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We demonstrate a methodology for diagnosing the multiscale dynamics and energy transfer in complex HED flows
with realistic driving and boundary conditions. The approach separates incompressible, compressible, and baropycnal
contributions to energy scale-transfer and quantifies the direction of these transfers in (generalized) wavenumber space.
We use this to compare the kinetic energy (KE) transfer across scales in simulations of 2D axisymmetric versus fully
3D laser driven plasma jets. Using the FLASH code, we model a turbulent jet ablated from an aluminum cone target
in the configuration outlined by Liao et al. [A. S. Liao, S. Li, H. Li, K. Flippo, D. Barnak, K. V. Kelso, C. Fiedler
Kawaguchi, A. Rasmus, S. Klein, J. Levesque, C. Kuranz, and C. Li, Physics of Plasmas, 26, 032306 (2019)]. We show
that, in addition to its well known bias for underestimating hydrodynamic instability growth, 2D modeling suffers from
significant spurious energization of the bulk flow by a turbulent upscale cascade. In 2D, this arises as vorticity and strain
from instabilities near the jet’s leading edge transfer KE upscale, sustaining a coherent circulation that helps propel the
axisymmetric jet farther (≈ 25% by 3.5 ns) and helps keep it collimated. In 3D, the coherent circulation and upscale
KE transfer are absent. The methodology presented here may also help with inter-model comparison and validation,
including future modeling efforts to alleviate some of the 2D hydrodynamic artefacts highlighted in this study.

I. INTRODUCTION

High speed jets arise in many astrophysical and high energy
density (HED) applications1. In astrophysics, supersonic hy-
drodynamic jets can arise as an initially collimated outflow or
an otherwise quasi-spherical supersonic blast wave propagat-
ing into an inhomogeneous medium. Jets appear on sources of
all scales of astrophysics, including supernovae evolution2. In
inertial confinement fusion (ICF), jets result from the interac-
tion between a shock and density perturbations such as those
due to the fill-tube3 or due to voids4,5. These jets can trigger
the mixing of ablator and fuel, which ultimately degrade the
ignition yield6,7. Jets can often be characterized as complex
multi-scale flows involving instabilities and turbulence, and in
many cases, instabilities trigger turbulent mixing8,9.

Turbulence is common in complex HED flows in astro-
physics and ICF. In the evolution of core-collapse supernovae
for example, turbulence is generated due to instabilities be-
tween the inner core and the outgoing shock10–12. Energy
transfer between scales is believed to play a key role in such
simulations and may account for differences between 2D and
3D13–15. In particular, it is believed that upscale (inverse)
transfer of kinetic energy in 2D may help to increase the ef-
ficacy of turbulent transport of heat to the shock to prevent it
from stalling, making explosions easier to achieve than in 3D.

Instabilities are also common in complex HED flows in as-
trophysics and ICF. For example, the Rayleigh-Taylor (RT) in-
stability in ICF has been a significant hindrance to ignition16.
In ICF, 2D simulations are the main “work horse” for experi-
mental design17–19 as routine 3D simulations are prohibitively
expensive. A capsule-only 3D simulation requires tens to hun-

dreds of millions of CPU hours on supercomputers even with-
out incorporating the hohlraum and laser physics20,21. The
trade-offs between 2D and 3D flow physics are still not widely
appreciated in ICF simulations. The primary objective of this
study is to highlight the differences in energy scale-transfer
how they affect the travel of laser-driven jets between 2D and
3D.

Length scales in complex flows are generally characterized
by a wavenumber energy spectrum. Yet the energy transfer
pathways and interactions between different scales are often
subtle and cannot be diagnosed using the spectrum alone. In
this work, we investigate two processes that transfer energy
across scales: deformation work, Π, and baropycnal work, Λ.

Deformation work is due to the multi-scale nature of the
velocity field and is the sole mechanism for energy transfer
across scales (or cascade) in constant-density (incompress-
ible) flows described by the Navier-Stokes equation22,23. In
3D incompressible homogeneous turbulence, the main mech-
anism behind Π is believed to be vortex stretching24–28, which
transfers energy downscale. Kraichnan29 predicted and sub-
sequent studies30,31 have demonstrated that an incompress-
ible homogeneous turbulent flow, when restricted to two spa-
tial dimensions, will tend to transfer energy in the opposite
direction, i.e., upscale rather than downscale, due to vortic-
ity conservation in 2D. However, HED flows involve signif-
icant density variations and do not conserve vorticity, even
when restricted to 2D, due to baroclinicity. Therefore, ex-
tending such phenomenologies29,31 from incompressible ho-
mogeneous flows to inhomogeneous flows with variable den-
sity remains dubious32. A main contribution in this work is to
demonstrate, via a direct measurement of Π, that an upscale
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cascade can indeed arise in 2D hydrodynamic models of HED
systems, despite the lack of vorticity conservation.

The second energy transfer pathway we analyze here is
baropycnal work Λ, which results from pressure and den-
sity variations at different scales33,34. The direction of en-
ergy transfer by Λ depends on the source of pressure gradient
and density variations32,35–38. Typical cases include (i) a baro-
clinic flow wherein Λ transfers energy downscale into small-
scale velocity fluctuations due to opposing directions of pres-
sure and density gradients32, and (ii) a shock wherein pressure
and density gradients are aligned and Λ transfers energy up-
scale into the large-scale pressure field34,36,38.

Previous works have utilized coarse-graining methods that
are common in Large Eddy Simulation modeling39 to de-
compose length scales and analyze deformation work40,41 and
baropycnal work33,38,42. Lees & Aluie42 conducted simula-
tions of compressible turbulence in 3D with varying levels of
compressibility. Their results demonstrated that in 3D homo-
geneous compressible turbulence, Π transfers energy down-
scale to the small-scale turbulence while Λ transfers energy
upscale into large-scale potential energy residing in the pres-
sure field. Zhao et al.32 analyzed the energy scale-transfer in
baroclinically unstable flows by simulating the RT instabil-
ity and the ensuing late-stage turbulence in 2D and 3D. They
found that in both 2D and 3D, Λ transfers energy downscale
by releasing potential energy stored at the largest scales and
depositing it over a wide range of smaller scales in the fully
turbulent regime. Energy transfer by Π, on the other hand,
exhibits opposing behaviors in 2D versus 3D32. In 2D, up-
scale transfer by Π leads to higher bulk kinetic energy at large
scales, whereas in 3D, the energy transfer is downscale.

Here, we extend and demonstrate the methodology to high
energy density (HED) flow regimes by taking advantage of
laser-driven jets. We reference the simulation configuration
by Liao et al.43, which proposes a design to set up a turbulent
dynamo operating on the OMEGA-EP laser44,45. This design,
sketched in Fig. 1, shines multiple laser beams on the inner
wall of a cone target to create a supersonic turbulent jet. In
section II, we describe the model configurations, address the
sensitivity to initial conditions in 2D and 3D, and report on
the jets’ evolution and properties. In section III, we introduce
the coarse-graining method for scale decomposition and de-
fine the energy scale-transfer terms, Π and Λ. In section IV,
we analyze KE at large scales and show that the correspond-
ing difference between 2D and 3D can be quantified by Π and
Λ. In section V, we characterize the turbulent region at the
jet’s leading edge using subscale stress and discuss KE scale-
transfer in that region. In section VI, we decompose Π and
Λ into contributions from the divergence-free and irrotational
components of the flow to examine the mechanism causing
the 2D jet’s leading edge to remain narrow. We summarize
the results in the concluding section VII.

FIG. 1. Configuration of run (left) L5R090 and run (right) L6R720.
Label "L" denotes the location of laser deposition along the y-
direction (in millimeters) and label "R" denotes the radius of the laser
beam (in micrometers). Note that the deposition area is larger than
the beam size since the laser propagation direction is not perpendic-
ular to the cone surface.

II. NUMERICAL SIMULATIONS

A. Simulation Configurations

FLASH is a multiphysics radiation-hydrodynamics code
used frequently for HED applications. It provides a com-
prehensive environment for full-physics laser driven simula-
tions by solving governing equations in three-temperature un-
split hydrodynamics on an adaptive mesh refinement (AMR)
grid46,47. The laser driven simulation module includes fea-
tures of laser ray tracing48, electron thermal conduction with
Spitzer conductivities49, and radiation diffusion with tabu-
lated opacity50. Liao et al.43 used the FLASH code to de-
velop a test platform for laser-driven turbulent dynamos that
matches realizable OMEGA-EP experimental configurations
in 3D43. We conduct our 3D simulations using a similar con-
figuration that generates turbulence by the interaction of laser
ablated jets. To simulate the analogous cone target in 2D, we
employ cylindrical coordinates, which significantly modifies
the configuration of Liao et al. in that the laser deposition
becomes azimuthally symmetric. To approximate this mod-
ification in 3D, within Cartesian coordinates, we simulate a
quasi-azimuthally symmetric configuration in which 256 laser
beams deposit energy symmetrically about the center vertical
axis of the target. We investigate sensitivity to the laser drive
and show the validity of comparing 2D and 3D simulations
below. In both 2D and 3D geometries, UV laser beams (351
nm wavelength) deliver a total power of 0.5 TW over a 3.5 ns
duration using square pulses. The simulations use multigroup
diffusion for radiation transport using 6 groups.

As shown in Fig. 1 the simulation domain is 0.25 cm wide
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and 0.75 cm high, and the target occupies 0.3 cm of height
from the top boundary of the domain. The main target is
2.7 g/cc aluminum notched into a hollow cone with an inte-
rior space of 0.2 cm diameter at the cone base and 0.274 cm of
height filled with a pseudo-vacuum of 10−6 g/cc helium. The
vacuum region extends from the cone’s opening to the bottom
of the domain over 0.45 cm. The equations of state (EOS)
and opacity of both the aluminum cone and helium pseudo-
vacuum are obtained from the atomic database IONMIX51.

Due to the nature of cylindrical coordinates, the 2D com-
putational domain takes an axisymmetric boundary at x = 0 in
Fig. 1 as the center axis, for which both normal and toroidal
vector components change sign. The boundaries everywhere
else are outflow, which specifies a zero gradient to allow the
flow to leave the domain freely. The 3D computational do-
main takes outflow boundaries in all directions. In this work,
all visualizations of the 2D domain are mirrored about the ax-
isymmetric boundary (x = 0) to compare to the slice of the 3D
domain.

Applying adaptive mesh refinement52, we set the initial
static grid size of a mesh block to be 16 in all directions, with
a maximum refinement level of 5 in both 2D and 3D. Each
refinement level doubles the grid size at the finest resolution.
Since the computational domain’s aspect ratio is 1:6 in 2D
and 1:3 in 3D, we use 3 mesh blocks in 3D aligned in the ver-
tical direction and 6 mesh blocks in 2D. The effective mesh
resolution can be calculated as (grid size o f single block)×
2(max re f inement level−1)× (number o f blocks), which gives the
resolution 256× 1536 in 2D and 256× 256× 768 in 3D.
The mesh refinement criterion used is the modified Löhner’s
estimator50, for which we set the density and electron temper-
ature to be the refinement variables and the threshold value to
trigger refinement is 0.8. This grid mesh configuration re-
solves turbulence structures that appear around the leading
edge of the jet at late times. In the Appendix, we report on
our analysis of numerical convergence (see Fig. 20).

B. Sensitivity to Laser Drive

Fig. 1 shows initial configurations for runs L5R090 and
L6R720, where the label "L" denotes the y-location of laser
deposition in millimeters and the label "R" is the radius of
laser deposition in microns. Due to the inherent azimuthal
symmetry in the 2D simulations, which requires only one laser
beam to illuminate the entire target. In 3D, the beams are sep-
arated with equal angle azimuthally on the cone. Matching the
2D and 3D configurations of the initial flow is crucial for mak-
ing comparisons. Here, we list a few laser-drive parameters
that play an important role in the initial flow’s development.

First, the number of laser rays traced in the simulation sig-
nificantly affects the ablated flow’s smoothness at early times.
As shown in Figs. 2a, 2c, the same number of rays reveals
distinct early-time velocity profile differences. The 2D initial
flow using 4096 rays in the single beam manifests large-scale
non-uniformity in the reflected-energy region (y > 0.5325 cm,
highlighted by arrows in Fig. 2), whereas this issue is absent
in 3D due to using a higher number of laser beams, each with

TABLE I. Kinetic energy (KE) and internal energy (IE) per volume
(in erg/cm3) in different regions of the domain at t = 0.3 ns.

Run KEup(y>0.5325 cm) KEdown(y<0.5325 cm) KEtot KEtot + IEtot KEup/KEtot

2D L5R090 2.27×107 2.96×108 3.19×108 1.26×109 7%
3D L5R090 6.12×106 2.42×108 2.48×108 1.26×109 2%
2D L6R720 7.58×107 1.70×108 2.46×108 1.29×109 31%
3D L6R720 5.82×107 1.27×108 1.85×108 1.29×109 31%

4096 rays. With a sufficient number of rays shown in Fig. 2b,
the early-time velocity profile off the ablated surface agrees in
2D and 3D.

Second, the radius of laser deposition has an important role
in matching the early-time evolution in 2D and 3D. In run
L5R090, the reflected laser energy appears in the domain at
y > 0.5325 cm in Fig. 2, highlighted by white arrows. How-
ever, the fraction of reflected energy differs between 2D and
3D, which leads to differences in the mass ablated at differ-
ent locations along the cone surface. This can be quantified
by comparing the kinetic energy at y > 0.5325 cm, KEup to
kinetic energy over the entire domain, KEtot . Their ratio,
KEup/KEtot , is listed in Table I and shows a mismatch be-
tween 2D and 3D for run L5R090. Using a larger radius for
the laser deposition area minimizes ablation from reflected ra-
diation and, therefore, minimizes differences between 2D and
3D in the early-time flow. This is achieved in run L6R720 in
Fig. 3, where the fraction KEup/KEtot is the same in 2D and
3D in Table I. Since the y-momentum, Gy, is central to the
jet’s traveling distance, we also show a similar ratio Gup

y /Gtot
y

in Table II, which agrees between 2D and 3D in run L6R720.
Despite increasing the laser radius in run L6R720, it is still
necessary to use a sufficient number of rays in 2D to match
the early-time solutions from the 2D and 3D simulations, as
discussed in the previous paragraph.

Third, to create quasi-azimuthally symmetric laser deposi-
tion in 3D, we increase the number of laser beams until the
traveling distance of the jet converges. This is characterized
by the y-momentum centroid along the y-direction,

Gcentroid
y =

∫
dV ρuyy∫
dV ρuy

, (1)

where uy is the y-component of velocity, ρ is mass density,
and V is the volume of the physical domain. As shown in
Fig. 4, run L5.5R360 in 3D converges using 128 laser beams
while L6R720, which uses a larger beam radius, requires only
64 beams. A larger beam radius makes it easier to approx-
imate azimuthal symmetry with fewer beams as expected.
Considering the three factors discussed above, we use run
L6R720 in the rest of the paper.

Fig. 5 uses run L6R720 to demonstrate that kinetic energy
is almost identical between 2D and 3D, differing by 0.47% at
t = 3.5. Fig. 5 plots kinetic energy KE, internal energy IE, and
the total energy Etot being the sum of the KE and IE. Internal
energy is also almost identical between 2D and 3D, differing
by 2.1% at t = 3.5 ns. To quantify the similarity between
3D quasi-azimuthal symmetry and 2D azimuthal symmetry,
we take the standard deviation of the averaged kinetic energy
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(a) 2D - 4096 rays per beam (b) 2D - 32768 rays per beam (c) 3D - 4096 rays per beam ×256 beams

FIG. 2. The number of laser rays affects the ablated flow’s smoothness. Panels show velocity magnitude from run L5R090 at t = 0.3 ns and
y > 0.45 cm using different numbers of laser rays. Even though the laser beams are incident on the cone in the region around y = 0.5 cm, a
fraction of this laser energy is reflected deeper into the cone around y = 0.6 cm highlighted by the white arrows in the panels. This reflected
laser energy induces a flow, which is sensitive to the number laser rays. Comparing panels (a) and (b), we can see that using 4096 rays in the
single beam in 2D manifests large-scale non-uniformity in the ablated flow. With 32768 rays in the single beam in 2D in panel (b), the velocity
profile off the ablated surface agrees with 3D in panel (c), which uses 4096 rays/beam ×256 beams. Panel (c) is a slice in the 3D domain at
z = 0 cm.

(a) 2D (b) 3D

FIG. 3. A wider laser beam helps match the early-time evolution
in 2D and 3D. Panels show velocity magnitude from run L6R720 at
t = 0.3 ns and y > 0.45 cm using a laser beam that is wider than that
in L5R090 shown in Fig. 2 (b)-(c). Panel (b) is a slice in the 3D
domain at z = 0 cm.

TABLE II. Axial y-momentum per volume (in g cm/s/cm3) in differ-
ent regions of the domain at t = 0.3 ns.

Run Gup
y (y>0.5325 cm) Gdown

y (y<0.5325 cm) Gtot
y Gup

y /Gtot
y

2D L5R090 4.90 16.69 21.58 23%
3D L5R090 2.10 14.84 16.94 12%
2D L6R720 8.89 16.86 25.75 35%
3D L6R720 6.29 12.71 19.01 33%

along the azimuthal direction,

〈KE〉stdθ =

√
∑

N
i=1(〈KE〉θi −〈KE〉

θ
)2

N−1
, (2)

0 1 2 3

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58
8B     L5.5R360

16B   L5.5R360

64B   L5.5R360

128B L5.5R360

256B L5.5R360

64B   L6R720

256B L6R720

FIG. 4. To create quasi-azimuthally symmetric laser deposition in
3D requires a sufficiently large number of overlapping laser beams.
Convergence of jet’s traveled distance as a function laser beam num-
ber is quantified by the y-momentum centroid, Gcentroid

y , in eq. (1).
This is plotted here using an increasing number of laser beams la-
beled with "B". Runs L5.5R360 converges with 128 laser beams
and runs L6R720 converges with only 64 laser beams due to a wider
beam radius.

where θ is the azimuthal angle, 〈...〉θ is the domain average
at an azimuthal coordinate, N is the number of θ bins and the
overbar denotes the average over all θ . We find a percentage
of 2.9% by comparing 〈KE〉std

θ
to the domain averaged kinetic

energy, 〈KE〉, at t = 3.5 ns in 3D. This percentage quantifies
the 〈KE〉 variance in the azimuthal direction. Naturally, this
variance is identically 0% for the 2D simulation.
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FIG. 5. Comparison of kinetic energy (KE), internal energy (IE) and
total energy (Etot ) between 2D and 3D from run L6R720. KE in 2D
and 3D are almost identical with difference of only 0.47% at t = 3.5
ns.

(a) 2D (b) 3D

FIG. 6. Visualization of velocity magnitude, |u|, from run L6R720 at
t = 3.5 ns. Despite having almost identical domain-integrated kinetic
energy in 2D and 3D, the jet travels a longer distance in 2D than in
3D. This indicates that KE resides at different scales between the two
configurations, which is most evident at the leading edge of the jets.
Panel (b) is a slice in the 3D domain at z = 0 cm.

C. Jet Traveling Distance

All visualizations in the remainder of this paper are shown
from run L6R720 at time t = 3.5 ns, which is approximately
when the jet reaches the bottom of the domain and are shown
at the cross section in xy-plane at z = 0. In Fig. 6, the jet ex-
hibits turbulent structures in both 2D and 3D, especially at the
leading edge, which we characterize using the subscale stress
discussed in Section V. It is evident from the velocity profiles

(a) 2D (b) 3D

FIG. 7. To complement Fig. 6, this figure visualizes momentum mag-
nitude, |G| = |ρu|, at t = 3.5 ns (note the log-scale colorbar). Mo-
mentum at the leading edge of the jet is a few orders of magnitude
smaller relative to that near the cone’s surface, which underscores the
wide variations in density.

0 1 2 3

time (ns)

0.52

0.54

0.56

0.58

y
 (

cm
)

2D

3D

(a) Gcentroid
y

0 1 2 3

time (ns)

0.25

0.35

0.45

0.55

y
 (

cm
)

2D

3D

(b) ucentroid
y

FIG. 8. Distance traveled by the jet along the y-axis, characterized by
(a) the y-momentum centroid, Gcentroid

y , and (b) y-velocity centroid,
ucentroid

y . Comparing 2D and 3D at t = 3.5 ns, Gcentroid
y differs by

6.8% and ucentroid
y differs by 16.1%.

in Fig. 6 that the jet travels farther in 2D than 3D, despite hav-
ing almost identical domain-integrated kinetic energy (Fig. 5).
This indicates that KE resides at different scales between the
two configurations, which is most evident at the leading edge
of the jets. A shock that is reflected from the jet’s leading
edge, traveling toward the cone, can be seen as a discontinuity
in the velocity at y≈ 0.15 to 0.2 cm in Fig. 6 (see also Fig. 2
in Ref.53).

To objectively compare the 2D and 3D jets we use the y-
momentum centroid in the y-direction in eq. (1). This met-
ric gives a bulk characterization of the jet’s movement. A
momentum-based metric is more appropriate than a center
of mass, which would include low-velocity material near the
cone. Fig. 8a plots the traveling distance in time and shows



Energy Transfer and Scale Dynamics in 2D and 3D Laser Driven Jets 6

(a) 2D (b) 3D

FIG. 9. Visualization of Mach number, M = |u|/c, at t = 3.5 ns.
Here, c is the local sound speed. Higher values of M in 2D indicates
higher levels of compressibility relative to 3D.

that the jet in 2D travels farther than 3D at all times. Another
metric we use is the y-velocity centroid in the y-direction,

ucentroid
y =

∫
dV uyy∫
dV uy

, (3)

to highlight the discrepancy seen in Fig. 6. Plots of ucentroid
y

in Fig. 8b show a consistent message that the jet in 2D trav-
els farther than 3D at all times, with a difference of 16.1%
at t = 3.5 ns. Differences based on ucentroid

y are larger than
those based on Gcentroid

y since density at the leading edge is a
few orders of magnitude smaller compared to the region near
the target. This can be gleaned from comparing Figs. 6,7. A
third metric we use is based on identifying the position of the
leading edge, ρ

leading
y , which we define as the location where

density jumps by a factor of 100. We find that leading edge in
2D has traveled 26.7% farther than in 3D at t = 3.5 ns.

D. Compressibility Metrics

For completeness, we report on the compressibility levels
of the flow using two quantities. First, in Fig. 9, we show the
pointwise Mach number, M = |u|/c, where |u| is magnitude
of the local velocity in the lab frame and c is the local sound
speed. The Mach number in 2D is generally greater than in
3D, especially in the pre-shocked region at y ≈ 0.15–0.3 cm,
which is consistent with the 2D jet being generally faster than
in 3D. To quantify the differences in Fig. 9, we show the bulk
Mach number, M = 〈|u|〉/〈c〉, in Appendix Fig. 21a where
〈...〉 is the domain average. A difference of 12.1% between
2D and 3D occurs at the end of the simulation (t = 3.5 ns).

Second, in Fig. 10, we calculate the time series of |∇·u|rms
and |∇×u|rms, which are more sensitive to the flow at smaller

0 1 2 3

0

2

4

6

10
9

2D

3D

(a) |∇·u|rms

0 1 2 3

0

2

4

6

10
9

2D

3D

(b) |∇×u|rms

FIG. 10. Root mean square (rms) of (a) divergence of velocity and (b)
vorticity. Ratio |∇·u|rms/|∇×u|rms characterizes compressibility
levels at small scales. In panel (b), the vortical component at small
scales decreases in 2D due to upscale energy transfer as we discuss
in Section VI below.

scales due to shocks and turbulence. Both |∇ · u|rms and
|∇×u|rms are greater in 2D than in 3D. However, Fig. 10b
shows that |∇×u|rms in 2D starts decreasing after 1 ns, which
we will show is due to an upscale vortical energy transfer
discussed in Section VI A. In contrast, |∇× u|rms in 3D in-
creases over the entire duration of the simulation as seen from
Fig. 10b. From the ratio |∇·u|rms/|∇×u|rms (see Appendix
Fig. 21b), which is a measure of compressibility levels at
small scales, we can infer that the 2D jet also exhibits higher
small-scale compressibility levels than its 3D counterpart at
t = 3.5 ns.

III. ANALYZING MULTISCALE DYNAMICS AND
ENERGY TRANSFER

A. Coarse Graining

The coarse-graining approach allows for analyzing the dy-
namics at different scales in a complex flow, which has proven
to be a natural and versatile framework to understand scale
interactions40,54–57. The approach is standard in partial dif-
ferential equations and distribution theory58,59. It became
common in large eddy simulation (LES) modeling39 of tur-
bulence thanks to the foundational works of Leonard60 and
Germano61. Ref.62 provides an overview of coarse-graining
and its connection to other methods in physics.

For any field a(x), a coarse-grained or (low-pass) filtered
version of this field, which contains spatial variations at scales
> `, is defined in n-dimensions as

a`(x) =
∫

dnr G`(r−x)a(r), (4)

Here, G` is a convolution kernel derived from the “father” ker-
nel G(s) (borrowing the term from wavelet analysis63). G(s)
is normalized,

∫
dnsG(s) = 1. It is an even function such that∫

sG(s)dns = 0, which ensures that local averaging is sym-
metric. G(s) also has its main support (or variance) over a
region of order unity in diameter,

∫
dn s |s|2 G(s) = O(1). The
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dilated version of the kernel, G`(r) = `−nG(r/`), is a function
of dimensional position vector r and inherits all those proper-
ties, except that its main support is over a region of diameter
`.

An example is the Boxcar kernel in non-dimensional coor-
dinates,

G(s) =

{
1, if |si|< 1/2 for i = 1, . . . ,n,
0, otherwise,

(5)

and its dilated version in dimensional coordinates,

G`(r) =

{
`−n, if |ri|< `/2 for i = 1, . . . ,n,
0, otherwise.

(6)

The scale decomposition in eq. (4) is essentially a partition-
ing of scales for a field into large scales (& `), captured by a`,
and small scales (. `), captured by the residual a′` = a− a`.
In the following analyses, we use the Boxcar kernel in eq. (6)
for coarse-graining. With non-periodic boundary conditions,
such as with our simulation domains here, filtering near the
boundary requires a choice for the fields beyond the bound-
ary. It was shown in previous works that a natural choice is to
extend the domain beyond the physical boundaries with val-
ues compatible with the boundary conditions64–66. However,
over the times we analyze the jets in this work, flow across
the domain boundaries is negligible. With consideration to
the Helmholtz decomposition we use in Section VI and the
ease of its implementation, we mirror (or reflect) the variables
across the boundary when coarse-graining. In the Appendix
Figs. 22-24, we show that mirroring has negligible effect on
the results compared to extending the variables beyond the
domain boundaries using the true boundary conditions.

B. Mechanisms of Energy Transfer

Diagnosing the scale-dependent kinetic energy budget in
constant-density turbulence typically focuses on analyzing ki-
netic energy based on the coarse velocity field, 1

2 ρ0|u`|2 (e.g.,
Refs.39,62). However, in the presence of significant density
variations, kinetic energy 1

2 ρ|u|2 is non-quadratic and its de-
composition as a function of scale is not as straightforward34.
Several different decompositions have been proposed in the
literature, such as 1

2 ρ`|u`|2 (e.g., Refs.67–70) and 1
2 |(
√

ρu)`|
2

(e.g., Refs.37,71–73). However, Zhao & Aluie74 showed that
these scale decompositions violate the “inviscid criterion”,
which requires that viscous effect be negligible at suffi-
ciently large scales. They also demonstrated that the Favre
decomposition34,75, 1

2 ρ`|ũ`|2, satisfies the inviscid criterion,
where the Favre filtered velocity is density-weighted accord-
ing to

ũ` = ρu`/ρ`. (7)

The KE budget at scales larger than an arbitrary ` is derived
from the compressible Navier-Stokes equations34,76,

∂tρ`

|ũ`|2

2
+∇·J` =−Π`−Λ`+P`∇·u`−D`+ ε

in j
` . (8)

Here, J`(x) is spatial transport of large-scale kinetic energy,
−P`∇·u` is large-scale pressure dilatation, D`(x) is viscous
dissipation acting on scales larger than `, and ε

in j
` (x) is the

energy injected due to external forcing. These terms are de-
fined by Ref.34 in eqs. 16–18. Deformation work, Π`(x), and
baropycnal work, Λ`(x), account for the energy transfer across
scales, and are defined as

Π
`
(x) =−ρ ∂ jũi τ̃(ui,u j), (9)

Λ
`
(x) =

1
ρ

∂ jPτ(ρ,u j), (10)

where the 2nd-order generalized central moment61 is

τ( f ,g)≡ ( f g)`− f `g`, (11)

and its Favre density-weighted analogue34,38 is

τ̃( f ,g)≡ (̃ f g)`− f̃`g̃`. (12)

Physically, τ̃(ui,u j) in eq. (9) represents the subscale stress
tensor (per unit mass) exerted by scales < ` on the larger scale
flow, and τ(ρ,u j) in eq. (10) represents the subscale mass flux
due to scales < `. As Π`(x) and Λ`(x) appear in eq. (8), they
are defined to be positive energy transfer from large scales to
small scales.

Π`(x) and Λ`(x) contain all information needed to quantify
the exchange of energy between the two sets of scales, > `
and < `. Since we have complete knowledge of the dynamics
at all scales resolved in a simulation, Π`(x) and Λ`(x) can be
calculated exactly at every point x in the domain and at any
instant in time t. It is often not possible from simulations or
observations to resolve all scales present in the real system.
Therefore, computing Π`(x) and Λ`(x) is only measuring the
dynamical coupling between scales present in the data.

In many instances, standard tools that were developed
and used in the turbulence literature to the study of cross-
scale transfer are only strictly valid to analyze homogeneous
isotropic incompressible flows. Consequently, calculations of
the energy transfer rates in HED hydrodynamic applications
that use these tools may give ambiguous results for inhomo-
geneous flows, such as the jet in Fig. 6. The problem arises
because there are several possible definitions for the scale-
transfer terms, Π`(x) and Λ`(x), as we now elaborate.

Definitions (9),(10) for the scale-transfer of energy in bud-
get (8) are not unique with other definitions possible (see ex-
amples in Refs.41,64). The difference between any two of these
definitions is a divergence term,∇· (. . .), which amounts to a
reinterpretation of which terms in budget (8) represent trans-
fer of energy across scales and which terms redistribute (or
transport) energy in space, J`(x). There is an infinite number
of ways to reorganize terms in budget (8) and, thus, an infinite
number of possible definitions for the transfer of kinetic en-
ergy between scales. This freedom in defining Π`(x) can be
thought of as a gauge freedom64.

In a homogeneous flow, spatial averages of all these defini-
tions are equal because their difference is a divergence that is
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TABLE III. Domain-averaged cumulative KE at t = 3.5 ns.

Cumulative Energy (erg/cm3) k` = 1 KEtot

KE2D 4.09×1010 6.89×1010

KE3D 3.61×1010 6.86×1010

KE2D−KE3D 4.80×109 2.96×108

zero, 〈∇· (. . .)〉 = 0. On the other hand, if one considers in-
homogeneous flows, such as the jet in Fig. 6, or if one wishes
to analyze the cascade locally in space without spatial aver-
aging, then such definitions can differ qualitatively as well as
quantitatively (see Ref.64 for examples). Definitions (9),(10)
are proper measures of the energy scale-transfer because they
satisfy two important physical criteria: (i) Galilean invariance
and (ii) vanish in the absence of subscale motion77. Using
such criteria to choose the scale-transfer definitions may be
thought of as gauge fixing. Regarding the second criterion,
both scale-transfer terms vanish identically at every location
x when ` is the grid scale or smaller77. The latter is a phys-
ically important constraint since scales smaller than ` should
not influence the larger scale flow if those scales do not exist.

In the remainder of this paper, the subscript ` is omitted
for the variables defined above if there is no risk of ambigu-
ity. In what follows, we shall use k` to represent the “filtering
wavenumber”78 corresponding to length scale `,

k` ≡ L/`, (13)

with L = 0.25 cm being the domain size along the x-direction,
which we use here as a reference scale. Note that k` is not a
Fourier wavenumber, just a proxy for scale from the coarse-
graining decomposition.

IV. ENERGY TRANSFER IN THE ENTIRE DOMAIN

We have already shown in Fig. 5 that KE in 2D and 3D is
almost identical at t = 3.5 ns, differing by only 0.47%. How-
ever, the distribution of this KE among length scales differs
significantly between 2D and 3D.

A. Cumulative Energy

Coarse KE in eq. (8), ρ`|ũ`|2/2, quantifies the cumulative
KE at all scales larger than `. Taking k` = L/` = 1, Fig. 11
shows that KE in 2D at scales larger than L = 0.25 cm ex-
ceeds that in 3D. This difference of 4.80× 109 erg/cm3 in
KE content at large scales is highlighted in Table III, which
is greater by more than an order of magnitude compared to
the 2.96× 108 erg/cm3 (0.47% difference) in total KE. This
is consistent with the bulk jet flow in 2D being faster than
in 3D (Fig. 6). Indeed, Fig. 25 in the Appendix shows that
most of this difference between 2D and 3D is from the y-
component of KE, ρ`|(̃uy)`|

2/2, due to the flow in the axial
direction. Fig. 11 also shows that for larger k` = 2,4 val-
ues, the difference between 2D and 3D diminishes. This is

0 0.5 1 1.5 2 2.5 3 3.5
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FIG. 11. Domain-averaged coarse KE, 〈ρ`|ũ`|2/2〉, at all scales > `.
Here, filtering wavenumber k` = L/` is not a Fourier wavenumber,
just a proxy for scale ` from the coarse-graining decomposition. The
largest scales (blue) in 2D have more KE than in 3D, even though
total KE is almost identical in both 2D and 3D (Fig. 5). This can be
seen here from having the 2D and 3D plots getting closer (solid and
dashed) as we include smaller scales (larger k`, yellow and red) in
the coarse KE.
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FIG. 12. Domain-averaged deformation work, 〈Π`〉, and baropycnal
work, 〈Λ`〉, across scale k` = 1. In both 2D and 3D, 〈Π`〉 transfers
energy upscale and 〈Λ`〉 transfers energy downscale at all times.

to be expected since increasing k` is equivalent to including
smaller scales in coarse KE metric, which converges to the
total KE, ρ`|ũ`|2/2→ ρ|u|2/2 in the limit k`→ ∞ or, equiv-
alently, `→ 0. We remind the reader that total KE is almost
identical in 2D and 3D (Table III and Fig. 5).

B. Kinetic Energy Transfer at Selected Scale

To explain the aforementioned large scale (` > L =
0.25 cm) KE difference between 2D and 3D, we analyze the
KE scale-transfer, Π` and Λ` in eqs. (9),(10). Fig. 12 show
the time series of domain-averaged Π` and Λ` evaluated at



Energy Transfer and Scale Dynamics in 2D and 3D Laser Driven Jets 9

TABLE IV. Domain-averaged KE scale-transfer 〈Π〉 and 〈Λ〉 at k` =
1 integrated over the entire time duration (t = 0 to 3.5 ns).

Energy transferred (erg/cm3)
∫
〈Π〉dt

∫
〈Λ〉dt

∫
〈Π〉dt +

∫
〈Λ〉dt

2D −1.64×1010 1.02×1010 −6.23×109

3D −1.22×1010 1.06×1010 −1.63×109

difference: 2D−3D −4.11×109 −3.87×108 −4.60×109

k` = L/` = 1. In both 2D and 3D, we find Π < 0 when
domain-averaged, indicating a transfer of KE upscale from
scales smaller than L to larger scales due to the ablative ex-
pansion and spread as the jet propagates. On the other hand,
Λ > 0 in both 2D and 3D when domain-averaged, indicating
downscale transfer. As discussed in Section I above and in
Refs.32,34, energy by baropycnal work Λ arises from the re-
lease (or storage, if Λ < 0) of potential energy due to pressure
gradients acting against density variations. Much of the pres-
sure gradient arises near the ablation front as expected.

Table IV shows that the large scale KE difference be-
tween 2D and 3D can be attributed to differences in their KE
scale-transfer. Π` and Λ` represent energy transfer rates (in
erg/s/cm3). Integrating Π` and Λ` over the duration of the
simulation from t = 0 to 3.5 ns, we see in Table IV that there
is 4.60× 109 erg/cm3 excess energy received by the large
scales (` > L = 0.25 cm) in 2D compared to 3D. This value
matches the large scale KE difference of 4.80×109 erg/cm3

between 2D and 3D in Table III remarkably well79, to within
4%. Since Π and Λ are the only terms that transfer KE across
scales using our coarse-graining decomposition (eq. (8)), we
can infer that differences between 2D and 3D in the jet’s bulk
speed and distance travelled (Fig. 6) are due to differences in
KE scale-transfer. In the rest of this paper, we explore a phys-
ical origin for these differences in KE scale-transfer between
2D and 3D.

V. SUBSCALE STRESS AND THE TURBULENT REGION

From Fig. 6, there are notable differences between the 2D
and 3D jets near the leading edge, where the flow is sugges-
tive of turbulence. To objectively quantify the turbulence in-
tensity, it is traditional to apply a Reynolds decomposition23,
ui = 〈ui〉+ u′i, to separate the velocity field into a mean part
〈ui〉 and a fluctuating component u′i, where 〈...〉 is an ensem-
ble average. The Reynolds stress tensor, 〈u′iu′j〉, is typically
used to quantify the turbulent fluctuations22,23,80.

However, there are a few disadvantages of such an approach
that make it undesirable for our purposes. For one, it requires
an ensemble average, which is computationally costly and in
practice is often taken to be a temporal average if the flow
is in a statistically steady state, which our jets are not, or a
spatial average along a statistically homogeneous direction.
While the 3D jet is statistically homogeneous in the azimuthal
direction at any time, the 2D jet lacks any fluctuations along
that direction by definition, making a comparison between 2D
and 3D using a Reynolds decomposition unjustifiable. An-
other disadvantage of a Reynolds decomposition is its inabil-

Turbulent 
region

FIG. 13. Magnitude of (left) 2D and (right) 3D subscale stress,
|τ`(ui,u j)| = |(uiu j)`− (ui)`(u j)`|, at k` = 2. Sub-domain outlined
by a box is used to study the energy scale-transfer in the “turbulent”
region.

ity to inform us about the scales at which such turbulence
exists81,82. It is possible to use the analogue of the Reynolds
stress 〈u′iu′j〉within the coarse-graining approach, which is the
subscale stress (per unit mass) as shown by Germano61,

τ`(ui,u j) = (uiu j)`− (ui)`(u j)`. (14)

The subscale stress is a rank-2 tensor, where each tensor com-
ponent is a 2nd-order generalized central moment61 defined in
eq. (11). The subscale stress quantifies the momentum flux
contribution from subscales39,41, i.e., scales smaller than `.
Taking the length scale ` = L/2 (i.e., k` = 2), the subscale
stress magnitude at 3.5 ns is shown in Fig. 13. Since the
dominant velocity component is in the y-direction, the mag-
nitude of τ`(ui,u j) in both 2D and 3D is predominantly from
by the tensor component τ`(uy,uy). Comparing 2D and 3D in
Fig. 13, we see that the high-intensity subscale stress occurs
at the front of the jets but with a marked difference at the lead-
ing edge along the jet axis. The 2D jet has pronounced stress
at the leading edge between approximately x =−0.05 cm and
0.05 cm, which is absent in the 3D jet. The structures giving
rise to this stress will be discussed below in Section VI B. The
stress morphology in Fig. 13 justifies a focus on the lower half
of the domain (y < 0.375 cm, highlighted boxes in Fig. 13) in
an attempt to glean insight into differences in the KE scale-
transfer between 2D and 3D.

VI. HELMHOLTZ DECOMPOSITION

Applying the Helmholtz decomposition to the velocity, u =
ud +us, partitions it into a dilatational component, ud , and a
solenoidal component, us. Their curl-free (∇×ud = 0) and
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(a) 2D (b) 3D

FIG. 14. Dilatational kinetic energy, Kd = ud
i ud

i . High-intensity Kd

represents structures near the shock and have a similar shape between
2D and 3D. The shock front is marked by a horizontal black line.

(a) 2D (b) 3D

FIG. 15. Solenoidal kinetic energy, Ks = us
i u

s
i . High-intensity Ks

mainly appear at leading edge of the jet and displays marked differ-
ences between 2D and 3D. Horizontal black lines are the same as in
Fig. 14 and indicate the position of shock fronts.

divergence-free (∇·us = 0) properties83 allow us to explore
the dominant flow components, such as shocks and vorticity,
that may contribute to the jet traveling farther in 2D than in
3D. To perform the Helmholtz decomposition, the domain is
mirrored to create periodic boundary conditions. While our
choice for dealing with the boundary conditions by mirror-
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FIG. 16. Deformation work, 〈Πsol
` 〉, and baropycnal work, 〈Λsol

` 〉,
due to the solenoidal flow and averaged over the subdomain (y <
0.375 cm) highlighted in Fig. 13, plotted here as a function of fil-
tering wavenumber k` at t = 3.5 ns. The sign difference in 〈Πsol

` 〉
shows the qualitative contrast of the dynamics between the 2D and
3D jets. In 3D, deformation work from the vortical flow transfers KE
downscale, 〈Πsol

` 〉> 0, whereas it transfers KE upscale in 2D, which
sustains large-scale coherent vortical structures near the leading edge
of the 2D jet as seen in Figs. 17-19.

ing is not unique, we shall see that our results are physically
meaningful. Dilatational and solenoidal specific kinetic en-
ergy (i.e. per unit mass), Kd = ud

i ud
i and Ks = us

i u
s
i , respec-

tively, are shown in Figs. 14,15.
For both the 2D and 3D jets, we can see from Kd in Fig. 14

that there is a marked discontinuity (underscored by a hori-
zontal black line in Fig. 14) at the same y-location where the
velocity is discontinuous in Fig. 6. To leading order, the struc-
ture of Kd in Fig. 14 is similar between 2D and 3D aside from
a difference in their y-location.

Relative to Kd , the solenoidal flow Ks in Fig. 15 shows ob-
vious differences between 2D and 3D. The highest intensity
solenoidal flow in 2D is more collimated along the jet axis
compared to that in 3D. There is also significant post-shock
(y ≈ 0 to 0.13 cm) solenoidal flow activity near the leading
edge of the 2D jet, which suggests the presence of vorticity
that is absent near the leading edge of the 3D jet. This sug-
gests that differences in the KE scale-transfer are significantly
influenced by the solenoidal component in the turbulent re-
gion near the leading edge, which we shall now analyze.

A. Deformation and Baropycnal Work

Using the Helmholtz decomposition, we can investigate the
contribution of the solenoidal and dilatational flow to Π and
Λ, which we denote by Πsol , Πdil , Λsol and Λdil . These are
obtained by replacing u with us or ud in eq. (9) and (10), re-
spectively. Note that Πsol +Πdil 6= Π since the decomposition
also yields transfer terms involving both us and ud , which we
do not analyze here and focus instead on the pure solenoidal
behavior.
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(a) 2D (b) 3D

FIG. 17. Visualization of solenoidal deformation work, Πsol
` , in the

turbulent domain (y < 0.375 cm) at k` = 2. Marked differences can
be seen at the leading edge where Πsol

` has negative values in 2D
panel (a) at y≈ 0.05 cm, which are absent in 3D panel (b).

The opposing signs of Πsol between 2D and 3D in Fig. 16
shows the qualitative contrast of the dynamics. In 3D, defor-
mation work from the vortical flow transfers KE downscale,
〈Πsol

` 〉> 0, whereas it transfers KE upscale in 2D, which sus-
tains large-scale coherent vortical structures near the leading
edge of the 2D jet as we shall see below in Figs. 17-19.

The upscale transfer of KE in 2D by Πsol in Fig. 16
is similar to the upscale cascade seen in 2D variable den-
sity Rayleigh-Taylor turbulence32. It is also similar to 2D
constant-density turbulence30,84,85 due to the absence of vor-
tex stretching and strain self-amplification28. Even though the
the magnitudes of Πsol and Λsol in Fig. 16 are smaller than
total Π and Λ over the entire domain in Fig. 12, the vorticity
dynamics at the leading edge can have a disproportionate ef-
fect on the jet’s traveling distance and bulk flow evolution as
we shall discuss below.

B. Circulation Mechanism

To understand the mechanistic cause of differences in Πsol

between 2D and 3D, we probe its tensorial components.
Fig. 17 visualizes Πsol

` at k` = 2. We can see obvious dif-
ferences between 2D and 3D in the sign of Πsol

` at the leading
edge of the jet, which seem to correlate with differences seen
in Fig. 15. As defined in eq. (9), Πsol is a contraction between
the velocity gradient tensor, −∂ j(ũs)i, and the subscale stress
tensor, ρτ̃(us

i ,u
s
j). To understand the sign of Πsol , we focus on

the tensor components i, j = 2 (y-components), which make
the dominant contribution to the spatially averaged Πsol .

The subscale stress component ρτ̃(us
y,u

s
y) is mathemati-

cally guaranteed to be positive semi-definite at every point
in the domain34,78,86. This is shown in Fig. 18. Therefore,
the sign of Πsol

` from the y-components is the same as that
of −∂y(ũs)y. Fig. 18 visualizes ∂y(ũs)y with red/blue indicat-

(a) 2D (b) 3D

FIG. 18. Correlating coarse velocity gradients, ∂y(ũs)y (red-blue
colormap), with subscale stress, τ̃(us

y,u
s
y) (gray-scale map), at scale

k` = 2. Since subscale stress is positive semi-definite, the gray-scale
map highlights regions of strong scale-transfer. The main differences
are seen at the flanks of the 2D jet’s leading edge, |x| = 0.03 to
0.05 cm and y < 0.1 cm, where ∂y(ũs)y is mostly positive, imply-
ing an upscale transfer in 2D as seen in Fig. 17 that is absent in 3D.

ing positive/negative values, implying upscale/downscale KE
transfer (Πsol

` from i, j = 2 components is negative/positive).
Overlapping the colormap in Fig. 18 is a gray-scale map of
τ̃(us

y,u
s
y), which, being positive semi-definite, highlights re-

gions of strong sub-scale stress and, therefore, strong scale-
transfer.

Both panels of Fig. 18 at y > 0.15 cm are roughly similar to
leading order in regions of strong stress. In those highlighted
regions at the jet flanks at y > 0.15 cm, we see that ∂y(ũs)y is
mostly negative, implying downscale transfer in both 2D and
3D. The main differences are seen at the flanks of the 2D jet’s
leading edge, |x| = 0.03 to 0.05 cm and y < 0.1 cm, where
∂y(ũs)y is mostly positive, implying an upscale transfer in 2D
that is absent in 3D.

At the flanks of the leading edge (|x| = 0.03 to 0.05 cm)
in 2D, we see in Fig. 18 that ∂y(ũs)y switches sign along the
y-direction between y≈ 0.05 cm and 0.1 cm. This is sugges-
tive of vortical motion. Fig. 19 visualizes the flow streamlines
superposed over ∂y(ũs)y. From the streamlines in Fig. 19, we
can see clearly two coherent vortical structures at the lead-
ing edge of the 2D jet, which are absent from the 3D jet.
The streamlines in Fig. 19 are consistent with observations
we made above that the flow at y > 0.15 cm is roughly sim-
ilar between 2D and 3D (see also Fig. 29 in Appendix). The
main difference is at y < 0.15 cm, where the coherent roll-up
structure in the 2D jet at y ≈ 0.05 cm is co-located with the
upscale energy transfer seen at that same location in Fig. 17.
This is indicative of the coherent roll-up being energized by
the smaller scale turbulence created post-shock. Such an up-
scale scale-transfer is absent in 3D, which cannot sustain the
coherent roll-up. Vorticity within this roll-up creates an ef-
fective velocity drift86 that helps propel the 2D jet farther and
keep it collimated relative to its 3D counterpart.
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(a) 2D (b) 3D

FIG. 19. Correlating coarse velocity gradients, ∂y(ũs)y (red-blue col-
ormap), with streamlines (black) superposed. The coherent vortical
roll-up structure at the leading edge of the 2D jet is absent from the
3D jet. The roll-up in the 2D jet at y≈ 0.05 cm is co-located with the
upscale energy transfer seen at that same location in Fig. 17, indicat-
ing that the roll-up in 2D is energized by the smaller scale turbulence.

VII. CONCLUDING REMARKS

In this paper, we demonstrated a methodology for diagnos-
ing the multiscale dynamics and energy transfer in complex
HED flows with realistic driving and boundary conditions.
While it is well known that 2D modeling underestimates the
proneness of the flow to instabilities, what we have shown
here is that 2D modeling also suffers from significant spuri-
ous energization of the bulk flow by instabilities. The ener-
gization of the roll-up structures via an upscale transfer from
smaller scale turbulence in Figs. 17-19 brings to the fore some
of the hydrodynamics artefacts associated with 2D modeling,
reinforcing recent findings32.

In HED applications such as ICF, 2D simulations remain to
be the main “work horse” for experimental design17–19 as rou-
tine 3D simulations are prohibitively expensive3. Our hope
from this work is to highlight the trade-off between 2D and
3D flow physics, which may not be as widely appreciated as
trade-offs from approximating other system components such
as the laser drive or the hohlraum. While computational re-
alities may prevent the community from routinely conduct-
ing 3D hydrodynamic modeling in the foreseeable future, we
hope that this work (see also Ref.32) highlights the need to
alleviate some of the hydrodynamic artefacts associated with
2D models.

By demonstrating the applicability of coarse-graining for
comparing the multiscale dynamics and energy transfer be-
tween 2D and 3D, we have shown that this methodology can
help with inter-model comparison and validation. We believe
that future attempts at alleviating some of the 2D hydrody-
namic artefacts would have to use this approach, at least in
some fashion, for testing and model development. After all,
the approach has plenty in common with Large Eddy Sim-

ulation modeling, which is a well-established field in fluid
dynamics39.
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APPENDIX

Fig. 20 shows that the average traveling speed converges at
refinement level 5, which is chosen for the runtime parameter
stated in simulation configurations in Section II A.

Fig. 21 provides two compressibility metrics supplemen-
tal to Section II D, where the 2D jet presents higher com-
pressibility levels at the end of the simulation (t = 3.5 ns).
Fig. 21a is the bulk Mach number that compares the visualiza-
tion of Mach number in Fig. 9. A difference of 12.1% between
2D and 3D occurs at the end of the simulation (t = 3.5 ns).
Fig. 21b is the root mean square (rms) ratio of divergence of
velocity (Fig. 10a) to curl of velocity (Fig. 10b). The ratios
for 2D and 3D are both below one implying the significance
of the divergence-free part of the flow even with the strong
shock in the domain.

Fig. 22 - 24 compare the coarse-grained fields with two
boundary conditions: zero-gradient boundary and mirrored
boundary. Fig. 22 visualizes the coarse y-velocity and Fig. 23
visualizes the y-gradient of coarse y-velocity. Fig. 24 com-
pares a lineout for Fig. 22 and Fig. 23, and demonstrates the
differences between the two boundary conditions are negligi-
ble. The mirrored boundary is selected to be the boundary
condition for the simulations described in Section III A.

Fig. 25 shows the evolution of dominant component (y-
component) of the kinetic energy at various scales, There is
more kinetic energy in 2D at large scales compare to 3D,
which is consistent with the evolution of total kinetic energy
in Fig. 11.

Fig. 26 provides that, at t = 3.5 ns, Π` transfers energy up-
scale and Λ` mainly transfers energy downscale as discussed
in Section IV B.

Fig. 27 shows the deformation work and baropycnal work
due to the dilatational flow at t = 3.5 ns. Energy transfer di-
rections are the same in 2D and 3D for both 〈Πdil

` 〉 and 〈Λdil
` 〉,

which follows the dynamics in homogeneous compressible
turbulence42.

Fig. 28 shows the components of deformation work, 〈Π`〉,
calculated with cross terms at t = 3.5 ns. All components
transfer energy downscale in both 2D and 3D, highlighting
the contrast of dynamics of 〈Πsol〉 discussed in Section VI A.

Fig. 29 overlaps the coarse vorticity and streamlines to
show the correlation between the high-intensity vorticity and
the generation of the circulations discussed in Section VI B.
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FIG. 20. Convergence study taking average traveling speed (ratio
of traveling distance, characterized by Gcentroid

y , to time) at different
refinement levels. Average traveling speed converges at refinement
level 5.
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FIG. 21. Compressibility metrics in (a) bulk Mach number, M, and
(b) root mean square (rms) ratio of divergence of velocity to curl of
velocity. The compressibility levels in 2D is larger than in 3D at the
end of the simulation (t = 3.5 ns).
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(a) Zero-gradient boundary (b) Mirrored boundary

FIG. 22. Comparing coarse y-velocity, uy, with different boundary
conditions at k` = 1 at t = 3.5 ns, where the magnitudes are almost
identical.

(a) Zero-gradient boundary (b) Mirrored boundary

FIG. 23. Comparing y-gradient of coarse y-velocity, ∂yuy, with dif-
ferent boundary conditions at k` = 1 at t = 3.5 ns. Compared to
Fig. 22, differences are amplified close to the boundaries due to the
derivatives.
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(a) Coarse y-velocity, uy
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(b) y-component gradient of coarse
y-velocity, ∂yuy

FIG. 24. Comparison of zero-gradient and mirrored boundary con-
ditions at k` = 1 and t = 3.5 ns along the axis x = 0 from y = 0 to
y = 0.375 cm. Differences occur near the boundaries and are negli-
gible.
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FIG. 25. The y-component of domain-averaged coarse kinetic en-
ergy, 〈KEy〉 = 〈ρ`ũy

2
`/2〉, at all scales > `. 〈KEy〉 is the dominant

component in total 〈KE〉, and large scales in 2D still possess more
KE than in 3D like in Fig. 11.

(a) Deformation work, Π` (b) Baropycnal work, Λ`

FIG. 26. Visualization of energy scale-transfer by Π` and Λ` at k` = 1
and t = 3.5 ns. Π` transfers energy upscale and Λ` mainly transfers
energy downscale. Π` and Λ` appear localized near the target due to
the dominant density contribution.
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FIG. 27. Deformation work, 〈Πdil
` 〉, and baropycnal work, 〈Λdil

` 〉,
due to the dilatational flow and averaged over the subdomain (y <
0.375 cm) highlighted in Fig. 13, plotted here as a function of fil-
tering wavenumber k` at t = 3.5 ns. Energy transfer directions are
the same in 2D and 3D for both 〈Πdil

` 〉 and 〈Λdil
` 〉, which follows the

dynamics in homogeneous compressible turbulence.
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FIG. 28. Components of deformation work, 〈Π`〉, calculated with
cross terms and averaged over the subdomain (y < 0.375 cm) high-
lighted in Fig. 13, plotted here as a function of filtering wavenumber
k` at t = 3.5 ns. All components transfer energy downscale in both
2D and 3D, highlighting the contrast of dynamics of 〈Πsol〉 shown in
Fig. 16.
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(a) 2D (b) 3D

FIG. 29. Overlapping coarse vorticity ω =∇× u and streamlines
calculated for the lower half of the domain (y < 0.375 cm) at t = 3.5
ns. The ω is at scale k` = 2, and the streamlines are generated from
the ũ for the band between k` = 1 and k` = 2. The overlaps imply the
correlation between the high-intensity vorticity and the generation of
the circulations.


