain

][ vide = ][ lv(z) — v(0)]? dz < C?p**,
B, B,

if p < po, where C, a, and pg are the constants from Lemma 3.5. We conclude

(4.7) sup h < Cy (21*dp7dwd7' + 2wdC2p20‘)1/2 .

Biy
To bound supp, ,4 U We need to apply the local L?-to-L> estimate at the boundary, provided
by [16, Theorem 8.25]:
sup v < Csf[v]lr2(s, -
Bl/sﬂ{’v>0}
It is important to note that this estimate requires no smoothness for the boundary of {v > 0}, and
the constant C5 depends only on d, 8, ©, and A, (since v satisfies the elliptic equation (4.2) with
zeroth-order coefficient r2)\,, and we can ensure r < 1 by choosing N < 1.).
We then have
sup v SCg (||U_h||L2(Bl/4)+Hh||L2(Bl/4))
By /sn{v>0}
< C52%2/ 7" + Cawagd ™4 (21*dp*dwd7' + 2wd02p2a)1/2
by (4.4) and (4.7). Choosing p < pg small enough depending on 7, a, C, C3, and wg, and then
choosing 7 depending on 7, p, d, C3, and wy, we can ensure
sup v = sup v < T,
Bi/s By /sn{v>0}
Tracing the dependence of all quantities, we see that 7" can be chosen depending only on 7, d, 6,
O, and A.. This 7/ determines the choice of N in the statement of the lemma, and the proof is
complete. O

Finally, by applying Lemma 4.1 iteratively, we obtain the desired linear growth estimate:

Proof of Theorem 1.2. We prove the growth estimate for any minimizer u of Fj.. The statement
of the theorem then follows by choosing § and € small enough so that u, is a minimizer of Fjs ..

Let 7 = %, and let N be the corresponding constant granted by Lemma 4.1. Given zy € {u >
0}, we recenter around zg in a similar fashion to the proof of Theorem 3.6, by defining

v = ku(zo + rx).

, <dist(x0,aB) N)
r:e=min | ———= 4/ — |,

where

2 2



ELLIPTIC EIGENVALUE PROBLEMS WITH ROUGH COEFFICIENTS 15

and

1

K :=min | 1,

fBT(zo) u? dx
Then, r*(1 + %) < N and f, v?dz < 1.
We would like to show by induction that
1
(4.8) supv < —, j=1,2,...,
By, 87

The base case follows from applying Lemma 4.1 directly to v. If (4.8) holds for some j > 1, then
we define

v;(x) = 8/v(877x)
= 8j:‘$u(1‘0 + 8_jmc), x € By.
From the inductive hypothesis, we have
][ U?dx:SQj][ v¥de < 1.
B Bg—j

We also clearly have v;(0) = 0. With x; = 87k and r; = 877, we have r5(1+£3) = r*(47% + %) <
N. Therefore, Lemma 4.1 implies

—_

sup v; < -
Byg

oo

or
sup v <8771
Bgfjfl

and we have established (4.8).
Next, for any = € By g, there is a j > 1 such that 87771 < |z| < 877, From (4.8), we have

lo(z)| < sup w <877 < 8,

8—J

and the proof is complete after translating from v back to u. O
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