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Poisson reweighted Laplacian uncertainty sampling for graph-based active
learning*

Kevin Miller’ and Jeff Caldert

Abstract. We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-
based active learning, as long as the measure of uncertainty properly aligns with the underlying
model and the model properly reflects uncertainty in unexplored regions. In particular, we use a
recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier and
we introduce an acquisition function designed to measure uncertainty in this graph-based classifier
that identifies unexplored regions of the data. We introduce a diagonal perturbation in PWLL
which produces exponential localization of solutions, and controls the exploration versus exploitation
tradeoff in active learning. We use the well-posed continuum limit of PWLL to rigorously analyze our
method, and present experimental results on a number of graph-based image classification problems.

Key words. active learning, uncertainty sampling, graph Laplacian, continuum limit, partial differential equa-
tions
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1. Introduction. Supervised machine learning algorithms rely on the ability to acquire an
abundance of labeled data, or data with known labels (i.e., classifications). While unlabeled
data—data without known labels—is ubiquitous in most applications of interest, obtaining
labels for such training data can be costly. Semi-supervised learning (SSL) methods leverage
unlabeled data to achieve an accurate classification with significantly fewer training points.
Simultaneously, the choice of training points can significantly affect classifier performance,
especially due to the limited size of the training set of labeled data in the case of SSL. Active
learning seeks to judiciously select a limited number of query points from the unlabeled data
that will inform the machine learning task at hand. These points are then labeled by an expert,
or human in the loop, with the aim of significantly improving the classifier performance.

While there are various paradigms for active learning [60], we focus on pool-based active
learning wherein an unlabeled pool of data is available at each iteration of the active learning
process from which query points may be selected. This paradigm is the natural fit for applying
active learning in conjunction with semi-supervised learning since the unlabeled pool is also
used by the underlying semi-supervised learner. These query points are selected by optimizing
an acquisition function over the discrete set of points available in the unlabeled pool of data.
That is, if U C X is the set of currently unlabeled points in a pool of data inputs X C R¢,
then the active learning process at each iteration selects the next query point x* € U to be
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2 K. MILLER AND J. CALDER

the minimizer of a real-valued acquisition function

x* = argmin A(x),
xeU
where A can depend on the current state of labeled information (i.e., the labeled data £ = X'\U
and corresponding labels for points in £).

The above process (policy) for selecting query points is sequential as only a single unla-
beled point is chosen to be labeled at each iteration, as opposed to the batch active learning
paradigm. In batch active learning, a set of query points Q@ C U is chosen at each iteration.
While this is an important extension of the sequential paradigm and is an active area of
current research in the literature [30,51,59,67], we focus on the sequential case in this work.

Acquisition functions for active learning have been introduced for various machine learning
models, especially support vector machines [2,42,66], deep neural networks [30,47,59,62,63],
and graph-based classifiers [41,50,51,55,57,79]. We focus on graph-based classifiers for our
underlying semi-supervised learning model due to their ability to capture clustering structure
in data and their superior performance in the low-label rate regime—wherein the labeled data
constitutes a very small fraction of the total amount of data. Most active learning methods for
deep learning assume a moderate to large amount of initially labeled data to start the active
learning process. While there is exciting progress in improving the low-label rate performance
of deep semi-supervised learning [58,65,74] and few-shot learning [37,72], we restrict the focus
of this paper to well-established graph-based paradigms for this setting.

An important aspect of the application of active learning in real-world datasets is the
inherent tradeoff between using active learning queries to either explore the given dataset or
exploit the current classifier’s inferred decision boundaries. This tradeoff is reminiscent of the
similarly named “exploration versus exploitation” tradeoff in reinforcement learning. In active
learning, it is important to thoroughly explore the dataset in the early stages, and exploit the
classifier’s information in later stages. Algorithms that exploit too quickly can fail to properly
explore the dataset, potentially missing important information, while algorithms that do not
exploit the classifier in later stages can fail to efficiently refine classifier decision boundaries.

In this work, we provide a simple, yet effective, acquisition function for use in graph-
based active learning in the low-label rate regime that provides a natural transition between
exploration and exploitation summarized in a single hyperparameter. We demonstrate through
both numerical experiments and theoretical results that this acquisition function explores prior
to exploitation. We prove theoretical guarantees on our method by analyzing the continuum
limit partial differential equation (PDE) that serves as a proxy for the discrete, graph-based
operator. This is a novel approach to providing sampling guarantees in graph-based active
learning. We also provide experiments on a toy problem that illustrates our theoretical results
and the importance of the exploration versus exploitation hyperparameter in our method.

1.1. Previous work. The theoretical foundations in active learning have mainly focused on
proving sample-efficiency results for linearly-separable datasets—frequently restricted to the
unit sphere [1,22,34]—for low-complexity function classes using disagreement or margin-based
acquisition functions [1,2,35,36]. These provide convenient bounds on the number of active
learning choices necessary for the associated classifier to achieve (near) perfect classification
on these datasets with simple geometry. In contrast, much of the focus for theoretical work
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PWLL ACTIVE LEARNING 3

in graph-based active learning leverage assumptions on the clustering structure of the data
that is assumed to be captured in the graph structure [21,55], which sometimes is assumed
to be hierarchical [18,23,24]. A central priority in this line of inquiry establishes guarantees
that, given assumptions about the clustering structure of the observed dataset X, the active
learning method in question will query points from all clusters (i.e., ensure exploration). The
low-label rate regime of active learning—the focus of this current work—is the natural setting
for establishing such theoretical guarantees.

The graph Laplacian has been widely used for semi-supervised learning over the past two
decades, starting with the seminal work on Laplace learning (or label propagation, see [78]),
and continued in a number of subsequent works [3,5,6,13,17,33,49,69,76]. Graph Laplacians
are also used in spectral clustering [68] and spectral based embeddings [4, 20, 25]. Laplace
learning is the underlying model for a number of graph-based active learning methods [41,
43,50, 79]. However, relatively little work has been done to provide theoretical guarantees for
exploration of clustering structure in these methods. These works instead focus on designing
acquisition functions to (approximately) reduce the empirical risk [43] or variance [41] of
a corresponding Gaussian random field on the discrete graph structure. Other important
works in active learning have focused primarily on improving the performance of deep neural
networks via active learning with either (1) moderate to large amounts of labeled data available
to the classifier [30,77] or (2) coreset methods that are agnostic to the observed labels of the
labeled data seen throughout the active learning process [59,67]. Our current work is focused
on the low-label rate regime, which is an arguably more fitting regime for semi-supervised and
active learning. Furthermore, in contrast to coreset methods, our acquisition function directly
depends on the observed classes of the labeled data.

Graph neural networks (GNN) [70,75] are an important area of graph-based methods for
machine learning, and various methods for active learning have been proposed [9, 31,40, 73].
GNNs consider network graphs whose connectivity is a priori determined via metadata relevant
to the task (e.g., co-authorship in citation networks) and then use the node-level features to
learn representations and transformations of features for the learning task. In contrast, we
consider similarity graphs where the connectivity structure is determined only by the node-
level features and directly learn a node function on this graph structure.

Continuum limit analysis of graph-based methods has been an active area of research for
providing rigorous analysis of graph-based learning [10,11,13,15,17,27,32,38,39,64]. In this
analysis, a discrete graph is viewed as a random geometric graph that is sampled from a density
p:R? = R, defined in a high-dimensional space (possibly constrained to a manifold M C R?
therein). The graph Laplacian matrix can be analyzed via its continuum-limit counterpart,
which is a second-order density weighted diffusion operator (or a weighted Laplace-Beltrami
operator when the data is sampled from a manifold). An important development relevant
to the current work is the Properly Weighted Graph Laplacian [17], which reweights the
graph in the Laplace learning model of [78] to correct for the degenerate behavior of Laplace
learning in the extremely low-label rate regime. This provides the setting for a well-defined,
properly scaled graph-based semi-supervised learning model that we use in our current work
to provide rigorous bounds on the acquisition function values to control the exploration versus
exploitation tradeoff.

In order to apply active learning in practice, it is essential to design computationally
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4 K. MILLER AND J. CALDER

efficient acquisition functions. Much of the current literature has sought to design more
sophisticated methods that often have higher computational complexity (e.g., requiring the
full inversion of the graph Laplacian matrix). Uncertainty sampling [60] is an example of a
computationally efficient acquisition function since it only requires the output of the classifier
on the unlabeled data. However, uncertainty sampling methods will often mainly select query
points that concentrate along decision boundaries while ignoring large regions of the dataset
that are distant from any labeled points. Phrased in the terminology of the exploration
versus exploitation tradeoff in reinforcement learning, uncertainty sampling is often overly
“exploitative” and often achieves poor overall accuracy in empirical experiments [41].

In contrast, methods such as variance optimization (VOpt) [41], ¥-Opt [50], Coresets
[59], LAND [55], and CAL [18] could be characterized as primarily “explorative” methods.
Oftentimes, however, such explorative methods, or other methods that are designed to both
explore and exploit [30,44,51,79], are more expensive to compute than uncertainty sampling.
For example, VOpt [41] and 2-Opt [50] require the computation and storage of a dense N x N
covariance matrix that must be updated after each active learning iteration. The work of [51]
proposed a computationally efficient adaptation of these methods via a projection onto a
subset of the graph Laplacian’s eigenvectors. As a consequence of sometimes significantly
poor performance from this spectral truncation method in our experiments, we provide a
“full” computation of VOpt and X-Opt in certain experiments by restricting the computation
to only a subset of unlabeled data which allows us to bypass the need to invert the graph
Laplacian matrix (Section 3.4). This heuristic, however, is still very expensive to compute at
each iteration making it not a viable option for moderate to large datasets in practice.

In this work, we show that uncertainty sampling, when properly designed for the graph-
based semi-supervised learning model can both explore and exploit, and outperforms existing
methods in terms of computational complexity, overall accuracy, and exploration rates.

1.2. Overview of paper. The rest of the paper continues as follows. We begin in Section
2 with a description of the Properly Weighted Laplace learning model from [17] that will be
the underlying graph-based semi-supervised learning model for our proposed active learning
method. We also introduce the minimum norm acquisition function in this section, along with
other useful preliminaries for the rest of the paper. In Section 3, we begin with illustrative
experiments in two-dimensions to illustrate the delicate balance between exploration and
exploitation in graph-based active learning. Section 3.4 compares our proposed active learning
method to other acquisition functions on larger, more “real-world” datasets that have been
adapted to provide an experimental setup wherein exploration is essential for success in the
active learning task. Thereafter, we present theoretical guarantees for the minimum norm
acquisition function in the continuum limit setting in Section 4, along with an extended look
at the theory in one dimension in Section 4.1.

1.3. Notation. Let ||-||2 denote the standard Euclidean norm where the space is inferred
from the input. We let || denote either the absolute value of a scalar in R or the cardinality
of a set, where from context the intended usage should be clear. We denote the set of points
r € X with 2 ¢ U as X \U. We denote by B,.(z) C R? the open ball of radius 7 > 0 centered
at x € R? and write B, = B,.(0).
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PWLL ACTIVE LEARNING 5

2. Model setup and acquisition function introduction. Let X = {z1,29,...,2x} C R?
be a set of inputs for which we assume each x € X belongs to one of C classes. Suppose
that we have access to a subset £ C X of labeled inputs (labeled data) for which we have
observed the ground-truth classification y(x) € {1,...,C} for each x € L. The rest of the
inputs, U := X'\ L, are termed the unlabeled data as no explicit observation of the underlying
classification have been seen for x € . The semi-supervised learning task is to use both £
and U, with the associated labels {y(x)}zer, to infer the classification of the points in U.

Sequential active learning extends semi-supervised learning by selecting a sequence of query
points x7, x5, ... as part of an iterative process that alternates between (1) calculating the semi-
supervised classifier given the current labeled information and (2) selecting and subsequently
labeling an unlabeled query point =}, € U, where U, = X\ L,, = X\ (LU{aT, 25, ..., 25 _1}).
Labeling a query point x; consists of obtaining the corresponding label y(x}) and then adding
x} to the set of labeled data, £,, = £,,—1 U{z} }. To avoid this cumbersome notation, however,
we will drop the explicit dependence of U,,, £, on the iteration n and simply refer to the
unlabeled and labeled data at the current iteration as respectively U and L.

Returning to the underlying semi-supervised learning problem, graph Laplacians have
often been used to propagate labeled information from £ to U [7,8,10, 13,17, 61, 70, 78].
From the set of feature vectors X', consider a similarity graph G(X, W) with weight matrix
w;j = K(xy, x;) that captures the similarity between inputs z;, z; for each pair of points in X
We use X to denote both the set of feature vectors as well as the node set for the graph G
to avoid introducing more notation. Laplace learning [78] is an important graph-based semi-
supervised learning model for both this current work and many previous graph-based active
learning works, and solves the constrained problem of identifying a graph function v : X — R®
via the minimization of

2.1 ; iy ) 12
(21) Jmin 3 wgfu(a:) - ule) 3
Ti,L;€EX

subject to u(x) = ey () for v € L.

The vector ey ;) € R is the standard Euclidean basis vector in R® whose entries are all 0
except the entry corresponding to the label y(x) € {1,...,C}. The learned function u that
minimizes (2.1) constitutes a harmonic extension of the given labels in £ to the unlabeled data.
For the classification task, the inferred classification of x € U is then obtained by thresholding
on the learned function’s output at =, u(x) € RY. That is, the inferred classification §(z) for
x € U is given by
argmax  u.(x),
ce{1,2,...,C}

where u.(x) denotes the ¢ entry of u(x).

Various previous works [13,16,17,28,29,56,61] have shown that when the amount of labeled
information is small compared to the size of the graph (i.e., the low-label rate regime), the
performance of minimizers of (2.1) degrades substantially. The solution u becomes roughly
constant with sharp spikes near the labeled set, and the classification tends to predict the
same label for most data points. Of particular interest to the current work is the Properly
Weighted Laplace learning work in [17], wherein a weighting v : X — R, that scales like
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6 K. MILLER AND J. CALDER

dist(z, £)~¢ for a > d — 2 is used to reweight the edges in the graph to correct the singular
behavior of solutions to (2.1). We use an improvement to the Properly Weighted Laplacian
that is called Poisson ReWeighted Laplace Learning (PWLL) and will be described in detail
in another paper [14]. PWLL performs semi-supervised learning by solving the problem

(2.2) min Y @)y (e)willue) - uz))3

w:X—R4 —"
subject to u(x) = ey, for z € L,

where the reweighting function v is computed by solving the graph Poisson equation

(2.3) Z wij(y(xs) —y(xj)) = Z ((5ik — ]17) for all z; € X.

z;€EX €L

In the previous work on the Properly Weighted Laplacian [17], the weight v was explicitly
chosen to satisfy v(x) ~ dist(z, £)~%, while in the PWLL, ~ is learned from the data, making
the method more adaptive with fewer hyperparameters. The motivation for the Poisson
equation (2.3) is that the continuum version of this equation is related to the fundamental
solution of Laplace’s equation, which produces the correct scaling in v near the labeled set.

The reason for using PWLL is that minimizers of (2.2) have a well-defined continuum limit
in the case when the amount of labeled data is fixed and the number of nodes |X|= N — oc.
This will allow us to analyze the behavior of our proposed minimum norm acquisition function
applied to the PWLL model in the continuum limit setting in Section 4.

2.1. Solution decay parameter. We introduce an adaptation of (2.2) that increases the
decay rate of the corresponding solutions away from labeled points. Controlling this decay will
prove to be crucial for ensuring that query points selected via our minimum norm acquisition
function (Section 2.2) will explore the extent of the dataset prior to exploiting current classifier
decision boundaries. Given 7 > 0, we consider solutions to the following variational problem

(2.4) min Y y(z)v(ewylue) —ulz)E + 7Y el

:X—R4
w zi,szX x; €U

subject to u(x) = ey, for v € L.

It is straightforward to see that for 7 > 0 the additional term in (2.4) encourages the solution
u to have smaller values away from the labeled data, where the values are fixed. When 7 = 0,
we recover (2.2). We will refer to this graph-based semi-supervised learning model as Poisson
ReWeighted Laplace Learning with 7-Regularization (PWLL-7).

To illustrate the role of the decay parameter, let us consider a simple one dimensional
version of this problem in the continuum of the form

u

b
min/ u'(2)? + Tu(z)? de,

where [a, b] is the domain and the minimization would be restricted by some boundary condi-
tions on u (i.e., on the labeled set). Minimizers of this problem satisfy the ordinary differential
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Figure 1. Plots of solutions to Tu —u' = 0 for varying values of T and with different boundary conditions.
The intervals (—1,0), (0, 1), (1,2) are the domains of three different solutions with boundary conditions u(—1) =
0,u(0) = 1,u(l) = 1, and u'(2) = 0. For increasing T, the solutions decay more rapidly away from the points
xr = —1,0,1. This qualitative behavior is critical for demonstrating that our active learning acquisition function
selects explorative query points in Section 4.

equation (i.e., the Euler-Lagrange equation) 7u — u” = 0, which has two linearly independent
solutions V7% Since the solution we are interested in is bounded, the exponentially growing
one can be discarded, and we are left with exponential decay in the solutions with rate /7
away from the labeled set. In Figure 1, we plot a few example solutions for various values
of 7 and different boundary conditions to illustrate this exponential decay in one dimension.
Thus, at least in this simple example, we can see how the introduction of the diagonal pertur-
bation 7 in PWLL leads to exponential decay of solutions, which is essential for the method
to properly ezplore the dataset. We postpone developing this theory further until Section 4.

2.2. Minimum norm acquisition function. We now introduce the acquisition function
that we propose to properly balance exploration and exploitation in graph-based active learn-
ing in the PWLL-7 model. We simply use the Euclidean norm of the output vector at each
unlabeled point, z € U:

(2.5) A(z) = [lu(z)[l2= \/U?(x) +ud(x) + ...+ ud ().

Due to the solution decay resulting from the 7-regularization term in (2.4), unlabeled points
that are far from all labeled points will have small Euclidean norm (¢? norm) for their corre-
sponding output vector. In the low-label rate regime, this property encourages query points
selected by (2.5) to be spread out over the extent of the dataset, until a sufficient number of
points have been labeled to “cover” the dataset. After this has been achieved in the active
learning process, the learned functions for (2.4) will have smaller norms in regions between
labeled points of differing classes due to the rapid decay in solutions near the transition be-
tween classes. This described behavior reflects the desired properties for balancing exploration
prior to exploitation in active learning. Through both numerical experiments and theoretical
results, we demonstrate this acquisition function’s utility for this purpose.

The acquisition function (2.5) is a novel type of uncertainty sampling [60], wherein only
the values of the learned function w at each active learning iteration are used to determine the
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selection of query points. Note also that this acquisition function is label adaptive as opposed
to label agnostic; that is, A(x) directly depends on the labelings of the currently labeled data,
{y(zj)}z;ec, since u does as well. Indeed, one may interpret the small Euclidean norm of
the learned function at an unlabeled node, ||u(x)||2, to reflect uncertainty about the resulting
inferred classification, §(z). Other uncertainty sampling methods, such as smallest margin
sampling [60], also compute the uncertainty of the learned model at an unlabeled point via
properties of the output vector u(x) € RY. However, these criterion often either (1) only
compare 2 entries of the vector to compute a measure of margin uncertainty or (2) normalize
the output vector to lie on the simplex to be interpreted as class probabilities. In both cases,
these measures of uncertainty in the classification of unlabeled points in unexplored regions
of the dataset might not be as emphasized by the acquisition function compared to points
that lie near the decision boundaries of the learned classifier. Our minimum norm acquisition
function (2.5), however, is designed to prioritize the selection of query points in unexplored
regions of the dataset which is properly reflected in the decay of the learned functions in the
PWLL-7 model (2.4). In this sense, we are able to ensure exploration prior to exploitation in
the active learning process using (2.5) in the PWLL-7 model.

Remark 2.1 (Choice of ¢* norm). We briefly comment on the choice of /2 norm as the
measure of uncertainty with the aid of an illustrative toy example. Consider the clustered
dataset that is shown in Figure 2 (a), where we have distinguished the five different clusters
with markers and colors. The assumed ground truth classification of the clusters is shown in
panel (b), along with the initially labeled points plotted as red stars. Hence, with one initially
labeled point in each class, we compute the PWLL-7 solution u(z) = (u1(z), uz(x))T € R? for
various values of 7 > 0 and plot the two components of uj(x),us(x) for each point in panels
(c-e). The one-dimensional simplex is shown as a gray dotted line, and we see the effect of
increasing 7 > 0 to “pull” points away from the simplex'.

Since u(x) values do not necessarily reside in the simplex for 7 > 0, we suggest that the ¢
norm provides a useful measure of uncertainty that captures exploration. While some measures
of uncertainty (e.g., entropy [60]) require the mapping of output values to the simplex, the ¢2
norm has no such requirement and consequently can differentiate between points lying between
oppositely labeled points (e.g., cyan squares) and those residing in unexplored clusters (e.g.,
blue circles and orange x’s). Further, once enough points have been labeled then values of u(x)
will lie relatively close to the simplex reflecting a transition from exploration to exploitation;
the ¢? norm values will then align with other traditional notions of uncertainty in active
learning that are defined on the simplex dees. In contrast, a vector norm such as the ¢! norm
does not distinguish between points along the simplex and therefore would not lead to this
natural transition from exploration to exploitation.

Remark 2.2 (Default to exploitation). In our PWLL-7 graph-based classifier, points whose
outputs u(z) lie near the center of simplex reside in regions of the domain between labeled
points of differing labels (e.g., the cyan cluster of Figure 2). Thus, a consequence of using the

'Tndeed when 7 = 0 the vector u(z) is guaranteed to lie on the simplex due to the fact that the null space
of the combinatorial (unnormalized) graph Laplacian matrix L for a connected graph is the span of constant
vectors.
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Figure 2. Demonstration of utility of > norm for measure of uncertainty in PWLL-t model. Panel (a)
shows clusters identified by different colors and markers, with initially labeled points shown as red stars. Panel
(b) shows the ground truth classification structure, and panels (c-e) show the output values of the PWLL-T
function u(x) € R? as they relate to the simplex (shown in gray dotted line). As T > 0 increases, the effect is
that u(z) in the outer clusters (blue circles and orange x’s) is smaller and the €> norm captures this effect.

¢? norm to measure uncertainty reflects a “default to exploitation” since this favors selecting
points whose output values lie closest to the center of the simplex. Our theoretical results in
Section 4 focus accordingly on relating the value of 7 > 0 to the geometry of the dataset in
order to guarantee cluster exploration when using this proposed acquisition function.

Remark 2.3 (Decay Schedule for 7). As we demonstrate through some toy experiments in
Section 3.2, there is a benefit to decreasing the value of 7 > 0 as the active learning process
progresses in order to more effectively transition from explorative to exploitative queries.
While there are various ways to design this, we simply identify a constant u € (0,1) so that
the decreasing sequence of hyperparameter values 7,11 = u7, that satisfies mr < ¢ with
initial value 79 > 0, where ¢ is chosen to be e = 107, For our experiments, we set K to be the
number of clusters, which in the case of our tests is known a priori. In practice, this choice of
K would be a user-defined choice to control the “aggressiveness” of the decay schedule of 7.
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10 K. MILLER AND J. CALDER

For n > 2K, we set 7, = 0. Thus, we calculate

1

which ensures a decaying sequence of 7 values as desired. We note that an interesting line of
inquiry for future research would be to investigate a more rigorous understanding of how to
adaptively select 7 > 0 during the active learning process. We leave this question for future
research and simply use the proposed decay schedule above.

In Table 1, we introduce the abbreviations for and other useful information pertaining to
the uncertainty sampling acquisition functions that we will consider in the current work—
smallest margin, minimum norm, and minimum norm with 7-decay uncertainty sampling.

Full Name Abbreviation A(x) Underlying Classifier
Smallest Margin Unc. Sampling Unc. (SM) tes () — uey () PWLL
Minimum Norm Unc. Sampling Unc. (Norm) [|u(z)||2 PWLL-7, fixed 7 > 0
Minimum Norm Unc. Sampling Unc. (Norm, 7 — 0) [|u(z)|2 PWLL-7, decay 7 — 0

with 7-decay

Table 1
Description of uncertainty sampling acquisition functions that will be compared throughout the experiments
in the following sections. Unc. (SM) considers the difference between the largest and second largest entries of
the output vector u(z), denoted by ci and c3 respectively.

3. Results. In this section, we present numerical examples to demonstrate our claim that
our proposed Unc. (Norm) and Unc. (Norm 7 — 0) acquisition functions in the PWLL-7 model
(2.4) are effective at both exploration and exploitation. We begin in Section 3.2 with a set of
toy examples in 2-dimensions to facilitate visualizing the choices of query points during the
active learning process and highlight the efficacy of implementing the 7-decay in Unc. (Norm,
7 — 0) for balancing exploration and exploitation. In Section 3.3, we recreate an experiment
from [41] on the Isolet dataset [26] to demonstrate that our proposed Unc. (Norm, 7 — 0)
essentially corrects previously observed negative behavior of uncertainty sampling.

In Section 3.4, we perform active learning experiments on larger, more “real-world”
datasets. We use the MINIST [48], FASHIONMNIST ([71], and EMINIST [19] datasets,
and we interpret the original ground-truth classes (e.g. digits 0-9 in MINIST) as clusters on
which we impose a different classification structure by grouping many clusters into a single
class. This creates an experimental setting that necessitates exploration of initially unlabeled
“clusters” in order to achieve high overall accuracy. We include similar experiments in Sec-
tion 7?7 of the Supplemental Material to verify the performance of the proposed method in
the presence of disparate class and cluster sizes.

While most previous work in the active learning literature (both graph-based and neural
network classifiers) demonstrates acquisition function performance with only accuracy plots,
we suggest another useful quantity for comparing performances. In the larger experiments of
Sections 3.4 and 77, we plot the proportion of clusters that have been queried as a function of
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active learning iteration. These plots reflect how efficiently an acquisition function explores
the clustering structure of the dataset, as captured by how quickly the proportionality curve
increases toward 1.0. These cluster exploration plots are especially insightful for assessing
performance in low label-rate active learning. An acquisition function that properly and
consistently explores the clustering structure of the dataset will achieve an average cluster
proportion of 1.0 faster than other acquisition functions and within a reasonable number of
active learning queries.

3.1. Comparison to other methods. We comment here on a few notable methods in
graph-based or geometry-inspired active learning that we include in some of our numerical
comparisons: S? (Shortest-Shortest path) [21], LAND (Learning by Active Non-linear Diffu-
sion) [55], and CAL (Cautious Active Learning) [18]. The S? algorithm by Dasarathy et al uses
query points to bisect “shortest-shortest” paths in the graph between oppositely labeled points
to recursively identify boundaries between clusters. While this method can efficiently sample
query points along boundaries, S? essentially requires that initially labeled points belong to
each of the respective clusters in the dataset. As such, it is admittedly at a disadvantage in
a few of the experimental setups that we show herein. For example, the Isolet experiment
3.3 initially begins with only a single labeled point to test the explorative capabilities of the
respective methods; in this experiment, we do not include a comparison to S? as it is not
designed for such a setting.

In the LAND algorithm, Murphy and Maggioni use diffusion distances from a random
walk interpretation of a similarity graph to select diverse sets of query points that are located
in dense regions of the graph. Adjusting a model hyperparameter in the diffusion distances
can reveal hierarchical clustering structure in the dataset which can encourage query points to
be chosen at different resolution levels of the clustering structure. In a similar vein, the CAL
algorithm by Cloninger and Mhaskar [18] uses hierarchical clustering structure to guide the
query set selection process. By constructing a highly localized similarity kernel via Hermite
polynomials, query points are selected at various resolution levels. Both the LAND and CAL
algorithms have been shown to be effective at selecting query points in pixel classification for
hyperspectral imagery applications. We, however, found that the current implementations
of these algorithms were unable to scale to our larger experiments?. Hence, comparison to
LAND and CAL are limited to the smaller experiments of Sections 3.2 and 3.3.

Furthermore, we suggest both the LAND and CAL methods may be more appropriately
identified as “coreset” selection methods. Such methods leverage the geometry of the underly-
ing dataset (e.g., the diffusion distances as captured by the similarity graph in LAND), but not
the set of labels observed at labeled points during the active learning process. This is similar
to other coreset methods that have been presented in both coreset and data summarization
literature [54,59,67]. In contrast, our uncertainty-based criterion in this work combines both
geometric information about the data as captured by the similarity graph structure and the
observed labels at each labeled point via the output classification at each iteration. This
makes our method more similar to the primary flavor of active learning methods.

2We adapted MATLAB implementations that were obtained from the respective authors for our experi-
ments.
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Figure 3. Ground Truth (a) and Accuracy Results (b) for Blobs experiment. Notice that Unc. (SM)
achieves very poor overall accuracy. We show in Figure 4 that this is due to premature exploitation.

3.2. Toy examples. We first illustrate our claim regarding our minimum norm uncertainty
sampling criterion for graph-based active learning with synthetic datasets that are directly
visualizable (i.e., the data lies in only two dimensions). The first experiment—which we refer
to as the Blobs experiment—illustrates how a non-zero value for 7 in the initial phase of active
learning is crucial for ensuring exploration of the dataset. The second experiment—which we
refer to as the Box experiment—illustrates the need to decrease the value of 7 to ensure the
transition from exploration to exploitation. These experiments also allow us to directly observe
the qualitative characteristics of the active learning query choices in uncertainty sampling.

3.2.1. Blobs experiment. The Blobs dataset is comprised of eight Gaussian clusters,
each of equivalent size (300) and variance (02 = 0.172), whose centers (i.e., means) lie evenly
spaced apart on the unit circle. That is, each cluster €); is defined by randomly sampling 300
points from a Gaussian with mean p; = (cos(mi/4),sin(7i/4))T € R? and standard deviation
o; = 0 = 0.17. The classification structure of the clusters is then assigned in an alternating
fashion, as shown in Figure 3(a). In each individual run of the experiment, one initially
labeled point per class combine to be the starting labeled set, and then 100 active learning
query points are selected sequentially via a specified acquisition function. Different acquisition
functions then define different runs of the experiment.

For each acquisition function, we ran 10 experiments with different initially labeled points.
The average accuracy at each iteration of an experiment is plotted in Figure 3(b). The main
purpose of this experiment is to compare and contrast the characteristics of the query points
selected by Unc. (SM), Unc. (Norm), and Unc. (Norm, 7 — 0). For reference in these toy
experiments, we include the results of using the VOpt [41] acquisition function as well as
Random sampling (i.e., select x} € Y with uniform probability over U at each iteration).

The main observation from this experiment is how poorly Unc. (SM) performs, as it only
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(g) Unc. (Norm, 7 — 0), Initial (h) Unc. (Norm, 7 — 0), Iter 9 (i) Unc. (Norm, 7 — 0), Iter 100

Figure 4. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, 7 — 0) at different
stages of the Blobs experiment. Labeled points are marked as red stars and brighter regions of the heatmap
indicate higher acquisition function values.
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attains an overall accuracy of roughly 62% as the average over the trials. In Figure 4(a-c),
we show one trial’s acquisition function values heatmap at three different stages of the active
learning process using Unc. (SM). We observe that the queries have primarily focused on the
boundaries between a few clusters, while missing other clusters completely. At each iteration,
the heatmap of acquisition function values has only focused on the current classifier’s decision
boundary which can lead to missing such clusters. In essence, we would qualify the behavior
here as “premature exploitation”, prior to proper exploration of the dataset.

In contrast, Figures 4 (d-i) demonstrate how the “minimum norm” uncertainty acquisition
functions properly explore the extent of the geometric clustering structure. Both have sampled
from every cluster in the ring. It is instructive to further see though that Unc. (Norm)—which
employs a fixed value of 7 > 0 at every iteration—has not sampled more frequently between
clusters by the end of the trial. We may characterize this behavior as not transitioning to
proper exploitation of cluster boundaries. On the other hand, in Figure 4(i), we see that
by using this minimum norm uncertainty sampling with decaying values of T — 0 we more
frequently sample at the proper cluster boundaries after having sampled from each cluster.

Remark 3.1. It is worth noting that, as an uncertainty sampling method that depends only
on the current classifier’s predictions, our Unc. (Norm) acquisition function does not take into
account the influence that labeling a currently unlabeled point will have on the prediction of
other points. This is in contrast to other more computationally intensive acquisition functions
that explicitly model the “influence” that a currently unlabeled point has on the classifier’s
output predictions at other points (e.g., [41,43,44,50,51,79]). As such, our acquisition function
may select query points that are not always ideal early on in the active learning process.

Consider, for example, panels (e) and (h) of Figure 4, wherein the selected query points
by our acquisition functions lie in the outermost regions of the bottom clusters. These query
points could constitute outliers and therefore not be the most influential on the classification
of the other points in the corresponding clusters. While this behavior could severely hurt the
performance of various classifiers, we note that the utilization of unlabeled data in graph-based
learning through a similarity graph that explicitly models clustering structure helps to alleviate
the potentially negative effects of such query points. As a result, the important behavior for
our acquisition function is to first query points that belong to the different clusters (i.e.,
exploration) and then to query between oppositely labeled clusters (i.e., exploitation). Our
empirical work suggests that the computational gains from using our inexpensive acquisition
function are still meaningful despite the occasional selection of less influential query points.

3.2.2. Box experiment. The Box dataset is simply a 65 x 65 lattice of points on the unit
square, with removing points that lie within a thin, vertical band centered at x = 0.3 which
also defines the class boundary line (Figure 5). In contrast to the Blobs experiment, the
Box experiment illustrates the need to transition from exploration to exploitation, and how
this is accomplished by decreasing 7 — 0. In the accuracy plot (Figure 5(b)), notice how the
accuracy achieved by Unc. (Norm) levels off at a lower overall accuracy than both Unc. (SM)
and Unc. (Norm 7 — 0). Figure 6 demonstrates that this is due to “over exploration” of
the dataset instead of transitioning to refining the decision boundary between classes. Active
learning seeks to balance exploration versus exploitation while still being sample efficient,
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Figure 5. Ground Truth (a) and Accuracy Results (b) for Boxz experiment. Notice that Unc. (Norm,)
achieves suboptimal overall accuracy. We show in Figure 6(f) that the distribution of query points later in the
active learning process reflect a lack of transition to exploitation.

making as few active learning queries as possible.

As shown in Figures 6 (a-f), both Unc. (SM) and Unc. (Norm, 7 — 0) more efficiently
sample the decision boundary between the two classes in this Box dataset. Due to the very
simple structure of the dataset, purely exploiting decision boundary information—as done
by Unc. (SM)—is optimal. In contrast, Unc. (Norm, 7 — 0) ensures to sparsely explore the
extent of the right side of the box prior to exploiting the decision boundary. This is due to the
decreasing value of 7 over the iterations, and allows for a straightforward transition between
exploration and exploitation. We set the value of K = 8 for the 7-decay schedule so that by
8 active learning queries we have transitioned to exploitation.

3.2.3. Overall observations. From the toy experiments presented in Sections 3.2.1 and
3.2.2, we see that the minimum norm uncertainty sampling with decaying values of T has
the desired behavior for a sample-efficient criterion that both explores and exploits during
the active learning process. Ensuring this behavior in uncertainty sampling is also desirable
because of the relatively light computational complexity that uncertainty sampling incurs. We
now demonstrate on more complicated, “real-world” datasets the effectiveness of minimum
norm uncertainty sampling in graph-based active learning.

3.3. lIsolet case study. Our minimum norm uncertainty sampling in the PWLL-7 model
can overcome previously negative results that have characterized uncertainty sampling. In [41],
the authors introduced the Variance Optimization (i.e., VOpt) acquisition function and show-
cased this acquisition function on the Isolet spoken letter dataset® from the UCI repository [26],
which contains 26 different classes. They compared against smallest margin uncertainty sam-
pling (Unc. (SM)) among other acquisition functions. Of particular interest to us is how

3 Accessed via https://archive.ics.uci.edu/ml/datasets/isolet.
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(a) Unc. (SM), Initial (b) Unc. (SM), Iter 15 (¢) Unc. (SM), Iter 50

(d) Unc. (Norm), Initial (e) Unc. (Norm), Iter 15 (f) Unc. (Norm), Iter 50

(g) Unc. (Norm, 7 — 0), Initial ~ (h) Unc. (Norm, 7 — 0), Iter (i) Unc. (Norm, 7 — 0), Iter
15 50

Figure 6. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, T — 0) at different
stages of the Box experiment. Labeled points are marked as red stars and brighter regions of the heatmap
indicate higher acquisition function values.

469 poorly Unc. (SM) performed on this task, resulting in significantly worse accuracies than even
470 random sampling.* In Supplemental Material Section ??, we demonstrate that similar—even
471 superior—performance is attained on this task by simply using our minimum norm uncertainty
472 sampling (Unc. (Norm)). This highlights that our proposed uncertainty sampling method is

4We refer the reader to original paper [41] for more details.
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more appropriate for low-label rate active learning than previous uncertainty sampling meth-
ods which have been characterized as overly-exploitative in the low-label rate regime. See
Section 77 in the Supplemental Material for further details.

3.4. Larger datasets. In this section, we present the results of active learning experiments
for multiclass classification problems derived from the MNIST [48], FASHIONMNIST [71],
and EMNIST datasets [19]. We construct similarity graphs for each of these datasets by
first embedding the points via the use of variational autoencoders (VAE) [45,46] that were
previously trained® in an unsupervised fashion, similar to [13].

Since a main crux of the present work is to ensure both exploration of clusters in a dataset
and exploitation of cluster boundaries, we adapt the classification structure of the above
datasets to require both. That is, we take the “true” class labelings y; € {0,1,...,C} (e.g.
digits 0-9 for MINIST) and reassign them to one of K < C classes by taking y"“* = y; mod K;
see Table 2 below.

Resulting Mod Class 0 1 2 3 4
MNIST 0,3,6,9 1,4,7 2,5,8 - -
FASHIONMNIST 0,3,6,9 1,4,7 2,5,8 - -
EMNIST 0,5,...,45 1,6,...,46 27,...,42 38,...,43 49,...,44
Table 2

Mapping of ground truth class label to mod K labeling for experiments of Section 3.4. Each ground truth
class is interpreted as a different “cluster” and the resulting class structure for the experiments have multiple
clusters per class. For MNIST and FASHIONMNIST, there are 10 ground truth classes and we take labels
modulo K = 3. For EMNIST, there are 47 total ground truth classes and we take labels modulo K = 5.

For each trial of an acquisition function, we select one initially labeled point per “modulo”
class; therefore, only a subset of “clusters” (i.e., the original true classes) has an initially la-
beled point. In order to perform active learning successfully in these experiments, query points
chosen by the acquisition function must sample from each cluster. In this way, we have created
an experimental setup with commonly used machine learning datasets with potentially more
complicated clustering structures wherein we test and compare the following acquisition func-
tions: Uncertainty Sampling (SM), Unc. (Norm), Unc. (Norm, 7 — 0), Random, VOpt [41]
(see Remark 3.3), 3-Opt [50] (also see Remark 3.3), and MCVOpt [52]. We perform 10 trials
for each acquisition function, where each trial begins with a different initially labeled subset.
To clarify, trials begin with only 3 labeled points in the MINIST and FASHIONMNIST
experiments and with only 5 labeled points in the EMNIST experiments.

In the left panel of Figures 7-9, we show the accuracy performance of each acquisition
function averaged over the 10 trials. The right panels of each of these figures display the
average proportion of clusters that have been sampled by the acquisition functions at each

5The representations for MINIST and FASHIONMNIST are available in the GraphLearning package [12],
while the code used to train the VAE for EMINIST is available in our Github repo https://github.com/
millerk22/rwll_active_learning.
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18 K. MILLER AND J. CALDER

iteration of the active learning process. We refer to these plots as “Cluster Exploration” plots
since they directly assess the explorative capabilities of the acquisition functions in question.

We observe that across these experiments, both Unc. (Norm) and Unc. (Norm, 7 —
0) consistently achieve the best accuracy and cluster exploration results. It is somewhat
surprising that without decaying 7, the Unc. (Norm) acquisition function seems to perform
the best even after each cluster has been explored. The experiments in Section 3.2 suggest
that the optimal performance in the exploitation phase of active learning would require taking
7 — 0. We hypothesize that the clustering structure of relatively high-dimensional data—Ilike
these datasets—is much more complicated than our intuition would suggest from analyzing
toy and other visualizable (i.e., 1D, 2D, or 3D) datasets. Regardless, we see that the minimum
norm uncertainty acquisition function consistently outperforms other acquisition functions in
these low-label rate active learning experiments.

Remark 3.2 (Computational cost of Unc. (Norm)). While some acquisition functions such
as VOpt, 2-Opt, and MCVOpt require the computation, storage, and update of large auxiliary
variables (e.g., inverse of graph Laplacian matrix), our proposed Unc. (Norm) acquisition
function only requires the PWLL-7 solution with the currently labeled data in £, which we
compute with the preconditioned conjugate gradient method. Indeed, one of the reasons
that we refer to our acquisition function as an uncertainty sampling criterion is that like
previous uncertainty sampling methods [60], our acquisition function is simply a function of
the current classifier. In this sense, Unc. (Norm) is “as cheap” as one could hope for in an
acquisition function that depends on the labels of currently labeled data through the outputs
of the underlying classifier. We have included Table 3 to compare computational costs among
comparable methods; the S? [21], LAND [55], and CAL [18] are not included since they do not
follow the same common framework of selecting z* = argmin, <, A(x) at each iteration. The
computational cost of solving the graph Laplace equation for training the model is omitted
since it is shared by all algorithms (and is the only substantial cost with Unc. (Norm)).

Abbr. Name Aux. Overhead Cost Per Unlabeled Aux. Update Cost

Unc. (Norm) - o) -
VOpt O(N?3) O(N) O(N?)
¥-Opt O(N?) O(N) O(N?)

MCVOpt O(N?r) O(r+0C) O(Nr)
Table 3

Computational comparison between acquisition functions, where N = |X|, C is the number of classes, and
r < N is the number of eigenvalues computed in the auziliary matriz used in MCVOpt [53].

Remark 3.3. Due to the large nature of these datasets, computing the original VOpt and
Y-Opt criteria are inefficient (and often intractable) since this requires computing the inverse of
a perturbed graph Laplacian matrix; this inverse is dense and burdensome to store in memory.
We initially used an approximation that utilizes a subset of eigenvalues and eigenvectors
of the graph Laplacian, similar to what was done in [51]. While this performed relatively
well on the EMINIST experiment, we noticed significantly poor results on the MINIST and
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Figure 7. Accuracy Results (a) and Cluster Proportion (b) plots for MINIST dataset.

FASHIONMNIST experiments seemingly due to the spectral truncation with a resulting
oversampling of a single cluster during the active learning process.

As an alternative to the spectral truncation, we performed a “full” calculation of these
acquisition functions on a small, random subset of 500 unlabeled points at each active learning
iteration. This performed significantly better than the spectral truncation in the MNIST
and FASHIONMNIST experiments, and so we report these spectral truncation results in
this section. In Figures 7 and 8 we refer to this simply by the original names, VOpt and 3-
Opt, respectively. The small choice of unlabeled points on which to evaluate the acquisition
function is due to the burdensome computation needed at each step that scales with the size
of this subset; at this reported choice of 500 points each active learning iteration already
takes roughly 6 minutes to complete for the MIINIST dataset. Due to its even greater size,
we do not compute this “full” calculation on the random subset for the EMNIST dataset,
but remark that the performance of the approximate (spectral truncation) VOpt and X-Opt
already achieve comparable accuracy to the other reported methods in this dataset. We denote
the spectral truncation with the suffix “(ST)” in Figure 9.

4. Continuum analysis of active learning. We now study our active learning approach
rigorously through its continuum limit on an open, bounded set Q2 C R% on which our data-
points are sampled from. As was shown in [17], the continuum limit of (2.2) is the family of
singularly weighted elliptic equations

Tu; — p 1t div (7p2Vui) =0, inQ\L
(4.1) u; =1, on L;
u; =0, on L\ L,

where p(x) > pmin > 0 is the density of the data points, 7 is the singular reweighting,
described in more detail below, £; C § are the labeled points in the i*! class, and £ = Uiczlﬁi
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Figure 9. Accuracy Results (a) and Cluster Proportion (b) plots for EMNIST dataset.

the locations of all labeled points. The notation V refers to the gradient vector and div is
the divergence. We assume that the density p(x) : @ — (0,00) is Lipschitz continuous. The
solutions u; also satisfy the homogeneous Neumann boundary condition Vu - v = 0 on 0€2,
where v is the outward unit normal vector to €2, but we omit writing this as it is not directly
used in any of our arguments. We assume the sets £; are all finite collections of points. The
classification decision for any point = ¢ L is given by

{(x) = argmax u;(x).
1<i<C
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The continuum version of the uncertainty sampling acquisition function is then given by
(4.2) A(z) = Vur(2)?2 + ug(x)2 4 - + uc(2)?.

As alluded to in Remark 2.2, the aim of this section is to use continuum PDE analysis to
rigorously establish exploration guarantees in light of the exploitation default of uncertainty
norm sampling (4.2), and illustrate how it depends on the choice of the decay parameter T.

4.1. lllustrative 1D continuum analysis. We proceed first with an analysis of the contin-
uum equations (4.1) in the one-dimensional setting, where the equations are ordinary differ-
ential equations (ODEs). The conclusions are insightful for the subsequent generalization to
higher dimensions in Section 4.

Consider an interval Q = (Zimin, Tmaz) C R with density 0 < pmin < p(2) < Pz < +00.
Assume a binary classification structure on this dataset, and further assume we have been
given at least one labeled point per class. Let the pairs {(x;,v:)}_; € Q x {1,2} be the
input-class values for the currently labeled points ordered such that z; < x;11. For ease in
our discussion, we also assume that x1 = Ty, and zp = Tpe, (Figure 10).

M, M, ——

p(z)

= )
T ) T3 Ty

Figure 10. Visualization of the 1D continuum example setup. The density p(z) is plotted in gray, while the
labeled points x1,x2, 3, x4 are plotted where the corresponding label is denoted by X or a solid dot. Ms marks
the length between two similarly labeled points, while M, marks the length between two oppositely labeled points.

Solving the PWLL-7 equation® (4.1) on 2 can be broken into subproblems defined on the
intervals (z1,22), ..., (z¢—1,2¢) C R, with boundary conditions determined by the correspond-
ing labels of the endpoints x;. There are two separate kinds of subproblems to be solved, as
determined by these boundary conditions; namely, (1) the oppositely labeled problem (when
yi # Yit1) and (2) the similarly labeled problem (when y; = y;+1). Recall from (4.1) that the
boundary conditions for solutions w1, us at the labeled points correspond to the entries of the
one-hot encoding of the labels y; € {1,2}. For example, if y; = 2 then u;(x;) = 0,ua(z;) =1
will be the respective Dirichlet boundary conditions at the labeled point z; € L.

Given the current labeled data, the active learning process selects a new query point
z* = argming.n A(x) via the minimum norm acquisition function (4.2). We can quantify
the explorative behavior of our acquisition function (4.2) by comparing the minimizers of
A(z) in (i) an interval of length M, between oppositely labeled points and (ii) an interval of
length M between similarly labeled points. In this simple one-dimensional problem, we may
characterize “explorative” query points as residing in relatively large intervals between labeled
points, regardless of the labels of the endpoints. Conversely, we characterize “exploitative”
query points as residing between oppositely labeled points that are close together. In Figure
10, exploration would correspond to sampling in (x1,z2) or (x3,z4), while exploitation would
correspond to sampling in (z2,x3).

SWithout the reweighting (4.4) due to the simple geometry in one dimension.
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The acquisition function (4.2) is directly a function of the magnitudes of the solutions to
(4.1) with the corresponding boundary conditions; the decay of these solutions depends on
the value of 7 > 0 (Figure 1). As such, we identify how 7 must be chosen in order to produce
small acquisition function values between similarly labeled points in relatively large regions
as compared to large values in relatively small regions between oppositely labeled points.

In order to rigorously quantify the choice of 7 > 0, we give the mild assumptions that
the density p(z) (i) is sufficiently smooth, (ii) is symmetric about the midpoint of the interval
between similarly labeled points, and (iii) obeys a bounded derivative condition at the ends
of the interval between oppositely labeled points. Under these mild assumptions, we give the
following simplified guarantee on exploration, which we prove rigorously in Section ?77.

Proposition 4.1 (Simplified version of Proposition ??). Suppose that the density p(x) sat-
isfies the above assumptions. Let the interval length M, be relatively small compared to My;
1.e., M, = BM; for some 5 < i. Then we are ensured that

min Ag(x) < min A, (z)

as long as T > 0 and M; jointly satisfy the following inequality

(4'3) Ms2 (CO(Ps)f - Cl(po)627-) > 8In2,

where Co(ps) and Ci(p,) are constants that depend on the density p on the similarly and
oppositely labeled intervals, respectively denoted ps and p,.

As long as the similarly labeled region has significantly large regions where the density
p(x) is sufficiently small compared to the oppositely labeled region, then we can be assured
that choosing 7 > 0 large enough will result in query points between similarly labeled points
that are relatively far from each other (as quantified by 5 > 0). We refer the reader to 7?7 in
the Supplemental Material for further discussion of this result.

4.2. Exploration bounds in arbitrary dimensions. In this section, we show how larger val-
ues for 7 lead to explorative behaviour in higher dimensional problems. In particular, we show
that the acquisition function A(z) is small on unexplored clusters, and large on sufficiently
well-explored clusters. This ensures that adequate exploration occurs before exploitation.

Let us remark that the reweighting term ~ must be sufficiently singular near the labels £
to ensure that (4.1) is well-posed. We recall from [17] that we require that v has the form

(4.4) v(z) =1+ dist(z, L),

where o« > d — 2. In practice, we choose v as the solution of the graph Poisson equation
(2.3) introduced earlier. To make the analysis in this section tractable, we assume here
that ~ satisfies (4.4), as was assumed in [17]. We emphasize here that without the singular
reweighting 7, the equation (4.1) is ill-posed when the label set £ is finite, and as such, there
is no continuum version of active learning for us to study.

For an open set A C R? and r > 0 we define the nonlocal boundary 9, A as

OA=(A+B,)\ A
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The nonlocal boundary is essentially a tube of radius r surrounding the set A. The usual
boundary is obtained by taking r = 0, so 0A = JyA.
Our first result concerns upper bounds on the acquisition function in an unexplored cluster.

Theorem 4.2. Let 7 > 0, s,R >0 and D C Q with 02sD C Q and LN (D + Bry2s) = 9.
Let 6 = maxp, p p. Then the following hold.

(i) If

d
(4.5) \/E >3 <S +2||Vlog p”Loo(aSD)) (14 R) 43R !

then we have that

(4.6) sup A < VCexp <_s T) .
D 4V 6

(ii) Suppose that By(z) C D and let M = supp, (4 p- If (4.5) holds and

T d —a —o—
(4.7) \/Mzs(r+2uv1ogpumsr<m») (1+R ) +3R "

then we have that

(4.8) Bs;(;;)A < VCexp (—i <s\/§+ r@)) .

Remark 4.3. Theorem 4.2(i) shows that the acquisition function A is exponentially small
on an unexplored cluster D provided there is a thin surrounding set 0;D of the cluster on which
the density is small (less than §), relatively smooth (so V log p is not too large), and relatively
far away from other labeled data points (so that R is not too small). All of these smallness
assumptions are relative to the size of the ratio 7/ as expressed in (4.5). In particular,
regardless of the size of the right-hand side in (4.5), the condition can always be satisfied if
the ratio 7/ is sufficiently large, so we can view (4.5) as a condition on how small § must be
(i.e., how isolated D must be from other clusters).

Theorem 4.2(ii) improves the result in part (i) when D is a large cluster, in the sense that
a large ball B,(zx) fits inside D. In this case, we expect the density p to be large within the
cluster, so M will possibly be large relative to 7, and the estimate (4.8) is only a significant
improvement to (4.6) when r is also large, that is, the cluster D has a large diameter. Hence, we
can view (4.7) as a condition on how large r and R must be, and how small ||V log p|| Lo (B, (2))
must be, in order to obtain further exponential decay of the acquisition function within D.
In particular, regardless of how small 7/M is, the condition (4.7) will hold for large enough
7, R and small enough ||V log p|| (B, (z)) (i-e., the density is roughly constant within a ball
in the cluster). We also mention that in 4.2(ii) we do not require § to be small; that is, we do
not require D to be a cluster that is separated from the rest of the dataset in order to have
exponential decay of the acquisition function. Thus, 4.2(ii) applies to datasets that do not
admit a clusterability structure.
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However, we caution the reader that Theorem 4.2(ii) does not imply that our method
will always choose the largest unexplored cluster to label next. The estimates in the theorem
are upper bounds; they are quite likely loose and corresponding lower bounds (on unexplored
clusters) do not exist. The question of which cluster will be sampled next depends also on
the geometric arrangement of the clusters relative to the existing labeled data points, which
is not addressed by the theorem. That is, a small cluster located very far away from existing
labeled data points may be sampled prior to a large cluster that is much closer to the labeled
data. In many situations, this is a completely reasonable action to take, and we would argue
that it is not always desirable to choose the largest unexplored cluster next.

To ensure that new clusters are explored, we also need to lower bound the acquisition
function near the existing labeled set. To do this, we need to introduce a model for the
clusterability of the dataset. Let 21,Qs,...,Qx C Q be disjoint sets representing each of the
K clusters in the dataset. There are generally more clusters than classes (K > C') and often
K > C. We assume there is a positive separation between clusters, measured by the quantity

(4.9) S := mindist(£2;, ;).

i#j
The definition of S implies that (£2; + Bs) N§); = @ for all i # j. We define the union of the
clusters as ' = UX  Q;. We note that we do not have ' = (2, and it is important that there is
room in the background Q\ €', which provides a separation between clusters. The background
2\ © may have low density (though we do not assume this below), and can consist of outliers
or data points that have characteristics of multiple classes and may be hard to classify.

1
Theorem 4.4. Let 7 >0 and o > d — 2. Let v > 0 be small enough so that r < ZS’

1
. d < _ 2 3
(4.10) Tr _—ng(a—i-Z d) 18/fp,
and
1
(4.11) 4|V log pl| oo (ry (1 + 2%7%)r + a2%r* < Z(a +2—4d).

Assume that L + Bo,. C Q. Then we have

(4.12) inf A>1— 2 2(+2-d)
L+ By,

We now combine Theorems 4.2 and 4.4 to obtain a sample complexity result for the
exploration performance of our algorithm. We need to introduce some notation for this. For
D C Q we define D, = {x € D : B.(x) C D}. We define an e-packing of ; as a disjoint union
of e-balls that are centered at points in ;. The e-packing number of €); is defined as

M(§;,e) = max {m : there exists an e-packing of Q; with m balls.}.

We can now state our result on sample complexity.
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Figure 11. lllustration of the implications of Theorems 4.2 and 4.4, and the discussion in Remark 4.6. The
gray regions are the 4 clusters of high density in the dataset, and the density is small p < & between clusters.
The current labeled set are the points at the centers of the blue balls. Theorems 4.2 and 4.4 guarantee that the
next labeled point cannot lie in any of the blue balls, which correspond to the dilated label set L+ B,. Once the
dilated labels cover the existing clusters, the algorithm is guaranteed to select a point from the unexplored cluster
D. The number of labeled points selected from a given cluster during ezploration is bounded by its 5-packing
number, as explained in Remark 4.6.

Theorem 4.5 (Sample Complexity). Let a« >d—2. Let R=s = %S in Theorem 4.2 and
choose T to ensure (4.5) holds with D = Q; + By for every i, where

0= max p
Q\(V'+Bs)

Choose r > 0 to satisfy the conditions in Theorem 4.4 and assume that

(4.13) VC exp (—i}ﬁ) <12 zlat2=d),

If the next active learning point is chosen sequentially to minimize the acquisition function
r
A over Q. then the algorithm will choose at most M();, 5) points from ; before all other

clusters in Q' \ Q; have been sampled at least once. In particular, the algorithm will sample
from all clusters within the first Y1 M (S, %) samples.

Remark 4.6. Theorem 4.5 shows that the number of samples required to explore all clus-
ters in the dataset is O(K), where the constant depends on the geometry and clusterability
properties of the dataset (i.e., the packing numbers of the clusters). Thus, the method is
very efficient at exploring the dataset in the early stages of active learning when 7 is large.
We can compare this to random sampling, which is also guaranteed to eventually explore all
clusters, but takes in expectation O(K log(K)) samples to do so (i.e., the coupon collector
problem). Thus, our method improves on random sampling by a log(K) factor. We can see
this improvement over random sampling and other existing methods in our experimental re-
sults. For example, on the MINIST dataset, Figure 7 shows that our algorithm explores all
clusters after only 10 active learning iterations, at which point random sampling has explored
less than 80% of the clusters (random sampling does not get close to full exploration until 30
iterations). On FASHIONMNIST (see Figure 8) we explore all clusters by 20 iterations,
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at which point random sampling has explored around 90% of clusters. Similar results are
observed on the EMNIST dataset in Figure 9.

In the idealized case of a dataset comprised of disconnected clusters (i.e., the background
density between clusters €; is § = 0), our theory would imply that K samples would ensure
the exploration of all clusters, regardless of the size of clusters. While this would prove
to be a further improvement over naive random sampling in the case of very disparately
sized clusters, we note that the exploration of clusters would not be unique to our proposed
acquisition function in practice since the identification of clusters would be immediate from
the connected components of the similarity graph.

Remark 4.7. We note that the choices of the parameters r, s, R and 7 are all dependent
on the domain, the clusterability assumption, and the density, but are independent of the
choices of labeled points £;. We also mention that there is an assumption made in Theorem
4.5 that there are no labeled points selected near the background region Q\ €. Indeed, if such
outlying data points are selected as labeled points, then our results do not hold. In practice,
one can perform sampling proportional to a density estimation, or simply remove outliers, to
avoid such an issue. We discuss how this can be done in Supplemental Material Section 77,
and we have performed experiments with this. We have found that our experimental results
are similar with and without outlier removal. We accordingly see this as an extra step that
one has the option of performing in practice in order to maximally align the algorithm with
the theory, but we do not see it as a necessary step in practice.

Remark 4.8. We also mention that there are certain features of the PWLL model that are
used in the theoretical results in this section; namely, the continuum limit PDE is well-posed
with arbitrarily few labels, and it satisfies a maximum (or comparison) principle, which is the
main tool in our proofs. The p-Laplace models (see [10,28,64]) also satisfy these conditions
when p > d where d is the intrinsic dimension of the ambient space (or underlying manifold),
and we fully expect that some results analogous to those in this section would hold for the
p-Laplacian. We leave such investigations to future work and simply note here that solving the
p-Laplace equation on a graph is far more computationally complex than the linear equation
that constitutes PWLL. Thus, p-Laplace learning is not ideal for use in active learning, where
the model is constantly re-evaluated throughout the active learning process.

Remark 4.9. In similar fashion to Remark 4.8, the theoretical tools we utilize for proving
exploration guarantees of the PWLL model do not readily apply to methods like VOpt [41]
and XOpt [50] due to the lack of a well-defined continuum limit of the (non-reweighted)
Laplace learning model. The theoretical work for those acquisition functions presented in [50]
focused on guarantees of greedy optimization of submodular set functions over finite sets,
which can reasonably be assumed to imply exploration of the dataset in practice. Howevever,
as of the writing of this paper, the authors are not aware of explicit theoretical guarantees for
exploration in active learning similar to our work or previous works in active learning [18,44,
55]. Furthermore, our maximum principle arguments are tailored to the simple and efficient-
to-compute acquisition function (Unc. Norm) that is a function of the semi-supervised classifier
at each active learning iteration; in contrast, the VOpt and >Opt acquisition functions are
computationally expensive and are derived from the underlying differential operator, not the
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semi-supervised classifier, at each iteration. Potential future work could investigate how a
reweighting of the differential operator (as done in the PWLL model) may allow for exploration
guarantees for the VOpt and XOpt acquisition functions.

5. Conclusion. We have demonstrated that uncertainty sampling is sufficient for explo-
ration in graph-based active learning by using the norm of the output node function of the
PWLL-7 model as an acquisition function. We provide rigorous mathematical guarantees on
the explorative behavior of the proposed acquisition function. This is made possible by the
well-posedness of the corresponding continuum limit PDE of the PWLL-7 model. Our analysis
elucidates how the choice of hyperparamter 7 > 0 directly influences these guarantees; in the
one dimensional case this effect is most clearly illustrated. In addition, we provide numerical
experiments that further illustrate the effect of both our acquisition function and the hyper-
parameter 7 on the sequence of active learning query points. Other numerical experiments
confirm our theoretical guarantees and demonstrate favorable performance in terms of both
accuracy and cluster exploration.
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