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While kinetic helicity is not Galilean invariant locally, it is known (K. Moffatt, Journal of Fluid Mechanics, 35, 117

(1969)) that its spatial integral quantifies the degree of knottedness of vorticity field lines. Being a topological property

of the flow, mean kinetic helicity is Galilean invariant. Here, we provide a direct mathematical proof that kinetic helicity

is Galilean invariant when spatially integrated over regions enclosed by vorticity surfaces, i.e., surfaces of zero vorticity

flux. We also discuss so-called “relative” kinetic helicity, which is Galilean invariant when integrated over any region

in the flow.

Kinetic helicity is a quadratic quantity that was shown to be

a global invariant in ideal fluids by Moreau in 19611. Its mag-

netic analogue was discovered earlier by Elsässer2 in 1956

and, independently, by Woltjer3 in 1958. The topological sig-

nificance of helicity was first recognized by Moffatt4 in 1969,

who showed that it quantifies the degree of knottedness of vor-

ticity (or magnetic) field lines in a system. This topological

interpretation was later proved in a more general setting by

Arnold5,6.

Local kinetic helicity is defined as the projection of vor-

ticity along the velocity direction, h(x) = u ·ω , where u is

the flow velocity and ω = ∇×u is vorticity. Helicity quanti-

fies the local right- or left-handedness of helical streamlines,

corresponding to positive or negative local kinetic helicity. It

is well-known that it plays an important role in the nonlinear

evolution of flows7,8. It is evident that local helicity is not

Galilean invariant9–11.

Mean kinetic helicity, being a volume integral of h(x), is

a global (system-wide) measure of handedness or the statis-

tical lack of reflection symmetry in a flow. Since mean ki-

netic helicity characterizes a topological property of the flow,

it is Galilean invariant10. Mean helicity has been shown to

play an important role in the cascade of energy in turbulent

flows12,13 and can lead to large-scale instabilities and mean

flow generation14,15. In geophysical and astrophysical set-

tings, strong helicity can hinder the downscale cascade pro-

cess and the associated dissipation of energy16–18.

Here, we present a direct mathematical proof that mean he-

licity over regions enclosed by vorticity surfaces is Galilean

invariant without appealing to its topological meaning. We

then show that so-called “relative” kinetic helicity is Galilean

invariant over any region. Showing that helicity is Galilean

invariant is important for practical modeling considerations

because it justifies the usage of simulations of helical flows in

idealized domains (e.g., a periodic box) as representative of

small regions embedded in much larger systems (e.g., a hurri-

cane). Galilean invariance indicates that sweeping due to flow

at the global scale should not alter the representation of helic-

ity in local regions. Galilean invariance is also important for

practical measurement considerations since it is often the case

that we are only able to measure a flow in local regions in a

system, such as the solar wind.

Mean (or spatially-averaged) kinetic helicity is

H =
∫

D

d3x u ·ω, (1)

where d3x is a volume element, u is the flow velocity of an

inviscid incompressible fluid and ω = ∇×u is its associated

vorticity. D is any region in the flow domain enclosed by a

vorticity surface S . In analogy with a magnetic surface19, a

vorticity surface S has zero vorticity flux, ω · n̂ = 0, where n̂

is the local normal vector to S .

Consider two frames of reference, F : x, t and F
′
: x

′
, t

′
, re-

lated by a Galilean transformation

x
′
= x+Vt+ x0 , (2a)

t
′
= t , (2b)

where x0 is a constant translation and V is a constant velocity

boost. From eq. (2a), we have that the flow velocity in frame

F ′ is

u
′
= u+V . (3)

Spatial derivatives of the flow, including vorticity, are invari-

ant under Galilean transformations,

∂ui
′

∂x j
′ =

∂ui

∂x j

. (4)

We will now prove that mean kinetic helicity H is Galilean

invariant, H
′
= H . In frame F ′, we have

H
′
=

∫

D

d3x u
′
·ω

′
(5a)

=

∫

D

d3x u ·ω +

∫

D

d3x V ·ω (5b)

= H +

∫

D

d3x V ·ω . (5c)

Since V is a constant velocity, it can be written as the gra-

dient of a potential field,

V = ∇φ . (6)
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Therefore, the last term in eq. (5c) can be rewritten as

∫

D

d3x V ·ω =

∫

D

d3x ∇φ ·ω (7a)

=
∫

D

d3x ∇ · (φ ω) (7b)

=

∫

S

φ ω · n̂ dS , (7c)

where dS is a surface element, and n̂ is again the local nor-

mal vector to S . We used ∇·ω = 0 to arrive at eq. (7b) and

Gauss’s theorem to derive the last expression.

From the designation of region D in eq. (1) as being en-

closed by a vorticity surface,

ω · n̂ = 0 over S , (8)

expression (7c) vanishes, yielding

∫

D

d3x V ·ω = 0 . (9)

Finally, we have from eq. (5) that mean kinetic helicity is in-

variant under Galilean transformations,

H
′
= H , (10)

over regions D enclosed by vorticity surfaces.

Galilean invariance of mean kinetic helicity, H , can be re-

garded as a special case of gauge invariance of H as defined

in eq. (1) over a region D enclosed by a vorticity surface4,19.

The condition that D be enclosed by a vorticity surface can be

removed by considering relative kinetic helicity,

hR ≡ (u+u∗)·(ω −ω∗), (11)

in analogy with relative magnetic helicity19,20. It measures

helicity relative to a reference field ω∗ = ∇×u∗, which is a

solenoidal vector field frozen to the flow u within any volume

D enclosed by surface S that is not necessarily a vorticity

surface:

∂tω∗ = ∇×(u×ω∗) , (12a)

ω∗ = ∇×u∗ , (12b)

ω∗·n̂|S = ω ·n̂|S . (12c)

The vorticity flux matching condition (12c) ensures that the

normal component of ω −ω∗ vanishes at the surface S . The

field ω∗ can extend beyond D . Here, u∗ is merely a vector

potential, not necessarily related to the flow velocity u. From

eq. (12), u∗ is governed by

∂tu∗ = u×ω∗−∇η∗ , (13)

where η∗ is a scalar potential analogous to pressure in the mo-

mentum equation or the electrostatic potential in the equation

for vector potential of a magnetic field21.

Existence of a reference field ω∗ satisfying eqs. (12b),(12c)

over a smooth surface S at any time t0 can be shown as fol-

lows. Since ω∗ is divergence-free from eq. (12b), by choosing

ω∗ = ∇χ , existence of ω∗ then follows from the existence of

a harmonic scalar field χ satisfying Neumann boundary con-

ditions:

∇2χ = 0 over D , (14a)

n̂·∇χ = ω ·n̂ over S . (14b)

Existence (and uniqueness) of a solution to the Laplace

boundary value problem in eq. (14) is guaranteed from ba-

sic theory of partial differential equations (e.g. Ref.22) if the

following solvability condition is satisfied,

∫

S

ω·n̂ dS = 0 . (15)

For our problem, the solvability condition is always satisfied

since ω is divergence-free,

∫

S

ω ·n̂ dS =

∫

D

d3x ∇·ω = 0 . (16)

Since ω∗ is frozen to the flow u by eq. (12a), if ω∗ satisfies

the vorticity flux matching condition (12c) at time t0, it will

satisfy it for all later times t > t0 when S = S (t) is a ma-

terial surface23. Note that if the vorticity field is irrotational,

ω = ∇α , then our choice for the reference field ω∗ = ∇χ im-

plies that relative helicity hR = 0 inside D where ω∗ = ω by

uniqueness of the solution to eq. (14). Having hR = 0 for a

vorticity field that is a potential gradient is only natural from a

physical standpoint. Therefore, with the choice of ω∗ = ∇χ ,

we can interpret hR in eq. (11) as a measure of the knottedness

of vorticity field lines relative to the base state of an irrota-

tional field.

Similar to H , mean relative kinetic helicity is an ideal flow

invariant. Indeed, the budget governing hR is

∂

∂ t
hR +∇·(hR u) = ∇·

{

[(u+u∗)·u] (ω −ω∗)

−

(

1

ρ0

P+
1

2
|u|2 +η∗

)

(ω −ω∗)

}

,

(17)

where P is pressure appearing in the fluid’s momentum equa-

tion and ρ0 is mass density. When integrated over material

volume D(t) co-moving with the flow velocity u, divergence

of the right-hand-side terms proportional to ω −ω∗ vanishes

due to condition (12c), yielding

d

dt
HR =

∫

D(t)
d3x

[

∂

∂ t
hR +∇·(hR u)

]

= 0. (18)

Here, HR is mean relative kinetic helicity,

HR ≡

∫

D

d3x hR . (19)

We used the Reynolds transport theorem for the first equality

in eq. (18). Therefore, HR is an ideal invariant of the flow

over any material volume.
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In addition to being a flow invariant, HR is gauge

invariant19,20, i.e. it is invariant to the transformation

u 7−→ u+∇φ , (20a)

u∗ 7−→ u∗+∇φ∗ (20b)

for any scalar fields φ and φ∗. Gauge invariance of HR can be

shown as follows,

H
′

R =

∫

D

d3x (u+∇φ +u∗+∇φ∗)·(ω −ω∗) (21a)

=
∫

D

d3x (u+u∗)·(ω −ω∗)

+

∫

D

d3x ∇·((φ +φ∗)(ω −ω∗))
(21b)

= HR + 0 . (21c)

The second integral vanishes because of condition (ω −
ω∗)·n̂ = 0 on S from eq. (12c). A special case of the gauge

transformation in eq. (20) is the Galilean transformation

u 7−→ u+V , (22a)

u∗ 7−→ u∗+V∗ , (22b)

where V and V∗ are constant velocity boosts. Therefore, mean

relative kinetic helicity, HR, is Galilean invariant over any re-

gion in the flow.
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