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Abstract. We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-5
based active learning, as long as the measure of uncertainty properly aligns with the underlying6
model and the model properly reflects uncertainty in unexplored regions. In particular, we use a7
recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier and8
we introduce an acquisition function designed to measure uncertainty in this graph-based classifier9
that identifies unexplored regions of the data. We introduce a diagonal perturbation in PWLL10
which produces exponential localization of solutions, and controls the exploration versus exploitation11
tradeoff in active learning. We use the well-posed continuum limit of PWLL to rigorously analyze our12
method, and present experimental results on a number of graph-based image classification problems.13
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1. Introduction. Supervised machine learning algorithms rely on the ability to acquire an17

abundance of labeled data, or data with known labels (i.e., classifications). While unlabeled18

data—data without known labels—is ubiquitous in most applications of interest, obtaining19

labels for such training data can be costly. Semi-supervised learning (SSL) methods leverage20

unlabeled data to achieve an accurate classification with significantly fewer training points.21

Simultaneously, the choice of training points can significantly affect classifier performance,22

especially due to the limited size of the training set of labeled data in the case of SSL. Active23

learning seeks to judiciously select a limited number of query points from the unlabeled data24

that will inform the machine learning task at hand. These points are then labeled by an expert,25

or human in the loop, with the aim of significantly improving the classifier performance.26

While there are various paradigms for active learning [60], we focus on pool-based active27

learning wherein an unlabeled pool of data is available at each iteration of the active learning28

process from which query points may be selected. This paradigm is the natural fit for applying29

active learning in conjunction with semi-supervised learning since the unlabeled pool is also30

used by the underlying semi-supervised learner. These query points are selected by optimizing31

an acquisition function over the discrete set of points available in the unlabeled pool of data.32

That is, if U ⊂ X is the set of currently unlabeled points in a pool of data inputs X ⊂ Rd,33

then the active learning process at each iteration selects the next query point x∗ ∈ U to be34
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2 K. MILLER AND J. CALDER

the minimizer of a real-valued acquisition function35

x∗ = argmin
x∈U

A(x),36

whereA can depend on the current state of labeled information (i.e., the labeled data L = X\U37

and corresponding labels for points in L).38

The above process (policy) for selecting query points is sequential as only a single unla-39

beled point is chosen to be labeled at each iteration, as opposed to the batch active learning40

paradigm. In batch active learning, a set of query points Q ⊂ U is chosen at each iteration.41

While this is an important extension of the sequential paradigm and is an active area of42

current research in the literature [30,51,59,67], we focus on the sequential case in this work.43

Acquisition functions for active learning have been introduced for various machine learning44

models, especially support vector machines [2,42,66], deep neural networks [30,47,59,62,63],45

and graph-based classifiers [41, 50, 51, 55, 57, 79]. We focus on graph-based classifiers for our46

underlying semi-supervised learning model due to their ability to capture clustering structure47

in data and their superior performance in the low-label rate regime—wherein the labeled data48

constitutes a very small fraction of the total amount of data. Most active learning methods for49

deep learning assume a moderate to large amount of initially labeled data to start the active50

learning process. While there is exciting progress in improving the low-label rate performance51

of deep semi-supervised learning [58,65,74] and few-shot learning [37,72], we restrict the focus52

of this paper to well-established graph-based paradigms for this setting.53

An important aspect of the application of active learning in real-world datasets is the54

inherent tradeoff between using active learning queries to either explore the given dataset or55

exploit the current classifier’s inferred decision boundaries. This tradeoff is reminiscent of the56

similarly named “exploration versus exploitation” tradeoff in reinforcement learning. In active57

learning, it is important to thoroughly explore the dataset in the early stages, and exploit the58

classifier’s information in later stages. Algorithms that exploit too quickly can fail to properly59

explore the dataset, potentially missing important information, while algorithms that do not60

exploit the classifier in later stages can fail to efficiently refine classifier decision boundaries.61

In this work, we provide a simple, yet effective, acquisition function for use in graph-62

based active learning in the low-label rate regime that provides a natural transition between63

exploration and exploitation summarized in a single hyperparameter. We demonstrate through64

both numerical experiments and theoretical results that this acquisition function explores prior65

to exploitation. We prove theoretical guarantees on our method by analyzing the continuum66

limit partial differential equation (PDE) that serves as a proxy for the discrete, graph-based67

operator. This is a novel approach to providing sampling guarantees in graph-based active68

learning. We also provide experiments on a toy problem that illustrates our theoretical results69

and the importance of the exploration versus exploitation hyperparameter in our method.70

1.1. Previous work. The theoretical foundations in active learning have mainly focused on71

proving sample-efficiency results for linearly-separable datasets—frequently restricted to the72

unit sphere [1,22,34]—for low-complexity function classes using disagreement or margin-based73

acquisition functions [1, 2, 35, 36]. These provide convenient bounds on the number of active74

learning choices necessary for the associated classifier to achieve (near) perfect classification75

on these datasets with simple geometry. In contrast, much of the focus for theoretical work76
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in graph-based active learning leverage assumptions on the clustering structure of the data77

that is assumed to be captured in the graph structure [21, 55], which sometimes is assumed78

to be hierarchical [18, 23, 24]. A central priority in this line of inquiry establishes guarantees79

that, given assumptions about the clustering structure of the observed dataset X , the active80

learning method in question will query points from all clusters (i.e., ensure exploration). The81

low-label rate regime of active learning—the focus of this current work—is the natural setting82

for establishing such theoretical guarantees.83

The graph Laplacian has been widely used for semi-supervised learning over the past two84

decades, starting with the seminal work on Laplace learning (or label propagation, see [78]),85

and continued in a number of subsequent works [3,5,6,13,17,33,49,69,76]. Graph Laplacians86

are also used in spectral clustering [68] and spectral based embeddings [4, 20, 25]. Laplace87

learning is the underlying model for a number of graph-based active learning methods [41,88

43,50,79]. However, relatively little work has been done to provide theoretical guarantees for89

exploration of clustering structure in these methods. These works instead focus on designing90

acquisition functions to (approximately) reduce the empirical risk [43] or variance [41] of91

a corresponding Gaussian random field on the discrete graph structure. Other important92

works in active learning have focused primarily on improving the performance of deep neural93

networks via active learning with either (1) moderate to large amounts of labeled data available94

to the classifier [30,77] or (2) coreset methods that are agnostic to the observed labels of the95

labeled data seen throughout the active learning process [59,67]. Our current work is focused96

on the low-label rate regime, which is an arguably more fitting regime for semi-supervised and97

active learning. Furthermore, in contrast to coreset methods, our acquisition function directly98

depends on the observed classes of the labeled data.99

Graph neural networks (GNN) [70,75] are an important area of graph-based methods for100

machine learning, and various methods for active learning have been proposed [9, 31, 40, 73].101

GNNs consider network graphs whose connectivity is a priori determined via metadata relevant102

to the task (e.g., co-authorship in citation networks) and then use the node-level features to103

learn representations and transformations of features for the learning task. In contrast, we104

consider similarity graphs where the connectivity structure is determined only by the node-105

level features and directly learn a node function on this graph structure.106

Continuum limit analysis of graph-based methods has been an active area of research for107

providing rigorous analysis of graph-based learning [10, 11, 13, 15, 17, 27, 32, 38, 39, 64]. In this108

analysis, a discrete graph is viewed as a random geometric graph that is sampled from a density109

ρ : Rd → R+ defined in a high-dimensional space (possibly constrained to a manifold M ⊂ Rd110

therein). The graph Laplacian matrix can be analyzed via its continuum-limit counterpart,111

which is a second-order density weighted diffusion operator (or a weighted Laplace-Beltrami112

operator when the data is sampled from a manifold). An important development relevant113

to the current work is the Properly Weighted Graph Laplacian [17], which reweights the114

graph in the Laplace learning model of [78] to correct for the degenerate behavior of Laplace115

learning in the extremely low-label rate regime. This provides the setting for a well-defined,116

properly scaled graph-based semi-supervised learning model that we use in our current work117

to provide rigorous bounds on the acquisition function values to control the exploration versus118

exploitation tradeoff.119

In order to apply active learning in practice, it is essential to design computationally120
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4 K. MILLER AND J. CALDER

efficient acquisition functions. Much of the current literature has sought to design more121

sophisticated methods that often have higher computational complexity (e.g., requiring the122

full inversion of the graph Laplacian matrix). Uncertainty sampling [60] is an example of a123

computationally efficient acquisition function since it only requires the output of the classifier124

on the unlabeled data. However, uncertainty sampling methods will often mainly select query125

points that concentrate along decision boundaries while ignoring large regions of the dataset126

that are distant from any labeled points. Phrased in the terminology of the exploration127

versus exploitation tradeoff in reinforcement learning, uncertainty sampling is often overly128

“exploitative” and often achieves poor overall accuracy in empirical experiments [41].129

In contrast, methods such as variance optimization (VOpt) [41], Σ-Opt [50], Coresets130

[59], LAND [55], and CAL [18] could be characterized as primarily “explorative” methods.131

Oftentimes, however, such explorative methods, or other methods that are designed to both132

explore and exploit [30,44,51,79], are more expensive to compute than uncertainty sampling.133

For example, VOpt [41] and Σ-Opt [50] require the computation and storage of a dense N×N134

covariance matrix that must be updated after each active learning iteration. The work of [51]135

proposed a computationally efficient adaptation of these methods via a projection onto a136

subset of the graph Laplacian’s eigenvectors. As a consequence of sometimes significantly137

poor performance from this spectral truncation method in our experiments, we provide a138

“full” computation of VOpt and Σ-Opt in certain experiments by restricting the computation139

to only a subset of unlabeled data which allows us to bypass the need to invert the graph140

Laplacian matrix (Section 3.4). This heuristic, however, is still very expensive to compute at141

each iteration making it not a viable option for moderate to large datasets in practice.142

In this work, we show that uncertainty sampling, when properly designed for the graph-143

based semi-supervised learning model can both explore and exploit, and outperforms existing144

methods in terms of computational complexity, overall accuracy, and exploration rates.145

1.2. Overview of paper. The rest of the paper continues as follows. We begin in Section146

2 with a description of the Properly Weighted Laplace learning model from [17] that will be147

the underlying graph-based semi-supervised learning model for our proposed active learning148

method. We also introduce the minimum norm acquisition function in this section, along with149

other useful preliminaries for the rest of the paper. In Section 3, we begin with illustrative150

experiments in two-dimensions to illustrate the delicate balance between exploration and151

exploitation in graph-based active learning. Section 3.4 compares our proposed active learning152

method to other acquisition functions on larger, more “real-world” datasets that have been153

adapted to provide an experimental setup wherein exploration is essential for success in the154

active learning task. Thereafter, we present theoretical guarantees for the minimum norm155

acquisition function in the continuum limit setting in Section 4, along with an extended look156

at the theory in one dimension in Section 4.1.157

1.3. Notation. Let ∥·∥2 denote the standard Euclidean norm where the space is inferred158

from the input. We let |·| denote either the absolute value of a scalar in R or the cardinality159

of a set, where from context the intended usage should be clear. We denote the set of points160

x ∈ X with x ̸∈ U as X \ U . We denote by Br(x) ⊂ Rd the open ball of radius r > 0 centered161

at x ∈ Rd and write Br = Br(0).162
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2. Model setup and acquisition function introduction. Let X = {x1, x2, . . . , xN} ⊂ Rd163

be a set of inputs for which we assume each x ∈ X belongs to one of C classes. Suppose164

that we have access to a subset L ⊂ X of labeled inputs (labeled data) for which we have165

observed the ground-truth classification y(x) ∈ {1, . . . , C} for each x ∈ L. The rest of the166

inputs, U := X \L, are termed the unlabeled data as no explicit observation of the underlying167

classification have been seen for x ∈ U . The semi-supervised learning task is to use both L168

and U , with the associated labels {y(x)}x∈L, to infer the classification of the points in U .169

Sequential active learning extends semi-supervised learning by selecting a sequence of query170

points x∗1, x
∗
2, . . . as part of an iterative process that alternates between (1) calculating the semi-171

supervised classifier given the current labeled information and (2) selecting and subsequently172

labeling an unlabeled query point x∗n ∈ Un, where Un = X \Ln = X \ (L∪{x∗1, x∗2, . . . , x∗n−1}).173

Labeling a query point x∗i consists of obtaining the corresponding label y(x∗n) and then adding174

x∗n to the set of labeled data, Ln = Ln−1∪{x∗n}. To avoid this cumbersome notation, however,175

we will drop the explicit dependence of Un,Ln on the iteration n and simply refer to the176

unlabeled and labeled data at the current iteration as respectively U and L.177

Returning to the underlying semi-supervised learning problem, graph Laplacians have178

often been used to propagate labeled information from L to U [7, 8, 10, 13, 17, 61, 70, 78].179

From the set of feature vectors X , consider a similarity graph G(X ,W ) with weight matrix180

wij = κ(xi, xj) that captures the similarity between inputs xi, xj for each pair of points in X .181

We use X to denote both the set of feature vectors as well as the node set for the graph G182

to avoid introducing more notation. Laplace learning [78] is an important graph-based semi-183

supervised learning model for both this current work and many previous graph-based active184

learning works, and solves the constrained problem of identifying a graph function u : X → RC185

via the minimization of186

min
u:X→Rd

∑︂
xi,xj∈X

wij∥u(xi)− u(xj)∥22(2.1)187

subject to u(x) = ey(x) for x ∈ L.188

The vector ey(x) ∈ RC is the standard Euclidean basis vector in RC whose entries are all 0189

except the entry corresponding to the label y(x) ∈ {1, . . . , C}. The learned function u that190

minimizes (2.1) constitutes a harmonic extension of the given labels in L to the unlabeled data.191

For the classification task, the inferred classification of x ∈ U is then obtained by thresholding192

on the learned function’s output at x, u(x) ∈ RC . That is, the inferred classification ŷ(x) for193

x ∈ U is given by194

argmax
c∈{1,2,...,C}

uc(x),195

where uc(x) denotes the cth entry of u(x).196

Various previous works [13,16,17,28,29,56,61] have shown that when the amount of labeled197

information is small compared to the size of the graph (i.e., the low-label rate regime), the198

performance of minimizers of (2.1) degrades substantially. The solution u becomes roughly199

constant with sharp spikes near the labeled set, and the classification tends to predict the200

same label for most data points. Of particular interest to the current work is the Properly201

Weighted Laplace learning work in [17], wherein a weighting γ : X → R+ that scales like202
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dist(x,L)−α for α > d − 2 is used to reweight the edges in the graph to correct the singular203

behavior of solutions to (2.1). We use an improvement to the Properly Weighted Laplacian204

that is called Poisson ReWeighted Laplace Learning (PWLL) and will be described in detail205

in another paper [14]. PWLL performs semi-supervised learning by solving the problem206

min
u:X→Rd

∑︂
xi,xj∈X

γ(xi)γ(xj)wij∥u(xi)− u(xj)∥22(2.2)207

subject to u(x) = ey(x) for x ∈ L,208

where the reweighting function γ is computed by solving the graph Poisson equation209

(2.3)
∑︂
xj∈X

wij(γ(xi)− γ(xj)) =
∑︂
xk∈L

(︃
δik −

1

N

)︃
for all xi ∈ X .210

In the previous work on the Properly Weighted Laplacian [17], the weight γ was explicitly211

chosen to satisfy γ(x) ∼ dist(x,L)−α, while in the PWLL, γ is learned from the data, making212

the method more adaptive with fewer hyperparameters. The motivation for the Poisson213

equation (2.3) is that the continuum version of this equation is related to the fundamental214

solution of Laplace’s equation, which produces the correct scaling in γ near the labeled set.215

The reason for using PWLL is that minimizers of (2.2) have a well-defined continuum limit216

in the case when the amount of labeled data is fixed and the number of nodes |X |= N → ∞.217

This will allow us to analyze the behavior of our proposed minimum norm acquisition function218

applied to the PWLL model in the continuum limit setting in Section 4.219

2.1. Solution decay parameter. We introduce an adaptation of (2.2) that increases the220

decay rate of the corresponding solutions away from labeled points. Controlling this decay will221

prove to be crucial for ensuring that query points selected via our minimum norm acquisition222

function (Section 2.2) will explore the extent of the dataset prior to exploiting current classifier223

decision boundaries. Given τ ≥ 0, we consider solutions to the following variational problem224

min
u:X→Rd

∑︂
xi,xj∈X

γ(xi)γ(xj)wij∥u(xi)− u(xj)∥22 + τ
∑︂
xi∈U

∥u(xi)∥22(2.4)225

subject to u(x) = ey(x) for x ∈ L.226

It is straightforward to see that for τ > 0 the additional term in (2.4) encourages the solution227

u to have smaller values away from the labeled data, where the values are fixed. When τ = 0,228

we recover (2.2). We will refer to this graph-based semi-supervised learning model as Poisson229

ReWeighted Laplace Learning with τ -Regularization (PWLL-τ).230

To illustrate the role of the decay parameter, let us consider a simple one dimensional231

version of this problem in the continuum of the form232

min
u

∫︂ b

a
u′(x)2 + τu(x)2 dx,233

where [a, b] is the domain and the minimization would be restricted by some boundary condi-234

tions on u (i.e., on the labeled set). Minimizers of this problem satisfy the ordinary differential235
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Figure 1. Plots of solutions to τu− u′′ = 0 for varying values of τ and with different boundary conditions.
The intervals (−1, 0), (0, 1), (1, 2) are the domains of three different solutions with boundary conditions u(−1) =
0, u(0) = 1, u(1) = 1, and u′(2) = 0. For increasing τ , the solutions decay more rapidly away from the points
x = −1, 0, 1. This qualitative behavior is critical for demonstrating that our active learning acquisition function
selects explorative query points in Section 4.

equation (i.e., the Euler-Lagrange equation) τu− u′′ = 0, which has two linearly independent236

solutions e±
√
τx. Since the solution we are interested in is bounded, the exponentially growing237

one can be discarded, and we are left with exponential decay in the solutions with rate
√
τ238

away from the labeled set. In Figure 1, we plot a few example solutions for various values239

of τ and different boundary conditions to illustrate this exponential decay in one dimension.240

Thus, at least in this simple example, we can see how the introduction of the diagonal pertur-241

bation τ in PWLL leads to exponential decay of solutions, which is essential for the method242

to properly explore the dataset. We postpone developing this theory further until Section 4.243

2.2. Minimum norm acquisition function. We now introduce the acquisition function244

that we propose to properly balance exploration and exploitation in graph-based active learn-245

ing in the PWLL-τ model. We simply use the Euclidean norm of the output vector at each246

unlabeled point, x ∈ U :247

(2.5) A(x) = ∥u(x)∥2=
√︂

u21(x) + u22(x) + . . .+ u2C(x).248

Due to the solution decay resulting from the τ -regularization term in (2.4), unlabeled points249

that are far from all labeled points will have small Euclidean norm (ℓ2 norm) for their corre-250

sponding output vector. In the low-label rate regime, this property encourages query points251

selected by (2.5) to be spread out over the extent of the dataset, until a sufficient number of252

points have been labeled to “cover” the dataset. After this has been achieved in the active253

learning process, the learned functions for (2.4) will have smaller norms in regions between254

labeled points of differing classes due to the rapid decay in solutions near the transition be-255

tween classes. This described behavior reflects the desired properties for balancing exploration256

prior to exploitation in active learning. Through both numerical experiments and theoretical257

results, we demonstrate this acquisition function’s utility for this purpose.258

The acquisition function (2.5) is a novel type of uncertainty sampling [60], wherein only259

the values of the learned function u at each active learning iteration are used to determine the260
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selection of query points. Note also that this acquisition function is label adaptive as opposed261

to label agnostic; that is, A(x) directly depends on the labelings of the currently labeled data,262

{y(xj)}xj∈L, since u does as well. Indeed, one may interpret the small Euclidean norm of263

the learned function at an unlabeled node, ∥u(x)∥2, to reflect uncertainty about the resulting264

inferred classification, ŷ(x). Other uncertainty sampling methods, such as smallest margin265

sampling [60], also compute the uncertainty of the learned model at an unlabeled point via266

properties of the output vector u(x) ∈ RC . However, these criterion often either (1) only267

compare 2 entries of the vector to compute a measure of margin uncertainty or (2) normalize268

the output vector to lie on the simplex to be interpreted as class probabilities. In both cases,269

these measures of uncertainty in the classification of unlabeled points in unexplored regions270

of the dataset might not be as emphasized by the acquisition function compared to points271

that lie near the decision boundaries of the learned classifier. Our minimum norm acquisition272

function (2.5), however, is designed to prioritize the selection of query points in unexplored273

regions of the dataset which is properly reflected in the decay of the learned functions in the274

PWLL-τ model (2.4). In this sense, we are able to ensure exploration prior to exploitation in275

the active learning process using (2.5) in the PWLL-τ model.276

Remark 2.1 (Choice of ℓ2 norm). We briefly comment on the choice of ℓ2 norm as the277

measure of uncertainty with the aid of an illustrative toy example. Consider the clustered278

dataset that is shown in Figure 2 (a), where we have distinguished the five different clusters279

with markers and colors. The assumed ground truth classification of the clusters is shown in280

panel (b), along with the initially labeled points plotted as red stars. Hence, with one initially281

labeled point in each class, we compute the PWLL-τ solution u(x) = (u1(x), u2(x))
T ∈ R2 for282

various values of τ ≥ 0 and plot the two components of u1(x), u2(x) for each point in panels283

(c-e). The one-dimensional simplex is shown as a gray dotted line, and we see the effect of284

increasing τ > 0 to “pull” points away from the simplex1.285

Since u(x) values do not necessarily reside in the simplex for τ > 0, we suggest that the ℓ2286

norm provides a useful measure of uncertainty that captures exploration. While some measures287

of uncertainty (e.g., entropy [60]) require the mapping of output values to the simplex, the ℓ2288

norm has no such requirement and consequently can differentiate between points lying between289

oppositely labeled points (e.g., cyan squares) and those residing in unexplored clusters (e.g.,290

blue circles and orange x’s). Further, once enough points have been labeled then values of u(x)291

will lie relatively close to the simplex reflecting a transition from exploration to exploitation;292

the ℓ2 norm values will then align with other traditional notions of uncertainty in active293

learning that are defined on the simplex does. In contrast, a vector norm such as the ℓ1 norm294

does not distinguish between points along the simplex and therefore would not lead to this295

natural transition from exploration to exploitation.296

Remark 2.2 (Default to exploitation). In our PWLL-τ graph-based classifier, points whose297

outputs u(x) lie near the center of simplex reside in regions of the domain between labeled298

points of differing labels (e.g., the cyan cluster of Figure 2). Thus, a consequence of using the299

1Indeed when τ = 0 the vector u(x) is guaranteed to lie on the simplex due to the fact that the null space
of the combinatorial (unnormalized) graph Laplacian matrix L for a connected graph is the span of constant
vectors.
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(a) Clusters and Init. Labeled (b) Ground Truth Classification

(c) τ = 0 (d) τ = 10−9 (e) u(x) ∈ R2, τ = 10−7

Figure 2. Demonstration of utility of ℓ2 norm for measure of uncertainty in PWLL-τ model. Panel (a)
shows clusters identified by different colors and markers, with initially labeled points shown as red stars. Panel
(b) shows the ground truth classification structure, and panels (c-e) show the output values of the PWLL-τ
function u(x) ∈ R2 as they relate to the simplex (shown in gray dotted line). As τ > 0 increases, the effect is
that u(x) in the outer clusters (blue circles and orange x’s) is smaller and the ℓ2 norm captures this effect.

ℓ2 norm to measure uncertainty reflects a “default to exploitation” since this favors selecting300

points whose output values lie closest to the center of the simplex. Our theoretical results in301

Section 4 focus accordingly on relating the value of τ > 0 to the geometry of the dataset in302

order to guarantee cluster exploration when using this proposed acquisition function.303

Remark 2.3 (Decay Schedule for τ). As we demonstrate through some toy experiments in304

Section 3.2, there is a benefit to decreasing the value of τ ≥ 0 as the active learning process305

progresses in order to more effectively transition from explorative to exploitative queries.306

While there are various ways to design this, we simply identify a constant µ ∈ (0, 1) so that307

the decreasing sequence of hyperparameter values τn+1 = µτn that satisfies τ2K ≤ ε with308

initial value τ0 > 0, where ε is chosen to be ε = 10−9. For our experiments, we set K to be the309

number of clusters, which in the case of our tests is known a priori. In practice, this choice of310

K would be a user-defined choice to control the “aggressiveness” of the decay schedule of τ .311
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For n ≥ 2K, we set τn = 0. Thus, we calculate312

µ =

(︃
ε

τ0

)︃ 1
2K

∈ (0, 1)313

which ensures a decaying sequence of τ values as desired. We note that an interesting line of314

inquiry for future research would be to investigate a more rigorous understanding of how to315

adaptively select τ ≥ 0 during the active learning process. We leave this question for future316

research and simply use the proposed decay schedule above.317

In Table 1, we introduce the abbreviations for and other useful information pertaining to318

the uncertainty sampling acquisition functions that we will consider in the current work—319

smallest margin, minimum norm, and minimum norm with τ -decay uncertainty sampling.320

Full Name Abbreviation A(x) Underlying Classifier

Smallest Margin Unc. Sampling Unc. (SM) uc∗1
(x)− uc∗2

(x) PWLL

Minimum Norm Unc. Sampling Unc. (Norm) ∥u(x)∥2 PWLL-τ , fixed τ > 0

Minimum Norm Unc. Sampling
with τ -decay

Unc. (Norm, τ → 0) ∥u(x)∥2 PWLL-τ , decay τ → 0

Table 1
Description of uncertainty sampling acquisition functions that will be compared throughout the experiments

in the following sections. Unc. (SM) considers the difference between the largest and second largest entries of
the output vector u(x), denoted by c∗1 and c∗2 respectively.

3. Results. In this section, we present numerical examples to demonstrate our claim that321

our proposed Unc. (Norm) and Unc. (Norm τ → 0) acquisition functions in the PWLL-τ model322

(2.4) are effective at both exploration and exploitation. We begin in Section 3.2 with a set of323

toy examples in 2-dimensions to facilitate visualizing the choices of query points during the324

active learning process and highlight the efficacy of implementing the τ -decay in Unc. (Norm,325

τ → 0) for balancing exploration and exploitation. In Section 3.3, we recreate an experiment326

from [41] on the Isolet dataset [26] to demonstrate that our proposed Unc. (Norm, τ → 0)327

essentially corrects previously observed negative behavior of uncertainty sampling.328

In Section 3.4, we perform active learning experiments on larger, more “real-world”329

datasets. We use the MNIST [48], FASHIONMNIST [71], and EMNIST [19] datasets,330

and we interpret the original ground-truth classes (e.g. digits 0-9 in MNIST) as clusters on331

which we impose a different classification structure by grouping many clusters into a single332

class. This creates an experimental setting that necessitates exploration of initially unlabeled333

“clusters” in order to achieve high overall accuracy. We include similar experiments in Sec-334

tion ?? of the Supplemental Material to verify the performance of the proposed method in335

the presence of disparate class and cluster sizes.336

While most previous work in the active learning literature (both graph-based and neural337

network classifiers) demonstrates acquisition function performance with only accuracy plots,338

we suggest another useful quantity for comparing performances. In the larger experiments of339

Sections 3.4 and ??, we plot the proportion of clusters that have been queried as a function of340
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active learning iteration. These plots reflect how efficiently an acquisition function explores341

the clustering structure of the dataset, as captured by how quickly the proportionality curve342

increases toward 1.0. These cluster exploration plots are especially insightful for assessing343

performance in low label-rate active learning. An acquisition function that properly and344

consistently explores the clustering structure of the dataset will achieve an average cluster345

proportion of 1.0 faster than other acquisition functions and within a reasonable number of346

active learning queries.347

3.1. Comparison to other methods. We comment here on a few notable methods in348

graph-based or geometry-inspired active learning that we include in some of our numerical349

comparisons: S2 (Shortest-Shortest path) [21], LAND (Learning by Active Non-linear Diffu-350

sion) [55], and CAL (Cautious Active Learning) [18]. The S2 algorithm by Dasarathy et al uses351

query points to bisect “shortest-shortest” paths in the graph between oppositely labeled points352

to recursively identify boundaries between clusters. While this method can efficiently sample353

query points along boundaries, S2 essentially requires that initially labeled points belong to354

each of the respective clusters in the dataset. As such, it is admittedly at a disadvantage in355

a few of the experimental setups that we show herein. For example, the Isolet experiment356

3.3 initially begins with only a single labeled point to test the explorative capabilities of the357

respective methods; in this experiment, we do not include a comparison to S2 as it is not358

designed for such a setting.359

In the LAND algorithm, Murphy and Maggioni use diffusion distances from a random360

walk interpretation of a similarity graph to select diverse sets of query points that are located361

in dense regions of the graph. Adjusting a model hyperparameter in the diffusion distances362

can reveal hierarchical clustering structure in the dataset which can encourage query points to363

be chosen at different resolution levels of the clustering structure. In a similar vein, the CAL364

algorithm by Cloninger and Mhaskar [18] uses hierarchical clustering structure to guide the365

query set selection process. By constructing a highly localized similarity kernel via Hermite366

polynomials, query points are selected at various resolution levels. Both the LAND and CAL367

algorithms have been shown to be effective at selecting query points in pixel classification for368

hyperspectral imagery applications. We, however, found that the current implementations369

of these algorithms were unable to scale to our larger experiments2. Hence, comparison to370

LAND and CAL are limited to the smaller experiments of Sections 3.2 and 3.3.371

Furthermore, we suggest both the LAND and CAL methods may be more appropriately372

identified as “coreset” selection methods. Such methods leverage the geometry of the underly-373

ing dataset (e.g., the diffusion distances as captured by the similarity graph in LAND), but not374

the set of labels observed at labeled points during the active learning process. This is similar375

to other coreset methods that have been presented in both coreset and data summarization376

literature [54,59,67]. In contrast, our uncertainty-based criterion in this work combines both377

geometric information about the data as captured by the similarity graph structure and the378

observed labels at each labeled point via the output classification at each iteration. This379

makes our method more similar to the primary flavor of active learning methods.380

2We adapted MATLAB implementations that were obtained from the respective authors for our experi-
ments.
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(a) Ground Truth (b) Accuracy Results

Figure 3. Ground Truth (a) and Accuracy Results (b) for Blobs experiment. Notice that Unc. (SM)
achieves very poor overall accuracy. We show in Figure 4 that this is due to premature exploitation.

3.2. Toy examples. We first illustrate our claim regarding our minimum norm uncertainty381

sampling criterion for graph-based active learning with synthetic datasets that are directly382

visualizable (i.e., the data lies in only two dimensions). The first experiment—which we refer383

to as theBlobs experiment—illustrates how a non-zero value for τ in the initial phase of active384

learning is crucial for ensuring exploration of the dataset. The second experiment—which we385

refer to as the Box experiment—illustrates the need to decrease the value of τ to ensure the386

transition from exploration to exploitation. These experiments also allow us to directly observe387

the qualitative characteristics of the active learning query choices in uncertainty sampling.388

3.2.1. Blobs experiment. The Blobs dataset is comprised of eight Gaussian clusters,389

each of equivalent size (300) and variance (σ2 = 0.172), whose centers (i.e., means) lie evenly390

spaced apart on the unit circle. That is, each cluster Ωi is defined by randomly sampling 300391

points from a Gaussian with mean µi = (cos(πi/4), sin(πi/4))T ∈ R2 and standard deviation392

σi = σ = 0.17. The classification structure of the clusters is then assigned in an alternating393

fashion, as shown in Figure 3(a). In each individual run of the experiment, one initially394

labeled point per class combine to be the starting labeled set, and then 100 active learning395

query points are selected sequentially via a specified acquisition function. Different acquisition396

functions then define different runs of the experiment.397

For each acquisition function, we ran 10 experiments with different initially labeled points.398

The average accuracy at each iteration of an experiment is plotted in Figure 3(b). The main399

purpose of this experiment is to compare and contrast the characteristics of the query points400

selected by Unc. (SM), Unc. (Norm), and Unc. (Norm, τ → 0). For reference in these toy401

experiments, we include the results of using the VOpt [41] acquisition function as well as402

Random sampling (i.e., select x∗i ∈ U with uniform probability over U at each iteration).403

The main observation from this experiment is how poorly Unc. (SM) performs, as it only404
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(a) Unc. (SM), Initial (b) Unc. (SM), Iter 9 (c) Unc. (SM), Iter 100

(d) Unc. (Norm), Initial (e) Unc. (Norm), Iter 9 (f) Unc. (Norm), Iter 100

(g) Unc. (Norm, τ → 0), Initial (h) Unc. (Norm, τ → 0), Iter 9 (i) Unc. (Norm, τ → 0), Iter 100

Figure 4. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, τ → 0) at different
stages of the Blobs experiment. Labeled points are marked as red stars and brighter regions of the heatmap
indicate higher acquisition function values.
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attains an overall accuracy of roughly 62% as the average over the trials. In Figure 4(a-c),405

we show one trial’s acquisition function values heatmap at three different stages of the active406

learning process using Unc. (SM). We observe that the queries have primarily focused on the407

boundaries between a few clusters, while missing other clusters completely. At each iteration,408

the heatmap of acquisition function values has only focused on the current classifier’s decision409

boundary which can lead to missing such clusters. In essence, we would qualify the behavior410

here as “premature exploitation”, prior to proper exploration of the dataset.411

In contrast, Figures 4 (d-i) demonstrate how the “minimum norm” uncertainty acquisition412

functions properly explore the extent of the geometric clustering structure. Both have sampled413

from every cluster in the ring. It is instructive to further see though that Unc. (Norm)—which414

employs a fixed value of τ > 0 at every iteration—has not sampled more frequently between415

clusters by the end of the trial. We may characterize this behavior as not transitioning to416

proper exploitation of cluster boundaries. On the other hand, in Figure 4(i), we see that417

by using this minimum norm uncertainty sampling with decaying values of τ → 0 we more418

frequently sample at the proper cluster boundaries after having sampled from each cluster.419

Remark 3.1. It is worth noting that, as an uncertainty sampling method that depends only420

on the current classifier’s predictions, our Unc. (Norm) acquisition function does not take into421

account the influence that labeling a currently unlabeled point will have on the prediction of422

other points. This is in contrast to other more computationally intensive acquisition functions423

that explicitly model the “influence” that a currently unlabeled point has on the classifier’s424

output predictions at other points (e.g., [41,43,44,50,51,79]). As such, our acquisition function425

may select query points that are not always ideal early on in the active learning process.426

Consider, for example, panels (e) and (h) of Figure 4, wherein the selected query points427

by our acquisition functions lie in the outermost regions of the bottom clusters. These query428

points could constitute outliers and therefore not be the most influential on the classification429

of the other points in the corresponding clusters. While this behavior could severely hurt the430

performance of various classifiers, we note that the utilization of unlabeled data in graph-based431

learning through a similarity graph that explicitly models clustering structure helps to alleviate432

the potentially negative effects of such query points. As a result, the important behavior for433

our acquisition function is to first query points that belong to the different clusters (i.e.,434

exploration) and then to query between oppositely labeled clusters (i.e., exploitation). Our435

empirical work suggests that the computational gains from using our inexpensive acquisition436

function are still meaningful despite the occasional selection of less influential query points.437

3.2.2. Box experiment. The Box dataset is simply a 65 × 65 lattice of points on the unit438

square, with removing points that lie within a thin, vertical band centered at x = 0.3 which439

also defines the class boundary line (Figure 5). In contrast to the Blobs experiment, the440

Box experiment illustrates the need to transition from exploration to exploitation, and how441

this is accomplished by decreasing τ → 0. In the accuracy plot (Figure 5(b)), notice how the442

accuracy achieved by Unc. (Norm) levels off at a lower overall accuracy than both Unc. (SM)443

and Unc. (Norm τ → 0). Figure 6 demonstrates that this is due to “over exploration” of444

the dataset instead of transitioning to refining the decision boundary between classes. Active445

learning seeks to balance exploration versus exploitation while still being sample efficient,446
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(a) Ground Truth (b) Accuracy Results

Figure 5. Ground Truth (a) and Accuracy Results (b) for Box experiment. Notice that Unc. (Norm)
achieves suboptimal overall accuracy. We show in Figure 6(f) that the distribution of query points later in the
active learning process reflect a lack of transition to exploitation.

making as few active learning queries as possible.447

As shown in Figures 6 (a-f), both Unc. (SM) and Unc. (Norm, τ → 0) more efficiently448

sample the decision boundary between the two classes in this Box dataset. Due to the very449

simple structure of the dataset, purely exploiting decision boundary information—as done450

by Unc. (SM)—is optimal. In contrast, Unc. (Norm, τ → 0) ensures to sparsely explore the451

extent of the right side of the box prior to exploiting the decision boundary. This is due to the452

decreasing value of τ over the iterations, and allows for a straightforward transition between453

exploration and exploitation. We set the value of K = 8 for the τ -decay schedule so that by454

8 active learning queries we have transitioned to exploitation.455

3.2.3. Overall observations. From the toy experiments presented in Sections 3.2.1 and456

3.2.2, we see that the minimum norm uncertainty sampling with decaying values of τ has457

the desired behavior for a sample-efficient criterion that both explores and exploits during458

the active learning process. Ensuring this behavior in uncertainty sampling is also desirable459

because of the relatively light computational complexity that uncertainty sampling incurs. We460

now demonstrate on more complicated, “real-world” datasets the effectiveness of minimum461

norm uncertainty sampling in graph-based active learning.462

3.3. Isolet case study. Our minimum norm uncertainty sampling in the PWLL-τ model463

can overcome previously negative results that have characterized uncertainty sampling. In [41],464

the authors introduced the Variance Optimization (i.e., VOpt) acquisition function and show-465

cased this acquisition function on the Isolet spoken letter dataset3 from the UCI repository [26],466

which contains 26 different classes. They compared against smallest margin uncertainty sam-467

pling (Unc. (SM)) among other acquisition functions. Of particular interest to us is how468

3Accessed via https://archive.ics.uci.edu/ml/datasets/isolet.
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(a) Unc. (SM), Initial (b) Unc. (SM), Iter 15 (c) Unc. (SM), Iter 50

(d) Unc. (Norm), Initial (e) Unc. (Norm), Iter 15 (f) Unc. (Norm), Iter 50

(g) Unc. (Norm, τ → 0), Initial (h) Unc. (Norm, τ → 0), Iter
15

(i) Unc. (Norm, τ → 0), Iter
50

Figure 6. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, τ → 0) at different
stages of the Box experiment. Labeled points are marked as red stars and brighter regions of the heatmap
indicate higher acquisition function values.

poorly Unc. (SM) performed on this task, resulting in significantly worse accuracies than even469

random sampling.4 In Supplemental Material Section ??, we demonstrate that similar—even470

superior—performance is attained on this task by simply using our minimum norm uncertainty471

sampling (Unc. (Norm)). This highlights that our proposed uncertainty sampling method is472

4We refer the reader to original paper [41] for more details.
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more appropriate for low-label rate active learning than previous uncertainty sampling meth-473

ods which have been characterized as overly-exploitative in the low-label rate regime. See474

Section ?? in the Supplemental Material for further details.475

3.4. Larger datasets. In this section, we present the results of active learning experiments476

for multiclass classification problems derived from theMNIST [48], FASHIONMNIST [71],477

and EMNIST datasets [19]. We construct similarity graphs for each of these datasets by478

first embedding the points via the use of variational autoencoders (VAE) [45, 46] that were479

previously trained5 in an unsupervised fashion, similar to [13].480

Since a main crux of the present work is to ensure both exploration of clusters in a dataset481

and exploitation of cluster boundaries, we adapt the classification structure of the above482

datasets to require both. That is, we take the “true” class labelings yi ∈ {0, 1, . . . , C} (e.g.483

digits 0-9 for MNIST) and reassign them to one of K < C classes by taking ynewi ≡ yimodK;484

see Table 2 below.485

Resulting Mod Class 0 1 2 3 4

MNIST 0,3,6,9 1,4,7 2,5,8 - -

FASHIONMNIST 0,3,6,9 1,4,7 2,5,8 - -

EMNIST 0,5,. . . ,45 1,6,. . . ,46 2,7,. . . ,42 3,8,. . . ,43 4,9,. . . ,44

Table 2
Mapping of ground truth class label to modK labeling for experiments of Section 3.4. Each ground truth

class is interpreted as a different “cluster” and the resulting class structure for the experiments have multiple
clusters per class. For MNIST and FASHIONMNIST, there are 10 ground truth classes and we take labels
modulo K = 3. For EMNIST, there are 47 total ground truth classes and we take labels modulo K = 5.

For each trial of an acquisition function, we select one initially labeled point per “modulo”486

class; therefore, only a subset of “clusters” (i.e., the original true classes) has an initially la-487

beled point. In order to perform active learning successfully in these experiments, query points488

chosen by the acquisition function must sample from each cluster. In this way, we have created489

an experimental setup with commonly used machine learning datasets with potentially more490

complicated clustering structures wherein we test and compare the following acquisition func-491

tions: Uncertainty Sampling (SM), Unc. (Norm), Unc. (Norm, τ → 0), Random, VOpt [41]492

(see Remark 3.3), Σ-Opt [50] (also see Remark 3.3), and MCVOpt [52]. We perform 10 trials493

for each acquisition function, where each trial begins with a different initially labeled subset.494

To clarify, trials begin with only 3 labeled points in the MNIST and FASHIONMNIST495

experiments and with only 5 labeled points in the EMNIST experiments.496

In the left panel of Figures 7-9, we show the accuracy performance of each acquisition497

function averaged over the 10 trials. The right panels of each of these figures display the498

average proportion of clusters that have been sampled by the acquisition functions at each499

5The representations forMNIST and FASHIONMNIST are available in the GraphLearning package [12],
while the code used to train the VAE for EMNIST is available in our Github repo https://github.com/
millerk22/rwll active learning.
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iteration of the active learning process. We refer to these plots as “Cluster Exploration” plots500

since they directly assess the explorative capabilities of the acquisition functions in question.501

We observe that across these experiments, both Unc. (Norm) and Unc. (Norm, τ →502

0) consistently achieve the best accuracy and cluster exploration results. It is somewhat503

surprising that without decaying τ , the Unc. (Norm) acquisition function seems to perform504

the best even after each cluster has been explored. The experiments in Section 3.2 suggest505

that the optimal performance in the exploitation phase of active learning would require taking506

τ → 0. We hypothesize that the clustering structure of relatively high-dimensional data—like507

these datasets—is much more complicated than our intuition would suggest from analyzing508

toy and other visualizable (i.e., 1D, 2D, or 3D) datasets. Regardless, we see that the minimum509

norm uncertainty acquisition function consistently outperforms other acquisition functions in510

these low-label rate active learning experiments.511

Remark 3.2 (Computational cost of Unc. (Norm)). While some acquisition functions such512

as VOpt, Σ-Opt, and MCVOpt require the computation, storage, and update of large auxiliary513

variables (e.g., inverse of graph Laplacian matrix), our proposed Unc. (Norm) acquisition514

function only requires the PWLL-τ solution with the currently labeled data in L, which we515

compute with the preconditioned conjugate gradient method. Indeed, one of the reasons516

that we refer to our acquisition function as an uncertainty sampling criterion is that like517

previous uncertainty sampling methods [60], our acquisition function is simply a function of518

the current classifier. In this sense, Unc. (Norm) is “as cheap” as one could hope for in an519

acquisition function that depends on the labels of currently labeled data through the outputs520

of the underlying classifier. We have included Table 3 to compare computational costs among521

comparable methods; the S2 [21], LAND [55], and CAL [18] are not included since they do not522

follow the same common framework of selecting x∗ = argminx∈U A(x) at each iteration. The523

computational cost of solving the graph Laplace equation for training the model is omitted524

since it is shared by all algorithms (and is the only substantial cost with Unc. (Norm)).525

Abbr. Name Aux. Overhead Cost Per Unlabeled Aux. Update Cost

Unc. (Norm) - O(C) -
VOpt O(N3) O(N) O(N2)
Σ-Opt O(N3) O(N) O(N2)

MCVOpt O(N2r) O(r + C) O(Nr)

Table 3
Computational comparison between acquisition functions, where N = |X |, C is the number of classes, and

r ≪ N is the number of eigenvalues computed in the auxiliary matrix used in MCVOpt [53].

Remark 3.3. Due to the large nature of these datasets, computing the original VOpt and526

Σ-Opt criteria are inefficient (and often intractable) since this requires computing the inverse of527

a perturbed graph Laplacian matrix; this inverse is dense and burdensome to store in memory.528

We initially used an approximation that utilizes a subset of eigenvalues and eigenvectors529

of the graph Laplacian, similar to what was done in [51]. While this performed relatively530

well on the EMNIST experiment, we noticed significantly poor results on the MNIST and531
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(a) Accuracy (b) Cluster Proportion

Figure 7. Accuracy Results (a) and Cluster Proportion (b) plots for MNIST dataset.

FASHIONMNIST experiments seemingly due to the spectral truncation with a resulting532

oversampling of a single cluster during the active learning process.533

As an alternative to the spectral truncation, we performed a “full” calculation of these534

acquisition functions on a small, random subset of 500 unlabeled points at each active learning535

iteration. This performed significantly better than the spectral truncation in the MNIST536

and FASHIONMNIST experiments, and so we report these spectral truncation results in537

this section. In Figures 7 and 8 we refer to this simply by the original names, VOpt and Σ-538

Opt, respectively. The small choice of unlabeled points on which to evaluate the acquisition539

function is due to the burdensome computation needed at each step that scales with the size540

of this subset; at this reported choice of 500 points each active learning iteration already541

takes roughly 6 minutes to complete for the MNIST dataset. Due to its even greater size,542

we do not compute this “full” calculation on the random subset for the EMNIST dataset,543

but remark that the performance of the approximate (spectral truncation) VOpt and Σ-Opt544

already achieve comparable accuracy to the other reported methods in this dataset. We denote545

the spectral truncation with the suffix “(ST)” in Figure 9.546

4. Continuum analysis of active learning. We now study our active learning approach547

rigorously through its continuum limit on an open, bounded set Ω ⊂ Rd on which our data-548

points are sampled from. As was shown in [17], the continuum limit of (2.2) is the family of549

singularly weighted elliptic equations550

(4.1)

⎧⎪⎨⎪⎩
τui − ρ−1 div

(︁
γρ2∇ui

)︁
= 0, in Ω \ L

ui = 1, on Li

ui = 0, on L \ Li,

551

where ρ(x) ≥ ρmin > 0 is the density of the data points, γ is the singular reweighting,552

described in more detail below, Li ⊂ Ω are the labeled points in the ith class, and L = ∪C
i=1Li553
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(a) Accuracy (b) Cluster Proportion

Figure 8. Accuracy Results (a) and Cluster Proportion (b) plots for FASHIONMNIST dataset.

(a) Accuracy (b) Cluster Proportion

Figure 9. Accuracy Results (a) and Cluster Proportion (b) plots for EMNIST dataset.

the locations of all labeled points. The notation ∇ refers to the gradient vector and div is554

the divergence. We assume that the density ρ(x) : Ω → (0,∞) is Lipschitz continuous. The555

solutions ui also satisfy the homogeneous Neumann boundary condition ∇u · ν = 0 on ∂Ω,556

where ν is the outward unit normal vector to Ω, but we omit writing this as it is not directly557

used in any of our arguments. We assume the sets Li are all finite collections of points. The558

classification decision for any point x ̸∈ L is given by559

ℓ(x) = argmax
1≤i≤C

ui(x).560
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The continuum version of the uncertainty sampling acquisition function is then given by561

(4.2) A(x) =
√︁

u1(x)2 + u2(x)2 + · · ·+ uC(x)2.562

As alluded to in Remark 2.2, the aim of this section is to use continuum PDE analysis to563

rigorously establish exploration guarantees in light of the exploitation default of uncertainty564

norm sampling (4.2), and illustrate how it depends on the choice of the decay parameter τ .565

4.1. Illustrative 1D continuum analysis. We proceed first with an analysis of the contin-566

uum equations (4.1) in the one-dimensional setting, where the equations are ordinary differ-567

ential equations (ODEs). The conclusions are insightful for the subsequent generalization to568

higher dimensions in Section 4.569

Consider an interval Ω = (xmin, xmax) ⊂ R with density 0 < ρmin ≤ ρ(x) ≤ ρmax < +∞.570

Assume a binary classification structure on this dataset, and further assume we have been571

given at least one labeled point per class. Let the pairs {(xi, yi)}ℓi=1 ⊂ Ω × {1, 2} be the572

input-class values for the currently labeled points ordered such that xi < xi+1. For ease in573

our discussion, we also assume that x1 = xmin and xℓ = xmax (Figure 10).574

Figure 10. Visualization of the 1D continuum example setup. The density ρ(x) is plotted in gray, while the
labeled points x1, x2, x3, x4 are plotted where the corresponding label is denoted by × or a solid dot. Ms marks
the length between two similarly labeled points, while Mo marks the length between two oppositely labeled points.

Solving the PWLL-τ equation6 (4.1) on Ω can be broken into subproblems defined on the575

intervals (x1, x2), . . . , (xℓ−1, xℓ) ⊂ R, with boundary conditions determined by the correspond-576

ing labels of the endpoints xi. There are two separate kinds of subproblems to be solved, as577

determined by these boundary conditions; namely, (1) the oppositely labeled problem (when578

yi ̸= yi+1) and (2) the similarly labeled problem (when yi = yi+1). Recall from (4.1) that the579

boundary conditions for solutions u1, u2 at the labeled points correspond to the entries of the580

one-hot encoding of the labels yi ∈ {1, 2}. For example, if yi = 2 then u1(xi) = 0, u2(xi) = 1581

will be the respective Dirichlet boundary conditions at the labeled point xi ∈ L.582

Given the current labeled data, the active learning process selects a new query point583

x∗ = argminx∈Ω A(x) via the minimum norm acquisition function (4.2). We can quantify584

the explorative behavior of our acquisition function (4.2) by comparing the minimizers of585

A(x) in (i) an interval of length Mo between oppositely labeled points and (ii) an interval of586

length Ms between similarly labeled points. In this simple one-dimensional problem, we may587

characterize “explorative” query points as residing in relatively large intervals between labeled588

points, regardless of the labels of the endpoints. Conversely, we characterize “exploitative”589

query points as residing between oppositely labeled points that are close together. In Figure590

10, exploration would correspond to sampling in (x1, x2) or (x3, x4), while exploitation would591

correspond to sampling in (x2, x3).592

6Without the reweighting (4.4) due to the simple geometry in one dimension.
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The acquisition function (4.2) is directly a function of the magnitudes of the solutions to593

(4.1) with the corresponding boundary conditions; the decay of these solutions depends on594

the value of τ > 0 (Figure 1). As such, we identify how τ must be chosen in order to produce595

small acquisition function values between similarly labeled points in relatively large regions596

as compared to large values in relatively small regions between oppositely labeled points.597

In order to rigorously quantify the choice of τ > 0, we give the mild assumptions that598

the density ρ(x) (i) is sufficiently smooth, (ii) is symmetric about the midpoint of the interval599

between similarly labeled points, and (iii) obeys a bounded derivative condition at the ends600

of the interval between oppositely labeled points. Under these mild assumptions, we give the601

following simplified guarantee on exploration, which we prove rigorously in Section ??.602

Proposition 4.1 (Simplified version of Proposition ??). Suppose that the density ρ(x) sat-603

isfies the above assumptions. Let the interval length Mo be relatively small compared to Ms;604

i.e., Mo = βMs for some β ≤ 1
4 . Then we are ensured that605

min
x

As(x) < min
x

Ao(x)606

as long as τ > 0 and Ms jointly satisfy the following inequality607

(4.3) M2
s

(︁
C0(ρs)

√
τ − C1(ρo)β

2τ
)︁
≥ 8 ln 2,608

where C0(ρs) and C1(ρo) are constants that depend on the density ρ on the similarly and609

oppositely labeled intervals, respectively denoted ρs and ρo.610

As long as the similarly labeled region has significantly large regions where the density611

ρ(x) is sufficiently small compared to the oppositely labeled region, then we can be assured612

that choosing τ > 0 large enough will result in query points between similarly labeled points613

that are relatively far from each other (as quantified by β > 0). We refer the reader to ?? in614

the Supplemental Material for further discussion of this result.615

4.2. Exploration bounds in arbitrary dimensions. In this section, we show how larger val-616

ues for τ lead to explorative behaviour in higher dimensional problems. In particular, we show617

that the acquisition function A(x) is small on unexplored clusters, and large on sufficiently618

well-explored clusters. This ensures that adequate exploration occurs before exploitation.619

Let us remark that the reweighting term γ must be sufficiently singular near the labels L620

to ensure that (4.1) is well-posed. We recall from [17] that we require that γ has the form621

(4.4) γ(x) = 1 + dist(x,L)−α,622

where α > d − 2. In practice, we choose γ as the solution of the graph Poisson equation623

(2.3) introduced earlier. To make the analysis in this section tractable, we assume here624

that γ satisfies (4.4), as was assumed in [17]. We emphasize here that without the singular625

reweighting γ, the equation (4.1) is ill-posed when the label set L is finite, and as such, there626

is no continuum version of active learning for us to study.627

For an open set A ⊂ Rd and r > 0 we define the nonlocal boundary ∂rA as628

∂rA = (A+Br) \A.629
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The nonlocal boundary is essentially a tube of radius r surrounding the set A. The usual630

boundary is obtained by taking r = 0, so ∂A = ∂0A.631

Our first result concerns upper bounds on the acquisition function in an unexplored cluster.632

Theorem 4.2. Let τ ≥ 0, s,R > 0 and D ⊂ Ω with ∂2sD ⊂ Ω and L ∩ (D + BR+2s) = ∅.633

Let δ = max∂2sD ρ. Then the following hold.634

(i) If635

(4.5)

√︃
τ

δ
≥ 3

(︃
d

s
+ 2∥∇ log ρ∥L∞(∂sD)

)︃
(1 +R−α) + 3R−α−1

636

then we have that637

(4.6) sup
D

A ≤
√
C exp

(︃
−s

4

√︃
τ

δ

)︃
.638

(ii) Suppose that Br(x) ⊂ D and let M = supBr(x) ρ. If (4.5) holds and639

(4.7)

√︃
τ

M
≥ 3

(︃
d

r
+ 2∥∇ log ρ∥L∞(Br(x0))

)︃
(1 +R−α) + 3R−α−1

640

then we have that641

(4.8) sup
B r

2
(x)

A ≤
√
C exp

(︃
−1

4

(︃
s

√︃
τ

δ
+ r

√︃
τ

M

)︃)︃
.642

Remark 4.3. Theorem 4.2(i) shows that the acquisition function A is exponentially small643

on an unexplored cluster D provided there is a thin surrounding set ∂sD of the cluster on which644

the density is small (less than δ), relatively smooth (so ∇ log ρ is not too large), and relatively645

far away from other labeled data points (so that R is not too small). All of these smallness646

assumptions are relative to the size of the ratio τ/δ as expressed in (4.5). In particular,647

regardless of the size of the right-hand side in (4.5), the condition can always be satisfied if648

the ratio τ/δ is sufficiently large, so we can view (4.5) as a condition on how small δ must be649

(i.e., how isolated D must be from other clusters).650

Theorem 4.2(ii) improves the result in part (i) when D is a large cluster, in the sense that651

a large ball Br(x) fits inside D. In this case, we expect the density ρ to be large within the652

cluster, so M will possibly be large relative to τ , and the estimate (4.8) is only a significant653

improvement to (4.6) when r is also large, that is, the clusterD has a large diameter. Hence, we654

can view (4.7) as a condition on how large r and R must be, and how small ∥∇ log ρ∥L∞(Br(x0))655

must be, in order to obtain further exponential decay of the acquisition function within D.656

In particular, regardless of how small τ/M is, the condition (4.7) will hold for large enough657

r,R and small enough ∥∇ log ρ∥L∞(Br(x0)) (i.e., the density is roughly constant within a ball658

in the cluster). We also mention that in 4.2(ii) we do not require δ to be small; that is, we do659

not require D to be a cluster that is separated from the rest of the dataset in order to have660

exponential decay of the acquisition function. Thus, 4.2(ii) applies to datasets that do not661

admit a clusterability structure.662
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However, we caution the reader that Theorem 4.2(ii) does not imply that our method663

will always choose the largest unexplored cluster to label next. The estimates in the theorem664

are upper bounds; they are quite likely loose and corresponding lower bounds (on unexplored665

clusters) do not exist. The question of which cluster will be sampled next depends also on666

the geometric arrangement of the clusters relative to the existing labeled data points, which667

is not addressed by the theorem. That is, a small cluster located very far away from existing668

labeled data points may be sampled prior to a large cluster that is much closer to the labeled669

data. In many situations, this is a completely reasonable action to take, and we would argue670

that it is not always desirable to choose the largest unexplored cluster next.671

To ensure that new clusters are explored, we also need to lower bound the acquisition672

function near the existing labeled set. To do this, we need to introduce a model for the673

clusterability of the dataset. Let Ω1,Ω2, . . . ,ΩK ⊂ Ω be disjoint sets representing each of the674

K clusters in the dataset. There are generally more clusters than classes (K ≥ C) and often675

K ≫ C. We assume there is a positive separation between clusters, measured by the quantity676

677

(4.9) S := min
i ̸=j

dist(Ωi,Ωj).678

The definition of S implies that (Ωi +BS) ∩Ωj = ∅ for all i ̸= j. We define the union of the679

clusters as Ω′ = ∪K
i=1Ωi. We note that we do not have Ω′ = Ω, and it is important that there is680

room in the background Ω\Ω′, which provides a separation between clusters. The background681

Ω\Ω′ may have low density (though we do not assume this below), and can consist of outliers682

or data points that have characteristics of multiple classes and may be hard to classify.683

Theorem 4.4. Let τ ≥ 0 and α > d− 2. Let r > 0 be small enough so that r ≤ 1

4
S,684

(4.10) τrd ≤ 1

2d9
(α+ 2− d)2 inf

Ω′
ρ,685

and686

(4.11) 4∥∇ log ρ∥L∞(Ω′)(1 + 2αrα)r + α2αrα ≤ 1

4
(α+ 2− d).687

Assume that L+B2r ⊂ Ω′. Then we have688

(4.12) inf
L+Br

A ≥ 1− 2−
1
2
(α+2−d).689

We now combine Theorems 4.2 and 4.4 to obtain a sample complexity result for the690

exploration performance of our algorithm. We need to introduce some notation for this. For691

D ⊂ Ω we define Dε = {x ∈ D : Bε(x) ⊂ D}. We define an ε-packing of Ωi as a disjoint union692

of ε-balls that are centered at points in Ωi. The ε-packing number of Ωi is defined as693

M(Ωi, ε) = max {m : there exists an ε-packing of Ωi with m balls.} .694

We can now state our result on sample complexity.695
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Figure 11. Illustration of the implications of Theorems 4.2 and 4.4, and the discussion in Remark 4.6. The
gray regions are the 4 clusters of high density in the dataset, and the density is small ρ ≤ δ between clusters.
The current labeled set are the points at the centers of the blue balls. Theorems 4.2 and 4.4 guarantee that the
next labeled point cannot lie in any of the blue balls, which correspond to the dilated label set L+Br. Once the
dilated labels cover the existing clusters, the algorithm is guaranteed to select a point from the unexplored cluster
D. The number of labeled points selected from a given cluster during exploration is bounded by its r

2
-packing

number, as explained in Remark 4.6.

Theorem 4.5 (Sample Complexity). Let α > d − 2. Let R = s = 1
4S in Theorem 4.2 and696

choose τ to ensure (4.5) holds with D = Ωi +Bs for every i, where697

δ = max
Ω\(Ω′+Bs)

ρ.698

Choose r > 0 to satisfy the conditions in Theorem 4.4 and assume that699

(4.13)
√
C exp

(︃
− S
16

√︃
τ

δ

)︃
≤ 1− 2−

1
2
(α+2−d).700

If the next active learning point is chosen sequentially to minimize the acquisition function701

A over Ω′
r then the algorithm will choose at most M(Ωi,

r

2
) points from Ωi before all other702

clusters in Ω′ \ Ωi have been sampled at least once. In particular, the algorithm will sample703

from all clusters within the first
∑︁K

i=1M(Ωi,
r

2
) samples.704

Remark 4.6. Theorem 4.5 shows that the number of samples required to explore all clus-705

ters in the dataset is O(K), where the constant depends on the geometry and clusterability706

properties of the dataset (i.e., the packing numbers of the clusters). Thus, the method is707

very efficient at exploring the dataset in the early stages of active learning when τ is large.708

We can compare this to random sampling, which is also guaranteed to eventually explore all709

clusters, but takes in expectation O(K log(K)) samples to do so (i.e., the coupon collector710

problem). Thus, our method improves on random sampling by a log(K) factor. We can see711

this improvement over random sampling and other existing methods in our experimental re-712

sults. For example, on the MNIST dataset, Figure 7 shows that our algorithm explores all713

clusters after only 10 active learning iterations, at which point random sampling has explored714

less than 80% of the clusters (random sampling does not get close to full exploration until 30715

iterations). On FASHIONMNIST (see Figure 8) we explore all clusters by 20 iterations,716
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at which point random sampling has explored around 90% of clusters. Similar results are717

observed on the EMNIST dataset in Figure 9.718

In the idealized case of a dataset comprised of disconnected clusters (i.e., the background719

density between clusters Ωi is δ = 0), our theory would imply that K samples would ensure720

the exploration of all clusters, regardless of the size of clusters. While this would prove721

to be a further improvement over naive random sampling in the case of very disparately722

sized clusters, we note that the exploration of clusters would not be unique to our proposed723

acquisition function in practice since the identification of clusters would be immediate from724

the connected components of the similarity graph.725

Remark 4.7. We note that the choices of the parameters r, s, R and τ are all dependent726

on the domain, the clusterability assumption, and the density, but are independent of the727

choices of labeled points Li. We also mention that there is an assumption made in Theorem728

4.5 that there are no labeled points selected near the background region Ω\Ω′. Indeed, if such729

outlying data points are selected as labeled points, then our results do not hold. In practice,730

one can perform sampling proportional to a density estimation, or simply remove outliers, to731

avoid such an issue. We discuss how this can be done in Supplemental Material Section ??,732

and we have performed experiments with this. We have found that our experimental results733

are similar with and without outlier removal. We accordingly see this as an extra step that734

one has the option of performing in practice in order to maximally align the algorithm with735

the theory, but we do not see it as a necessary step in practice.736

Remark 4.8. We also mention that there are certain features of the PWLL model that are737

used in the theoretical results in this section; namely, the continuum limit PDE is well-posed738

with arbitrarily few labels, and it satisfies a maximum (or comparison) principle, which is the739

main tool in our proofs. The p-Laplace models (see [10, 28, 64]) also satisfy these conditions740

when p > d where d is the intrinsic dimension of the ambient space (or underlying manifold),741

and we fully expect that some results analogous to those in this section would hold for the742

p-Laplacian. We leave such investigations to future work and simply note here that solving the743

p-Laplace equation on a graph is far more computationally complex than the linear equation744

that constitutes PWLL. Thus, p-Laplace learning is not ideal for use in active learning, where745

the model is constantly re-evaluated throughout the active learning process.746

Remark 4.9. In similar fashion to Remark 4.8, the theoretical tools we utilize for proving747

exploration guarantees of the PWLL model do not readily apply to methods like VOpt [41]748

and ΣOpt [50] due to the lack of a well-defined continuum limit of the (non-reweighted)749

Laplace learning model. The theoretical work for those acquisition functions presented in [50]750

focused on guarantees of greedy optimization of submodular set functions over finite sets,751

which can reasonably be assumed to imply exploration of the dataset in practice. Howevever,752

as of the writing of this paper, the authors are not aware of explicit theoretical guarantees for753

exploration in active learning similar to our work or previous works in active learning [18,44,754

55]. Furthermore, our maximum principle arguments are tailored to the simple and efficient-755

to-compute acquisition function (Unc. Norm) that is a function of the semi-supervised classifier756

at each active learning iteration; in contrast, the VOpt and ΣOpt acquisition functions are757

computationally expensive and are derived from the underlying differential operator, not the758
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semi-supervised classifier, at each iteration. Potential future work could investigate how a759

reweighting of the differential operator (as done in the PWLL model) may allow for exploration760

guarantees for the VOpt and ΣOpt acquisition functions.761

5. Conclusion. We have demonstrated that uncertainty sampling is sufficient for explo-762

ration in graph-based active learning by using the norm of the output node function of the763

PWLL-τ model as an acquisition function. We provide rigorous mathematical guarantees on764

the explorative behavior of the proposed acquisition function. This is made possible by the765

well-posedness of the corresponding continuum limit PDE of the PWLL-τ model. Our analysis766

elucidates how the choice of hyperparamter τ > 0 directly influences these guarantees; in the767

one dimensional case this effect is most clearly illustrated. In addition, we provide numerical768

experiments that further illustrate the effect of both our acquisition function and the hyper-769

parameter τ on the sequence of active learning query points. Other numerical experiments770

confirm our theoretical guarantees and demonstrate favorable performance in terms of both771

accuracy and cluster exploration.772
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[27] M. M. Dunlop, D. Slepčev, A. M. Stuart, and M. Thorpe, Large data and zero noise limits of834

graph-based semi-supervised learning algorithms, Applied and Computational Harmonic Analysis, 49835
(2020), pp. 655–697.836

[28] A. El Alaoui, X. Cheng, A. Ramdas, M. J. Wainwright, and M. I. Jordan, Asymptotic behavior837
ofℓ p-based Laplacian regularization in semi-supervised learning, in Conference on Learning Theory,838
PMLR, 2016, pp. 879–906.839

[29] M. Flores, J. Calder, and G. Lerman, Analysis and algorithms for ℓp-based semi-supervised learning840
on graphs, Applied and Computational Harmonic Analysis, 60 (2022), pp. 77–122.841

[30] Y. Gal, R. Islam, and Z. Ghahramani, Deep Bayesian active learning with image data, in Proceedings842
of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 2017, Journal843
of Machine Learning Research, pp. 1183–1192.844

[31] L. Gao, H. Yang, C. Zhou, J. Wu, S. Pan, and Y. Hu, Active discriminative network represen-845
tation learning, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial846
Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, 2018,847
pp. 2142–2148, https://doi.org/10.24963/ijcai.2018/296.848
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