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While kinetic helicity is not Galilean invariant locally, it is known (K. Moffatt, Journal of Fluid Mechanics, 35, 117
(1969)) that its spatial integral quantifies the degree of knottedness of vorticity field lines. Being a topological property
of the flow, mean kinetic helicity is Galilean invariant. Here, we provide a direct mathematical proof that kinetic helicity
is Galilean invariant when spatially integrated over regions enclosed by vorticity surfaces, i.e., surfaces of zero vorticity
flux. We also discuss so-called “relative” kinetic helicity, which is Galilean invariant when integrated over any region

in the flow.

Kinetic helicity is a quadratic quantity that was shown to be
a global invariant in ideal fluids by Moreau in 1961!. Its mag-
netic analogue was discovered earlier by Elsisser® in 1956
and, independently, by Woltjer® in 1958. The topological sig-
nificance of helicity was first recognized by Moffatt* in 1969,
who showed that it quantifies the degree of knottedness of vor-
ticity (or magnetic) field lines in a system. This topological
interpretation was later proved in a more general setting by
Arnold>®.

Local kinetic helicity is defined as the projection of vor-
ticity along the velocity direction, #(x) = u- @, where u is
the flow velocity and @ = V xu is vorticity. Helicity quanti-
fies the local right- or left-handedness of helical streamlines,
corresponding to positive or negative local kinetic helicity. It
is well-known that it plays an important role in the nonlinear
evolution of flows”®. It is evident that local helicity is not
Galilean invariant® !

Mean kinetic helicity, being a volume integral of h(x), is
a global (system-wide) measure of handedness or the statis-
tical lack of reflection symmetry in a flow. Since mean ki-
netic helicity characterizes a topological property of the flow,
it is Galilean invariant'. Mean helicity has been shown to
play an important role in the cascade of energy in turbulent
flows'?13 and can lead to large-scale instabilities and mean
flow generation'“!>. In geophysical and astrophysical set-
tings, strong helicity can hinder the downscale cascade pro-
cess and the associated dissipation of energy!6-13.

Here, we present a direct mathematical proof that mean he-
licity over regions enclosed by vorticity surfaces is Galilean
invariant without appealing to its topological meaning. We
then show that so-called “relative” kinetic helicity is Galilean
invariant over any region. Showing that helicity is Galilean
invariant is important for practical modeling considerations
because it justifies the usage of simulations of helical flows in
idealized domains (e.g., a periodic box) as representative of
small regions embedded in much larger systems (e.g., a hurri-
cane). Galilean invariance indicates that sweeping due to flow
at the global scale should not alter the representation of helic-
ity in local regions. Galilean invariance is also important for
practical measurement considerations since it is often the case
that we are only able to measure a flow in local regions in a
system, such as the solar wind.

Mean (or spatially-averaged) kinetic helicity is
H = /d3xu-w, (D
9

where d°x is a volume element, u is the flow velocity of an
inviscid incompressible fluid and @ = Vxu is its associated
vorticity. & is any region in the flow domain enclosed by a
vorticity surface .. In analogy with a magnetic surface'’, a
vorticity surface .# has zero vorticity flux, @ - i = 0, where i
is the local normal vector to ..

Consider two frames of reference, F : x,f and F " x',t/, re-
lated by a Galilean transformation

!
x =x+ Vi+xg, (2a)
t=t, (2b)
where X is a constant translation and V is a constant velocity
boost. From eq. (2a), we have that the flow velocity in frame
F'is
!

u = u+V. 3)

Spatial derivatives of the flow, including vorticity, are invari-
ant under Galilean transformations,

oui _ duy
8x.,-’ B 8x,~'

“)

We will now prove that mean kinetic helicity 77 is Galilean
invariant, A = . In frame F' , we have

jf/:/d3xu/-a)/ (5a)
JD
:/d3xu-w +/d3xv-w (5b)
J9 JD
= X +/d3xV-a). (5¢)
9

Since V is a constant velocity, it can be written as the gra-
dient of a potential field,

V =V¢. (6)
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Therefore, the last term in eq. (5¢) can be rewritten as

/ BxV-0 :/d3xv¢-m (7a)
JD 9
:/d3xv-(¢w) (7b)
9
:/ bo-hdS, (70)
S

where dS is a surface element, and f is again the local nor-
mal vector to .. We used V-w = 0 to arrive at eq. (7b) and
Gauss’s theorem to derive the last expression.

From the designation of region Z in eq. (1) as being en-
closed by a vorticity surface,

=>

ow-fi=0 over .7, )

expression (7¢) vanishes, yielding

/d3xv-w=o. ©)
9

Finally, we have from eq. (5) that mean kinetic helicity is in-
variant under Galilean transformations,

H = (10)

over regions Z enclosed by vorticity surfaces.

Galilean invariance of mean kinetic helicity, .7, can be re-
garded as a special case of gauge invariance of 57 as defined
in eq. (1) over a region 2 enclosed by a vorticity surface®!°.
The condition that Z be enclosed by a vorticity surface can be
removed by considering relative kinetic helicity,

hg = (u+u,)- (0 — @), (11)

in analogy with relative magnetic helicity!>?°. Tt measures
helicity relative to a reference field w, = V xu,, which is a
solenoidal vector field frozen to the flow u within any volume
2 enclosed by surface .7 that is not necessarily a vorticity
surface:

0w, =Vx(uxwo,), (12a)
o, =Vxu,, (12b)
(x)*ﬁ|y = a)-fl|y . (12¢)

The vorticity flux matching condition (12c) ensures that the
normal component of @ — @, vanishes at the surface .. The
field w. can extend beyond Z. Here, u, is merely a vector
potential, not necessarily related to the flow velocity u. From
eq. (12), u, is governed by

Ju, = ux @, — V1, , (13)

where 1), is a scalar potential analogous to pressure in the mo-
mentum equation or the electrostatic potential in the equation
for vector potential of a magnetic field>'.

Existence of a reference field @, satisfying eqs. (12b),(12c)
over a smooth surface . at any time # can be shown as fol-
lows. Since . is divergence-free from eq. (12b), by choosing

o, = V), existence of @, then follows from the existence of
a harmonic scalar field x satisfying Neumann boundary con-
ditions:

Vig=0 over 9,
nVy=wit over 7.

(14a)
(14b)

Existence (and uniqueness) of a solution to the Laplace
boundary value problem in eq. (14) is guaranteed from ba-
sic theory of partial differential equations (e.g. Ref.??) if the
following solvability condition is satisfied,

/ 0AdS=0. (15)
7

For our problem, the solvability condition is always satisfied
since  is divergence-free,

/ co-ﬁdS:/d3x Vio=0. (16)
J.s 9

Since . is frozen to the flow u by eq. (12a), if @, satisfies
the vorticity flux matching condition (12¢) at time #y, it will
satisfy it for all later times ¢ > 7y when . = .(¢) is a ma-
terial surface?®. Note that if the vorticity field is irrotational,
o = Va, then our choice for the reference field @, = Vy im-
plies that relative helicity sz = 0 inside Z where ®. = @ by
uniqueness of the solution to eq. (14). Having hg = 0 for a
vorticity field that is a potential gradient is only natural from a
physical standpoint. Therefore, with the choice of ®, = Vy,
we can interpret /g in eq. (11) as a measure of the knottedness
of vorticity field lines relative to the base state of an irrota-
tional field.

Similar to .7, mean relative kinetic helicity is an ideal flow
invariant. Indeed, the budget governing hg is

ih;ﬁ— V-(hgu) = V-{ [(u+uw.)u] (00— )

ot
- (%P%Iulﬁn*) (w—w*)} ,
(17)

where P is pressure appearing in the fluid’s momentum equa-
tion and po is mass density. When integrated over material
volume Z(t) co-moving with the flow velocity u, divergence
of the right-hand-side terms proportional to @ — @, vanishes
due to condition (12c), yielding

d d
—%:/ d*x | —hg+V-(h =0. 18
PTR ” X[at R+ (Rll):| (18)
Here, %% is mean relative kinetic helicity,
S E/ 43X hp . (19)
J9

We used the Reynolds transport theorem for the first equality
in eq. (18). Therefore, % is an ideal invariant of the flow
over any material volume.



On Galilean Invariance of Mean Kinetic Helicity

In addition to being a flow invariant, J#% is gauge
invariant'®20, i.e. it is invariant to the transformation

(20a)
(20b)

u — u+Vo,
u, — u*—i-V(P*

for any scalar fields ¢ and ¢.. Gauge invariance of .7/ can be
shown as follows,

%’:/@d& WHVo+u, +Vo)(0—w.)  (2la)
:/ d3X (U+U*)(w—w*)
7 (21b)
+ [ ExV-((0+0) (0= 0.)
= A + 0. 21¢)

The second integral vanishes because of condition (@ —
0,)-0 =0 on . from eq. (12c). A special case of the gauge
transformation in eq. (20) is the Galilean transformation

(222)
(22b)

u — u+V,
U, — u*+V*7

where V and V., are constant velocity boosts. Therefore, mean
relative kinetic helicity, /%%, is Galilean invariant over any re-
gion in the flow.
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