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Abstract

Reinforcement Learning from Human Feedback (RLHF) has achieved impressive empirical successes
while relying on a small amount of human feedback. However, there is limited theoretical justification for
this phenomenon. Additionally, most recent studies focus on value-based algorithms despite the recent
empirical successes of policy-based algorithms. In this work, we consider an RLHF algorithm based on
policy optimization (PO-RLHF). The algorithm is based on the popular Policy Cover-Policy Gradient
(PC-PG) algorithm, which assumes knowledge of the reward function. In PO-RLHF, knowledge of the
reward function is not assumed and the algorithm relies on trajectory-based comparison feedback to infer
the reward function. We provide performance bounds for PO-RLHF with low query complexity, which
provides insight into why a small amount of human feedback may be sufficient to get good performance
with RLHF. A key novelty is our trajectory-level elliptical potential analysis technique used to infer
reward function parameters when comparison queries rather than reward observations are used. We
provide and analyze algorithms in two settings: linear and neural function approximation, PG-RLHF and
NN-PG-RLHF, respectively.

1 Introduction

Reinforcement Learning (RL) Sutton & Barto [2018], Agarwal et al. [2021] is a classic sequential decision-
making problem where an agent interacts with an unknown environment in order to maximize the expected
cumulative reward. In many applications, e.g., robotics and Large Language Models (LLMs) Ouyang et al.
[2022], Achiam et al. [2023], the goal of the agent is complex and related to human evaluation. Additionally,
the reward function may be hard to manually design.

To handle these challenges, a framework called Reinforcement Learning from Human Feedback (RLHF) Christiano et al.
[2017] has been proposed and has achieved huge empirical successes in ChatGPT Achiam et al. [2023]. In
RLHF, the agent does not directly observe rewards, but has access to queries from humans on preferences
based on trajectories. The agent learns the quality of trajectories (policies) from the preference feedback
over time in order to optimize performance. Existing empirical works have demonstrated the practical effi-
ciency of RLHF: human feedback can solve complex RL tasks by using fewer than 1% of the data from the
agent’s interactions with the environment Christiano et al. [2017].

Recently, there have also been a number of theoretical RL papers which seek to provide analyze RLHF,
e.g., Pacchiano et al. [2021], Chen et al. [2022], Zhu et al. [2023], Wang et al. [2023]. Most of these works
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consider value-based algorithms or a given dataset of human feedback, while in many applications, e.g.,
ChatGPT, policy optimization algorithms are often used. Our goal is to quantify the query and sample
complexities of policy-based algorithms when used in conjunction with RLHF, and show that the query
complexity is a small fraction of the overall sample complexity.

In order to address the aforementioned issues, we study Policy Optimization for RLHF (PO-RLHF) with
active human feedback, through which we provide insights on the query efficiency of RLHF. The algorithm
can be summarized as follows. It is an iterative process where at each iteration there is a policy, and several
trajectories are drawn by following the policies obtained so far. The trajectories are compared to trajectories
generated by following a baseline policy. Humans make comparisons between the trajectories generated by
the two policies. Assuming a Bradley-Terry model Bradley & Terry [1952], the algorithm uses the results
of the comparison queries to update the estimate of the underlying reward function. Then, there is an inner
loop where the algorithm follows several steps of the PC-PG policy optimization algorithm Agarwal et al.
[2020] using the estimated reward model. At each step of the inner loop, there is a current estimate of a
parameter corresponding to the policy, and Monte Carlo simulations of the policy are used to determine
the subsequent policy parameter.

Under this formulation, we consider two settings, i.e., linear function approximation and neural function
approximation, where the reward function is linear and belongs to a neural function class, respectively. For
both settings, we design policy gradient algorithms, PG-RLHF and NN-PG-RLHF, which can efficiently explore
the unknown environment and collect human feedback adapting to the exploration. We establish sample
and query complexity guarantees for these two algorithms.

While our algorithm is based on the PC-PG algorithm Agarwal et al. [2020], unlike PC-PG where the
reward function is assumed to be known, we assume the use of human feedback. In order to take into
account human feedback, we first extend the PC-PG analysis techniques to incorporate sources of error
in the rewards. Then we directly quantify the error from human feedback. Characterizing error from
human feedback is challenging for the following reason. The standard tool to analyze policy-based methods
with exploration is the elliptical potential lemma Abbasi-Yadkori et al. [2011]. However, this lemma has
previously been used only in the case where the reward information is generated and observed from each
individual state-action. A key movelty in our paper is in transforming our error terms involving feature
covariance matrices into a trajectory-wise form such that the elliptical potential lemma can be applied to
our RLHF situation, i.e., where rewards are not observed and two trajectories are compared based on the
sum of rewards at all (state, action) pairs in each trajectory. To address this issue, we develop a novel
trajectory-level elliptical potential analysis technique (for more, see Section 4.2).

Our results are consistent with the empirical observation that a small amount of human feedback is
sufficient for RLHF to be successful. The reason is clear: human feedback is used to estimate the reward
function which is then used in the policy-based RL algorithm. In other words, the during the policy update
and policy evaluation phases of our algorithm, the reward estimate is fixed. While it may take many
iterations of gradient ascent and many samples to evaluate each policy, the number of queries required to
estimate the reward function is a small fraction of the overall sample complexity.

We summarize our main contributions as follows:

e Motivated by the success of RLHF, we study policy optimization for RLHF with exploration and
active human feedback collection, and seek to theoretically explain the practical efficiency of RLHF.

e For linear and neural function approximation, we design provably efficient algorithms PG-RLHF and
NN-PG-RLHF, which simultaneously explore the unknown environment and adaptively collect human
data according to the exploration.

o We develop novel analytical techniques, including a trajectory-level elliptical potential argument and
a biased MLE guarantee with neural approximation.



e We provide justification for the practical efficiency of RLHF through a rigorous comparison of sample
complexity between RLHF and standard RL.

2 Related Work

In this section, we discuss works that are most closely related to ours, and defer a detailed review to
Appendix A.

RLHF Christiano et al. [2017] has shown great empirical successes, especially in LLMs Ouyang et al.
[2022], Achiam et al. [2023]. Recently, a number of works have started to theoretically analyze RLHF.
Xu et al. [2020], Novoseller et al. [2020], Pacchiano et al. [2021] study online RLHF for tabular MDPs.
Chen et al. [2022], Wang et al. [2023] consider online RLHF with general function approximation. Wang et al.
[2023] design a reduction framework for RLHF, and prove that the sample complexity for RLHF is no higher
than that for standard RL. Zhu et al. [2023], Zhan et al. [2023a] study offline RLHF with function approxi-
mation. Ji et al. [2023] seek to understand the empirical success of RLHF from the perspective of intrinsic
data bias.

Different from the above works which mostly consider value-based algorithms, we analyze policy gradient
RLHF algorithms with exploration, and show that the amount of data needed to implement RLHF is a small
fraction of the amount of data needed to train an RL algorithm.

Our work is also related to prior neural RL works, e.g., Cai et al. [2019], Wang et al. [2019], Xu et al.
[2021], which theoretically analyze neural function approximation.

3 Formulation

In this section, we formally define the PO-RLHF problem.

We consider a discounted MDP M(S, A, r, P,~, sinit). Specifically, S is the state space, and A is the
action space. r : § x A — [0,1] is an underlying reward function, so that r(s,a) specifies the reward of
taking action a in state s. In the RLHF setting, the agent cannot directly observe r(s,a), and instead,
can only observe comparison feedback between trajectories generated according to r (detailed shortly).
P:S8x A~ Ag is an unknown transition distribution, and P(s’|s,a) gives the transition probability of
transitioning to s’ if action a is taken in state s. Here for any set X, Ay denotes the space of all distributions
over X, and v € [0,1) is a discount factor. We define a policy as a mapping 7 : S — A 4 which specifies
what action to take in a state.

Let the state at step h be denoted by sp, and the action taken at step h be denoted by ap. The value
function

V7T (s) = E[iV}LT(Sh,ah)BO = Svﬂ]

h=0

and the state-action value function

Q7 (s,a) = E[thr(sh,ahﬂso =s,a0 = a,ﬂ]

h=0

denote the expected sum of discounted rewards received under policy 7, starting from a given state s and
state-action pair (s, a), respectively. We define the optimal policy as 7* := argmax,. V™ (Sinit )-

The RLHF model is as follows. The agent starts from an initial state sjnit. At each step h, the agent
first observes the current state sj, and then takes an action a; according to her policy. After that, she
obtains an underlying reward (s, a) (not observed), and transitions to a next state sp41 ~ P(:|sp,ap). The
agent can choose to terminate the current trajectory with probability 1 — v and restart from sjy;¢ at each
step. The agent can query humans to compare trajectories 7() and 7(), and observe preference feedback



y. Following the literature Pacchiano et al. [2021], Zhu et al. [2023], we consider the classic Bradley-Terry
model Bradley & Terry [1952] to formulate preference generation:

1
T 1+ exp(—im @Y’

Prly = 1] (1)

with Pr[y = 0] = 1 — Pr[y = 1]. Here y = 1 represents that 7(!) is preferred to 7(?), and y = 0 denotes the
opposite case.

H(rW) H(r®)
D @) 1y 2) (2
U= 3T sy ) = Y (s ),
h=0 h=0

and H(7) denotes the length of trajectory 7.

Given a confidence parameter § and an accuracy parameter €, the goal of the agent is to identify an
g-optimal policy # which satisfies V”*(sinit) — V™ (sinit) < € with probability at least 1 — J. Before we
describe our reward function model, we first introduce some useful notation.

Notation. For any (s',a’) € § x A and policy 7, let dJ, ,.(s,a) := (1 — y)E[X ;20" Pr[sn = s,an =
alsp = §',a9 = a’, 7] denote the discounted state-action distribution of starting from (s’,a’) and executing
7. With a slight abuse of notation, for any s’ € S, let df,(s,a) := Eycn(|s)[d] . (s,a)]. For any initial
distribution p € Asxa, let df(s,a) := E(s a)npldy o/(s,a)]. In addition, for any (s’,a’) € S x A and
policy =, let OF, ., be the distribution of the trajectory generated by starting from s, a’, executing 7 and
terminating with probability 1 — v at each step, which we call a discounted trajectory distribution. For any
p € Dsxa, let OF be the discounted trajectory distribution of starting from p and executing 7.

Under this formulation, we consider linear and neural function approximation settings for the reward
model.

3.1 Linear Function Approximation

In the linear setting, we consider the log-linear policy parameterization and linear reward function. Specifi-
cally, there exists a known feature mapping ¢ : S x A — R? which specifies the feature vectors of state-action
pairs, and satisfies ||¢(s,a)|| < 1 for all (s,a) € S x A. For parameter w € R?, the log-linear policy is repre-
sented as

exp(¢(s,a) "w)
area P(P(s,a') Tw)’

mw(als) == 5

We make the following assumption on the reward function.

Assumption 3.1 (Linear Reward Function). There exists some reward parameter u* € R? such that
r(s,0) == 6(s,0) ",

3.2 Neural Function Approximation

In the neural function approximation setting, we parameterize the policy, value function and reward by
neural networks.

A two-layer ReLU neural network with input feature ¢(s,a), parameter w and width m is represented
by Cai et al. [2019], Xu et al. [2021]

f(s,a;w0) = ﬁ ; be1 { (5, 0) Twle >0} o(s, )" [wls,



where b := [b1,...,b,] " € R™, and w := [[w]1;...;[w]mn] € R™? are the network parameters.

We initialize the parameters by b, ~ Unif([—1,1]) and [w®]; ~ Dinis for any £ € [m]. Here Diyy; is
an initialization distribution, such that for any w’ € R? in the support of Dinit, ¢ < ||w']|2 < € for some
constants ¢, ¢ > 0. During training, we keep b fixed and only update w.

With a temperature parameter o € R and a network parameter w € R™¢, a policy is represented by

exp(af(s, a; w))
Yweaexplaf(s,a;w))’

Taw 1=

We also use f(s,a;6) to approximate the state-action value function Q™ with another parameter § € R™?

and the same initialization as w, i.e., #° = w°.

Moreover, we approximate the reward function r(s, a) by

m

h(sa a; :u) = %Z bﬂ {¢(S’ a)T [:U’]f > O} ¢(Sa a)T [:U’]@’
=1

where b := [b},...,0,]T € R™ and p := [[u]1;-..; []m] € R™? are the reward network parameters. Simi-
larly, we initialize b, ~ Unif([—1,1]) and [x°]¢ ~ Dinit for any ¢ € [m], and only update y during training.
For any parameter u € R™? and (s,a) € S x A, let [, (s,a)], == %]l {¢(s,a)"[u]e > 0} ¢(s,a) € RY

for any ¢ € [m]. Let ¢, (s,a) == [[¥u(s,a)]1;. . [¥Yu(s,a)]m] € R™4. We can similarly define 1, (s, a).
Define a neural function class Rahimi & Recht [2007):

FhRooo ::{h(s,a) = h(s,a;uo)—i-/ 1 {qb(s,a)—ru >0}

Iz iz . e R
O, @) (w) dp () + 0" ()] < 5,

where p* : R + R is the density function of Dy, and v#(w) : R? — R? together with h(s,a;u®)
parameterize the element of Fly .
In the neural setting, we make the following assumptions.

Assumption 3.2 (Neural Realizability of 7). r € Fg co.

This is a standard realizability assumption, and also made in prior neural RL works Wang et al. [2019],
Xu et al. [2021].

Assumption 3.3 (Regularity of State-action Distribution). There exists an absolute constant cscale € (0, 1)
such that for any v € R% x> 0, (s',a') € S x A and policy T,

Cscale

[vll2

E(Sva)"‘d;r/’a/ []l {‘¢(S,G)TU’ < 'T}:I <

This is also a standard regularity assumption in the neural RL literature Cai et al. [2019], Wang et al.
[2019], Xu et al. [2021]. For a random state-action pair (s,a) ~ d7, ., the probability of |¢(s,a) v| < z

scales with x and |v||5 "
3.3 Baseline Policy

We assume that we have access to a baseline policy, which will be used for comparison in our algorithms.
For any trajectory 7 = (S0, o, - - -, $H(r), G (r)) and feature mapping x € {@, 1,0}, let x(7) := Zth(g) X(Sn,an).



Algorithm 1 PG-RLHF
1: Input: £,0, N, K, MHF,CHF,Ccov,ﬂ'baseanWO-
2: forn=0,...,N—1do
n - K
3: Sample {Sia ai}ilil ~ dginit’ and X" % Zi:l ¢(Sia ai)¢(si7 a’i)T
Xlov 4 Limo X' + Ceov]
— 1 ‘
Let pgov T nF1l Z?_:O d;rinit
Ofip := 3 2212y 051, ¥n > 1, and Ofp = OF
fori=1,..., Myr do
Sample trajectories Ti(l) ~Ofp and TZ-(2) ~O7F .
Observe the comparison outcome y;
10: end for
11:  Estimate 4" via MLE as in Eq. (2)
12: 7"t NPG-Update(pl,, X", i)
13: end for
14: return Unif(z!, ... 7

0

base

M)

Assumption 3.4 (Baseline Policy). The baseline policy 7% satisfies that for any (s,a) € S x A and
policy T,

E.woor, [(X(TM) = X)) = x(r@)T]

T(2) Noﬂ_base

Sinit
= CbaseET(2)~O§.b§fe [X(T(Q))X(T@))T]
for some absolute constant chase € (0,1). Here x = ¢ in the case of linear function approximation, and
X = % in the case of neural function approximation.

We discuss Assumption 3.4 in more detail in Appendix C.3.4.

4 PO-RLHF with Linear Function Approximation

We first study PO-RLHF with linear function approximation. We develop a policy gradient algorithm
PG-RLHF which can explore the environment and adaptively collect human data.

4.1 Algorithm PG-RLHF

PG-RLHF builds upon the policy gradient algorithm PC-PG Agarwal et al. [2020] for standard RL. Our

algorithm is described in Algorithm 1. PG-RLHF runs N outer-loop phases for coverage update and reward

estimation (Lines 2-13 in Algorithm 1), and T inner-loop iterations for policy optimization under given

coverage and reward model (Lines 6-15 in Algorithm 2). In each phase n, PG-RLHF first estimates the feature

o~ and updates the state-action coverage distribution pZ,,, which is the average of the

state-action visitation distribution of all the policies 7°, ..., 7™ used so far (Line 5 in Algorithm 1). p=%

will be the initial state-action distribution of the policy optimization in the inner-loop, and is gradually
expanded in each phase to improve the coverage.

Human Feedback Collection. Next, we collect human data for reward estimation. For any phase

n > 1, let Ofp be the distribution of the trajectory generated by starting from state-action distribution

covariance matrix X"

pi . executing 7 and terminating with probability 1 — v at each step, where 7 ~ Unif([n]); For phase
n =0, Ofp = Ogi“ (Line 6). In addition, let Ofbaje be the distribution of the trajectory generated



Algorithm 2 NPG-Update

1: Input: p?ov,igov,ﬂ",T,f,n,Wg.

2: Let #7(-,-) = qﬁ( )TA™ and ©: {9 18]l < W}

8: Let b () = 25 1{o(, ) T (Bloy) T'0( ) > B}

4: Let K™ ::{SES Va € A, b"(s,a) =0}

5: For s € K", initialize w® such that 70(:|s) := m,0(-|s) = Unif(A). For s ¢ K", 7°(-|s) := Unif({a € A :
bn(saa) = 1iV})

6: fort=0,...,7—1do

7. Initialize 6%°

8: fori=0,...,Msgp — 1 do

9: Sample (s;,a;)~pZ and estimate Q™ (8i,a:; 7™ 4+ b™) using Monte Carlo sampling

10: 04+ Projg (0% — 26(d(si, ai) 08 — (Q (s, ai; 7 + b") — b"(s4, a1))) - B(si, 1))
11:  end for

122 0" ¢ g S Msan 1 gh.i

130wt « wt 4+ no?

14: Vs € K", wtt1(1]s) = myper1 (+]s) o exp(o(s,-) Twitl). Vs ¢ K7, ntt1(-|s) = 7n0(-|s)

15: end for

16: return Unif(7°,... 7

Tfl)

base base

by starting from siui¢, executing and stopping with probability 1 — « at each step, where = is

a baseline policy (Line 8). We sample trajectories Ti(l) and Ti(2) from Ofp and (9;’1:;, respectively, and
observe a comparison outcome ;. This process is independently repeated Myr times, and then we obtain
human data {Ti(l), 1(2),yz}MHF (Lines 7-10).

With the human data, we use the maximum likelihood estimator (MLE) to estimate the reward parameter
as

Muyur
o . {y, =1
[ = argmin (— E log { (1)} @
lulo<w, \ 1 Ltexp (— (7 7 )T p)

1{y; =0}
1+ exp (6777 Tp) )> ?

@
where qﬁT(l)’T@) = ZH(T o(s 51}2, (1)) ZH(T )qb( 52}2, (2)), and (552, 5})1) denotes the state-action at

step h in trajectory Ti( ) for any £ € {1,2}.

Comparing to a fixed baseline policy helps to de-correlate the comparison (difference) relationship be-
tween two trajectories in the Bradley-Terry model (Eq. (1)), and provides a better control for the properties
of the human data covariance matrix to cover the state-actions that we care about.

Intuition of Human Feedback Collection. The idea behind our human data collection scheme
is as follows. Since we will do policy optimization with initial state-action distribution p,, and obtain
policy 7™*! in each phase n, our performance will be influenced by the reward estimation accuracy on the
state-actions guided by 7T"+1 starting from p, for n = 0,1,...,N — 1. Therefore, using the human data
generated by 7™ and p”;! (7 ~ Unif([n])) can guarantee a small reward estimation error on the state-action
space that we care about (where our performance is measured).

With the coverage distribution p, , coverage covariance matrix ¥7 and estimated reward model
7 (-,-) = ¢(-,-) T 4™, we call subroutine NPG-Update to perform policy optimization. In NPG-Update (Algo-
rithm 2), we first define the exploration bonus b"(s,a) := L for the state-actions that are not sufficiently

explored, and define b™(s,a) := 0 for those that are suﬂimently explored according to ZCOV (Line 3). Accord-
ing to b"(s, a), we implicitly divide the state space into two state sets, one with well-explored state-actions



(i.e., £™), and the other one with under-explored state-actions (Line 4).

Then, we perform natural policy gradient (NPG) Agarwal et al. [2021] with initial state-action distribu-
tion pl, and bonus-incentivized reward 7" + b™ (Lines 6-15). Formally, the optimization objective can be
written as

max g o), [Q7(s,a;7 +b")].

In the t-th iteration of NPG, we use projected stochastic gradient descent (SGD) Shalev-Shwartz & Ben-David
[2014] to fit (Lines 8-11)

argmin E, 4)pn {(qﬁ(s,a)'r@
01I<We

_ (Q”t(s, a; P 4+ b™) — b (s, a)))Q} ) (3)

At step i of SGD, we compute the stochastic gradient by 2(d(s;, a;) "0 — (Q™ (si, as; " + b") — b"(s,a))) -
¢(s,a), where (s;,a;) is sampled from p7 and Q™ (s, a;; 7" 4 b") is estimated by Monte Carlo sampling
(Lme 9). After SGD, we obtain 6 such that ¢(s,a)" 6 + b"(s,a) well fits the state-action value function
Q™ (51, ai; 7" + b™) (Line 12).

Then, we update the policy parameter by w!t! < w? + nf*. Furthermore, we set the policy 7t*! as the
log-linear policy with parameter w!*! for s € K", and the uniform policy over all under-explored actions
for s ¢ K™ (Line 14).

After NPG, we obtain 77! = Unif(7?,...,77~1), which both optimizes the value function and has an
incentive to explore the unvisited space. In the next phase, 7”71 is used to improve the coverage, and also
expand the space where we collect human data and can guarantee accurate reward estimation.

Computational Efficiency. We remark that the computational complexity of NPG-Update is indepen-
dent of S. b™, K™ and «* are only implicitly maintained by computing 37 and w'. When we encounter
some state s in Monte Carlo sampling (Line 9 in Algorithm 2), we can identify if s is in ™ and compute
b™(s,a) by £ (for all a). To execute 7* in state s, if s € K™, we choose an action according to 7 ; If

cov

s ¢ K™, we uniformly choose an action from the actions with " (s, a) = ﬁ

Sample Complexity. We note that is N is the number of times we update the coverage distribution.
Between two coverage updates, (i) we observe K trajectories to update the feature covariance matrix,
(ii) we perform Mpyp human pairwise trajectory comparisons, and (iii) we run T iterations of NPG, and
within each NPG iteration, we run Mggp steps of SGD for policy evaluation. Further, for each step of
SGD, we sample two trajectories, one to sample from the coverage distribution and one to estimate the
Q@-value function (Line 9 in Algorithm 2). So the overall number of trajectories used by our algorithm

is (K + 2Myr + 2T Msgp)N. Since the number of transitions observed for each trajectory is O(ﬁ), the
number of samples used by our algorithm is O((K + Mup + TMSGD)%).

4.2 Theoretical Guarantee of Algorithm PG-RLHF

Now we provide performance guarantees for algorithm PG-RLHF.
First, following Agarwal et al. [2020], we define a bounded transfer function approximation error. Let
0 be the optimal solution to Eq. (3), and d%_ (s,a) :=dZ  (s)o Unif4(a).

Sinit

Assumption 4.1 (Bounded Transfer Error). For any phase n > 0 and iteration ¢ > 0, there exists some
€bias > 0 which satisfies

E(s.ay~az, {(fb(s, a)Tot



PG-RLHF for RLHF PC-PG Agarwal et al. [2020] for Standard RL
# Samples O((NK + NTMsap + N Mur) =) O((NK + NTMscp) 1)
# True rewards 0 O((NK + NTMsgp) 1)
# Queries O(N Muyr) 0

Table 1: Comparison of sample complexity, the number of true rewards and the number of queries between
PG-RLHF and PC-PG Agarwal et al. [2020] for standard RL.

_ (Qﬂt (s,a;r +b") —b" (s, a)))Q] < Ehias- (4)

Ebias Measures the error of using the best fit 1 with log-linear policies under p”  to predict the state-
action value function under df, . . For tabular or linear MDPs Yang & Wang [2019], Jin et al. [2020], 6.
perfectly fits the value function for all (s,a) with log-linear policies, and epias = 0. Then, we formally state
the performance of PG-RLHF.

Theorem 4.2. With probability at least 1 — §, the output policy of algorithm PG-RLHF satisfies
\/ |A|5bias n Wa
L=y (A-VT

WoVvBN VBWoNd o )
(1= Msep)* (1 - ) ymmEe M VP07

* out

V™ (Sinit) = V™ (Sinit) < O(

Furthermore, by tuning parameters as in Eq. (25) in Appendiz C.4, we can guarantee

* out 2\/ |-A|5bias

V™ (Sinit) — V7 init) < ;
(Sinit) (Sinit) < €+ 1

with O(Poly(WQ,W#,CHF,d, (1 - 7)’1,571,cgalse,~ci,liE)) samples. Here Wg = ﬁ, emLe = (24
exp(—2W,W,,) + exp(2W,.W,))~!, and W, = O(ﬁ) denotes the high probability bound of trajectory
length.

See the full bounds in Egs. (24) and (26) in Appendix C.4.
Remark. As shown in Theorem 4.2, the suboptimality can be decomposed into the following com-
ponents: (i) the transfer function approximation error i/Zpias, (11) the NPG regret \/—, (iii) the policy

evaluation error (Msgp) ™1, (iv) the reward estimation error MHP:‘, and (v) the error due to the exploration
bonus construction i The statistical error (ii)-(v) will converge to zero as the number of samples increases,
while the transfer functlon approximation error (i) can still remain even with infinite samples.

Theorem 4.2 demonstrates that algorithm PG-RLHF can efficiently utilize human feedback to learn a near-
optimal policy up to the intrinsic function approximation error of the MDP. For tabular MDPs and linear
MDPs Yang & Wang [2019], Jin et al. [2020], we have epjas = 0, and PG-RLHF can identify an e-optimal
policy.

Below we give a proof sketch, and introduce a novel trajectory-level elliptical potential analysis for
bounding the feature vector sum of human data.

Proof Sketch. For any r: S x A R, let F"(0) := E (s a)mpn [(¢(s,a)T0— (Q™ (s, a;7+b™) —b"(s,a)))?].
Let 6% and 67 ., be the optimal solutions to minimize F"(¢) and F"" (0), respectively. Recall that 6* is a
near-optimal solution to minimize F*" (0) obtained by SGD in our algorithm. Applying the performance
difference lemma as in Agarwal et al. [2020], we can decompose the suboptimality into

t

V*(sinit) = V™ (Sinit)



(¢'(s.0)70" +5"(5,0)

I'npc

< E(S a),\,d*

Sinit

e

+ AT (s, a5 4 0") — (6'(s,a) 70 + b (s, a))

Pbias
+ J)t(sa a‘) (9 emld) =+ J)t(sa a‘) (emld - et)
T, I'sep
Y @) } . (5)
(s,a)gKm
Ty

Here A™ (s,a;r +0") = Q’Tf’ (s,a;r + ™) — yr (s;7 4 b"), ¢(s,a) == P(s,a) — Eqrrt () [@(s,a")] and
bt (s,a) = b"(s,a) —Eqront(s) [b"(s, a’)]. Similar to Agarwal et al. [2020], we can bound I'npa, Ebias; I'sGp
and I'y due to NPG regret, transfer function approximation error, policy evaluation error and optimistic
bonus construction, respectively.

Then, the remaining challenge is to bound the reward estimation error I',.. To tackle this, we develop a
novel trajectory-level elliptical potential analysis to deal with human data.

Trajectory-level Elliptical Potential Analysis. According to the definitions of 6! ., and 6%, to
bound term I',., it suffices to bound

E(s,a)~p HQ s a;f”—l—b")—Qﬂt(s,a;r—l—b”)H

H(r)
) *
<Eoog || eonal | el | )
T Opcov|:’ EEF)71 HE
Here Sy, o= —L S Muw 3oV n® (GriVr T 4 e [ g the feat i trix of h data, and
€re Lygp ‘= Mur =1 n 1S € Ieature covariance matrix o uman data, an

concentrates to
n

1 T (1) (2 721
ﬁF::E E (Er(l)moﬂ'.i l,T(z)NO"base |:¢7' T (¢T ) :|)
L Sinit

i=1 Pcov
+ CH—FI (7)
7 @ H(®M 1 1 H(® 2 2
forany n > 1. LetZOF—E br ‘= Curl. Inaddition, ¢™ T = h:(() )¢( Eiz’ 5}2) h:(O )¢( E,z, 5,2)

Eq. (6) is a key step. Specifically, we decompose the error of state-action value function due to reward

estimation into: (i) The error of reward parameter ||3" — “*HigF’ which is bounded by O(\/W) due

to the MLE guarantee; (ii) The trajectory-level feature norm || ZhHZ(S) qﬁ(sh,ah)TH(iﬁp),l, instead of the

state-action-level feature norm E(s,a)wdgi llo(s, a)TH(ﬁ:" —1-

Since 7" is the average of all obtained policies and X concentrates to Xfin, with the Cauchy-Schwarz
inequality, it suffices to bound the summation of the squared feature norm under X, as

X e [ s, ) g

A nice thing is that the covariance matrix Xr (Eq. (7)) involves trajectory-level features, and here

each summed term || Zth(B) #(sn,an) || is also a trajectory-wise feature norm. This enables us to apply
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the elliptical potential lemma Abbasi-Yadkori et al. [2011] to bound this summation, which validates our
decomposition scheme in Eq. (6).
Then, using 7"+ = Unlf({ﬂ't} Eq. (8) is bounded by
H( ‘r(l)

1
2 [Pt .

@ N2 0 @2
S 2 Z E (D) Oﬂn+1 ‘ (;5 ’ N1
(nEHF)

(Z)Noﬂb‘m

Sinit

Tiraj

H(T(2)

+2 Z E, ). i { ’Z 6(s

(b) WE d
lo log(N) | .
© (d ( dgHF ) * Chase Og( ))

(”Eﬁp)l]

Here we make the convention that (0X%p) := (url. Inequality (a) comes from adding and subtracting

e
Sy o al)T
With consistency between the summed term and the covariance matrix X3 (both in a trajectory and
difference form), I't;aj is an effective elliptical potential summation. Then, inequality (b) follows from
applying the elliptical potential lemma Abbasi-Yadkori et al. [2011] and Assumption 3.4. See Lemmas C.10,
C.13 in Appendix C.3 for full proofs. U

4.3 Insight into the Practical Efficiency of RLHF

Below we compare our PG-RLHF and prior standard RL algorithm PC-PG Agarwal et al. [2020], and provide
an insight behind the empirical success of RLHF.

Table 1 shows that PG-RLHF needs additional O( NlAf‘;F) samples due to the lack of direct reward signals.
We have O(Mur) ~ O(Msgp), since their convergence rates are the same (see Theorem 4.2). Then, the
additional samples needed by PG-RLHF is negligible compared to the total sample complexity. This implies
that RLHF does not introduce much hardness in terms of sample complexity, which matches the finding of
recent RLHF work Jin et al. [2020].

Regarding the cost on reward observations, in standard RL, we require O((NK + N TMscp) 7 'v) ob-
servations of true rewards. However, in RLHF, we do not need any observation of true rewards, but only
use O(N Myr) human queries. The ratio of the number of queries needed over the total sample complexity
is about AMur % This theoretically explains the empirical success of RLHF — RLHF only needs a

NTMscp
small amount of comparison queries to achieve good performance as standard RL Christiano et al. [2017].

5 PO-RLHF with Neural Function Approximation

In this section, we turn to the neural setting. We design an efficient algorithm NN-PG-RLHF, and derive a
biased MLE guarantee with neural approximation in analysis.

5.1 Algorithm NN-PG-RLHF

A detailed description and pseudo-code are provided in Appendix B. Here we provide a brief outline of the
algorithm. NN-PG-RLHF actively collects human data as exploration, learns a reward network with human
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data, and trains a policy network and a Q-network to optimize the policy. Similar to PG-RLHF, NN-PG-RLHF
estimates the feature covariance matrix and updates the coverage with the neural feature 1,,0(s,a). Then, it
generates preference data by past coverage, past policies and the baseline policy. The reward and Q-function
networks are trained using an MLE loss function and a least-squares loss function, respectively.

Now we provides theoretical guarantees on NN-PG-RLHF. Let 63" = argmingg_goj<p E(s,ay~pn, [(Yuwo (s, a)To—

(Q™ (s,a; 7" + b™) — b"(s, a)))?] denote the optimal solution to the approximated version of the Q-network
training objective with neural feature 1,0 (s, a).

Similar to Eq. (4), we assume that the error of using the best fit O™t under pesv to predict the state-
action value function under df, . is bounded.

Assumption 5.1 (Bounded Neural Transfer Error). For any phase n > 0 and iteration ¢ > 0, there exists
some sblas > 0 which satisfies

IE(s,u,)Nd* |:(1/}w0 (Sa a)TQi\IN’t

2
- (@ o) -1 a) | <A

Theorem 5.2. With probability at least 1 — §, the output policy of algorithm NN-PG-RLHF satisfies
\/ |A|€b1as
L=~
< WM /BN RWNN
+ 0 ( +

L=VT (1 =7)2(Mgp):

out

V™ (8init) = V™ (Sinit) <

midi/BWNN [ miaiN WARIN

1 1 1
(1 —7)? NN Ar, (e) T (Mggp)s

*%*3(#))

Here M. and MSBGD are the numbers of iterations of the SGD for the reward network and @Q-network

training, respectively. B(m™15) is a neural approzimation error term scaling as m~1. WNN := \/mé + R,
and Nt g = (2 + exp(—2W, WNN) + exp(2W, WHN))~1

Theorem 5.2 demonstrates that the suboptimality becomes small with sufficiently large T, N, MHF,
MEp and MY, up to the neural transfer error O((e} aLs) ) and the neural approximation error O( 16)
See the full bound in Eq. (44) in Appendix D.5.

Biased Neural MLE Analysis. Due to the gap between the true reward r and the functions that
h(s,a;u) can represent, our MLE reward training is biased. To tackle this difficulty, we develop a novel
biased MLE analysis with neural approximation.

Specifically, let P be the network parameter of the projection of 7 onto neural function class {10 (s, a) Tu}.
Then, we have that 1,0 (s, a) T pPro3 is close to 7 up to a neural approximation error scaling as +. Let HYLE
be the optimal solution to the approximated version of the MLE objective with feature 0 (s a). Note
that the human data are generated almost according to uP™ (since it is close to r), and p}y; p has a larger
likelihood than pP™J. Utilizing these two facts, we can bound ||ufy g — #E*|| up to the standard MLE
error O( \/W) and a neural approximation error. Furthermore, the SGD result 4" obtained in our algo-
rithm is close to the MLE optimal solution py; g up to the SGD error. Combining the SGD, MLE and
neural approximation error, we can bound ||a" — uP™J||. We refer interested readers to Lemma D.12 in
Appendix D.4.
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6 Conclusion

In this work, we study exploration-driven policy optimization for RLHF. For the linear and neural function
approximation settings, we propose efficient algorithms with active human data collection. Through the
comparison of results between RLHF and standard RL, we give a theoretical explanation for the query
efficiency of RLHF. There is still a large space for future investigation. For example, it is interesting to
explore other potential reasons behind the success of RLHF, e.g., the structural advantage of preference
feedback over numerical feedback.
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Appendix
A Detailed Review of Related Works

In this section, we present a more detailed review of related works.

RLHF. RLHF Christiano et al. [2017], Kaufmann et al. [2023] has gained a huge empirical success,
especially in LLMs Ouyang et al. [2022], Achiam et al. [2023]. Recently, a number of works have emerged
to theoretically analyze RLHF. Xu et al. [2020], Novoseller et al. [2020], Pacchiano et al. [2021] study online
RLHF for tabular MDPs. Chen et al. [2022], Wang et al. [2023] consider online RLHF with general function
approximation. Wang et al. [2023] design a reduction framework for RLHF, and prove that the sample
complexity for RLHF is no higher than that for standard RL. Zhu et al. [2023], Zhan et al. [2023a], Li et al.
[2023] study offline RLHF with function approximation. Xiong et al. [2023] introduce a KL-constrained
framework for RLHF, and Zhan et al. [2023b], Wu & Sun [2023] consider how to optimize query complexity
via experimental design and posterior sampling. Ji et al. [2023] also seek to understand the empirical success
of RLHF in the offline contextual bandit setting, but different from our work, Ji et al. [2023] explain it from
the perspective of intrinsic human data bias.

In contrast to the above works which most consider value-based algorithms, we analyze policy gradient
RLHF algorithms with exploration, and theoretically explain why RLHF only needs a small amount of
human feedback to attain good performance, from the perspective of the efficiency of RLHF (reward learning)
algorithmic procedure itself.

RL with Neural Function Approximation. There have been several theoretical RL works, e.g., Cai et al.
[2019], Wang et al. [2019], Liu et al. [2019], Fan et al. [2020], Xu et al. [2021], use neural networks to approx-
imate value functions and policies, and provide guarantees based on existing analysis for overparameterized
neural networks Jacot et al. [2018], Arora et al. [2019]. Our work also considers neural function approxima-
tion for the RLHF environment. In addition, our work is also related to Agarwal et al. [2020], which designs
a policy gradient algorithm enabling exploration for standard RL.

B Detailed Description of Algorithm NN-PG-RLHF

Algorithm 3 NN-PG-RLHF

1: Input: ,6, N, K, Mur, Car, Ceov, 7°2%¢, 0.

2: Initialize a® = 1 and [1%]¢, [w®]¢ ~ Dinit, V2 € [m].

3: forn=0,...,N—1do . X«

4:  Sample {s;, ai}fil ~df, ., and X" % D ie1 Yuwo (Sis i) o (54, a;)"
E;r:lov — Z?:O Ez + CCOVI )
Let ngV = %—l—l Z?_:O dginit
Oy i= 377, 07, ¥ > 1, and Ol i= OF.,
fori=1,..., Myr do

Sample trajectories Ti(l) ~Ofp and TZ-(2) ~OF .
10: Observe the preference outcome y;
11:  end for
12:  Train the reward network h(s,a; u%) with the MLE objective Eq. (9) by projected SGD, and obtain

nn

0

base

K .
13: 7"t NN-NPG-Update(p?,,, 3%, ii™)
14: end for
15: return Unif(7!, ... «%)
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Algorithm 4 NN-NPG-Update

1: Input: pf}ov,f]gov,ﬂ”,n,T,ﬁ,aO,wO.

2: Let 7"(-,-) :== h(-, 5 a")

30", ) = 15 H{tuo () T (Boy) o (-, ) = B}

4: Let K" :={se€ S:Vae A b"(s,a) =0}

5: For s € K™, 7%(-|s) := Ta0 yo. For s ¢ K™, 7%(-|s) := Unif({a € A : b"(s,a) = ﬁ})

6: fort=0,...,7—1do

7 040 «— 0

8:  Train the Q-network f(s, a;0%°) with the objective Eq. (10) by projected SGD, and obtain §*
9:  Update policy network: a‘Tlw!t! « atw! + ng?

1. Vs € K™, w1 (|s) = mret1 o1 (o|s) oc exp(7H f((s, a;wi™h)). Vs ¢ K™, wtT1(-]s) = 70(:[s)
11: end for

12: return Unif(7°,... 7T~1)

In this section, we present the pseudo-code of algorithm NN-PG-RLHF, and give a more detailed algorithm
description.

Algorithm 3 illustrates the procedure of NN-PG-RLHF. Similar to PG-RLHF, in each phase n, NN-PG-RLHF first
estimates the feature covariance matrix 3 and updates the coverage distribution p? . Then, it generates
My pairs of preference data using past coverage distributions pi!, past policies 7 and a baseline policy
7base (j = 0,1,...,n). With these data, PG-RLHF trains the reward network h(s,a;u") to minimize the
following MLE objective by projected SGD (Line 12):

_— ( % ( 1{y: =1} L 1y ()o}@);u)) )), (9)

lu—pOll2<R i1 1+exp(— H(Ti(l),Ti@); 1)  1+exp (il(’]'i ! ,T;

~ (1) (2)
where h(TZ-(l),TZ-(Q);/L) = ZhH:(B )h(sg},z, ag},z; W) — ZhH:(B )h(sg?,z, ag?,z; w). After training, we call a subrou-
tine NN-NPG-Update (Algorithm 4) with p , Ycov and A(:,-; ™) to perform policy optimization.

In NN-NPG-Update, we train the Q-network f(s,a;0%°) to fit the state-action value function with initial

distribution p7, by project SGD (Line 8):

argmin  E¢, qypn {(f(s, a;0) — (Q’Tt (s,a; 7™ +0") — b" (s, a)))2]. (10)
l0-0°I<R

With the trained Q-network f(s, a; %), we update the policy network parameter 7/ 1w!*! using 6 (Line 9).
After the natural policy gradient, we obtain an improved policy network 7”*!, which is used to improve
the coverage and guide the human data collection in the next phase.

C Proofs for PO-RLHF with Linear Function Approximation

In this section, we give the proofs for algorithm PG-RLHF. In our analysis, the ideas of MDP construction and
natural policy gradient (Lemmas C.1-C.6) for optimistic MDPs are originated from Agarwal et al. [2020].

C.1 MDP construction

We consider three MDPs as follows: (i) The true MDP M. (ii) The optimistic MDP with exploration
bonuses Mpn. Myn replaces the reward function in M by r(s,a) + b"(s,a). (iii) The (7%, K£™)-modified
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optimistic MDP M™. M™ is the same as M;» except that, for any s ¢ K", M"™ adds an additional action
a' whose reward function and transition distribution are

r(s,at) =1, pi(sls,al) = 1.

In M"™, we consider a modified version of 7*, denoted by ©*™. For any s € K™, 7*"(:|s) = n*(+|s). For any
s ¢ K", 7" (a'|s) = 1. Thus, in M™, under policy 7", once the agent goes into some s ¢ K", she will
self-loop and keep receiving the reward 1.

Lemma C.1. For any phase n > 0, iterationt >0, s € S and a # a',
7\'t 7\'t 7\'t ﬂ_t 7\'t 7\'t
V./\/l" (S) = VMbn (S)v Q/\/l" (Sa a‘) = QMbn (Sa a)v AM" (Sv a’) = AMyn (Sa a)'

Proof. This lemma follows from the fact that M" is the same as Myn except that M™ has an additional
action af, but 7* never picks af. O

Lemma C.2 (Lemma C.1 in Agarwal et al. [2020]). For any phase n >0, s € K" and a € A,
T (5,0) < d7y(s, a).
Lemma C.3 (Lemma C.2 in Agarwal et al. [2020]). For any phase n > 0 and iteration t > 0,
V/Cl*ﬁn (Sinit) > V/Cl* (Sinit ),
1

V]\T/:n(sinit) = Vﬁ:bn (Sinit) < VI;(Sinit) + T Z d;r;it (s,a).
T (saekn

Lemma C.4 (Lemma C.3 in Agarwal et al. [2020]). For any phase n > 0,
n+1 1 .
Do i (5:0) <GBy ageee [005,0) (5) 605, a)]
(s.a)gkr

Furthermore, it holds that

]f Z dﬂ_n+1( ) < 2 ! det (gcovl + Zz]\;1 E(s,a)ng:n“ [¢(5a a)¢(3a a)T])
5. (s,a) < = log ‘
2 2 ; det (Con )
< 2d lo <1 + N >
=5 U )

C.2 Performance Difference Lemma and Policy Gradient on M"

Lemma C.5 (Performance Difference Lemma on M™). For any phase n > 0 and iteration t > 0,

- ¢ 1
V_Xr/[n (Sinit) — V_Xr/[n (Sinit) S ﬁE(&a)Ndﬂ-*;ﬁ

i8init

[ ’/T\;bn(s,a)-]l{selcn} .

Proof. For any phasen > 0 and iteration ¢t > 0, using the standard performance difference lemma Kakade & Langford
[2002], we have

1

*,m t
Vign (Sinit) — Vign (Sinit) = ——
M M 1—v

t
E(s,a)wd"'*'n |:A./\/l" (S’ a’):|

g
M sinit
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1 . {Aﬂn(s,a).n{selc”}}

T 1- ’YE(S’G)NdM"%Sim
1 o .
P B, [ Al (s,0) 1 {s ¢ K]

g
M sinit

*,M

In M™, for any s ¢ K", policy 7" chooses a' deterministically. For any s ¢ K", we have

Afn(5,07) = QRan(5,") = Viia (5)
AV () — Vil (5)
=1— (1 =)V (s)
(&) 1
<1-(1-7) (0+—)
L=~
where inequality (a) is due to the facts that for any s ¢ K", 7!(:|s) = Unif({a € A : b"(s,a) = —=}), and

that V/(jn (s) is no smaller than the cumulative reward 0 plus the exploration bonus b™(s, a) =
Therefore,

*,m T 1 Tt n
VIR (Sinit) — Vi (Sinit) < T E oz, [A T (s,a) 1{s €K }}
o 1 ot 0
= T Mo, [AMW (s,0) - 1{s € K }] :

where inequality (b) is due to that A’]\;n(s, a) = Aﬂbn (s,a) for a # a' (Lemma C.1), and 7" never picks
a' for any state s € K. O

Let Wy := ﬁ and n < WLA Then, |Aﬂbn (s,a)] <KWy forallm >0,t>0and (s,a) € S x A.

Lemma C.6 (Regret for Natural Policy Gradient). For any phase n > 0 and iteration t > 0,

-« , log(|.A))
> Bamagy, AR, (s.0) 1{s € K7}] < 2L AT,
t=0

M™38init n

Proof. For any phase n > 0, iteration t > 0, s € K™ and a € A, we have b"(s,a) = 0.
Define

Dy :

Z (exp (¢(s,a’) Tw')),

a’€A
Ey = exp (—nEqunt(|s) [#(s,a)6])
= exp (~nBannt(fs) [$(s,a) 0" + 1" (s, a)])
= exp (=i (5))
and we have
exp (¢(s,-) Tw'™)
Darea (@(s,a’) Twith)
_exp (6(s,) T (w' + not))
C Ywea(@(s,a)T (wh 4 16t))

7 (s) =
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_ () exp (y (005, ) 70" +17(s.)

Larea (%W ~exp (1 (¢(s, a’) 10" + b (s, a’))))
7(ls) - exp (nQi, (5:) - B

S (7 (@ls) -exp (n@%,. (5.00) - B.)
7 (:|s) - exp (1A%, (5, )

e (7(1s) -exp (74T, (5.)))
7([s) - exp (1A%, (5. )

S (7 (@]s) -exp (AT, (s.0))

Define G, :=Y" o 4 (7" (d/]s) -exp(n/l’]\;bn (s,a’))), and we have

log(G5) = log <Z (ﬂt(a'|s) - exp (nflﬂbn (s, a'))))

a’€A

a’e A
<log (1+7n°W3)
< n*W3,

where inequality (a) is due to that nflﬂbn (s,a’) <nWa <1 and exp(r) < 1+ x + 2% for any z < 1.
Thus, for any s € K", we have

KL(n " (-|s) |7 (:]s)) — KL(x"" (-]s)l|7" (|s))

B [ 7" (als) ™" (als)

= Equr=m(s) |log (m)] —Egnr=n(s) |:10g (W
[ ' (als)

= Eam«ﬂ'**"("S) -log (ﬂ't+1(a|5)):|

[ At
= EU,NTI’*’"(“S) _log(GS) - UAXA,,” (Sv 0,):|

< —nEaNﬂ_*,n(_‘s) [AWMbn (S,a)} + 772Wi,

which is equivalent to
Ant 1 *,M *,Mm
Eromen([s) [AMTL (s,a)} < (KL(w* " (-|s) |7t (-|s)) — KL(@*"(-|s) || T1(:]s))) + n 2.

Adding s ~ dj;':; on both sides and summing over t =0,...,T — 1, we have

Sinit
T-1

Y Egayeag

iSinit
t=0

[ (50) 1 (s € K] < 2B, e (KL (1) Cls) = KL ()27 (1)

+nW3T

20



1
n

C.3 Human Feedback

For any trajectory 7 = (so, ao, . - ., SH(r), GH(r)), let H(7) denote the length of 7, and ¢(7) := ZhH:((T)) d(Sh,an).
~ (1 2 (1) +(2)
For any trajectories 7V, 7(2) | let qﬁT( r® hH:(0 )qﬁ(sg), ag)) - ZhH:(O )qﬁ(sf), af)).
For any (s,a) € § x A and policy 7, let OF , be the distribution of the trajectory which is generated
by starting at (s,a), executing policy 7 and terminating with probability 1 — v at each step. For any

state-action distribution p, let O} := E,<(5,4)[OF .-

C.3.1 Trajectory Length and Covariance Matrix Concentration

To analyze the reward estimation error under human feedback, we first define the concentration events for
trajectory length and the coverage and human data covariance matrices.
Define event

log (3
Er = {|T| < 01g (&) := W, for any trajectory 7 sampled in the algorithm} . (11)
-7

Lemma C.7. It holds that Pr[€,] > 1 — 2N (K + Myp + TMscp)d'.

Proof. This proof is similar to Eqgs. (94)-(97) in Zanette et al. [2021].

Let H denote the length of a trajectory which is generated by terminating with probability 1 — at each
step. Then, H is a random variable which satisfies Pr[H = t] = 47 1(1 —v) for t = 1,2, .. ..

We have

Pr(H > h] = Z YT =) =AY AT A=) =AY A T ) =
t=h+1 t=1 t=1
Let 6’ = v". Then,

In(é")  —1In(d8") —In(d") In (i)
) Y oy e e § e

Thus, we have

O

Let Ceoy := 1 and (pp := 4W2. Forany n > 0and 1 <4 < K, let (s?,a?) denote the i-th state-action pair
sampled in phase n for constructing the estimated coverage covariance matrix 37 (Line 3 in Algorithm 1).
For any phase n > 0, let

n K
Z]?ov = Z (% Z ¢(S?7 a?)¢(s?, a?)—r> + gcovlv

i=0
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COV : ZE(S a)~dT" (Sv a)‘b(& a)—w + Ceovd

Sinit

= (n + DE¢s,ay~pn, ((b(s, a)d(s, a)T) + Ceovl.

S (67 = 6r)) (9 D) = p(r®)) " + SHE
HF - MHF - i [ [ i n
1 & 0,0 (0 CHF
== " T (¢) SHE 1 vy > 1
HE 535
n T Cur
S = Z (E oot | (679 = 06 2) (6r) - 92 D +
o O:;zz:e
1 & (D) @) (7)) @)
= ) (ETu)Now?’l {¢ ’ (¢ ) ] ) + CH—FI Yn > 1
EEN ) e

S0 = 2% = Curl.

Define event

1 _
oo = {5 605, )l s,y S s, @)l )0 < 201005, )l
1 _
1005, g+ < 1605, s+ < 216065, O < N = 1}-

Lemma C.8. Assuming that event . holds, we have Pr[€.oy] > 1 — 2Nd'.

2 o 2(4d
Proof. This lemma follows from Lemma E.2 and the conditions that K > 16(N+1)<2_1 g”(*) and Myr >

16W7‘_1 logZ(%) - O

2
CHF

C.3.2 Reward Estimation Error in Q-value Functions

Let W, :=1.
For any n > 0, recall that

Mur
AN . ]l{yl — 1}
A= arg?;? (- Z log( D) () ) (T
lpll2<Wy i=1 1+ exp ((E ¢( zh’ zh) Zh* (b(s”“a h)) M)

) 1 {y; =0} ))
(1) (2) '
1+ exp (( Zh o ) ¢( Z(lh), 51}2) Z}Ijz(o ) ¢( 52}27 1(2}1))) ,U)

Lemma C.9 (MLE, Lemma 5.1 in Zhu et al. [2023]). For any phase n > 0, with probability at least 1 — &',

we have

o d+log(5)  CarW2 "
1" = 1l és\/ o), g

2
CMLEMHF n
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1
2+exp(—2W,. W) +exp(2W,.W,,) "
In other words, defining event

where eyMLE =

& = {0 = n* sy, < cfip, WO <n<N -1},

we have Pr[évrr] > 1 — N&'.

Lemma C.10. Assume that event E; N Ecov N EMmLE holds. Then, for any phase n > 0, iteration t > 0 and
(s,a) € S x A,

H(T)
Q’Tt(s, a; 7" +b") — Q’Tt(s, a;r+0")| < 2efpE ot Z o(sh, ah)T = §:;
s,a hi .
(Shir)

Proof. Since Q“t(s, a; 7 +b") = ETNOSZ[ hHZ(B) (7" (sp, ap)+b"(sh, ap))] and Q’Tf’ (s,a;7+0b") = ETNOg"a[ZhH:(B) (r(sn,an)+
b™ (s, ar))], we have

H(r)
Q™ (5,a;#" +0") = Q7 (s,a;r + ") = |E Lome | Y (F"(sn,an) — r(sn,an))
" | h=0
[ H ()

<E. o || Y (" (sn,an) = r(sn,an))
h=0

H(r)

=E or Z Ssn,an) " (A" — ")

H(r)
B ||| -l
[[[h=0 (%5e) "
(@) H(r)
< 2B, ope, ||| D2 Osnan)” ’
h=0 (EEF)*I
where inequality (a) is due to the definition of event E.oy. O
t t H(t
Let i, = Eqapvan, [l = 25feE, ont [th ¢(Sh,ah)T||(ZﬁF)fl], Wo = g7 — 145 and

Wa = =5y

Lemma C.11. Assume that event E; N Ecov N EMmLE holds. Then, for any phase n > 0, iteration t > 0,
seK" anda€ A,

H(r)
[6(s,0) " (0% = hia) | < | 328Waefi(n+ DE__ome ||| > Ssn,an)T + Wo/85Cur.
cov h=0 -1
(Zfie)
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Proof. For any phase n > 0 and iteration ¢ > 0, for any fixed § and (s, a), using Lemma E.3, we have

2

(Q”t (s,a; 7" +0") = b"(s,a) — &(s, a)T9)2 - (Q”t (s,a;r +b") —b"(s,a) — o(s, a)TG)

< AW Q7 (s, +5") = Q7 (s.asr +b")

t
< AWger (12)

s,a?

where W, satisfies that max{|Q™ (s, a; #" +b™)|, |Q™ (s, a;r+b")|, |d(s,a)TO+b"(s,a)|} < W for all n > 0,
t>0and (s,a) €S x A.
Taking E(s q)~pn [-] on both sides, we have

Blaaron, | (@ (o™ +07) < 17(5.0) — 0(5,)76) | (13)

. 2
— E(s,a)~prm,, [(Q’T (s,a;r +b") —b"(s,a) — &(s, a)TH) }
< AWQE (s a)~pn,, {gg;}
= AWoer, . (14)
Plugging 60! into 0, we have that for any fixed (s, a),

E(s.a)rt, [(Q’“ (5,07 +b") = 0" (s5,) — O(s, afeiﬂ

2
> E(s,a)wpgm, |:(Q7Tt (Sa a; P + bn) - bn(sa a) - ¢(Sa a)Tei) :| - 4WQ§;F£OV

() t 2 t
> E(s,a)wpgov |:(Q7T (Sa a; P+ bn) - bn(sa a) - ¢(Sa a)Tanid) :| - 4WQ<;'&V (15)

where inequality (a) is due to the definition of ¢ ;.
Furthermore, we have

- . 9
E(s,a)"‘Pg'ov (Qﬂ— (Sa a;r+ bn) - bn(sa a) - ¢(Sa a)Teinid)

- E(S,G)NP" v |:(Qﬂ—t (Sa a;r+ bn) - bn(sa a) - ¢(Sa a)791)2:|

co

[ ¢ n n n 2
— Bampn, | (@70 1) = 0°(5.0) = 05, 0) Bha) |
L t . ,
- E(s,a)rvpgov |:(Q7r (Sa a;r+ bn) —o" (Sv a’) - ¢(Sﬂ a‘) oi) :|
t T 2
+ E(Sva)"‘P&v |:(Qﬂ— (Sa a;r+ bn) - bn(sa a) - ¢(Sa a) efnid) :|
t T 2
- IE:(s,a)NpgoV |:(Qﬂ- (Sa a; P+ bn) - bn(s’ a) - ¢(S’ a) anid) :|

(a) t

< AWl + AW a)mpp. HQW‘ (s,a;7" + b") — Q™ (s,a;7 + b”)H

ov

t
< 8Woshn (16)
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where inequality (a) uses Lemma E.3.
On the other hand, it holds that

¢ 2

E(s.a)~pm, [(QW (s,a;m +0") = b"(s,a) — ¢(s, a’)Tanid) }
t T\
- IE(s,u,)Npg)v |:(Q7r (Sv a;r + bn) - bn(sa a‘) - d)(S, a’) 9*) :|

= E(s,a)~pn,, [(ffD( a)" (0% — 014)) }
+2E(s,a)~pn, {(Q’Tﬁ (s,a;r+b") —b"(s,a) — (s, a)TGi) H(s,a)’ (Ht Hmld)}

Term I' > 0

where Term T is non-negative due to the the first-order optimality of 6%.
Thus, we have

E(s,a)r\/pz_‘w |:(¢(Saa)T (et emld)) :|
< B, | (@ (o 487 =06, - 6(5.0) ) |
By, | (@ s+ 07 = 55, 6(5.0) 6L

< 8Wqg C;;; .

Since E(s,ampp,, [(6(s,a) T (0L — 07,0))%] = E(saympp, [(0% — Ohia) To(s,a)8(s,0) T (0% — 0154)] =

Gmld) E(s a)~pl. [¢(Sa a)¢( ) ](Gt - eimd) we have

(08— 011a) TE g, [6(5, a)b(5,0) TI(0L — Olnsa) < 8Wo .

Moreover,

— 0t

mid

= rmd (Z E(s a)Ndﬂl (S’ a)(b(s, a)—r} + CCOVI> (et emld)

= ( mld Z Z dsmn S, a’ S a)(b(s, a)T + CCOVI (Ht emld)

i=0 (s,a)
= (7’L + 1) ( rmd Z Z sm,t 5, Q S a)qb(s, a)T + nCC—jiVlI (et emld)
(s a)
= (7’L + 1) ( m1d z:)pcov S, a’ )¢(Sa a)T + anjvll (et - Gmld)

<8(n+ 1)WQ§P€‘OV + 4leoe W

For any s € K™, using the definitions of K" and event £, we have

1
75 16050l mg -1 < 195 @) g, 0 < VB.
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Therefore, we obtain

|¢(Sva’ (0L — 6la)| < ||¢(s,a)|\(zgov),1 6% — efnidHZ&W

< \/ 28 (8(n + D)Wosh + 4<covW92)

H(T)
< SQBWQEEF (n + 1)ET~O;’£ Z ¢(Sh, ah)T + Wo/86cov-
h=0 (ZﬁF)—l

C.3.3 Elliptical Potential Analysis for Human Data

Lemma C.12 (Elliptical Potential for the Baseline Policy). For any phase n > 0,

N-1 d
2
ase 1| < .
2 B o 190y, )| < o o)
Proof. We have
2
ZETNO,,‘::L [EGIA—.—
_ ~1
- Ty o) @ o) @y) "
= D E, o 60T | Y ot [(qs(r )= o(r®)) (6(rM) = o(+@)) }+<HF1 o(7)
o I T o
@ 1 N-1 n -1
S = Y B o [60)T | Y B o [67P)0 )|+ el | o)
ase ~ Sinit i1 Sinit
N-1 -1 2
1 1 CHF w
= —tr| |E pbase [ TN p(r? T} + —I> E, o [$(T)$(T)] | + —Z—
Cbase 7;1 n (( T®~0 nlxjm ¢( )¢( ) n TNOS:lxjnt [¢( )¢( ) } CbaseCHF
d =1 w2
= =+
Chase ot n CbaseCHF
< log(N) + 1
Cbase( g( ) ) Chase
() 2d
og(N).
Chase

where inequality (a) uses Assumption 3.4, and inequality (b) holds if log(XN) > 2 which can be easily
guaranteed in our problem. O

Lemma C.13 (Elliptical Potential for Preference-based Data). It holds that

1N

,_.

-

H(T) ) N N
ANW. 2d% log® (N
ozt ||| 2 oman)T < 2 log ( + ) | 2dilogT(N)
= - Curd ot
(EEF) ' base

J;M'

n:O
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Proof. For any phase n > 0, we have

1 T-1 H(T)
T2 B, ||| 2 #lon )
t=0 h=0 (EEF) 1
1 T-1 H(r)
S5 | S
t=0 h=0 (Zﬁp) 1
1 1! -
- 2. T
— T T T Z ETNOWZ;OV Z (b(Sh,Clh)
t=0 h=0 (ngF) 1
H(r)
= ET Oﬂ;+1 Z ¢)(sh,ah)T
h=0 (EIEF~)71

We make the convention that nXjjp := (gr/l for n = 0. Then, we obtain

1 N-1 1 T—1 H(r)
iy 72 | Beor |20 9loman)T
n=0 t=0 cov h=0

(Zie) ™

2
L

IA
2=

ET ol Z ¢(Sh;ah)T (Eﬁp)il Z ¢7(5h7ah)-r

Plov

3
Il
=)

IN
3
Il
o

D
b
=
o
0
4‘
o
2

T

1 N-1 H(r) H(r)
_ . T n
S N N ET O;ﬁil Z (b(sh,ah) EHF Z gf) sh,ah
n=0 h=0
) N-1 H(r) ! H(r)
< — N Z E nt1 Z d(sh,an) (xn Z o(sn ah
= T~OT) I HF )
VN n=0 cov h=0
N_1 H(r) ! H(r) ’
1 n -
=N"1 ET O,,:ll+1 Z (b(sh,ah)T EHF Z gf) sh,ah
ne1 Cov h=0
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1
N1 [ /1) " H(r) :
< DE e [ D ¢lsnan) (nSe) " [ D élsn, an)
n=0 Peov h=0 h=0
N1 () 2 I
= Z ET~O”,?+1 Z d(Sh, ah)T
n=0 Peov || h=0 (n2pe) "

where inequality (a) uses the Jensen inequality.
It holds that

N-1 H(r) 2
DB ome ||| 20 lsnan)’
n=0 h=0 (nZﬁF)fl
N-—1 2
=Y E gt |6 =0 ®) 40|
T Nopgov (nZ?IF)
n=0 base
r@~or
N-1 2 2
<y <2ET(1)~ . {H¢(#1>)¢(T<2>) ) ] +2E e {Hgb(f@) ) D
n—=0 oy (nEHF) Sinit (nEHF)
7@ o7
(a) T (-l T -
<2 B o [(aﬁ(T(”)—qs(T@))) (ZET<1)NOW;1 {(aﬁ(T“’)—aﬁ(T@’)) (D) = 6(r)) ]+<HF1> -
n=t £ :T:bo‘_‘vm = T(z)NOZinoa.tvsc
(6(r™) = 6(r®)) | + —=10g(N)
Chase

o) det (Ziv_l E,mom | smopme | (670) = 6(r®) (6(r0) = ¢(r@)) '] + gHFz) u
< 4dlog ( det Ge]) ) + log(V)

Chase

ANW? 4d
< 4dlog (1 + W > + log(N).

Curd
Here inequality (a) uses Lemma C.12 and Assumption 3.4. Inequality (b) follows from the elliptical potential

lemma (Lemma E.5) and the fact that (g := 4W?2.
Therefore, we have

Chase

1 N-1 1 T-1 H(T)
= 2 E T
N 2 | T &\ | "~Or,, ;O ¢(sn, an) »
B B B (She)
ANW?2 4d i
< (4d10g (1 + T) + log(N))
CHFd Cbase
. ANW2\  2d%logi (N
< 2d7 log® (1—|— WT)-i— d ?g ( )
Curd i
base
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C.3.4 Discussion on Assumption 3.4

Assumption 3.4 can be abstracted from the RLHF framework, and serve as a technical condition for an
independent mathematical problem.

We provide Lemma C.14 to demonstrate that under Assumption 3.4, one can systematically utilize
the elliptical potential lemma Abbasi-Yadkori et al. [2011] to obtain a mathematical conclusion that is
independent of the RLHF framework.

Our RLHF analysis (Lemmas C.12 and C.13) is an application of this systematical analytical procedure.

Lemma C.14. Let ® := {¢p € R?: ||¢||a < Wy}. There are random distributions D1, ..., Dy and Dyase
over ®, and a reqularization parameter ¢ > W;
Assume that Dyase satisfies that for any n € [N],

E¢~D, ¢/ ~Dyace [(¢ - ¢/)(¢ - ¢/)T} = Chase B/ Dy e [(b/(b/—r} (18)

for some constant cpase € (0,1).
Then, we can use the elliptical potential lemma (Lemma E.5) Abbasi-Yadkori et al. [2011] to bound

N
Eg,~D, ¢! ~ 2 -
; ¢n, Dn7¢n Dbasc |:||¢n|| (Z:L;ll ]EqbiNDi,qbfb_NDbase [(¢1—¢;)(¢1—¢;)T]+§I) 1:|

n=1
N
7 2
=2 Zl (E"b"w"*‘b%wb“e {”gb” ~Onl(zzie, oy m, [(¢i—¢;>(¢i—¢;>7]+a)l]
n= i ase

+

2 2
Egr ~ / -
2 Bt 160 rn, o] )
2

NWZ\ 24
<ddlog [ 14+ —— | + (log(N) + 2).
Cd Cbase

Proof. According to the assumption Eq. (18), we have that for any i € [V],

E¢~D¢,¢’~Dbasc [(¢ - ¢I)(¢ - ¢I)T] + CI t CbaseEWNDbasc [(b/(b/—r} + CI t CbaseEqﬁ’NDbasc [¢/¢IT] + CbaseCIa
which implies that
_ 1 _
(B gD [0 — &) (6 — )] +¢I) ' < (B [0'0'T] +CI)

Chase

Hence, we have that for any v € R¢,

VT (Egup, g/mDpe [(6 = ) (6 — &) 7] + 1) v < 0T gy, [0/0T] +CI) " 0.

Chase

Furthermore, we have

N
By, ~D,, o/ ~ 2 -
Z ¢n~Drns @, ~Dhase {H(bn”<2?11E¢i~Di,¢;~Dbasc[(¢i¢;)(¢i¢;)T]+C1) 1]

n=1

N

— o 12

- ZlEqﬁnN'Dm(i’/n"’Dbasc |:||¢n ¢n + (bn” (Z?;ll E¢i~‘Div¢,-~‘Db [(¢i¢;)(¢i¢;)‘r]+<])1:|
n= i ase
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N
/7 12
S Zl (2E¢n,NDn7¢{nNDbasc |:||¢7l - qﬁn” (Z;z;ll E¢i~Di,¢(~Db, [(¢1¢;)(¢1¢;)T]+<1)1:|
n= i ase

2
Ry .. [|¢;|<

@ XN

2
<2y <E¢n~Dn,¢;~Dbasc [|¢n — Ol 1}

= (S0 By oy [(Bi= 8D (@i =) T]CT)

S By apy ¢~ Dy [<¢i—¢;>(¢i—¢m]+<1)l] )

2 2
Eyg ~ / _
Chase " Prase ['¢”|(Z?11E¢;~Dbase[¢;<¢z>T]+a) D

+

n—1

N -1
=2) tr (Z EpimDy i, ~Dymse (0 — 01) (0 — 01) 7] + a) E g ~Dr i, ~Donee [($r — D) (60 — 1) 7]
n=1

n n
i=1

2 X1

- 21172
T Conme z_; o1 " <<E¢’~Dbase ()] + I> E ), ~Dince [d)@(%ﬂ) y

n—1 Chasel

(b) NW?2 20d M1 2W 2
9 ¢
< 4dlog (1 + cd ) + E +

c n—1 ¢
base n—>2 basec

NWZ 2d
<ddlog |1+ ——— | + (log(N) 4+ 2),
¢d Cbase

where inequality (a) uses Assumption 3.4, and inequality (b) applies the elliptical potential lemma (Lemma E.5) Abbasi-Yad]
2011].

O
C.4 Proof of Theorem 4.2

For any phase n =0,..., N — 1 and iteration t =0,...,T — 1, define

10ll2<Wo

0. := argmin E¢, o)pn [(qﬁ(s, a)to — (Q“t (s,a;r +0") —b" (s, a)))z] )

2
Hinid = ”aéll.lggl;;l E(S,a)rwpg)v |:(¢(Sa a)TG - (Qﬂ-t (Sa a; P + bn) - bn(sa a))) :| ;
2>VWeo

2
gt 5L argmin B, q)~pn [(qb(s, a)'— (Q“t (s,a; 7" +b") — b" (s, a))) } .
181l2<W
For any n >0, t > 0 and (s,a) € S x A, let b™'(s,a) := b"(s,a) — Egunt(.|s) [0"(s,a')] and ¢'(s,a)
¢(Sa a) - Ea/wﬂ"‘(-\s) [¢(Sa a/)]'

Proof of Theorem 4.2. Using Lemma C.5, we have that for any phase n = 0,...,N — 1 and iteration
t=0,...,T—1

)
ViR (Sinit) — V/C:n (Sinit)

1 [A?;;bn (s,a)-1{s e /c"}}

IN

T izt
1 - .
= —E(s,a)r\«d"*’n |:AMbn, (Sa a) -1 {S eX }

11— M™5siniy
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+ (AT (5.0) = (F(5,0) 0L+ (5,0))) - 1 {s € K7}
+¢'(s,a)" (0L —0Lq) -1 {s € K"} +¢'(s,a)" (BLq —0) -1 {s € IC”}]. (19)

Term 2 Term 3

Following the proof of Lemma D.1 in Agarwal et al. [2020], we can bound Terms 1 and 3 as follows.

Term 1 =K ;) g [(A}T\;bn (s,a) — (¢ (s, a) 0l 4™ (s, a))) -1{s e /C"}}

MM sinie

= Eamagr, | (@R (5:0) = (6(s,0) 0L+ b(s,)) ) -1 {s € K"}

Sinit

FE gy o) [(Qe (5:0) = (6(5.0) T0L +b(s,01) ) - 1 {s € K"}

M™3sini
(a)

& B, (@i 5.0) = 0(s.0) 08 (5.0

* \/]Emdzi;wwwf(‘s) (@R (5, ) = (@(s, ) 0L+ b (5, )|

N R
<2 |-A|5bias; (20)

where inequality (a) uses Lemma C.2.
Define the Q-value function fitting error as

log (%)
= {W2 | =29
EQ = 8 Q <CD .

With probability at least 1 — 2NT'§’,

Term 3= E(q gyoqr [6(5.0)7 (Bhya —60°) - 1{s € K}]

mid —

< 24/BeonWE + B(n + 1)eg

=2 ﬂCCOvWBQ + 8ﬂW<22(TL + 1)

log (1)) *
< 2Wyn/ Bleov +4WQ\/ﬂ(n+ 1) ( (])SS(SD)> ) (21)

Define event

50 = {Term 3 S 2\/ﬂ§covW92 + ﬂ(n + 1)€Q} :

Then, Pr[&)] > 1—2NTY¢'.
Now we have Pr[€g N E NEMLE NEeov] = 1 —4-2N(K + My + TMsgp) - 20" > 1 — 4. In the following,
we assume that event &y N E, N Eype N Ecov holds, and derive the suboptimality guarantee.
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Applying Lemma C.11, Term 2 can be bounded as follows.

[ét( S, ) (et - Hmld) 1 {S € IC”}}

[‘¢( S, ) (et - Gmld)’ -1 {S € K:n}}

,a’ ~mt(e]s) [|¢(8’ a ) (Gt - Gmld)‘ -1 {S € K:n}}

Term 2 = IE(S a)~dr”

’Vl
M Slnlt

< B aymar

n.g. .
i8init

+ Eswd”* n

IR

<16 | BWoetip(n + 1E__ oxt

cov

H(r)
> dlsn,an)T + 8Wy/Bleov- (22)
h=0 (Eﬁp)—l

Plugging the connection result between M™ and M (Lemma C.3) into the suboptimality decomposition
(Eq. (19)), we have

. 1
V™ (Sinit) — V™ (Sinie) < RHS in Eq. (19) + — S Az (s,a).

7 (s,a)gK™
Summing over t =0,...,T — 1 and dividing T, we have
148 (Sinit) — v (Sinit)
1= .
=7 (V7r (Sinit) — V™ (Sinit))
t=0
1= 1 .
< 7 2 RHSin Bq. (19) + 7— S dr (s.a)
t=0 (s,a)g K™
1
@ log(lA]) W3 2/ Alevias . AW /Bn+1) (log(5)\"  10Wav/Blov
< + + + -
(I=ynT  1-v L—v 1—v Mscp 16 —
161/ n+1)2(d+log (& B
( ) (d+1og (7)) +2(n+1)<HFWj>
ALeMur
1 7=t H(r)
T E,.on > dlsnran)T — > i (23)
t=0 Peov h=0 (EEF)fl (5 a)gkn

where inequality (a) combines the natural policy gradient regret (Lemma C.6) and Terms 1-3 (Egs. (20)-
(22)).
Summing over n =0,..., N — 1 and dividing N, we have

out

V™ (Sinit) = V™ (Sinit)

1 N-—1 o
=N (V (Sinit) — V' (Sinit))
1
log(14) . nW3 2V Alevias , 8WovBN (log () \* | 10Wov/Blow
T (d=ynT  1-v 1—vy 1—vy Mscp 1—vy
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_|_
w
o
E
Q
[N}
/N
N
2
()
NN
+
S
09
—~
i<
SN—
SN—
~
'y

4N Carp W2
L—n mLeMur + AN et
1 N-1 1 T-1 H(T)
N ? ETNOWCTYLOV Z (b(shv a’h)T
n=0 t=0 h=0 (EﬁF) 1
1 — N Z Z dé,,,,t
n=0 (s,a)¢K™
1
@ log(|A]) N nWw2 N 21/| Alebias 8WQ,/_ log () \" N 10Wa+/BCeov
T (=T 1y 1—v 1—v Mscp 1—v
256/BWq [ N2 (d+log (& : A ANW2\  dtlog®(N
+ B Q . (2 g(5 )) +NCHFW3 . d% IOgZ <1+ .,-) + 4 Olg ( )
1-— Yy CMLEMHF CHFd Cg
L 1 d1 ( N )
0og
(1 - )N ﬂ Ccovd
1
2\/ |A|5b1ab AN/ 1Og |-A| + SWQ \ ﬁN 1Og4 ( /) 1OVVH\/ ﬁCcov
- 1=y (1—’7)@ L=y (MSGD)i L=y
L 2:256/Bg s log N) (2N%dlog (F) 2\ 2d
+ NurW, + ———1og(2N), 24
1-— Y Cba . Ci/ILEMHF CHF 1 (1 _ ’Y)Nﬁ g( ) ( )
. . . L log(|A|)
where inequality (a) uses Lemma C.13 and the step-size setup n := WavT
o . 16(N+1)% log? (*47)
In addition, due to the condition of concentration event &y, we should guarantee K > o s
4 2(4ad
and MHF Z 716WT lgg (6/)
T log(d) 2 2
Recall that WT = Ts’y—, W;U' = 1, WA = a- ’7)2, WG = W s '77 WQ = W, CMLE ‘=
1 — W, .7 .7 9 _ 4log®(3)
2+exp(—2W, W,,)+exp(2W,. W)’ 5 C (WQ+M6/9)ﬁ’ gcov =1 and §HF = 4WT -
We set

(1—"7)2 ’

p o GWlox(1A)

(1 —7)2%e?
_ Vog(lA) _ (1—19)e
- WaVT 6W3 7

g (1 — )55 Chase log 2 800 - 256°d° W W, v/T0Gr \ _ of0- 7)3€5 Chase
' 5000 - 65 224 2564WC22W5<HFCZ2 (1 — ’}/)4'5\/6133‘58 WéngQCHF

6-10d 6-4d [ BWEW 2
— 1 — o 22 psHE
(1 - ’7)56 o8 <(1 - V)Eﬁ) o <(1 - V)GEGCbase> ,

4 4 4 N2 T2 i
Mggp = 1200-6 5 Wl N 2<L1L§L3) =O<( Wad >,

- =)

=L
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64 - 2% - 2561 B2W2 N2d? log(5N L I2L - w3d*
My = 1200 - callle 8 )1og2 <71 5 3> =0 = o ,
-7

(1 - 7)454612\/[LEcbase 656C12\/[LECbase
::L3
oo B4N? log? (4dN 12N (K 41+ T)MHFMSGD) _5 dSWEWECE,
020v 4 (1 - 7)1251263%9 7
:=Lo

)
[
o= 12N(K + 1+ T)MurMscp )

Then, we have
V™ (Sinit) — v (sinit) < €+
Finally, the number of samples is bounded by

- 1

(0] (N (K + Myur + TMscp) - ﬁ)

o WaWicud ( WAWACE S W3d! LWE W > 1
(=50t \ (=12, T (=70t | (222 (=708 T—7

6 63 9
O<( VoW Gired ) (26)

_ 19,18 .3
1 ’Y) € Chase

O

D Proofs for PO-RLHF with Neural Function Approximation

In this section, we provide the proofs for algorithm NN-PG-RLHF.

Definitions for Neural Function Approximation. We first introduce or recall some definitions.
Let Sg:={w e R™ : |[w — w°||, < R} and Up := {p € R™*: ||p — p°||, < R}
For any w € R™?, recall that

b
[Yw]e(s,a) := \/—% -1 {qﬁ(s,a)T[w]g > 0} ¢(s,a) € R?, WVle [m],
bu(s,a) = [[Yuli(s,a);- 5 [Yulm(s,a)] € R™
Here ¢ < ||[w°]¢]|2 < € for all £ € [m] for some constants ¢, & > 0.
Recall the Q-network, policy network and reward network as follow:

f(s,a;@) = \/—1% Zbé -1 {qb(s,a)T[H]g > 0} qb(s,a)T[G]g = W(S,G)T@,
{=1

exp (7f(s,a;w)) _ exp(Tw (5, a) Tw)

Trw(als) = Yweaexp (Tf(s,a5w)) Y eaexp (Teu (s a’)Tw)’

h(s,a;p) = \/—% Z b% 1 {(b(sa a)T[:u]é > 0} o(s, a)T[:u]é = %(Sa a)TM-
(=1
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For any ¢ > 0, we use 7" and ¢ ¢ interchangeably.

Let
fO(Sa a;w) = \/% Zbﬂ -1 {¢(S’ a)T[wO]f > 0} ¢(Sa a’)T[w]f = wwo (S’ a’)T’wa
=1
hO(Sa G;M) = % sz -1 {¢(S’ a)T[MO]é > 0} ¢(Sa a)T[:u’]é = wuo (Sa a)Tw'

~
Il
—_

Define the neural kernel spaces as
Roo i= {f(s,a) = f(s,a;wo) +/]l {(b(s,a)—rw > 0} (b(s,a)—ryw(w)dpw(w) s (w)] o < %},

R
Fi = {f<s,a> = s, i)+ [ 105,00 > 0} 6(5.0) v () () [#(0)] < ﬁ},
and p* : R? — R is the density
function of Dinj. Similarly, v#(u) : R +— R? and h(s,a;u°) parameterize the element of fgm, and
pH R? — R is the density function of Djyis.
Define

Here v*(w) : R? — R? and f(s, a;w?®) parameterize the element of F¥

,007

1m
P o= { e 3ot 1 ot 0 0) e o 1, < )

Fhm = {% ;bz 1 {5, )T [0 > 0} éls, ) Tle + [[[ule — [e]| . < %}

Fh . is the subset of Fh
Let uP™J € Up be the parameter such that

Projz, ,.r(s,a) = vo(s, a) " pProd,

Covariance Matrix Concentration. Next, we define the concentration event for the coverage and
human data covariance matrices.

For any trajectory 7 = (so, o, .- -,5H(r), Gr(r)) and p € L{R, let ¢, (1) = ZH(T) w#(sh,ah) For any

. . 1) —(2) T 2 H(+M) (1) H('r( ) 2)
trajectories 7, 719 and p € U, let 1, = o ’L/Ju( s, ,ah ) — ’L/JH( sy , a;’).

For any n > 0 and t > 0, let (s, al) denote the i-th state-action pair sampled in phase n for constructing
the estimated coverage covariance matrix SNN-" (Line 4 in Algorithm 3).

For any phase n > 0, define

22237” Z( Zwo S; 5,y 7,3 z) >+<Cov

=0
Seov ™ Z E(yaymar [Y0(s:0)00(s,0)"] + Geon]

= (TL + 1)IE(s,a)~pgoV ("/)O(Sa a)i/}O(Sa a)T) + Ceovl.

A 1 Mur
B = N 2 (00 = o) () () S
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Mur T
1 ~r (1) T(Z) ~T(l) 3 gHF
— i ' i 0 _I v > 1
My ; 7/)0 (7/)0 > + n n =
DI 1 i E ; (1/1 GRIET (7(2))) (1/) () =9 (7(2)))T + CH—FI
HF : " < 7(1),\/0;\-5&1 0 0 0 0 n
1= 7—(2) NO;\_—bz—aje
1 S L@ @ @\ T Car
=2\ Eoon { () D*TL =l
i=1 P isnse
T(Z)Noginit
Shp" = Shp " = Carl
log

Recall W, := %Z) and the definition of event £, (Eq. (11)).

Define event

1 _
Eoon = {5 1o (s, a)ll svny -+ < Il (s, a)ll gavmy -+ < 2 [W0(s, @) [ gy »
1 1
5 H'L/JO(S’G)H(Egg’")fl < Hwo(sﬂa)H(ﬁ:gg’")fl <2 H'L/JO(S’G)H(EEIEJW) , V0O<n <N — 1}'

Lemma D.1. Assuming that event &, holds, then we have Pr[EXN] > 1 — 2N¢'.

2 2(4dN
Proof. This lemma follows from Lemma E.2 and the condition that K > 16(N+1)<210g (45 and Mygr >

16W 2 log? (44N
Low, log (7)) O

)
HF

D.1 Neural Function Approximation

In the following, we present useful technical lemmas for neural function approximation. Lemmas D.2-
D.5 borrow the ideas from prior neural network theory works Rahimi & Recht [2008], Cai et al. [2019],
Wang et al. [2019], Xu et al. [2021].

For brevity of presentation, Lemmas D.2 and D.3 are written with parameter w and function f, but it
works for parameters w, 6, u and their corresponding functions f, h.

For ease of notation, we simplify the notations g0 and 1,0 as g, which can be easily recovered from
the context.

Lemma D.2. For any w,w’ € R™? such that |[w — w®|]2 < R and ||[w’ — w°|s < R,

3
E, | [vo(s, @) Tw' = Yu(s,a) w'|’] < descae B

2
E, [I4o(s,0) ~ vuls )] < 2757
Proof. We prove the first statement as follows.
|1/10(s,a)Tw' —z/Jw(s,a)Tw"

= ﬁ > e (1{g(s,0) " [w]e > 0} — L{(s,a) " [w]; > 0}) ¢(s,a) " [w],
=1
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< % 1L {605 a) () > 0} — 1 {o(s,a) fule > 0} |65, ) [w')].

=1
Since |1 {¢(s,a) " [w’] > 0} — 1 {¢(s,a) " [w], > 0}| implies
|6(s,a) " [w’]e] < |(s,a) T [w]e = d(s,a) " [w']e| < [l6(s,a)lly [|[w’]e — [w]e]],,
we have
11 {(s,a) " [w)e > 0} — 1 {¢(s,a) "[w]e > 0} < 1{|o(s,a) " [w]e| < l¢(s,a)lly [|[w']e — [wle]|,}.  (27)
Hence, we have

‘wosa)—rw — thu(s,a)T ’

<L ei 1 {[o(s @) T[)e] < 165, @)y |0l — ], } (s, a) TR
< =3 {100,000l < sl 10 = ], (6. 0) 1] + 5,00 ([ = "))
—1
Y 7551 {1605, 0) 10| < 905, )l [[]e — [wle]l, ) -
(16(s, )l [ — el + 165, @)l | 1wle — [e],)

where inequality (a) is due to 1 {|z| <y} |z| < 1{]z| < y}v.
Using the Cauchy-Schwartz inequality, we have

[0 (s,a) "' =1y (s,a) ’
%zu {005, @) 1wle] < 1605, @)l ||l — [, } -
(=1

S (2165, 0)13 [ 0le — 2+ 2 6 )3 ) — ()2
(=1

< %Zﬂ{\aﬁ (5.0) )] < 905, )l [[[w)e — fuwle],}

< 2 {0 ) )

(d) 4Cscale || H2
Z e||
< Ascale . 1
Cocatel? \IZHwOe ZHE\IZ”[

1
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< Zlcscale]%3
c/m

where inequality (a) uses Assumption 3.3.
Next, we prove the second statement using the similar argument.

(s, @) = dhu (s, a) 3

= (1400, ) ) > 0} — 1 {0(s,0) T [ule > 01)° 60, 0)3
=1
(_) ; 1{|o(s,a) T [wO]¢| < [|[w°]e — [wle||,}
=1

where inequality (a) uses Eq. (27).
Taking E,[-], we have

E, [Ivo(s,0) ~ duls,a)l3] < =SB = fulel],})

IN
m°
5&;
e}
_—

Cscalell

IN

m

CscaleR

cy/m

IN

Lemma D.3. For any w € Sg and (s,a) € S X A,

[Yw(s,a)]l2 <1,
w2 < vVme+ R,
|f(s,a;w)] < v/me+ R.

Proof. We have

19w (s, a)ll2 = JZ I[w (s, @)]ellz = JZ — - 1{o(s,a)T[w]e > 0} [|o(s, )3 < 1.
(=

(=1

In addition,

||, =
Hw 2=

> MwOell; < vme.
{=1
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Then,
lelly < [, + flw = o,
< /mc+ R.
Furthermore,
[f(s,a;0)| = [$u(s,a) "wl| < [ (s, ), lw]l, < Vme+ R.
O

Lemma D.4 (Projection Error for ]:-ﬁ,m Rahimi & Recht [2008]). Let h € Fp . For any &' > 0, with
probability at least 1 — &',

R(1+,/2108 (%))
NG :

HPrOjJ?R,mh — th <

where p is a distribution over S x A.

Lemma D.5 (Distance between r and (s, a) " ub*¥). Assume that event Einiy holds. Then,

1
[o(s,a)Tu® —r|| | < 4R log ()
m

Proof. Recall that r € FJ; _ and Projru r(s,a) = (s, a) " puPrel. Since Fh , is a subset of F% . we have

H T, proj _ . s _ lOg (%)
Yo(s,a)’ pb 7TH =||Projg,, r—r| <|Projg, r—r| <S4R\ —=.
P ,m o ,m o m
O
Define event
) [log (L
Einit : { ||w0(saa)TM$r0J - 7’||d,,t < 4R wv vt e [T]a Vn € [N]}
Plov m
Lemma D.6. It holds that Pr[€init] > NTY'.
Proof. This lemma follows from Lemma D.5 and a union bound. O

D.2 Neural Neural Policy Gradient

Let WN := /mé + R. According to Remark 28 in Agarwal et al. [2021], since |[¢o(s,a)|]2 < 1, log(mr )
is a smooth function with smoothness parameter Wg = 1.

Lemma D.7 (Neural Neural Policy Gradient). For any phase n > 0 and iteration t > 0,

T-1
- — n log(|.A
Z E(Sva)wdﬁﬁshm [( (s,a) 0 + b ’t(s,a)) 1{sek }] < M + nWs(WNN)2T.

t=0 n
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Proof. Following the analysis in Agarwal et al. [2021], according to the Wg-smoothness of log(m t ), we
have

log (7T7-t+11wt+1 (a|s)) — log (7TTt1wt (a|s))

> Vylog (7r7t1wt(a|s))T (Tt+1wt+1 — Ttwt) - Ws ||Tt+1wtJrl — Ttth; .
For any s € K™, we have

KL(7* " (-|s) 7" ([s)) — KL(7*" (-|s) |7 (:]s))

|
v 7" (als)
—Eyorein( o |1 Eyoem(o) |10g [ ot/
el Og(wt (als) )] o <'>[°g(wt+1<a|s>ﬂ
t+1

= Eqrnem(ls) log (WN)))]

> Eqepein( ) | Vo 10g (e e (afs)) T (750t = 7hut) — W |7+ — 7t ]

= Do) [P (5,0) T0"] — ?Ws |62,

which is equivalent to

Earcren (s [$hye(5,0) T01] < % (KL(m" ([s) |7 (-|s)) — KL(x™" (|s) |71 (5))) + nWs [|6]]5

For any phase n > 0, s € K" and a € A, we have b"(s,a) = 0, and then b™'(s,a) := b"(s,a) —
Eq ort(s) [0"(5,a")] = 0.

Adding s ~ d/vl" on both sides and summing over t =0,...,T — 1, we have

ySinit

ﬂ
L

Eayearsr [($he(s,0) 708+ 8" (s,a)) - 1{s € K"}]

$8init

t=0
T-—1 -
= E(s a)r\/d7r Misinit [wzf‘ (Sa a)Tat -1 {S S IC”}]
t=0
1 o .
< ;Eswdg;’ﬁs_ KL C1s)17°(C|s)) — KL(x*"(-|s) |7 (-|s))] + nWs(WaN)2T
log(|A
=< w + nWs(WyN)2T.

D.3 Q-value Function Fitting
For any fixed phase n =0,..., N — 1 and fixed iteration ¢t =0,...,T — 1, define
o . A 2
F"(0) :=E(saymprn, [(fo(s, a;0) — (QTr (s,a; 7" +b") — b" (s, a))) ] ,

0" Td := argmin F" " ().
0eSr

Then,

VoF™ (0) := E(s,a)~pr. {2 (fo(s, a;0) — (Q”t (s,a; 7™ +0") — b" (s, a))) Vo fo(s,a; 9)} :
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Algorithm 5 Q-network Training via Projected SGD (with the objective Eq. (10))

1: Input: f(s,a;uw'), &.

2 fori:O,...,MSBGD—l do

3 gt 2 (f(5i7 ai; 00%) — (th (83, a7 + ") — 0" (s4, az‘))) Vo f(si,ai;0%°), where (si, a;) ~ po, and
Qw‘ (8i,a:; 7™ + b™) is estimated by Monte Carlo sampling

4 G =gt — gt

5. 041« Proj,, (041+1)

6: end for

7

¢ Mian—1 pt,i
: return 0" =), 0%

Furthermore, for any ¢ = 0, ..., MgGD — 1, define
gt’i =12 (f(Si, Qg 9“) - (QAWt(Si; ag; "+ bn) - bn(sz‘, ai))) Vef(si, Qg5 9“),
ét,i+l = et,i o gegt,i
—t,4 . E 2 ( . Ht,i _ mwt .an ny _ pn . Ht,i
g7 = LB(s,a)~pn,, f(s,a;0™") Q" (s,a; 7" +b") —b"(s,a)) ) Vof(s,a;0"")],
and it holds that

0" = Projg, ().

Let WSR = (1747)2 + 4(@?1%)-
Define event

MEop—1 MEop—1 1
561)\IN = { Z (gt’l)T (915’Z - Hfrgd) - Z (gt’l)T (et’z - Hfr’gd) ’ < QngR\/ Ms‘ch log (5),
i=0 i=0

VOSnSN1,V0§t§T1,VO§z‘§M§GD1}.
Lemma D.8. It holds that Pr[E)N] > 1 —2NT§'.

Proof. This lemma can be obtained by using the Azuma-Hoeffding inequality and the union bound. O

NN ._ = NN ._ Vme+R 2 — R
Let Wi = vmeé+ R, Wo™ = = T T2 and & := T
Below we give the guarantee for the projected SGD of Q-network training, which is described in algo-
rithm 5.

Lemma D.9 (SGD for Q-value Function Fitting). Assume that event EYN holds. Then, for any phase
n > 0 and iteration t > 0,

o i an log (&) 12R2(WINN + WAN)Vescale R
F™(0%) — F7 (et,r ) < aWdNR Og(5 ) i ( f Q) 1 NN

id 1 = EQ .
" Mep yemi
Proof. Fix phase n and iteration ¢. For any ¢ =0, ..., MSGGD — 1, since F™" (9) is convex with respect to 6,

we have
PP (0 — P (0300) < VP (00T (04— o5i))

mid
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mid

= (gt))T (et,i _ et,f") 4 (VeF’m (649)

N T )
o gt,z) (ot,z _

£
emid)

1 i_ pgttli i &P Ao AT ; L an
= 5_0(9757 _ 9t+1, )T (Ht, _ enlid) + (V@F (et, ) _ gt, ) (Gt, . Hn,lid)
_ L Hgt,i _ gt,z'+1H2 " Hgt,i _gti" ’2 _ Hét,i-‘,—l gt ’2
259 2 mid 9 mid 9
7 (gt 0\ | (gt gt"
+(V9F (97)_97) (9’_9@(1
§o 1 tif? . L ’t' ¢, |2 tit1 gt ||?
< 597 5z ][0 — O ’7’9” — o
- 92 Hg H2+ 269 mid 9 mid )
A i T y 4 an
+ (VGFT (9 ,l) —g ,l) (9 v en,lid
Summing i = 0, ..., Mgy — 1 and dividing M{gp, we have
F™(0") — F™" (045))
1 ]\486(;D71 .
= 04 | = F7(05)
(a) 1 ]\/ISQGD_1
7" (tyi P70t P
= MY Z FT(0M) = F7 (654)
SGD i
M8 1
&o SGD L2 1 Hto PpeaTE: o0 f )2
X - 91_97' ’ _H97SGD_9’~ ’
> 2M9 ; Hg HQ + 2§9MSGGD mid 9 mid 9
1 JMSBGD_1 . ] ' ' . T . .
+ M9 (VGFT (915,1) o gt,z + gt,z o gt,z) (91&,1 . eirﬁd)
€70 S
M. —1 MO
So £ £i1|2 R? 1 e o 7T
: 1 gy " (-
2MSO ; H HQ 2§0MSGGD MSGGD v
M, —1
2R SGD . ] N
7 > HVGFT 0% — g% . (28)
SGD =0 2

where inequality (a) uses the Jensen inequality.

For any i > 0, let H; be all histories of steps 0,...,4, and we make the convention that H;_; = 0

Vo F™ (051)T (9“ _ 9;;;)

According to the definition of event NN, we have

Z (gt,z)T (et,z _ 9;51’,171"(1) _ Z (gt,z)T (et,z
=0 1=0

/ 1
< 2WSR Ry | MY log (5)
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for ¢ = 0. Let E;[-|H;_1] denote the expectation with respect to the randomness at step ¢ conditioning
on all histories of steps 0,...,i — 1. Then, for any i > 0, we have E;[VyE(0%)T (9“

mid

- W") Hi1] =

t, 7"
- emid)

(29)



Then, we have

HveFf‘" (Gt,i) _ gt,i ,

= H]E(W)Npgov {2 (fo(s, a; 081) — (Q”t(s, @ 7™+ b) — b (s, a))) Vo fo(s, a; 04
—2(f(s,0:0") = (Q7'(s,0:7" +") =" (s,0) ) ) Vo f (s, a:6") ||
< 2B (s 0y { | fo(s, a;0%") Vo fo(s,a;0"") — f(s,a;0°" )V f(s,a;0"")|,
+ WEN Vo fols,a6%) = Vo (s,0:6"), |
< 2 s 0)p, | [ ol @30") V0 fols, a5 0") = fols,a30") Vo f (s, a30")]
([ Fols, a5 0%V (s, a5 0%) — f(s,a:0")g f (s, 0:6")]
+ WAN ||V fols, a3 6) — Vo f(s, a; W‘)HQ}
< 2B s aypp, | [Fols,0:0%) = f(5,0:0%)]
+ (WFN + W) (s, 0) = e (5, )l |- (30)

Plugging Egs. (29) and (30) into Eq. (28), we have

log (%) AR Mégp—1

: Brmrt | 005,09 = 5,050
Moo " Mgy 2 "t |

F™ (0 — F™ (057

mid

) <AWSRR

N 4 AN o (5, ) — ora (s, a)HQ}

(i) ATWNN log (%) 4R 2v/Cscale 3 n (W}\IN + WQNN) VCscale X
B v Mep \/Em% \/Em%

< g, o8 (&) | 2R (W™ + Wo™) Vescale R
B v MSOGD \/Emi ’

where inequality (a) uses Assumption 3.3.

D.4 Human Feedback

Recall that for any trajectories 701, 7(2) and p € Ug, let 7,/;7(1) T

HT() 1 H(r® 2 2
& s ) -2 vl 0l

7 H(r® 1 1 H(r® 2) (2 H(r® 1 1
RO, 7@ ) = S sy 0t ) =008G ) sy %m andT(T(”,T@)) = Yo ) r(sy) an))—
ZH(T@)) (s () (2))_

Sp 5 0
For any fixed phase n =0,. — 1, define the approximated MLE objective function and its optimal
solution as follows:
Mur
1 1{y; =1
L0 = 3 2 <log< () L) : i) )
= e (S5 foeallim - G sl ol
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. 1 {y: =0} ))
1+6Xp (Z (())fo( 1]1) Elizwu’) ZH(T())f(zh’ 12]27:“))

Mur

1 1{y; =1 1{y; =0
_ Z ~log {y } + {y } 7
Myp “ S @ ) @
=1 1+exp { — (¥’ ) w 1+ exp | (¥’ )
parLE = argmin L(p).
HEUR

Then, it holds that

o 1 {yi = 1} exp ( W Ch T<2>)Tu)

IuF T = ex 0 o ) .

VML(M):LZ <<_ N 11{yl_0}(2) ))w&)ﬁu)’
)T

M; I CORC) (1
HE 1+exp < (7,/} i )Tu) 1+ exp < (7,/}0
=qj(p)

- 7T T NT N
1 Mur 1 {yl - 1}6XP < (1/}0 ) H’> 1 {yl — 0} (wg;1)77'i(2))—ru (1) (2) NT(I), i(g) T
R (L

S\ CE ) I e )

For any j =0,..., M{, — 1, define

VaL(p)=

1{y; =1} exp (7%

; 1{y; =0} T (1) (),
Z=1 S @y oy ) Ve,
1+exp(7h(7j ' T ;;LJ)) 1+exp(—h(7j ' T ;;LJ))
o (1) (
L Ai((‘ 1y = 1yexp (=h(r", 7 09)) N 1{y; =0} )v ) (2>_Mj)>
Mur 1t exp (—h(r) ;) 1t exp (<R 7P ) o)
i=q*(19)
P = - 6,
( ) ( ) (2) Myr
where (7; 7, 7,7, y;) is uniformly drawn from {( Ti VYi) hiiE

Then we have

p/t = Projy,,, (@),
Define event
]\/IgGD_l . MSGD 1
5,1:1N 3{ Z VL (1 )T (M *MMLE Z VuL(p H *MMLE)
j=0

1
S 8W"'R\/M§GD10g <§>, V0<n<N-1,V0<;< MéLGDl}'

Lemma D.10. It holds that Pr[ENN] > 1 — 2N’
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Algorithm 6 Reward Network Training via Projected SGD (with the objective Eq. (9))
1: Input: h(s,a;u°), &,.

2. for j=0,...,M{,,—1do

. ]l{yjzl}exp(fﬁ(rgl),'rg);p‘j)) 1{y;=0} 5o (1) _(2) .
. J — 7 3 Yi \ Y
3 e ( 1+exp<—f~t(7';1)77';2);uj)) + 1+exp(—ft(7’;1)n’;2);uj)) Vﬂh(’rj 77] H )

4 ﬂjJrl . Mj _ é‘uzj

51 it Projy,, (/1)

6: end for ”

7: return " = Z;ZSOGDA W

Proof. This lemma can be obtained by applying the Azuma-Hoeffding inequality and the union bound. [
Let £, := £

W/ Mian
Below we provide the guarantee for the projected SGD of reward training, which is illustrated in algo-
rithm 6.

Lemma D.11 (SGD for the Reward Model). Assume that event Einiy N E; N E}HN holds. Then, for any

phase n,
L(p") — L(pjsLe)
log (3) 2R Mé‘cle 1 MZ DL ) @
<17TW.R + <2‘1/ﬂ' Po—qp
Mqn — Migp =0 Myr = ’ 8 2
+4W, ‘Bo(Ti(l),Ti(Q);uj) - il(’]'i(l),Ti@); ) >> = ngan.
Furthermore,
E NN,n < 17TW.R 1Og (%) 40R2W‘r V CscaleR
Oy oge [FseD | = 20T [Ty 1 T
{ (2)}1V?HF Oﬂb"‘sc SGD ( - '}/)\/ETI’L‘l
Ti i=1 ~sinie
Proof. For any j =0,..., M{,, —1,
L(p?) = L(paree) < VL))" (W — pie)
. . . . T . .
= (ZJ)T (MJ - :uMLE) + (VHL(:U’J) - ZJ) (MJ - :uMLE)
1 . . T . " . T . "
= & (1! — M]H) (W — g) + (VuL() = 27) (W — piarr)
”w

1 o _— »

= 5 (7 = @5 + [l = tawells = 137 = ronsll3)
2¢,

+ (VuL(') — Zj)T (W — pArLE)

13 12 1 . . 2 . N 2

5 12715 + 3%, (Hﬂj = gl = [l = 'U’MLEH2)

+ (VuL(p) = 27) " (1 — prhaee) -

Summing j =0,..., M., — 1 and dividing M, we have

L(p") — L(pyee)

IN
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P’
1 ]\/ISLG D -1

=1L ME Z #| = Llpawe)
sap oo
MK, —1
(a) 1 SGD ]
< g > (LG~ L)
el DR
MK —1
5# SGD .2 1 ( 0 " 2 M N 2
S / + o — — H SGD — H
2M{qp, ]ZO 1= + 2 gz (I = #ielly = M|
1 ]\/IgGD 1
. ) . T ]
T Z (VL) =27 +2 = 27) (1 — pyie)
sGp ;oo
MEp—1 ME 1
g,u — j 2 R2 1 &R . T . "
z + + ) J_
MK —1
2R SGD )
o 2 IVele)
sGp oo

(31)
where inequality (a) uses the Jensen inequality.
We have

(1) (2)
7Tj

1711, <2

H(T;”) H(r!?)

1 (1)
=2 Z wﬂj(sgﬂ)ﬂa Z Dpa (s Jh’ Jh)
h=0
2
< AW,

(32)

For any j > 0, let H; be all histories of steps 0 .J, and we make the convention that H;_1 = 0 for

j = 0. Let E;[|H;_1] denote the expectation with respect to the randomness at step j (i.e., (
Unlf({( 1) (2

2
) TJ( )a J( )ay])
,T; ,yz)}MHF)) conditioning on all histories of steps 0,...,7 — 1. Then, for any 7 > 0, we have
E; [VuLJ (W)" (Hj MMLE) |Hj—1] = VuL(HJ)T (MJ - MK/{LE)'
According to the definition of EXN, we have

M —1 M1

Z ()" (W = piae) — Z ()" (W — pye)

=0
/ 1
< 8W,Ry| M&p log (5/)

(33)
We have

i

la6(w?) — ' ()| <

_l{yz-l}exp< Wy )Tuj)

D 7@ ] +
1 +exp ( (&g’ )Tlﬂ)

46

1 {y; =0}
|+ exp ( (1/10(1) (2))Tlﬂ)




1{y: = pexp (<h(rV. 1 %w0)) 1{y: =0}

1+ exp (_B(Tz‘(l)aﬁ(z);ﬂj)) 1 +exp ( h( W (2)7,“])) ‘

) Z

Ny
exp (*il(’l’i(l), 7'1-(2); uj)) exp ( (o' )TM])

+

< —
= S (2. @
1 +exp (*h(n( ) );uj)) 14 exp (—(ngi T )T;ﬂ)
1 1
T SO N @)
1+exp< (o' )Tﬁ”> 1+€Xp( A ’”j))
‘ho 1 ) ) — ]TL( (1) 2. 1)
where inequality (a) uses the fact that the derivative of functions j_’;z(pz(l) and < +eip(m) lies in (0,1).
Then, it holds that
IV L(i?) = 2], (34)
Mur
1 LD ) @)
— — A i 00
HMHF Zl < 6(17) g’ a1 ), ) 2
1 &, a0 e e @ ) @
SMHF; (W )e' T g )y T T e )Yy T =ty ,
Mur
1 L@ @ o o
< 2|dgr T T +2WT131J)
gy ; ( ‘1/10 o i g6 (7)) — ¢' (1)
Mur
1 R K P () @), 5y qe (D) (),
< 2|7 T T 4WT‘h.,.;J7h.,.;J‘. 35
= Mup ; ( ‘1/}0 i ) + O(Tz T 12 ) (Tz T I ) ( )

Plugging Eqgs. (32)-(35) into Eq. (31), we have
L(p") = L(pyie)

R2 log (&
<8EW2 4 —— L SW,R log ()

26, Mgap ! Mcp
ML, —1 M,
2R =~ s&R 1 Laly ( e SaeA )
+ — 2 7/)01 ' 5
Map jz:(:) Myr ; v 2
+4W, ‘h (1) ) ) B( (1) (2);Mj)‘>>
M. 1 M
log (L/) 2R &R 1 Ly ~7 (1 ‘r(z) ~r (D) (2
<17TW,R L+ <2 R

Mqn  Migp j;o Myr ; Yo 8 2

+ AW, ‘fzo(n(l),n@); W) = (e, 2 )

L NN ,n
€sGD -
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In addition, we have
E,_aymye ()M base [EgGNDn}
{Ti }¢:1 NOIZII'F { } HF Oﬂ

Sinit

log ( ; ) H(T(l))
<1TW,R +2R(E 0 _op |2 Hwo st ) = s i 0l
Mgep e 2

72 o ~OT
init
(r®) H(+D)

+ Z Hw Sh ;ah ’lpMJ(Sh ;af))H )+4W( Z } Sh ,ah nu) h(sg)aaé)yﬂ)

H(T@))
+ 0 [polsi? 0P — (s, af),u)‘)D
h=0

log (£ 2R
<1TW-R M,S ) + 11—~ Es<1)~dﬁp
SGD -7 a®

2( H%(S(l)’ D) — g (s, a<1>)H
2
~ody s

+H1/fo(5(2),a(2))*¢ (s, a®) H >+4W (‘ho M, g0 1) — (5D, oV 47

)

n ’ho(s@), a?: 17 — h(s®,a®: 17

Y w R logﬁ) 1 20 (AVescarelt | 16V e
MSGD \/_m4 \/Emz
< 1TW.R loggﬁ) n 40R2WT\/CSC.&1§.R,
Mgep (1 —79)yemi
where inequality (a) uses Assumption 3.3. O

Let (N5 = (2 + exp(—2W,(y/me + R)) + exp(2W, (yv/me + R))) ™!

Lemma D.12 (MLE). Assume that event Einit N E; N EEN holds. Then, for any phase n > 0, we have that
with probability at least 1 — 26,

n_ pro 1 [sdlog(s) 3
=y < s\ e T 2aT

NN n gHF
SGD NN ,n
+ +2R \/ EMLE -
CMLE

5MLE = {Hﬂn - u?“’nggg,n < Eﬂig, VO<n<N — 1},

In other words, defining event

we have Pr[ENNE] > 1 —2N§'.
Furthermore, we have

" 1 5dlog (%) 1 log (%)
{ (1)}MHF on. [ET/EE} < ] + 17TW.R MéL(jD

— 2NN My NN
{(2)}1\4HF Oﬂbme MLE CMLE

Sinit
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+2R1I§H_F+ scaleR MHF W, eXp 4W < I)'
" ¢t MY pvT —yms o

Here we make the convention that S1E = Cur-
n

Proof. Since

(1) _(2)
S = Ti T T ()
v2L 1 Mur 1 {yZ 1}exp < (1/}0 ) :u’) 1 {yz — 0} (’l/)gll 1T¢(2))TM ~T(1)1T.(2) NTQ)J;Q) T
a (M)iMHF Zl . 2 A L) 2| 0
= 1+ exp | — (' )T 1+ exp ( (4’ )T
NN Mur D 2@ ) @

T

cMLE Z )7,

we have that for any A € R?,
L2 + A) = L") — (u2™7) A
T 72 r0j
> ATV2L(urol)A

R & @) (M) @) "
> NipA (MHFZ@O( )= wo(r?)) (vo(r") = vo(r?)) )A.

=1

Using Lemma D.11 and the definition of pf;; , we have
N,n O NN,n
L(u") < L(pare) + esap < L) + esap-

Then,

Myur T

N (7 = i) (MLF S (9ol = 0o ™)) (vo(r™) = vo(r) )(u - )
=1

S L(p") = L(pf™®0) = WV L(u2™) T (™ — ™)

T T NN
=V L(EoN T (1™ — B + egaps

which implies

e e P
MLE || X Hy Eggx" = pul (Egg’") LM Hy Eggx" €3GD .

n
By analysis for quadratic functions, we have
NN n §HF
I = g < o [T sy ) R 2y 30
2c CMLE
Let
L = e (- (M““ )
Yyi = 1}exp )
_ 1{y; =0} ,
V,=— + , Vi € [MHF]a

TSR o 0 @ .
veo (07T e (<0 )
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V=[Vi,...,Vary] €RMur,
(1) (2)

X = [( 51 TEZ))T;_. ( gMHF’ MHF)T] c RMHFXd’
T 23 T TAL dx M,
X :[wol sT1 ""’1/]0 HF HF] ERX HF,
and then
Mur
. 1 ) (2 1
V, L(pProd) = Viggi T = X',
- 1 Cur
SN =~ xTx 42T
HF M + n
For any i € [Myr|, we have |V;| <1 and
L = e (7))
yi = 1}exp )
1{y; =0
N {y: =0}

Eyi [‘/7/] = Eyi (1) . (1) .
1+ exp < (5™ )Wﬁ’“”) 1+ exp < (5™ )W%«’“”)

I E) .
) exp (_(,lpol 5T )TMBIOJ)
o - 2 m 2 }
1+ exp (—r( m) , l( ))) 1+ exp ( (Q/JTZ T )TugrOJ)
exp (—F(Ti( ), 1(2))) 1

. @ )
1+ exp (—T(Ti(l), TZ-(Q))) 1+ exp ( (1/)71(1)’71'2 )Tui’mj)

(D L 2) o
eXp( ( Z-(l),n—@))) —exp (—(%’ C) T OJ)

F (2

(1 + exp (—f(n(l)an@)))) (1+exp( (g " )mgroj>).

+

Then,

(1/’0 ) /%I«)mJ ' Ty
H(zM) H(=?)

1 1 ro 2 2 ro
Z fO 5}23 5}27/1/5 ] Z f 5}23 5}27/1/5 J)
=0

(1) (2)
IEy, [Vi]] < exp(2W;) #(r®) (2))’

— exp(2IW;)

H(r) H(r{?)
1) (1 (2 2)
X e - X )|
h=0 h=0
H(T“))
o) = (st} o)

SGXP(QW < ‘fo 1]1) 1h7lu"r
0

h=

H(T(Z)
X e -] )
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Let D= oA~ X(Spp") ' X T = t X (5= X TX + 9e])~1X T ¢ RMurxMur,

MZ, M2, \Mur
Then,
rojy |12 roj SNN,n -1 roj
VL) [ gpmomy 2 =V L(Mp ne (EHF ) VL (")
VTX( SN, ") xTy
Mﬁp
=V DV
Since D is positive semi-definite, let \y > --- > )\MHF > 0 denote the eigenvalues of D.

We bound tr(D), || D, tr (D]E[V]E[V]T) and 12U as follows.

(D7)
1 1 ¢ -t Mur( -t d

tr(D) = tr (—X ( XTx 42 1) XT> = tr ((XTX + ﬂ]) XTX> < :

n HF

2
MHF MHF n

HF

1
MHF

v _
HFCHF I> xT

MEn Myur n n

1 1 -t
D] = H—X( XTX+ CHFI) xT
HF

1
= X(XTX

>t (B [ViD?

tw (DE[VIE[V]T) = tr (E[V) DE[V]) = E[V]" DE[V] < [E[V]|} || D) < ==y 2ot

and

IDIP @ Mup |DI* __ MupAi(D) _ MupAi(D) < Mg
w0 T (@) (piep)’ T EERD) T

where inequality (a) is due to tr (D?) > (t;v([gi)

Let ¢’ < % According to Lemma E.4, we have that with probability at least 1 — 24,

HVML(MgrOj)HEEEE’")A <tr(D)+ 2\/(tr (D))?log (5 ) +2|D| log (51/)

1
+ tr (DE[V]E[V] ) (1 + 24/ Mur log (5/)>
d 2d 1 2 1\ SMueg, (vi)? 1
< — —=_= =
< M + Mo log (6’) +MHF log<5,) + Mo 142 MHF10g<5I>

5dlog (3-) Nup 9 log (%)
—r 3 (;@yiw ) T (37)

Plugging Eq. (37) into Eq. (36), we have

n __ ,,proj
1 = 127 [
HF

5d1 L] Mup 1 L] NN,n

— NN
QCMLE MHF




1 5d log (%) 3
B 205{?@ Myr 205{?@

NN n CHF
SGD NN n
+ QR\/ EMLE -
CMLE

Next, we handle the term E,,[V;]. For any ¢ € [Mur],

H('ri(l) 9
(1 T 1 1
Ew oy, [EulVl)?] < ep@Wn)WEe o [ > (Folslalisurrel) = r(sal))

(2) ~ nbase (2) I:base h=0

Sios
“init P
Sinit

H(r!?)
2 2 roj 2 2 2
3 (00 )|

exp(4W. )W, I ro 1
-—0 — E]E(s<1),a<1))~dgF (fo(sé ,ah),ug iy — (sé ,ah)))
(s ,a?)

~dpase

2
(fO(Sh ,ah)“ugroj) T(Sé)vagf))) ‘|

32R2W, exp(4Wy) 1
log [ =
(I=~)m

6/

Then, we have

E, o |:€NN n} - 5d10g 5l 123M§F W, exp(4W,)
HF n —
b Jizi ~Ofe | LTMEE 2c§iﬁEV CMLE (1=7)m

{r (2)}MHF Ow

Sinit

N,n

+ IE{ YR Lopg, {7 IE ~ 03.}::6 [ESGD} +2R\/<H7F

CMLE

/5dlog (% 12RMHF W, exp(4W,)
205{?@ CMLE (I —=7)m

<
3 1
1 log (& 1 40R*W,/Cocalo R /
+ 17TW, R (])555) + ( C 1l ) + 2R §HF
\ MiE SGD \/ MR (1=7)yem: "
1 5dlog (& 1 log (&
< g((s) i 17TW. R g£5)
2e00E Mur /le/fEE Mggp
9 Ri M W 4W., 1
oy 4 el My eX}O( ) tog <_/> '
" AN pVT—yms g

O

Lemma D.13. Assume that event Epit N EF N EEN N Eﬂlﬁ ngjj holds. Then, for any phase n > 0 and
iteration t > 0,

oy [|@7 (5. 0 = @ (s, )

E M-
(s:0)~pty, {0} iHF ~OR s,
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NN,n X Gy Cscale 22 l0g (57) NN,
’ > do(sn,an) : "

<2E (1) MHF e |:€MLE:| E ~O™) i
{ } O T o P . (1 — ’7) sz
(Cgp™) 7t

basu

{ (2)}1WHF Ow
Proof. We have

‘Q”t (s,a; 7" +0") — Q”t (s,a;r +0b")
H(r)

TNOgyta Z (h(sha Qp; /Ln> - T(Shv a’h))
h=0
H(T)

= B, o, [ Z (h(Sh,ah;u") — ho(Shy an; 0™) + ho(Shs an; w™) — ho(Sh, an; pr)
h=0

= |E

+ ho(sh, an; pR™) — r(sp, ah))] ‘

H(r)
<E or > (A(sny an; 1) = ho(sn, an; ™) || + B ont > to(snsan) " (u" — pPrel)
' h=0 ' h=
H(r)
+E, o Z (ho(sh, an; 2™1) — r(sp, an))
" || h=0
H(r) . 1
<E or > do(sn,an) (| " = M?mjngggm + EE(Sga/)Nd;ﬁa (1A (s, a"s u™) — ho('s, a’s u™)]
- (Sar ™)
1 proj o
b i, [l 549 6,0
(a) NN H(r)
S 2 MLI;IETNO;’; Z ’L/)O(Sh,ah) + TE(S ,a’)wd;"ta [|h(s/,a/;‘un> _ ho(/s,a/;u")ﬂ
(ZNN,n),l
1 ro
+ —1 — E(S o)z, Hho s’y a's pP J) r(s’,a’)H ,

where inequality (a) uses the definition of EXY and Lemma D.12.

cov

Then, taking E(s 4y~ [-] on both sides, we have

E(s.apt,, || @ (537" +6") = Q" (5,037 +0")

H(r)
1
NN
<2\ K, on Z Yo(sn,an) + ——E . gyoqrt R(s a5 p1™) = ho('s,a’s p™)]]
Peov 1 -7 ( ’ ) Plov
h=0 (SNNmy -1
1
T B, [0 s —r(s )]

H(T) 1
(2) n 2\/ Cscae IOg g
< 2€MLEE ~OTE E Yo(sn,an) + l T — (6 )
Pcov ( \/_m4 1 Y m
h=0 (EEE*")*I =
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H(T) 64/ Cscale R3 log i)
NN V &
< QEML’SETW@;@ E o (Sh,an) + A —y)vamt
cov h=—0 - L

NN,n\_
Cae )t

where inequality (a) uses Lemma D.2 and the definition of event Eiy;t.
Furthermore, taking E Lbase [-] on both sides, we have

1) M n 23 M
{Ti( )}'L I41IF~OHF7 {Ti( )}i:PlIFNOSinit

E(sappt, || @7 (51057 +57) = Q" (5,07 + 7))

T 1
< 9E NN,n} E H(r) 6\/ CscaleR3 IOg ﬁ) _ NN, 7zt

(1)yMHF _ n 15 ot ’l/)o(sh ah) + =Gqn
T timih ~O {MLE T~O07, Z ) 1 Plov
fm izt A ace véov 11350 SNN.ny g (I —7)y/em

( HF )

(2)y Myp ™
{7 i Nosinit

O

vase || and Eqn[-] interchange-

Sinit

In the following, for ease of notation, we use E{Tim}?gp ~on, {(r@yMuE o

ably.

Lemma D.14. Assume that event Einit NE QEEN ﬂEﬂEE ﬂﬁg}j holds. Then, for any phase n > 0, iteration
t>0,s€K"” anda € A,

[Yo(s,a)" (6% = Oa) | < ¢ 28 (8(n + DWENG™ + 4o B?)

Proof. For any phase n > 0,
2 2
E(s,a)y~pn in [(Q’rt(s, a; 7"+ b") — 0" (s, a) — o(s, a)TG) — (Q’rt(s, a;r +b") —b"(s,a) — Yo(s, a)Tﬁ) ]

)

< 4WQNN§},\IN’F , (38)

n
cov

< 4WQNNE(s,a)~pgov,fn Hth (s,a;7™" +b") — Q”t (s,a;r +b™)

Here W)™ satisfies max{|Q™ (s, a;r +b") — b™(s,a)|, [0 (s,a) TOL |, [bo(s,a)TOL|} < wHr.
Plugging 6% into 0, we have that for any fixed (s, a),

¢ 2
B o 0)pt [(Q” (.07 +b") = V" (5,) — tho(s,) 6 }
2
> B apmpy 7 [(Q’” (5,037 + b") = b" (s, ) — vo(s,0) 70" ) ] —4wiNeg
(a)

2 t
> E(s,a)r\«p&v,f" [(Qﬂt (Sa a; ™+ bn) - bn(sa a) - wO(Sa a)Tefnid) :| - 4WQNN§;1)\?1;W ) (39)

where inequality (a) is due to the definition of ¢ ;.
Furthermore, we have

2
Etaarmre, | (@ (v 47— 1(5.0) = o5, 0) Ol |

+ 2
- E(s,a)rwpg)v |:(Q7r (Sa a;r+ bn) - bn(sa a) - wO(Sa a)Tai) :|
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t an n n 2
~ Bleap o [ (@7 (v 8 = 0 (5.0) — vl )|
: 2
B, | (@7 (a8 = 550 vo(s, )0t |
+ 2
By, [ (@7 (sasr 87) = 6 (s.0) — o) )|

2
By | (@7 (008" 4 87) = 07(5,0) = (5,0 i) |
(a)

NN
< SITYNN n 7T
Pcov

)

where inequality (a) uses Lemma E.3.
On the other hand, it holds that

E(Sva)wpgo\, |:(Q7Tt (S, a;r—+ b") — b”(s’ a) — 1/10(8, a) Gmld) 2:|
B, | (@7 s 87 550 —vu(s.0) 02|
= B, | (ols:@) T (0 = Ohyia))”]

< AW 4 AWENE g, o [| @7 (5,7 4 57) = Q7 (s, @57+ b7)

+ 2E(s,a)~pg‘0v |:(Q7Tt (Sv a;r+ bn) - bn(sv a’) - 1/)0(55 a)TQi) 1/)0(55 a‘) (9t - 9m1d)j|

Term I'NN > 0

where Term 'Y is non-negative due to the the first-order optimality of 2.
Then,

( ﬁmd)TE(s,a)Np [wO(S a)l/fo( ) ](et - Gmld)

= B, | (ols.@)T (0~ Ohya))”]

(a) 2
< Bt [(Qf‘ (s,0:7 4 0") = b"(s5,) = (s, 0) Ol }

¢ 2
- E(s,a)rwpgov |:(Qﬂ- (Sa a;r+ bn) - bn(sa a) - wO(Sa a)—rei) :|

< 8WNNWNN 1\£LN 't

)

where inequality (a) uses the same argument as Eq. (17) (i.e., the first optimality of 6%).

The above equation implies
H@i mldHZNN n — (9t - emld) ((TL + 1)E(s,a)~pg‘ov ["/)0(55 a)r@/}O(S; a)T] + Ccovl) (
< 8(TL + 1)WSN§§N " + 4§covR

ENN

ov > We have

For any s € K™, using the definition of £™ and event

1
75 Wo(s: )l wemy 2 < Mo, )l gaymy 2 < VB.

95

emld)

(41)



Thus, for any s € ",

’1/’0(5# (Gt - Gmld ‘ < ||w0(saa)”(ENN" 9

cov

< \/25 (8(n+ WHNs “LN“ n 4§COVR2).

mid

D.5 Proof of Theorem 5.2

For any phase n =0,..., N — 1 and iteration t =0,...,7 — 1, let
. 2
0! = argminE, o)y [(fo<s,a;9> — (@ (s, +b") = ¥"(s,0)) ) } ,
0cSr
2
O g = argmin By q)pn  in {(fo(s,a;Q) - (Q’T (s,a; 7" 4+0") = b"(s,a )) }
0ceSr
2

gt 5GP argmin B gy pn [(fo(s,a;H) - (Q7r (s,a; 7" +b") — b" (s, a))) } .

0eSr

/. o) n,t e
Let &' := SN (KT e T ME T TG For any n > 0, t > 0 and (s,a) € S x A, let b™'(s,a) =

b"(s,a) = Eqrrt()s) [07(s,a")], and for any w € R™4 et 9t (s,a) := 1y, (s,a) — Eqort(]s) [Yw(s,a’)].

Proof of Theorem 5.2. First, we have Pr[€nis NEFN NE NENN NENTE NERT] > 1 —6- 2N (K + Mur +

Moy +TMEp) - 26" =1 — 4. In the following, we assume that event Enit NEFNNE- N SNN NENYE NENN
holds.

For any phase n =0,..., N — 1 and iteration t = 0,...,T — 1, we have

*,n t
Vin (Sinit) — Viyn (Sinit)

1 i .
B, [ o)

1 7 n n
1= ,Y]E(S a)~dil, [( L (s,a) 0 + b ’t(s,a)) -1{s e K"}

+ ( ﬂbn (s,a) — (@é(s,a)TGi + Bn’t(s,a))) -1{se K"}

Term 1
+ 1/;6(8’ a) (Gt - emld) 1 {S € K:n} +1E8(8’ a) (Gmld ) -1 {S € K:n}
Term 2 Term 3
 (0b(.0) ~ Ti(s.0) 0. (43)

Term 4

Below we bound Terms 1-4.

Term 1. We first bound Term 1.

Term 1=K ) 4 m {(Qﬂbn (s,a) — (Yo(s, a) 0L +b" (s, a))) -1{seKk"}

Sinit
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— Eswdﬂ Tt (]s) [(Qﬁbn (s,a’) — (wo(s,a/)TQi + b"(s,a’))) -1{s € /C"}}

(a) .
: V E<aa>~d;’;n [(QWMW (5.0) = (ta(s,0) T8 + b7 (5,)) |

+ \/Eswd;'_*i ,a’ ~mt(c]s) [(Qﬂbn (S’ al) - (wo(sa a/)Tei + bn(sﬂ al)))2:|

2
< 2\/ A [(@Fen (510) — (Go(s, @) 0% + (5, )’]
\/ |A|€b1as’
where inequality (a) uses Lemma C.2.

Term 2. Then, we bound Term 2.
Using Lemma D.14, we have that for any s € K™ and a € A,

[o(s,a) T (0L — 0La)| < \/25 (S(n + WANG™ + 4§COVR2).
Thus,

[1/_)8( ) (9 - emld) 1 {5 S ’Cn}}
L HwO(S,a (et — emld)‘ 1 {S c Icn}]
+ ESNdﬁﬁn;simtva/Nﬂt('IS) HQ/JO(Sa a (et — Gmld)’ 1{se IC"}]

2\/25 (8(n +DWHNG™ + 4§COVR2) :

Term 2 = E(S @)~

n.
38init

< E(s a)r\«d’r

Term 3. Next, we bound Term 3.
Using the same argument as Eq. (41) (i.e., the first optimality of 6% .,),

Esapmptnin | (4005, 0) O = vo(s,0)T0)]
< Bleayest on | (Volov0) 6" - (Q’“(s, i+~ (5.0 )|
B | (050) O~ (@7 (505”487 = 9 (6,0)) )]
= Es lE<s,a>~psov [(%(s, )70 — (@7 (s.as 40 b(s.)))

4

- (wo(s, a)t ., — (Q”t (s,a; 7" +b") — b" (s, a)))T

= Ep [ (0) — P 00l
< Epn {FW’ (9t> (9;:(1 >| }
(%) sgN.

o7



where inequality (a) is due to Lemma D.9.
Then, we have

H9 et’ ECNOI:I, n < (efnid - et)T ((TL + 1)E(s,a)~p&v [1/)0(55 a)i/JO(Sa a)—w + CCOVI) (ofnid - et)
= (04 DE (s aymppy, | (Y0(5,0)  Ohyia — Yo(s,)T0)°] + 4R Coon

< (n+ 1eg + 4R Ceon-

mid

For any s € K™ and a € A,

WO(&@T (efnid )| < Io(s, a)”( hIED! Hemld 9t|

v \/zﬂ ((n+ 1SN + 4R2C0y),

NN,n
Scov

where inequality (a) uses Eq. (42).
Hence, we have

Term 3 = E(, 4)war:; [1/_16(5, a)’ (0lq —0") - 1{s € K"}]

<24/B(n+1)e N + 4R/ Bcoy-

Term 4. Finally, we bound Term 4 as follows.

(@5, ) — @ (s,0) " 0]
H(ws, @) = e (s,) 0]
(Yo(s,') = e (s,a)) 0]

Term 4 = IE(S o)l

n.
Slnlt

< E(s,a)wd"*

+ |"4|IE (s a)wd"'* it |:
4|A| \Y Cscale
> \/_m4

The Total Suboptimality. Combining Lemma C.3 and Eq. (43), we have

« t 1 t
VT (Sinit) - VT (Sinit) < RHS in Eq. (43) + E Z d;nit (S, a).
(s,a)gK™

Summing overt = 0, ...,T—1, dividing T" and applying the regret for natural policy gradient (Lemma D.7),
we have

n+1

VT (Sinit) = V™ (Sinit)
1 .
=7 ; (V (Sinit) — V (Sinit))
log(JA])  nWs(WIN)2 \/ IAIEWs NN
+ Bn+1)W, Z ot

T A =ynT (1=2) =y 1o
12R\/ ﬁCcov 2 /B(n + 1)ENN + 4|-A| V CscauleR3 1 Z "
1-— 1 — Q % Sinit
7 vem 7 (s,aygKn

o8



T—-1 [ NNt
Next, we handle the term + >, VST

N— T-—1
N S e
n=0 tZO
2
ON? [5mdlog (&)  AN? log (5
<o 2N g (5) 17TW, R g£5 ) + 4R\/Nlur
CMLE My /NN Msap
MLE
5 1 3 -17- H(r)
T6N2cE R M /W, exp(417,) 1 1§
n Cocate!* Miir log <_> —— E.  or Yo(sh,an)
ci MgV T—7ms o' NT = ; Py Z

64/ Cscale 23 1og (éi)
+

1
m4

5mdlog (4 ) 2N log (& 1
<4 mdlog () + = _[17wW.R o8 (77) +2VRNiCH
My () Ml i
CMLE MLE
5, -1 1 2 1.1 1
scaleR8 My (W- exp( FV )" log (%)) . (midi log? <1 n gNWTd) N mida }Og“(N)) '
\/ CMLE( ) mie HET Cf)ase

JHF

— 5 — — 2 — NN ._ -
Recall that ¢' := 24N(K+MHF+ML NI Ceov 1= 1, Cur = 4W2, Wg = 1, W' = /mc + R,

NN ._ 4(\/EC+R) . = NN ._ \/Ec+R _ R .
Wi = &2 w)z + WN = mé + R, WHN = + = 7)2, §o = WA Su
1 _ _ _
- \/}jw“ , = W;ﬁ(\l/“;‘/)sT and Ny = (2 + exp(—2W,(v/me + R)) + exp(2W,(y/me + R)))~'. K and
T SGD
2 o 4dN
Mpyur should satisfy that K > 16(N+1)” log™ (*57*) and My > , respectively.
y .

Therefore, summing the regret over n =0,..., N — 1 and d1v1d1ng N, we have

16W4 log (4dN)

* out
V™ (Sinit) = V™ (Sinit)
N-1

1 o L
=N Z (V (Sinit) =V (Sinit))
n=0
B 2\/|«4Iff§£§s+ log(J4)_, nWs(Wy™)? | 12RVBCeoy | 2md log <1+ N >
I (I —=y)nT (1-7) et (1 —)NB Ceov
~ wiN/Wglog(TAD
- 1-7VT
1 7 1.1 1l 4
8\/BNWGRER (1og (L)\ "  32dur\/BWSY (aNmidtlogh (L) 5NWERY logs (&)
Ty Mg ) T 1 N ()T (M)
SGD CMLEMHF MLE SGD

1 32dyr |/ BWEN I 1
+2\/ENZCI§F> . VWY oNeE | REME (W, expW )t (_)

1= 95\/CMLE(1* 7)tms o
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E Technical Tools

Lemma E.1. Let D be a distribution of random vector ¢ € R? such that ||¢|la < W and ¥ = Egup[pd'].
Gien K i.i.d. samples ¢1,...,¢x ~ D, then with probability at least 1 — &',
4d
< 2W?2 log (7)

1 &
Pr[?;@@—z _T].

Proof. This analysis is originated from Lemma H.3 in Agarwal et al. [2020].
Let X; = ¢;¢,; — %, and it holds that E[X;] = 0 and || X;| < W2
Then, we have

E[X?] =E[(¢6] ~2)’]
—E |(6i6])" + 3% — 25,0 |
—E {(qﬁiq{ﬂ + 32— 95K [¢ig)] |
—E [(@qu)?} £ 32 _ox?
=E [(¢i9])"] - 2

For any = € RY,
which implies

For any = € RY,

s (W2E [0i9]] —E[(6:0])°]) o = W? 2 E [6:0] |2 — 2 E [(939] ) (6:0] )] =
>W? 2'E[¢i¢) |2 —W? 2 E [¢i¢) | =
=0,

which implies
W2E [5:0] ] = E [(¢:6])"].
Then, we have

E[X?] <E [(¢0])°] 2 W2E [0i9]] = W25,
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and thus,

K
> E[X7] X KWy,
i=1
K

>_E[X7]

i=1

< KW*.

K

>x

Using the Matrix Bernstein inequality (Theorem 7.7.1 in Tropp et al. [2015]), we have that for any
— 142
>t| <4de —_—2
i I <W4K+ %W2t> ’

t> WK + fW?,
Prl
W_2+%W2

which is equivalent to that for any z > NG

|

K

i

i=1

_1pg2.2
> z| <4dexp g i .
e WAK + sW2K 2

Let

Then,

i 2W4K log” (44)
=ddexp | —
PUwak 213V/K log (44)

()

=4
Thus, with probability at least 1 — §”,

1 K
Prlgi_zlmi—z

Lemma E.2. For any n € [N], let D" be a distribution of random vector ¢ € R? such that ||¢||2 < W, and
define X" = Epupn(pp '] and ¥ = 25:1 X", For any n € [N]|, given K i.i.d. samples ¢7,...,¢% ~ D,
A ~ A 2 4 ) 2(4dN
let S" = LY on(¢)T and £ =N $n. Letting K > %
1 — ¢, we have that for any x € RY,

- 2W2log (‘(15—‘,1) .
- VK

O

, then with probability at least

%xT S+ te<al (XA]+§I)71$§2$T (4 e
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Proof. This proof is originated from Lemma H.4 in Agarwal et al. [2020].
According to Lemma E.1, we have that for any n € [N], with probability at least 1 — %,

K 2 4dN
1 2W log( )
Pr|{=> ¢7(¢)) -5 < ——="~
K = VK
Thus,
W2 lo 4dN K W2 lo 4dN
VE K& VK
and then summing over n € [N], we have
_ 2NW?log (4dN)I+§I S I<T 2NW?log (4dN)1+gI
VK - - VK '
L. . 2NW? log (24N )
This implies that for ¢ > TJ’
—1 -1
g WPs O57) ;o) < (5+ g[)_l (s NP5 (550)
VK - - VK '

Let UAU T be the eigendecomposition of ¥, where A = diag([\1,...,\4]) and U = [uy, ..., ug). Then,
we have

T (i+g1)71x—:ﬁ (C+ch) e

-1
2NW?2log (4dN) _1
<xT<E I+¢I z—a" (S +C)
- VK
—1
2NW2log (24N) ) o >
=> [(oi+¢- —(oi + Q) ) (uiz)”.
i€(d] < \/?
2 o 4dN
Since ¢ > ANW \1/;( o ), we have
) ( e 2NW2log (24N) - ANW?log (44N) S
g; = 0; T
Z g; +<7
and thus
-1
2NW?log (248 _
(m+< é( ) <2(c;+¢)7"
Hence,
. -1
T(2+gl) z—a  (S+CI)” x<z o+ )7 (i)
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TE+en) e

On the other hand, we have

T+ e —a" (fﬂr(])_lz

1
2NW21 4dN
TSt e—aT <2+ #(5) ;o) .

VK
—1
2NW?log (44N 2
= (o7 + — o +¢+ UxT)" .
Z )~ < ¢ TR (uiz)
. 2NW? log(24X) h
Since { > ——r . We have
2(0i+¢)=0i+(+oi+C
> o4 O+ 2NW?2log (44N
g; ’
- VK
and thus
-1
_ 2NW?log (44X)
1
o; + <2|lo;+(+ .
Hence,

TS+ e —aT (2+g1)71x

<> <‘7i+§ N log(4dN)> (usw)”

VK

-1

T (XA]+§I) T.

Lemma E.3. For any a,b,c € R, we have

(b—a)?* = (c—a)* < dmax{[al, 8], |c[}|b - c|.
Proof. Tt holds that
= (a® 4+ b* — 2ab) — (a® + ¢* — 2ac)
b* —c? —2a(b—c)
=(b+c)(b—c)—2a(b—c)

=((b+c—2a)b—rc)
< dmax{|al, [b], [¢[}[b— .
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Lemma E.4 (Theorem 2.1 in Hsu et al. [2012]). Let A € R™*"™ be a matriz, and let ¥ := AT A. Suppose
that © = (x1,...,xy,) is a random vector such that, for some v € R™ and o > 0,

2 2
o) 20 (1)
for all o € R™. For allt > 0,

1
212 7

Pr || Az|? > o2 (tr(Z) + 24/tr(Z2)t + 2 [|Z]] t) +tr(Sov ") [ 142 (tll (2|]2)t> < exp(—t).

r

Lemma E.5 (Lemma 11 in Abbasi-Yadkori et al. [2011]). Let X1,..., Xn be a sequence of dx d-dimensional
positive semi-definite matrices, and || X,| < Wy for all n € [N]. Let Ay = (Iq with ¢ > max{1, W,}. For
anyn € [N], let A, = Ao+ > -1 X;. Then, we have

o 1 det(A
z_:tr (A;_an) < 2log (%) .
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