

1 **Poisson reweighted Laplacian uncertainty sampling for graph-based active**
2 **learning***

3 Kevin Miller[†] and Jeff Calder[‡]

5 **Abstract.** We show that uncertainty sampling is sufficient to achieve exploration versus exploitation in graph-
6 based active learning, as long as the measure of uncertainty properly aligns with the underlying
7 model and the model properly reflects uncertainty in unexplored regions. In particular, we use a
8 recently developed algorithm, Poisson ReWeighted Laplace Learning (PWLL) for the classifier and
9 we introduce an acquisition function designed to measure uncertainty in this graph-based classifier
10 that identifies unexplored regions of the data. We introduce a diagonal perturbation in PWLL
11 which produces exponential localization of solutions, and controls the *exploration* versus *exploitation*
12 tradeoff in active learning. We use the well-posed continuum limit of PWLL to rigorously analyze our
13 method, and present experimental results on a number of graph-based image classification problems.

14 **Key words.** active learning, uncertainty sampling, graph Laplacian, continuum limit, partial differential equa-
15 tions

16 **MSC codes.** 35J15, 35J20, 68T05, 35Q68

17 **1. Introduction.** Supervised machine learning algorithms rely on the ability to acquire an
18 abundance of labeled data, or data with known labels (i.e., classifications). While unlabeled
19 data—data *without* known labels—is ubiquitous in most applications of interest, obtaining
20 labels for such training data can be costly. Semi-supervised learning (SSL) methods leverage
21 unlabeled data to achieve an accurate classification with significantly fewer training points.
22 Simultaneously, the choice of training points can significantly affect classifier performance,
23 especially due to the limited size of the training set of labeled data in the case of SSL. Active
24 learning seeks to judiciously select a limited number of *query points* from the unlabeled data
25 that will inform the machine learning task at hand. These points are then labeled by an expert,
26 or human in the loop, with the aim of significantly improving the classifier performance.

27 While there are various paradigms for active learning [60], we focus on *pool-based* active
28 learning wherein an unlabeled pool of data is available at each iteration of the active learning
29 process from which query points may be selected. This paradigm is the natural fit for applying
30 active learning in conjunction with semi-supervised learning since the unlabeled pool is also
31 used by the underlying semi-supervised learner. These query points are selected by optimizing
32 an *acquisition function* over the discrete set of points available in the unlabeled pool of data.
33 That is, if $\mathcal{U} \subset \mathcal{X}$ is the set of currently unlabeled points in a pool of data inputs $\mathcal{X} \subset \mathbb{R}^d$,
34 then the active learning process at each iteration selects the next query point $x^* \in \mathcal{U}$ to be

*Submitted to the editors DATE. Source code: https://github.com/millerk22/rwll_active_learning

Funding: JC was supported by NSF grant DMS:1944925, the Alfred P. Sloan foundation, and a McKnight Presidential Fellowship

[†]The Oden Institute of Computational Engineering and Sciences, University of Texas, Austin, TX
(ksmiller@utexas.edu).

[‡]Department of Mathematics, University of Minnesota, Twin Cities, MN (jwcalder@umn.edu).

35 the minimizer of a real-valued acquisition function

36
$$x^* = \underset{x \in \mathcal{U}}{\operatorname{argmin}} \mathcal{A}(x),$$

37 where \mathcal{A} can depend on the current state of labeled information (i.e., the labeled data $\mathcal{L} = \mathcal{X} \setminus \mathcal{U}$
 38 and corresponding labels for points in \mathcal{L}).

39 The above process (policy) for selecting query points is *sequential* as only a single unlabeled point is chosen to be labeled at each iteration, as opposed to the *batch* active learning
 40 paradigm. In batch active learning, a set of query points $\mathcal{Q} \subset \mathcal{U}$ is chosen at each iteration.
 41 While this is an important extension of the sequential paradigm and is an active area of
 42 current research in the literature [30, 51, 59, 67], we focus on the sequential case in this work.
 43

44 Acquisition functions for active learning have been introduced for various machine learning
 45 models, especially support vector machines [2, 42, 66], deep neural networks [30, 47, 59, 62, 63],
 46 and graph-based classifiers [41, 50, 51, 55, 57, 79]. We focus on graph-based classifiers for our
 47 underlying semi-supervised learning model due to their ability to capture clustering structure
 48 in data and their superior performance in the *low-label rate regime*—wherein the labeled data
 49 constitutes a very small fraction of the total amount of data. Most active learning methods for
 50 deep learning assume a moderate to large amount of initially labeled data to start the active
 51 learning process. While there is exciting progress in improving the low-label rate performance
 52 of deep semi-supervised learning [58, 65, 74] and few-shot learning [37, 72], we restrict the focus
 53 of this paper to well-established graph-based paradigms for this setting.

54 An important aspect of the application of active learning in real-world datasets is the
 55 inherent tradeoff between using active learning queries to either explore the given dataset or
 56 exploit the current classifier’s inferred decision boundaries. This tradeoff is reminiscent of the
 57 similarly named “exploration versus exploitation” tradeoff in reinforcement learning. In active
 58 learning, it is important to thoroughly explore the dataset in the early stages, and exploit the
 59 classifier’s information in later stages. Algorithms that exploit too quickly can fail to properly
 60 explore the dataset, potentially missing important information, while algorithms that do not
 61 exploit the classifier in later stages can fail to efficiently refine classifier decision boundaries.

62 In this work, we provide a simple, yet effective, acquisition function for use in graph-based
 63 active learning in the low-label rate regime that provides a natural transition between
 64 exploration and exploitation summarized in a single hyperparameter. We demonstrate through
 65 both numerical experiments and theoretical results that this acquisition function explores prior
 66 to exploitation. We prove theoretical guarantees on our method by analyzing the continuum
 67 limit partial differential equation (PDE) that serves as a proxy for the discrete, graph-based
 68 operator. This is a novel approach to providing sampling guarantees in graph-based active
 69 learning. We also provide experiments on a toy problem that illustrates our theoretical results
 70 and the importance of the exploration versus exploitation hyperparameter in our method.

71 **1.1. Previous work.** The theoretical foundations in active learning have mainly focused on
 72 proving sample-efficiency results for linearly-separable datasets—frequently restricted to the
 73 unit sphere [1, 22, 34]—for low-complexity function classes using disagreement or margin-based
 74 acquisition functions [1, 2, 35, 36]. These provide convenient bounds on the number of active
 75 learning choices necessary for the associated classifier to achieve (near) perfect classification
 76 on these datasets with simple geometry. In contrast, much of the focus for theoretical work

77 in graph-based active learning leverage assumptions on the clustering structure of the data
 78 that is assumed to be captured in the graph structure [21, 55], which sometimes is assumed
 79 to be hierarchical [18, 23, 24]. A central priority in this line of inquiry establishes guarantees
 80 that, given assumptions about the clustering structure of the observed dataset \mathcal{X} , the active
 81 learning method in question will query points from *all* clusters (i.e., ensure exploration). The
 82 low-label rate regime of active learning—the focus of this current work—is the natural setting
 83 for establishing such theoretical guarantees.

84 The graph Laplacian has been widely used for semi-supervised learning over the past two
 85 decades, starting with the seminal work on Laplace learning (or label propagation, see [78]),
 86 and continued in a number of subsequent works [3, 5, 6, 13, 17, 33, 49, 69, 76]. Graph Laplacians
 87 are also used in spectral clustering [68] and spectral based embeddings [4, 20, 25]. Laplace
 88 learning is the underlying model for a number of graph-based active learning methods [41,
 89 43, 50, 79]. However, relatively little work has been done to provide theoretical guarantees for
 90 exploration of clustering structure in these methods. These works instead focus on designing
 91 acquisition functions to (approximately) reduce the empirical risk [43] or variance [41] of
 92 a corresponding Gaussian random field on the discrete graph structure. Other important
 93 works in active learning have focused primarily on improving the performance of deep neural
 94 networks via active learning with either (1) moderate to large amounts of labeled data available
 95 to the classifier [30, 77] or (2) coresnet methods that are agnostic to the observed labels of the
 96 labeled data seen throughout the active learning process [59, 67]. Our current work is focused
 97 on the *low-label rate regime*, which is an arguably more fitting regime for semi-supervised and
 98 active learning. Furthermore, in contrast to coresnet methods, our acquisition function directly
 99 depends on the observed classes of the labeled data.

100 Graph neural networks (GNN) [70, 75] are an important area of graph-based methods for
 101 machine learning, and various methods for active learning have been proposed [9, 31, 40, 73].
 102 GNNs consider network graphs whose connectivity is a priori determined via metadata relevant
 103 to the task (e.g., co-authorship in citation networks) and then use the node-level features to
 104 learn representations and transformations of features for the learning task. In contrast, we
 105 consider similarity graphs where the connectivity structure is determined only by the node-
 106 level features and directly learn a node function on this graph structure.

107 Continuum limit analysis of graph-based methods has been an active area of research for
 108 providing rigorous analysis of graph-based learning [10, 11, 13, 15, 17, 27, 32, 38, 39, 64]. In this
 109 analysis, a discrete graph is viewed as a random geometric graph that is sampled from a density
 110 $\rho : \mathbb{R}^d \rightarrow \mathbb{R}_+$ defined in a high-dimensional space (possibly constrained to a manifold $\mathcal{M} \subset \mathbb{R}^d$
 111 therein). The graph Laplacian matrix can be analyzed via its continuum-limit counterpart,
 112 which is a second-order density weighted diffusion operator (or a weighted Laplace-Beltrami
 113 operator when the data is sampled from a manifold). An important development relevant
 114 to the current work is the Properly Weighted Graph Laplacian [17], which reweights the
 115 graph in the Laplace learning model of [78] to correct for the degenerate behavior of Laplace
 116 learning in the extremely low-label rate regime. This provides the setting for a well-defined,
 117 properly scaled graph-based semi-supervised learning model that we use in our current work
 118 to provide rigorous bounds on the acquisition function values to control the exploration versus
 119 exploitation tradeoff.

120 In order to apply active learning in practice, it is essential to design computationally

121 efficient acquisition functions. Much of the current literature has sought to design more
 122 sophisticated methods that often have higher computational complexity (e.g., requiring the
 123 full inversion of the graph Laplacian matrix). Uncertainty sampling [60] is an example of a
 124 computationally efficient acquisition function since it only requires the output of the classifier
 125 on the unlabeled data. However, uncertainty sampling methods will often mainly select query
 126 points that concentrate along decision boundaries while ignoring large regions of the dataset
 127 that are distant from any labeled points. Phrased in the terminology of the exploration
 128 versus exploitation tradeoff in reinforcement learning, uncertainty sampling is often overly
 129 “exploitative” and often achieves poor overall accuracy in empirical experiments [41].

130 In contrast, methods such as variance optimization (VOpt) [41], Σ -Opt [50], Coresets
 131 [59], LAND [55], and CAL [18] could be characterized as primarily “explorative” methods.
 132 Oftentimes, however, such explorative methods, or other methods that are designed to both
 133 explore and exploit [30, 44, 51, 79], are more expensive to compute than uncertainty sampling.
 134 For example, VOpt [41] and Σ -Opt [50] require the computation and storage of a dense $N \times N$
 135 covariance matrix that must be updated after each active learning iteration. The work of [51]
 136 proposed a computationally efficient adaptation of these methods via a projection onto a
 137 subset of the graph Laplacian’s eigenvectors. As a consequence of sometimes significantly
 138 poor performance from this spectral truncation method in our experiments, we provide a
 139 “full” computation of VOpt and Σ -Opt in certain experiments by restricting the computation
 140 to only a subset of unlabeled data which allows us to bypass the need to invert the graph
 141 Laplacian matrix (Section 3.4). This heuristic, however, is still very expensive to compute at
 142 each iteration making it not a viable option for moderate to large datasets in practice.

143 In this work, we show that uncertainty sampling, *when properly designed for the graph-
 144 based semi-supervised learning model* can both explore and exploit, and outperforms existing
 145 methods in terms of computational complexity, overall accuracy, and exploration rates.

146 **1.2. Overview of paper.** The rest of the paper continues as follows. We begin in Section
 147 2 with a description of the Properly Weighted Laplace learning model from [17] that will be
 148 the underlying graph-based semi-supervised learning model for our proposed active learning
 149 method. We also introduce the minimum norm acquisition function in this section, along with
 150 other useful preliminaries for the rest of the paper. In Section 3, we begin with illustrative
 151 experiments in two-dimensions to illustrate the delicate balance between exploration and
 152 exploitation in graph-based active learning. Section 3.4 compares our proposed active learning
 153 method to other acquisition functions on larger, more “real-world” datasets that have been
 154 adapted to provide an experimental setup wherein exploration is essential for success in the
 155 active learning task. Thereafter, we present theoretical guarantees for the minimum norm
 156 acquisition function in the continuum limit setting in Section 4, along with an extended look
 157 at the theory in one dimension in Section 4.1.

158 **1.3. Notation.** Let $\|\cdot\|_2$ denote the standard Euclidean norm where the space is inferred
 159 from the input. We let $|\cdot|$ denote either the absolute value of a scalar in \mathbb{R} or the cardinality
 160 of a set, where from context the intended usage should be clear. We denote the set of points
 161 $x \in \mathcal{X}$ with $x \notin \mathcal{U}$ as $\mathcal{X} \setminus \mathcal{U}$. We denote by $B_r(x) \subset \mathbb{R}^d$ the open ball of radius $r > 0$ centered
 162 at $x \in \mathbb{R}^d$ and write $B_r = B_r(0)$.

163 **2. Model setup and acquisition function introduction.** Let $\mathcal{X} = \{x_1, x_2, \dots, x_N\} \subset \mathbb{R}^d$ 164 be a set of inputs for which we assume each $x \in \mathcal{X}$ belongs to one of C classes. Suppose
165 that we have access to a subset $\mathcal{L} \subset \mathcal{X}$ of labeled inputs (*labeled data*) for which we have
166 observed the ground-truth classification $y(x) \in \{1, \dots, C\}$ for each $x \in \mathcal{L}$. The rest of the
167 inputs, $\mathcal{U} := \mathcal{X} \setminus \mathcal{L}$, are termed the *unlabeled data* as no explicit observation of the underlying
168 classification have been seen for $x \in \mathcal{U}$. The semi-supervised learning task is to use both \mathcal{L}
169 and \mathcal{U} , with the associated labels $\{y(x)\}_{x \in \mathcal{L}}$, to infer the classification of the points in \mathcal{U} .170 Sequential active learning extends semi-supervised learning by selecting a sequence of *query*
171 *points* x_1^*, x_2^*, \dots as part of an iterative process that alternates between (1) calculating the semi-
172 supervised classifier given the current labeled information and (2) selecting and subsequently
173 labeling an unlabeled query point $x_n^* \in \mathcal{U}_n$, where $\mathcal{U}_n = \mathcal{X} \setminus \mathcal{L}_n = \mathcal{X} \setminus (\mathcal{L} \cup \{x_1^*, x_2^*, \dots, x_{n-1}^*\})$.
174 Labeling a query point x_i^* consists of obtaining the corresponding label $y(x_i^*)$ and then adding
175 x_i^* to the set of labeled data, $\mathcal{L}_n = \mathcal{L}_{n-1} \cup \{x_n^*\}$. To avoid this cumbersome notation, however,
176 we will drop the explicit dependence of $\mathcal{U}_n, \mathcal{L}_n$ on the iteration n and simply refer to the
177 unlabeled and labeled data at the *current* iteration as respectively \mathcal{U} and \mathcal{L} .178 Returning to the underlying semi-supervised learning problem, graph Laplacians have
179 often been used to propagate labeled information from \mathcal{L} to \mathcal{U} [7, 8, 10, 13, 17, 61, 70, 78].
180 From the set of feature vectors \mathcal{X} , consider a similarity graph $G(\mathcal{X}, W)$ with weight matrix
181 $w_{ij} = \kappa(x_i, x_j)$ that captures the similarity between inputs x_i, x_j for each pair of points in \mathcal{X} .
182 We use \mathcal{X} to denote both the set of feature vectors as well as the node set for the graph G
183 to avoid introducing more notation. Laplace learning [78] is an important graph-based semi-
184 supervised learning model for both this current work and many previous graph-based active
185 learning works, and solves the constrained problem of identifying a graph function $u : \mathcal{X} \rightarrow \mathbb{R}^C$
186 via the minimization of

187 (2.1)
$$\min_{u: \mathcal{X} \rightarrow \mathbb{R}^d} \sum_{x_i, x_j \in \mathcal{X}} w_{ij} \|u(x_i) - u(x_j)\|_2^2$$

188 subject to $u(x) = e_{y(x)}$ for $x \in \mathcal{L}$.

189 The vector $e_{y(x)} \in \mathbb{R}^C$ is the standard Euclidean basis vector in \mathbb{R}^C whose entries are all 0
190 except the entry corresponding to the label $y(x) \in \{1, \dots, C\}$. The learned function u that
191 minimizes (2.1) constitutes a harmonic extension of the given labels in \mathcal{L} to the unlabeled data.
192 For the classification task, the inferred classification of $x \in \mathcal{U}$ is then obtained by thresholding
193 on the learned function's output at x , $u(x) \in \mathbb{R}^C$. That is, the inferred classification $\hat{y}(x)$ for
194 $x \in \mathcal{U}$ is given by

195
$$\operatorname{argmax}_{c \in \{1, 2, \dots, C\}} u_c(x),$$

196 where $u_c(x)$ denotes the c^{th} entry of $u(x)$.197 Various previous works [13, 16, 17, 28, 29, 56, 61] have shown that when the amount of labeled
198 information is small compared to the size of the graph (i.e., the *low-label rate regime*), the
199 performance of minimizers of (2.1) degrades substantially. The solution u becomes roughly
200 constant with sharp spikes near the labeled set, and the classification tends to predict the
201 same label for most data points. Of particular interest to the current work is the Properly
202 Weighted Laplace learning work in [17], wherein a weighting $\gamma : \mathcal{X} \rightarrow \mathbb{R}_+$ that scales like

203 $\text{dist}(x, \mathcal{L})^{-\alpha}$ for $\alpha > d - 2$ is used to reweight the edges in the graph to correct the singular
 204 behavior of solutions to (2.1). We use an improvement to the Properly Weighted Laplacian
 205 that is called Poisson ReWeighted Laplace Learning (PWLL) and will be described in detail
 206 in another paper [14]. PWLL performs semi-supervised learning by solving the problem

207 (2.2)
$$\min_{u: \mathcal{X} \rightarrow \mathbb{R}^d} \sum_{x_i, x_j \in \mathcal{X}} \gamma(x_i) \gamma(x_j) w_{ij} \|u(x_i) - u(x_j)\|_2^2$$

 208 subject to $u(x) = e_{y(x)}$ for $x \in \mathcal{L}$,

209 where the reweighting function γ is computed by solving the graph Poisson equation

210 (2.3)
$$\sum_{x_j \in \mathcal{X}} w_{ij} (\gamma(x_i) - \gamma(x_j)) = \sum_{x_k \in \mathcal{L}} \left(\delta_{ik} - \frac{1}{N} \right) \quad \text{for all } x_i \in \mathcal{X}.$$

211 In the previous work on the Properly Weighted Laplacian [17], the weight γ was explicitly
 212 chosen to satisfy $\gamma(x) \sim \text{dist}(x, \mathcal{L})^{-\alpha}$, while in the PWLL, γ is learned from the data, making
 213 the method more adaptive with fewer hyperparameters. The motivation for the Poisson
 214 equation (2.3) is that the continuum version of this equation is related to the fundamental
 215 solution of Laplace's equation, which produces the correct scaling in γ near the labeled set.

216 The reason for using PWLL is that minimizers of (2.2) have a well-defined continuum limit
 217 in the case when the amount of labeled data is fixed and the number of nodes $|\mathcal{X}| = N \rightarrow \infty$.
 218 This will allow us to analyze the behavior of our proposed minimum norm acquisition function
 219 applied to the PWLL model in the continuum limit setting in Section 4.

220 **2.1. Solution decay parameter.** We introduce an adaptation of (2.2) that increases the
 221 decay rate of the corresponding solutions away from labeled points. Controlling this decay will
 222 prove to be crucial for ensuring that query points selected via our minimum norm acquisition
 223 function (Section 2.2) will explore the extent of the dataset prior to exploiting current classifier
 224 decision boundaries. Given $\tau \geq 0$, we consider solutions to the following variational problem

225 (2.4)
$$\min_{u: \mathcal{X} \rightarrow \mathbb{R}^d} \sum_{x_i, x_j \in \mathcal{X}} \gamma(x_i) \gamma(x_j) w_{ij} \|u(x_i) - u(x_j)\|_2^2 + \tau \sum_{x_i \in \mathcal{U}} \|u(x_i)\|_2^2$$

 226 subject to $u(x) = e_{y(x)}$ for $x \in \mathcal{L}$.

227 It is straightforward to see that for $\tau > 0$ the additional term in (2.4) encourages the solution
 228 u to have *smaller* values away from the labeled data, where the values are fixed. When $\tau = 0$,
 229 we recover (2.2). We will refer to this graph-based semi-supervised learning model as Poisson
 230 ReWeighted Laplace Learning with τ -Regularization (PWLL- τ).

231 To illustrate the role of the decay parameter, let us consider a simple one dimensional
 232 version of this problem in the continuum of the form

233
$$\min_u \int_a^b u'(x)^2 + \tau u(x)^2 dx,$$

234 where $[a, b]$ is the domain and the minimization would be restricted by some boundary conditions on u (i.e., on the labeled set). Minimizers of this problem satisfy the ordinary differential

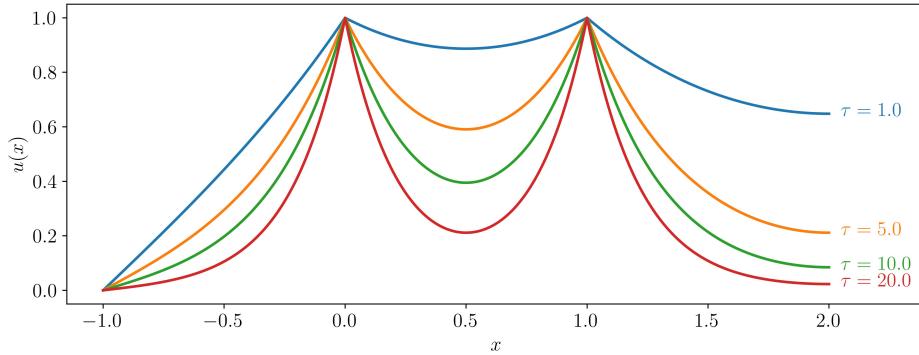


Figure 1. Plots of solutions to $\tau u - u'' = 0$ for varying values of τ and with different boundary conditions. The intervals $(-1, 0), (0, 1), (1, 2)$ are the domains of three different solutions with boundary conditions $u(-1) = 0, u(0) = 1, u(1) = 1$, and $u'(2) = 0$. For increasing τ , the solutions decay more rapidly away from the points $x = -1, 0, 1$. This qualitative behavior is critical for demonstrating that our active learning acquisition function selects explorative query points in Section 4.

equation (i.e., the Euler-Lagrange equation) $\tau u - u'' = 0$, which has two linearly independent solutions $e^{\pm\sqrt{\tau}x}$. Since the solution we are interested in is bounded, the exponentially growing one can be discarded, and we are left with exponential decay in the solutions with rate $\sqrt{\tau}$ away from the labeled set. In Figure 1, we plot a few example solutions for various values of τ and different boundary conditions to illustrate this exponential decay in one dimension. Thus, at least in this simple example, we can see how the introduction of the diagonal perturbation τ in PWLL leads to exponential decay of solutions, which is essential for the method to properly *explore* the dataset. We postpone developing this theory further until Section 4.

2.2. Minimum norm acquisition function. We now introduce the acquisition function that we propose to properly balance exploration and exploitation in graph-based active learning in the PWLL- τ model. We simply use the Euclidean norm of the output vector at each unlabeled point, $x \in \mathcal{U}$:

$$(2.5) \quad \mathcal{A}(x) = \|u(x)\|_2 = \sqrt{u_1^2(x) + u_2^2(x) + \dots + u_C^2(x)}.$$

Due to the solution decay resulting from the τ -regularization term in (2.4), unlabeled points that are far from all labeled points will have small Euclidean norm (ℓ^2 norm) for their corresponding output vector. In the low-label rate regime, this property encourages query points selected by (2.5) to be spread out over the extent of the dataset, until a sufficient number of points have been labeled to “cover” the dataset. After this has been achieved in the active learning process, the learned functions for (2.4) will have smaller norms in regions between labeled points of differing classes due to the rapid decay in solutions near the transition between classes. This described behavior reflects the desired properties for balancing exploration prior to exploitation in active learning. Through both numerical experiments and theoretical results, we demonstrate this acquisition function’s utility for this purpose.

The acquisition function (2.5) is a novel type of uncertainty sampling [60], wherein only the values of the learned function u at each active learning iteration are used to determine the

selection of query points. Note also that this acquisition function is *label adaptive* as opposed to *label agnostic*; that is, $\mathcal{A}(x)$ directly depends on the labelings of the currently labeled data, $\{y(x_j)\}_{x_j \in \mathcal{L}}$, since u does as well. Indeed, one may interpret the small Euclidean norm of the learned function at an unlabeled node, $\|u(x)\|_2$, to reflect uncertainty about the resulting inferred classification, $\hat{y}(x)$. Other uncertainty sampling methods, such as *smallest margin sampling* [60], also compute the uncertainty of the learned model at an unlabeled point via properties of the output vector $u(x) \in \mathbb{R}^C$. However, these criterion often either (1) only compare 2 entries of the vector to compute a measure of margin uncertainty or (2) normalize the output vector to lie on the simplex to be interpreted as class probabilities. In both cases, these measures of uncertainty in the classification of unlabeled points in unexplored regions of the dataset might not be as emphasized by the acquisition function compared to points that lie near the decision boundaries of the learned classifier. Our minimum norm acquisition function (2.5), however, is designed to prioritize the selection of query points in unexplored regions of the dataset which is properly reflected in the decay of the learned functions in the PWLL- τ model (2.4). In this sense, we are able to ensure exploration prior to exploitation in the active learning process using (2.5) in the PWLL- τ model.

Remark 2.1 (Choice of ℓ^2 norm). We briefly comment on the choice of ℓ^2 norm as the measure of uncertainty with the aid of an illustrative toy example. Consider the clustered dataset that is shown in Figure 2 (a), where we have distinguished the five different clusters with markers and colors. The assumed ground truth classification of the clusters is shown in panel (b), along with the initially labeled points plotted as red stars. Hence, with one initially labeled point in each class, we compute the PWLL- τ solution $u(x) = (u_1(x), u_2(x))^T \in \mathbb{R}^2$ for various values of $\tau \geq 0$ and plot the two components of $u_1(x), u_2(x)$ for each point in panels (c-e). The one-dimensional simplex is shown as a gray dotted line, and we see the effect of increasing $\tau > 0$ to “pull” points away from the simplex¹.

Since $u(x)$ values do not necessarily reside in the simplex for $\tau > 0$, we suggest that the ℓ^2 norm provides a useful measure of uncertainty that captures exploration. While some measures of uncertainty (e.g., entropy [60]) require the mapping of output values to the simplex, the ℓ^2 norm has no such requirement and consequently can differentiate between points lying between oppositely labeled points (e.g., cyan squares) and those residing in unexplored clusters (e.g., blue circles and orange x's). Further, once enough points have been labeled then values of $u(x)$ will lie relatively close to the simplex reflecting a transition from exploration to exploitation; the ℓ^2 norm values will then align with other traditional notions of uncertainty in active learning that are defined on the simplex *does*. In contrast, a vector norm such as the ℓ^1 norm does not distinguish between points along the simplex and therefore would not lead to this natural transition from exploration to exploitation.

Remark 2.2 (Default to exploitation). In our PWLL- τ graph-based classifier, points whose outputs $u(x)$ lie near the center of simplex reside in regions of the domain between labeled points of differing labels (e.g., the cyan cluster of Figure 2). Thus, a consequence of using the

¹Indeed when $\tau = 0$ the vector $u(x)$ is guaranteed to lie on the simplex due to the fact that the null space of the combinatorial (unnormalized) graph Laplacian matrix L for a connected graph is the span of constant vectors.

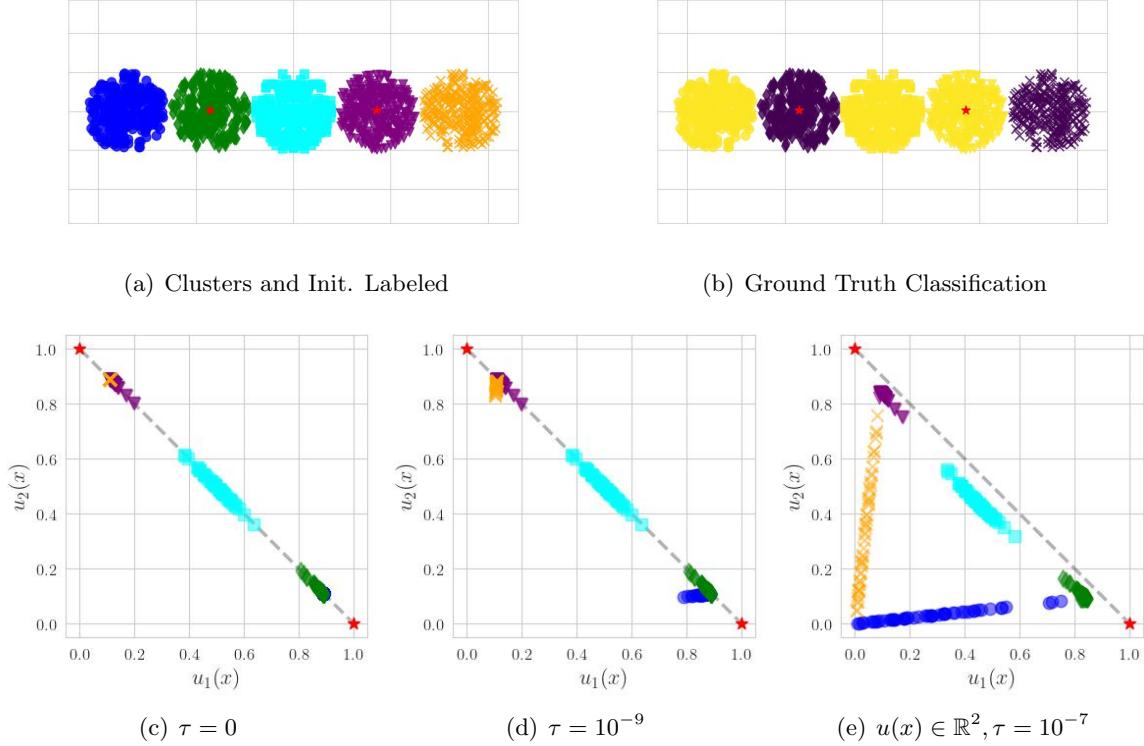


Figure 2. Demonstration of utility of ℓ^2 norm for measure of uncertainty in PWLL- τ model. Panel (a) shows clusters identified by different colors and markers, with initially labeled points shown as red stars. Panel (b) shows the ground truth classification structure, and panels (c-e) show the output values of the PWLL- τ function $u(x) \in \mathbb{R}^2$ as they relate to the simplex (shown in gray dotted line). As $\tau > 0$ increases, the effect is that $u(x)$ in the outer clusters (blue circles and orange x's) is smaller and the ℓ^2 norm captures this effect.

300 ℓ^2 norm to measure uncertainty reflects a “default to exploitation” since this favors selecting
 301 points whose output values lie closest to the center of the simplex. Our theoretical results in
 302 Section 4 focus accordingly on relating the value of $\tau > 0$ to the geometry of the dataset in
 303 order to guarantee cluster exploration when using this proposed acquisition function.

304 **Remark 2.3 (Decay Schedule for τ).** As we demonstrate through some toy experiments in
 305 Section 3.2, there is a benefit to decreasing the value of $\tau \geq 0$ as the active learning process
 306 progresses in order to more effectively transition from explorative to exploitative queries.
 307 While there are various ways to design this, we simply identify a constant $\mu \in (0, 1)$ so that
 308 the decreasing sequence of hyperparameter values $\tau_{n+1} = \mu\tau_n$ that satisfies $\tau_{2K} \leq \varepsilon$ with
 309 initial value $\tau_0 > 0$, where ε is chosen to be $\varepsilon = 10^{-9}$. For our experiments, we set K to be the
 310 number of clusters, which in the case of our tests is known a priori. In practice, this choice of
 311 K would be a user-defined choice to control the “aggressiveness” of the decay schedule of τ .

312 For $n \geq 2K$, we set $\tau_n = 0$. Thus, we calculate

313

$$\mu = \left(\frac{\varepsilon}{\tau_0} \right)^{\frac{1}{2K}} \in (0, 1)$$

314 which ensures a decaying sequence of τ values as desired. We note that an interesting line of
 315 inquiry for future research would be to investigate a more rigorous understanding of how to
 316 adaptively select $\tau \geq 0$ during the active learning process. We leave this question for future
 317 research and simply use the proposed decay schedule above.

318 In Table 1, we introduce the abbreviations for and other useful information pertaining to
 319 the uncertainty sampling acquisition functions that we will consider in the current work—
 320 smallest margin, minimum norm, and minimum norm with τ -decay uncertainty sampling.

Full Name	Abbreviation	$\mathcal{A}(x)$	Underlying Classifier
Smallest Margin Unc. Sampling	Unc. (SM)	$u_{c_1^*}(x) - u_{c_2^*}(x)$	PWLL
Minimum Norm Unc. Sampling	Unc. (Norm)	$\ u(x)\ _2$	PWLL- τ , fixed $\tau > 0$
Minimum Norm Unc. Sampling with τ -decay	Unc. (Norm, $\tau \rightarrow 0$)	$\ u(x)\ _2$	PWLL- τ , decay $\tau \rightarrow 0$

Table 1

Description of uncertainty sampling acquisition functions that will be compared throughout the experiments in the following sections. Unc. (SM) considers the difference between the largest and second largest entries of the output vector $u(x)$, denoted by c_1^* and c_2^* respectively.

321 **3. Results.** In this section, we present numerical examples to demonstrate our claim that
 322 our proposed Unc. (Norm) and Unc. (Norm $\tau \rightarrow 0$) acquisition functions in the PWLL- τ model
 323 (2.4) are effective at both exploration and exploitation. We begin in Section 3.2 with a set of
 324 toy examples in 2-dimensions to facilitate visualizing the choices of query points during the
 325 active learning process and highlight the efficacy of implementing the τ -decay in Unc. (Norm,
 326 $\tau \rightarrow 0$) for balancing exploration and exploitation. In Section 3.3, we recreate an experiment
 327 from [41] on the Isolet dataset [26] to demonstrate that our proposed Unc. (Norm, $\tau \rightarrow 0$)
 328 essentially corrects previously observed negative behavior of uncertainty sampling.

329 In Section 3.4, we perform active learning experiments on larger, more “real-world”
 330 datasets. We use the **MNIST** [48], **FASHIONMNIST** [71], and **EMNIST** [19] datasets,
 331 and we interpret the original ground-truth classes (e.g. digits 0-9 in **MNIST**) as *clusters* on
 332 which we impose a different classification structure by grouping many clusters into a single
 333 class. This creates an experimental setting that necessitates exploration of initially unlabeled
 334 “clusters” in order to achieve high overall accuracy. We include similar experiments in Sec-
 335 tion ?? of the Supplemental Material to verify the performance of the proposed method in
 336 the presence of disparate class and cluster sizes.

337 While most previous work in the active learning literature (both graph-based and neural
 338 network classifiers) demonstrates acquisition function performance with only accuracy plots,
 339 we suggest another useful quantity for comparing performances. In the larger experiments of
 340 Sections 3.4 and ??, we plot *the proportion of clusters that have been queried* as a function of

341 active learning iteration. These plots reflect how efficiently an acquisition function explores
 342 the clustering structure of the dataset, as captured by how quickly the proportionality curve
 343 increases toward 1.0. These cluster exploration plots are especially insightful for assessing
 344 performance in low label-rate active learning. An acquisition function that properly and
 345 consistently explores the clustering structure of the dataset will achieve an average cluster
 346 proportion of 1.0 faster than other acquisition functions and within a reasonable number of
 347 active learning queries.

348 **3.1. Comparison to other methods.** We comment here on a few notable methods in
 349 graph-based or geometry-inspired active learning that we include in some of our numerical
 350 comparisons: S^2 (Shortest-Shortest path) [21], LAND (Learning by Active Non-linear Diffu-
 351 sion) [55], and CAL (Cautious Active Learning) [18]. The S^2 algorithm by Dasarathy et al uses
 352 query points to bisect “shortest-shortest” paths in the graph between oppositely labeled points
 353 to recursively identify boundaries between clusters. While this method can efficiently sample
 354 query points along boundaries, S^2 essentially requires that initially labeled points belong to
 355 each of the respective clusters in the dataset. As such, it is admittedly at a disadvantage in
 356 a few of the experimental setups that we show herein. For example, the Isolet experiment
 357 3.3 initially begins with only a single labeled point to test the explorative capabilities of the
 358 respective methods; in this experiment, we do not include a comparison to S^2 as it is not
 359 designed for such a setting.

360 In the LAND algorithm, Murphy and Maggioni use diffusion distances from a random
 361 walk interpretation of a similarity graph to select diverse sets of query points that are located
 362 in dense regions of the graph. Adjusting a model hyperparameter in the diffusion distances
 363 can reveal hierarchical clustering structure in the dataset which can encourage query points to
 364 be chosen at different resolution levels of the clustering structure. In a similar vein, the CAL
 365 algorithm by Cloninger and Mhaskar [18] uses hierarchical clustering structure to guide the
 366 query set selection process. By constructing a highly localized similarity kernel via Hermite
 367 polynomials, query points are selected at various resolution levels. Both the LAND and CAL
 368 algorithms have been shown to be effective at selecting query points in pixel classification for
 369 hyperspectral imagery applications. We, however, found that the current implementations
 370 of these algorithms were unable to scale to our larger experiments². Hence, comparison to
 371 LAND and CAL are limited to the smaller experiments of Sections 3.2 and 3.3.

372 Furthermore, we suggest both the LAND and CAL methods may be more appropriately
 373 identified as “coreset” selection methods. Such methods leverage the geometry of the underly-
 374 ing dataset (e.g., the diffusion distances as captured by the similarity graph in LAND), but not
 375 the set of labels observed at labeled points during the active learning process. This is similar
 376 to other coresnet methods that have been presented in both coresnet and data summarization
 377 literature [54, 59, 67]. In contrast, our uncertainty-based criterion in this work combines both
 378 geometric information about the data as captured by the similarity graph structure and the
 379 observed labels at each labeled point via the output classification at each iteration. This
 380 makes our method more similar to the primary flavor of active learning methods.

²We adapted MATLAB implementations that were obtained from the respective authors for our experiments.

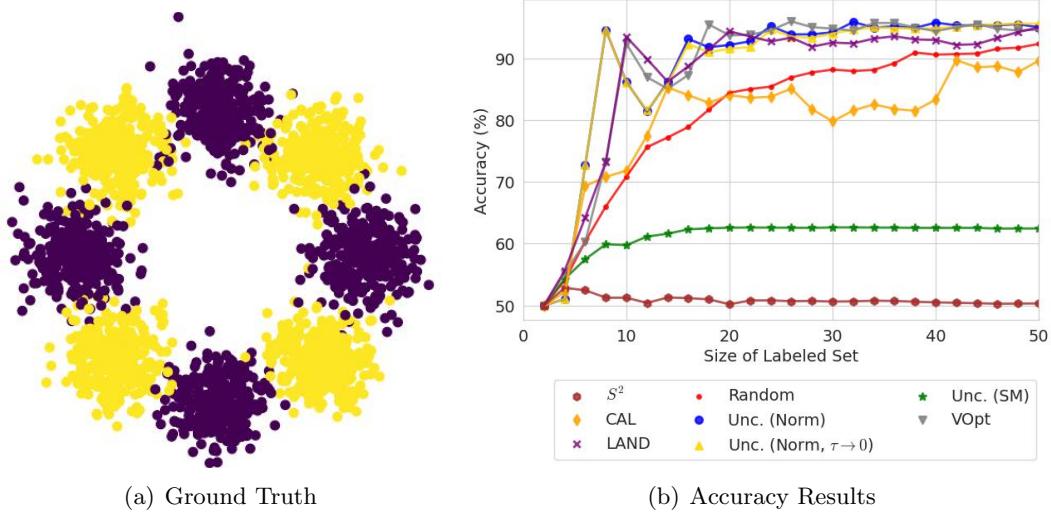


Figure 3. *Ground Truth* (a) and *Accuracy Results* (b) for **Blobs** experiment. Notice that Unc. (SM) achieves very poor overall accuracy. We show in Figure 4 that this is due to premature exploitation.

381 **3.2. Toy examples.** We first illustrate our claim regarding our minimum norm uncertainty
 382 sampling criterion for graph-based active learning with synthetic datasets that are directly
 383 visualizable (i.e., the data lies in only two dimensions). The first experiment—which we refer
 384 to as the **Blobs** experiment—illustrates how a non-zero value for τ in the initial phase of active
 385 learning is crucial for ensuring exploration of the dataset. The second experiment—which we
 386 refer to as the **Box** experiment—illustrates the need to decrease the value of τ to ensure the
 387 transition from exploration to exploitation. These experiments also allow us to directly observe
 388 the qualitative characteristics of the active learning query choices in uncertainty sampling.

389 **3.2.1. Blobs experiment.** The **Blobs** dataset is comprised of eight Gaussian clusters,
 390 each of equivalent size (300) and variance ($\sigma^2 = 0.17^2$), whose centers (i.e., means) lie evenly
 391 spaced apart on the unit circle. That is, each cluster Ω_i is defined by randomly sampling 300
 392 points from a Gaussian with mean $\mu_i = (\cos(\pi i/4), \sin(\pi i/4))^T \in \mathbb{R}^2$ and standard deviation
 393 $\sigma_i = \sigma = 0.17$. The classification structure of the clusters is then assigned in an alternating
 394 fashion, as shown in Figure 3(a). In each individual run of the experiment, one initially
 395 labeled point per *class* combine to be the starting labeled set, and then 100 active learning
 396 query points are selected sequentially via a specified acquisition function. Different acquisition
 397 functions then define different runs of the experiment.

398 For each acquisition function, we ran 10 experiments with different initially labeled points.
 399 The average accuracy at each iteration of an experiment is plotted in Figure 3(b). The main
 400 purpose of this experiment is to compare and contrast the characteristics of the query points
 401 selected by Unc. (SM), Unc. (Norm), and Unc. (Norm, $\tau \rightarrow 0$). For reference in these toy
 402 experiments, we include the results of using the VOpt [41] acquisition function as well as
 403 Random sampling (i.e., select $x_i^* \in \mathcal{U}$ with uniform probability over \mathcal{U} at each iteration).

404 The main observation from this experiment is how poorly Unc. (SM) performs, as it only

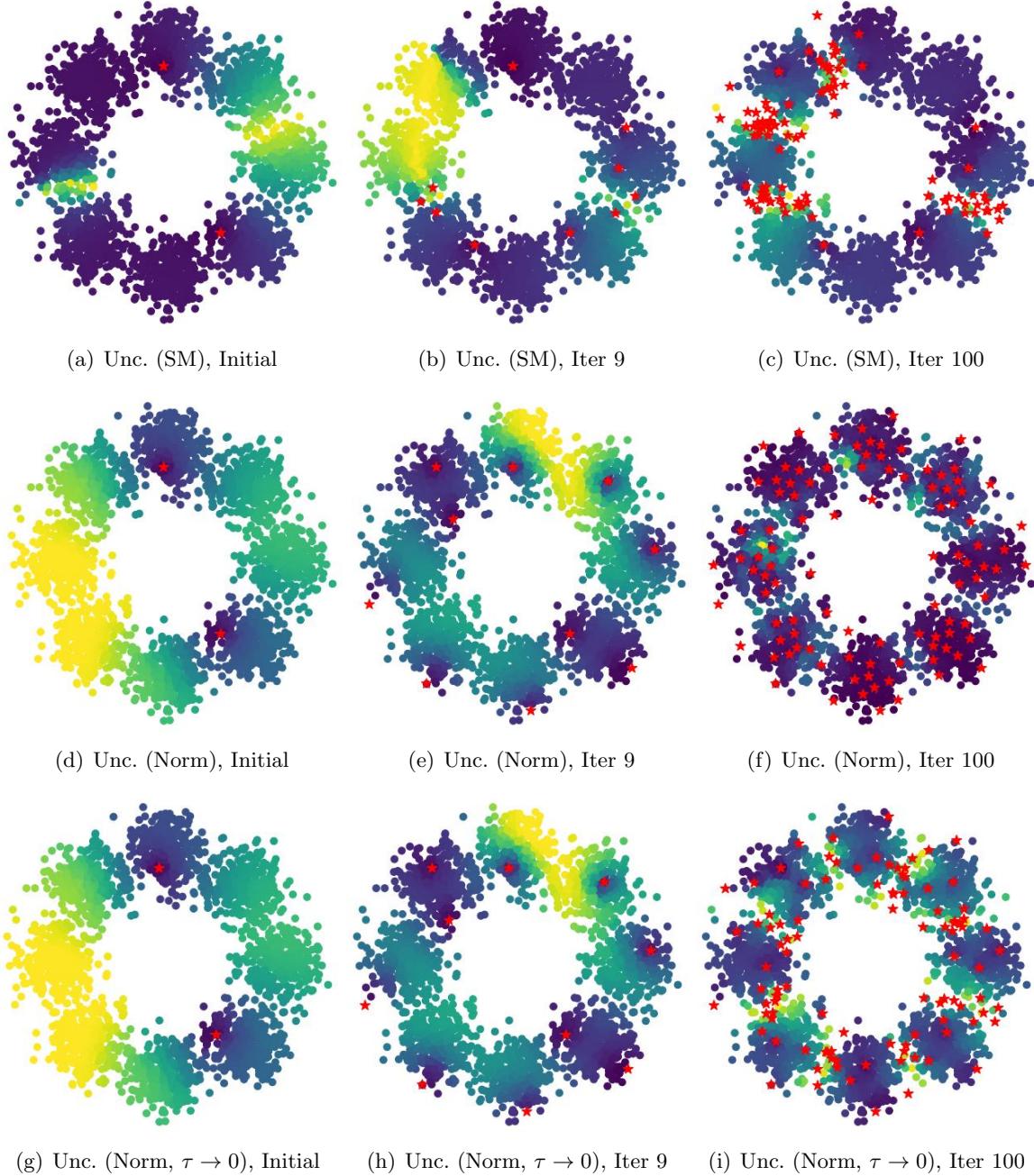


Figure 4. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, $\tau \rightarrow 0$) at different stages of the **Blobs** experiment. Labeled points are marked as red stars and brighter regions of the heatmap indicate higher acquisition function values.

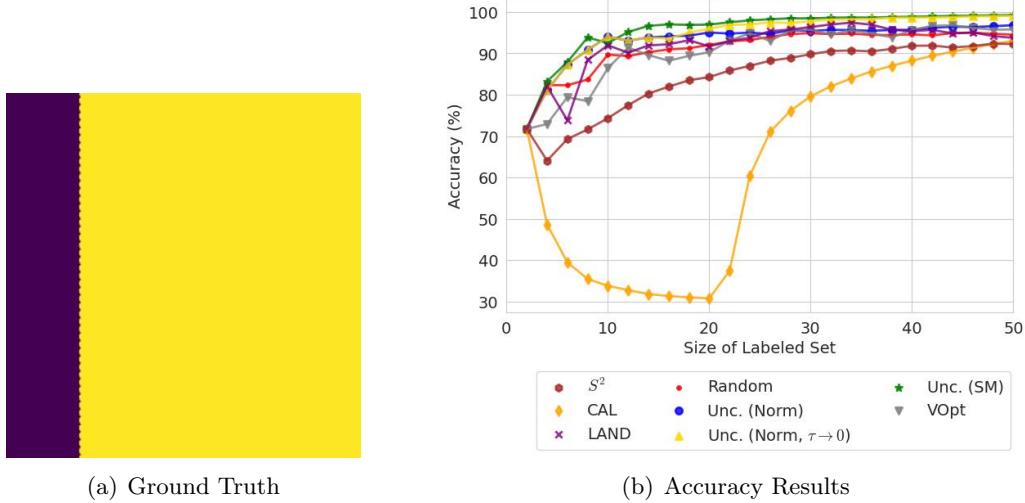
405 attains an overall accuracy of roughly 62% as the average over the trials. In Figure 4(a-c),
 406 we show one trial’s acquisition function values heatmap at three different stages of the active
 407 learning process using Unc. (SM). We observe that the queries have primarily focused on the
 408 boundaries between a few clusters, while missing other clusters completely. At each iteration,
 409 the heatmap of acquisition function values has only focused on the current classifier’s decision
 410 boundary which can lead to missing such clusters. In essence, we would qualify the behavior
 411 here as “premature exploitation”, prior to proper exploration of the dataset.

412 In contrast, Figures 4 (d-i) demonstrate how the “minimum norm” uncertainty acquisition
 413 functions properly explore the extent of the geometric clustering structure. Both have sampled
 414 from every cluster in the ring. It is instructive to further see though that Unc. (Norm)—which
 415 employs a fixed value of $\tau > 0$ at every iteration—has not sampled more frequently *between*
 416 clusters by the end of the trial. We may characterize this behavior as not transitioning to
 417 proper exploitation of cluster boundaries. On the other hand, in Figure 4(i), we see that
 418 by using this minimum norm uncertainty sampling *with decaying values of $\tau \rightarrow 0$* we more
 419 frequently sample at the proper cluster boundaries after having sampled from each cluster.

420 **Remark 3.1.** It is worth noting that, as an uncertainty sampling method that depends only
 421 on the current classifier’s predictions, our Unc. (Norm) acquisition function does not take into
 422 account the influence that labeling a currently unlabeled point will have on the prediction of
 423 other points. This is in contrast to other more computationally intensive acquisition functions
 424 that explicitly model the “influence” that a currently unlabeled point has on the classifier’s
 425 output predictions at other points (e.g., [41, 43, 44, 50, 51, 79]). As such, our acquisition function
 426 may select query points that are not always ideal early on in the active learning process.

427 Consider, for example, panels (e) and (h) of Figure 4, wherein the selected query points
 428 by our acquisition functions lie in the outermost regions of the bottom clusters. These query
 429 points could constitute outliers and therefore not be the most influential on the classification
 430 of the other points in the corresponding clusters. While this behavior could severely hurt the
 431 performance of various classifiers, we note that the utilization of unlabeled data in graph-based
 432 learning through a similarity graph that explicitly models clustering structure helps to alleviate
 433 the potentially negative effects of such query points. As a result, the important behavior for
 434 our acquisition function is to first query points that belong to the different clusters (i.e.,
 435 exploration) and then to query between oppositely labeled clusters (i.e., exploitation). Our
 436 empirical work suggests that the computational gains from using our inexpensive acquisition
 437 function are still meaningful despite the occasional selection of less influential query points.

438 **3.2.2. Box experiment.** The **Box** dataset is simply a 65×65 lattice of points on the unit
 439 square, with removing points that lie within a thin, vertical band centered at $x = 0.3$ which
 440 also defines the class boundary line (Figure 5). In contrast to the **Blobs** experiment, the
 441 **Box** experiment illustrates the need to transition from exploration to exploitation, and how
 442 this is accomplished by decreasing $\tau \rightarrow 0$. In the accuracy plot (Figure 5(b)), notice how the
 443 accuracy achieved by Unc. (Norm) levels off at a *lower* overall accuracy than both Unc. (SM)
 444 and Unc. (Norm $\tau \rightarrow 0$). Figure 6 demonstrates that this is due to “over exploration” of
 445 the dataset instead of transitioning to refining the decision boundary between classes. Active
 446 learning seeks to balance exploration versus exploitation while still being sample efficient,



(a) Ground Truth

(b) Accuracy Results

Figure 5. *Ground Truth (a) and Accuracy Results (b) for **Box** experiment. Notice that Unc. (Norm) achieves suboptimal overall accuracy. We show in Figure 6(f) that the distribution of query points later in the active learning process reflect a lack of transition to exploitation.*

447 making as few active learning queries as possible.

448 As shown in Figures 6 (a-f), both Unc. (SM) and Unc. ($\tau \rightarrow 0$) more efficiently
449 sample the decision boundary between the two classes in this **Box** dataset. Due to the very
450 simple structure of the dataset, purely exploiting decision boundary information—as done
451 by Unc. (SM)—is optimal. In contrast, Unc. ($\tau \rightarrow 0$) ensures to sparsely explore the
452 extent of the right side of the box *prior to* exploiting the decision boundary. This is due to the
453 decreasing value of τ over the iterations, and allows for a straightforward transition between
454 exploration and exploitation. We set the value of $K = 8$ for the τ -decay schedule so that by
455 8 active learning queries we have transitioned to exploitation.

456 **3.2.3. Overall observations.** From the toy experiments presented in Sections 3.2.1 and
457 3.2.2, we see that the minimum norm uncertainty sampling *with decaying values of τ* has
458 the desired behavior for a sample-efficient criterion that both explores and exploits during
459 the active learning process. Ensuring this behavior in uncertainty sampling is also desirable
460 because of the relatively light computational complexity that uncertainty sampling incurs. We
461 now demonstrate on more complicated, “real-world” datasets the effectiveness of minimum
462 norm uncertainty sampling in graph-based active learning.

463 **3.3. Isolet case study.** Our minimum norm uncertainty sampling in the PWLL- τ model
464 can overcome previously negative results that have characterized uncertainty sampling. In [41],
465 the authors introduced the Variance Optimization (i.e., VOpt) acquisition function and show-
466 cased this acquisition function on the Isolet spoken letter dataset³ from the UCI repository [26],
467 which contains 26 different classes. They compared against smallest margin uncertainty sam-
468 pling (Unc. (SM)) among other acquisition functions. Of particular interest to us is how

³Accessed via <https://archive.ics.uci.edu/ml/datasets/isolet>.

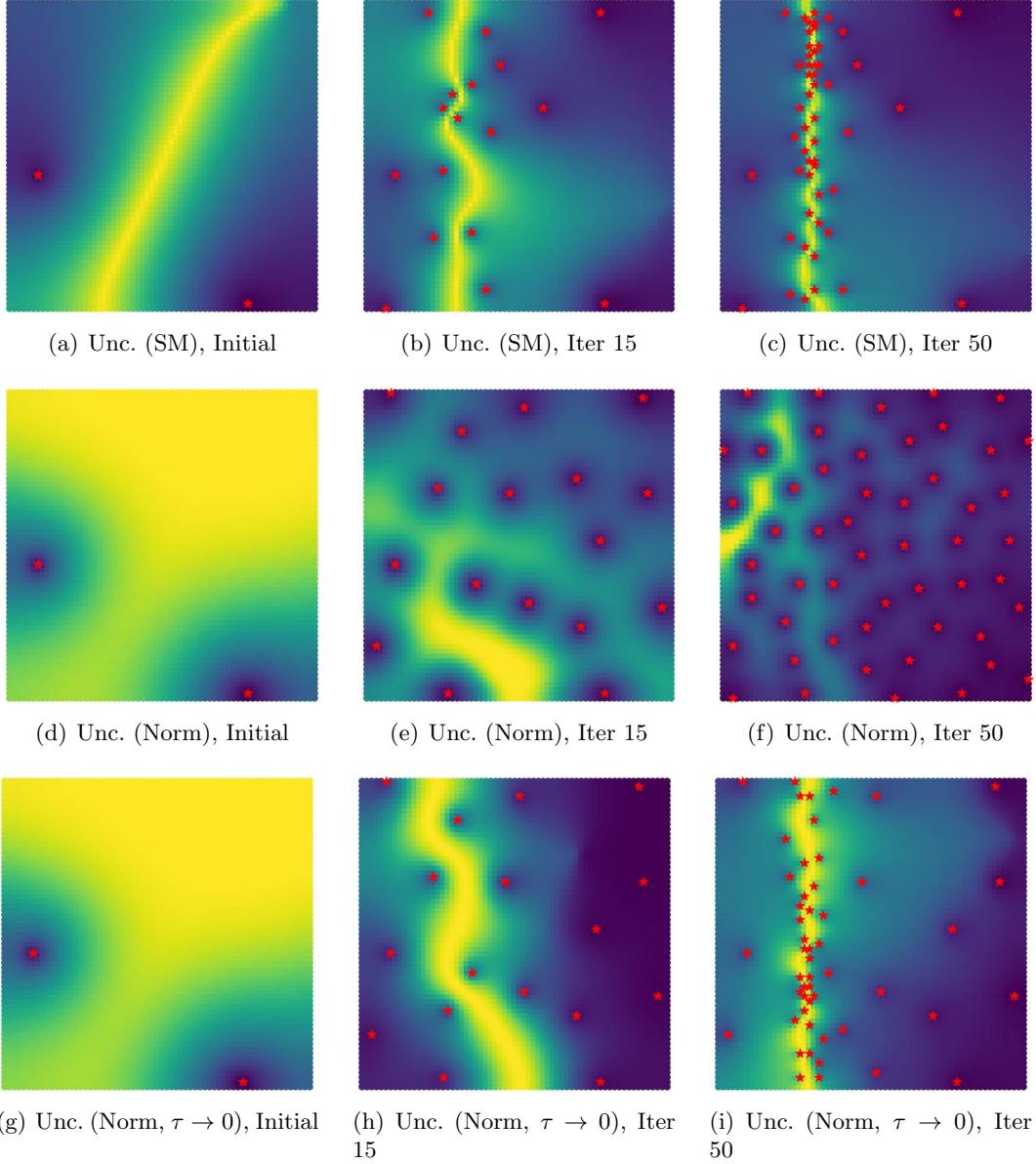


Figure 6. Acquisition Function Values for Unc. (SM), Unc. (Norm), and Unc. (Norm, $\tau \rightarrow 0$) at different stages of the **Box** experiment. Labeled points are marked as red stars and brighter regions of the heatmap indicate higher acquisition function values.

469 poorly Unc. (SM) performed on this task, resulting in significantly worse accuracies than even
 470 random sampling.⁴ In Supplemental Material Section ??, we demonstrate that similar—even
 471 superior—performance is attained on this task by simply using our minimum norm uncertainty
 472 sampling (Unc. (Norm)). This highlights that our proposed uncertainty sampling method is

⁴We refer the reader to original paper [41] for more details.

473 more appropriate for low-label rate active learning than previous uncertainty sampling methods
 474 which have been characterized as overly-exploitative in the low-label rate regime. See
 475 Section ?? in the Supplemental Material for further details.

476 **3.4. Larger datasets.** In this section, we present the results of active learning experiments
 477 for multiclass classification problems derived from the **MNIST** [48], **FASHIONMNIST** [71],
 478 and **EMNIST** datasets [19]. We construct similarity graphs for each of these datasets by
 479 first embedding the points via the use of variational autoencoders (VAE) [45, 46] that were
 480 previously trained⁵ in an unsupervised fashion, similar to [13].

481 Since a main crux of the present work is to ensure *both* exploration of clusters in a dataset
 482 and exploitation of cluster boundaries, we adapt the classification structure of the above
 483 datasets to require both. That is, we take the “true” class labelings $y_i \in \{0, 1, \dots, C\}$ (e.g.
 484 digits 0-9 for **MNIST**) and reassign them to one of $K < C$ classes by taking $y_i^{new} \equiv y_i \bmod K$;
 485 see Table 2 below.

Resulting Mod Class	0	1	2	3	4
MNIST	0,3,6,9	1,4,7	2,5,8	-	-
FASHIONMNIST	0,3,6,9	1,4,7	2,5,8	-	-
EMNIST	0,5, ..., 45	1,6, ..., 46	2,7, ..., 42	3,8, ..., 43	4,9, ..., 44

Table 2

Mapping of ground truth class label to mod K labeling for experiments of Section 3.4. Each ground truth class is interpreted as a different “cluster” and the resulting class structure for the experiments have multiple clusters per class. For **MNIST** and **FASHIONMNIST**, there are 10 ground truth classes and we take labels modulo $K = 3$. For **EMNIST**, there are 47 total ground truth classes and we take labels modulo $K = 5$.

486 For each trial of an acquisition function, we select one initially labeled point per “modulo”
 487 class; therefore, only a subset of “clusters” (i.e., the original true classes) has an initially la-
 488 beled point. In order to perform active learning successfully in these experiments, query points
 489 chosen by the acquisition function must sample from each cluster. In this way, we have created
 490 an experimental setup with commonly used machine learning datasets with potentially more
 491 complicated clustering structures wherein we test and compare the following acquisition func-
 492 tions: Uncertainty Sampling (SM), Unc. (Norm), Unc. (Norm, $\tau \rightarrow 0$), Random, VOpt [41]
 493 (see Remark 3.3), Σ -Opt [50] (also see Remark 3.3), and MCVOpt [52]. We perform 10 trials
 494 for each acquisition function, where each trial begins with a different initially labeled subset.
 495 To clarify, trials begin with only 3 labeled points in the **MNIST** and **FASHIONMNIST**
 496 experiments and with only 5 labeled points in the **EMNIST** experiments.

497 In the left panel of Figures 7-9, we show the accuracy performance of each acquisition
 498 function averaged over the 10 trials. The right panels of each of these figures display the
 499 average proportion of clusters that have been sampled by the acquisition functions at each

⁵The representations for **MNIST** and **FASHIONMNIST** are available in the GraphLearning package [12], while the code used to train the VAE for **EMNIST** is available in our Github repo https://github.com/millerk22/rwll_active_learning.

iteration of the active learning process. We refer to these plots as “Cluster Exploration” plots since they directly assess the explorative capabilities of the acquisition functions in question.

We observe that across these experiments, both Unc. (Norm) and Unc. (Norm, $\tau \rightarrow 0$) consistently achieve the best accuracy and cluster exploration results. It is somewhat surprising that without decaying τ , the Unc. (Norm) acquisition function seems to perform the best even after each cluster has been explored. The experiments in Section 3.2 suggest that the optimal performance in the exploitation phase of active learning would require taking $\tau \rightarrow 0$. We hypothesize that the clustering structure of relatively high-dimensional data—like these datasets—is much more complicated than our intuition would suggest from analyzing toy and other visualizable (i.e., 1D, 2D, or 3D) datasets. Regardless, we see that the minimum norm uncertainty acquisition function consistently outperforms other acquisition functions in these low-label rate active learning experiments.

Remark 3.2 (Computational cost of Unc. (Norm)). While some acquisition functions such as VOpt, Σ -Opt, and MCVOpt require the computation, storage, and update of large auxiliary variables (e.g., inverse of graph Laplacian matrix), our proposed Unc. (Norm) acquisition function only requires the PWLL- τ solution with the currently labeled data in \mathcal{L} , which we compute with the preconditioned conjugate gradient method. Indeed, one of the reasons that we refer to our acquisition function as an uncertainty sampling criterion is that like previous uncertainty sampling methods [60], our acquisition function is simply a function of the current classifier. In this sense, Unc. (Norm) is “as cheap” as one could hope for in an acquisition function that depends on the labels of currently labeled data through the outputs of the underlying classifier. We have included Table 3 to compare computational costs among comparable methods; the S^2 [21], LAND [55], and CAL [18] are not included since they do not follow the same common framework of selecting $x^* = \operatorname{argmin}_{x \in \mathcal{U}} \mathcal{A}(x)$ at each iteration. The computational cost of solving the graph Laplace equation for training the model is omitted since it is shared by all algorithms (and is the only substantial cost with Unc. (Norm)).

Abbr. Name	Aux. Overhead	Cost Per Unlabeled	Aux. Update Cost
Unc. (Norm)	-	$\mathcal{O}(C)$	-
VOpt	$\mathcal{O}(N^3)$	$\mathcal{O}(N)$	$\mathcal{O}(N^2)$
Σ -Opt	$\mathcal{O}(N^3)$	$\mathcal{O}(N)$	$\mathcal{O}(N^2)$
MCVOpt	$\mathcal{O}(N^2r)$	$\mathcal{O}(r + C)$	$\mathcal{O}(Nr)$

Table 3

Computational comparison between acquisition functions, where $N = |\mathcal{X}|$, C is the number of classes, and $r \ll N$ is the number of eigenvalues computed in the auxiliary matrix used in MCVOpt [53].

Remark 3.3. Due to the large nature of these datasets, computing the original VOpt and Σ -Opt criteria are inefficient (and often intractable) since this requires computing the inverse of a perturbed graph Laplacian matrix; this inverse is dense and burdensome to store in memory. We initially used an approximation that utilizes a subset of eigenvalues and eigenvectors of the graph Laplacian, similar to what was done in [51]. While this performed relatively well on the **EMNIST** experiment, we noticed significantly poor results on the **MNIST** and

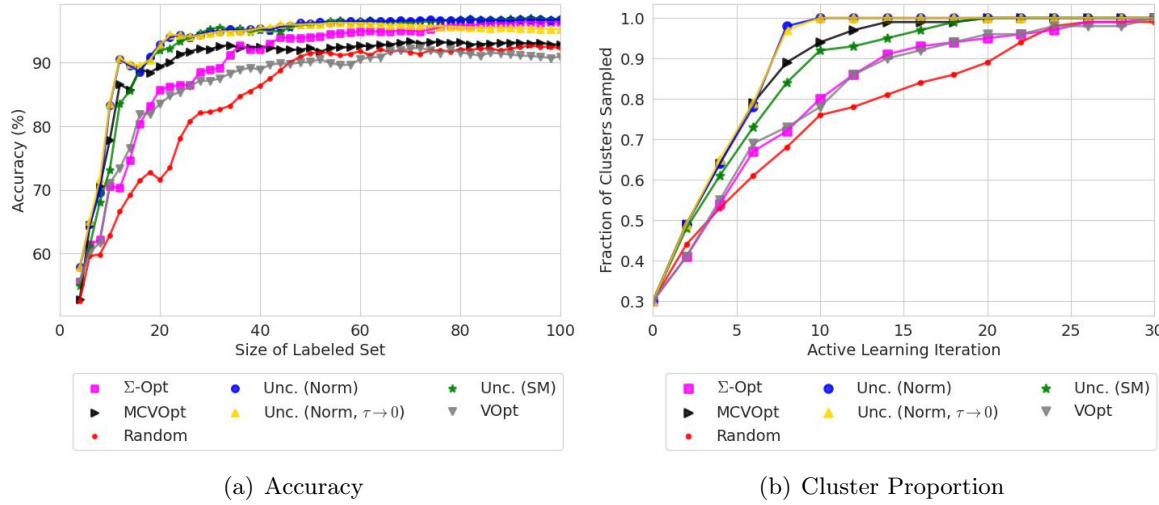


Figure 7. Accuracy Results (a) and Cluster Proportion (b) plots for **MNIST** dataset.

532 **FASHIONMNIST** experiments seemingly due to the spectral truncation with a resulting
 533 oversampling of a single cluster during the active learning process.

534 As an alternative to the spectral truncation, we performed a “full” calculation of these
 535 acquisition functions on a small, random subset of 500 unlabeled points at each active learning
 536 iteration. This performed significantly better than the spectral truncation in the **MNIST**
 537 and **FASHIONMNIST** experiments, and so we report these spectral truncation results in
 538 this section. In Figures 7 and 8 we refer to this simply by the original names, VOpt and Σ -
 539 Opt, respectively. The small choice of unlabeled points on which to evaluate the acquisition
 540 function is due to the burdensome computation needed at each step that scales with the size
 541 of this subset; at this reported choice of 500 points each active learning iteration already
 542 takes roughly 6 minutes to complete for the **MNIST** dataset. Due to its even greater size,
 543 we do not compute this “full” calculation on the random subset for the **EMNIST** dataset,
 544 but remark that the performance of the approximate (spectral truncation) VOpt and Σ -Opt
 545 already achieve comparable accuracy to the other reported methods in this dataset. We denote
 546 the spectral truncation with the suffix “(ST)” in Figure 9.

547 **4. Continuum analysis of active learning.** We now study our active learning approach
 548 rigorously through its continuum limit on an open, bounded set $\Omega \subset \mathbb{R}^d$ on which our data-
 549 points are sampled from. As was shown in [17], the continuum limit of (2.2) is the family of
 550 singularly weighted elliptic equations

$$551 \quad (4.1) \quad \begin{cases} \tau u_i - \rho^{-1} \operatorname{div} (\gamma \rho^2 \nabla u_i) = 0, & \text{in } \Omega \setminus \mathcal{L} \\ u_i = 1, & \text{on } \mathcal{L}_i \\ u_i = 0, & \text{on } \mathcal{L} \setminus \mathcal{L}_i, \end{cases}$$

552 where $\rho(x) \geq \rho_{\min} > 0$ is the density of the data points, γ is the singular reweighting,
 553 described in more detail below, $\mathcal{L}_i \subset \Omega$ are the labeled points in the i^{th} class, and $\mathcal{L} = \cup_{i=1}^C \mathcal{L}_i$

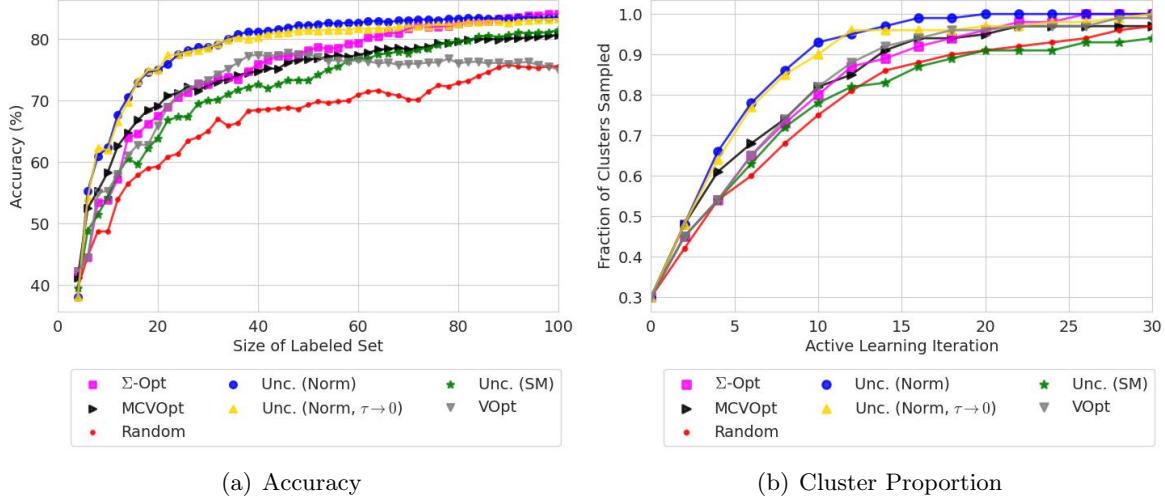


Figure 8. Accuracy Results (a) and Cluster Proportion (b) plots for **FASHIONMNIST** dataset.

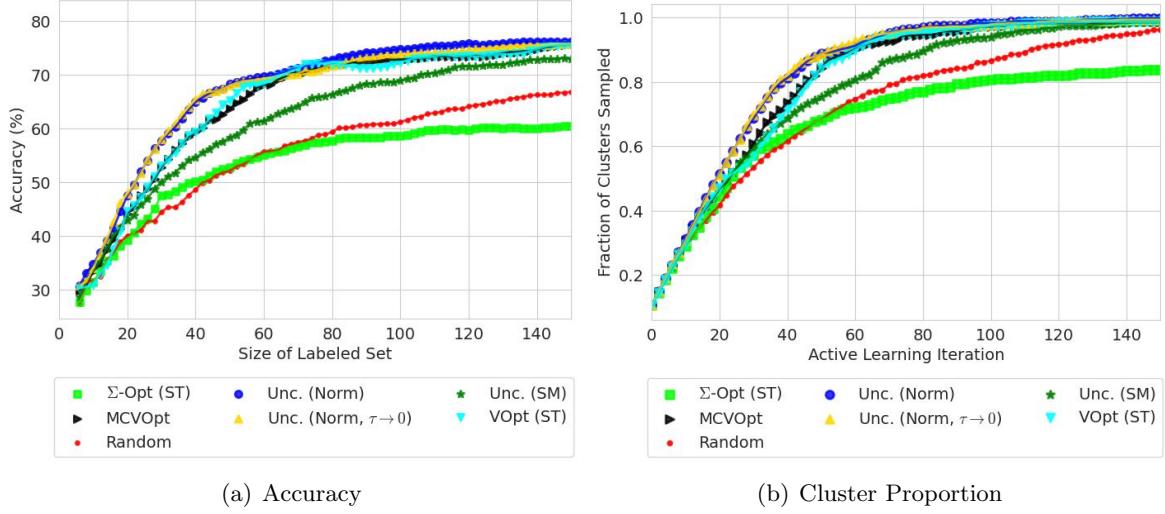


Figure 9. Accuracy Results (a) and Cluster Proportion (b) plots for **EMNIST** dataset.

554 the locations of all labeled points. The notation ∇ refers to the gradient vector and div is
 555 the divergence. We assume that the density $\rho(x) : \Omega \rightarrow (0, \infty)$ is Lipschitz continuous. The
 556 solutions u_i also satisfy the homogeneous Neumann boundary condition $\nabla u \cdot \nu = 0$ on $\partial\Omega$,
 557 where ν is the outward unit normal vector to Ω , but we omit writing this as it is not directly
 558 used in any of our arguments. We assume the sets \mathcal{L}_i are all finite collections of points. The
 559 classification decision for any point $x \notin \mathcal{L}$ is given by

560
$$\ell(x) = \underset{1 \leq i \leq C}{\text{argmax}} u_i(x).$$

561 The continuum version of the uncertainty sampling acquisition function is then given by

562 (4.2)
$$\mathcal{A}(x) = \sqrt{u_1(x)^2 + u_2(x)^2 + \cdots + u_C(x)^2}.$$

563 As alluded to in Remark 2.2, the aim of this section is to use continuum PDE analysis to
 564 rigorously establish exploration guarantees in light of the exploitation default of uncertainty
 565 norm sampling (4.2), and illustrate how it depends on the choice of the decay parameter τ .

566 **4.1. Illustrative 1D continuum analysis.** We proceed first with an analysis of the continuum
 567 equations (4.1) in the one-dimensional setting, where the equations are ordinary differential
 568 equations (ODEs). The conclusions are insightful for the subsequent generalization to
 569 higher dimensions in Section 4.

570 Consider an interval $\Omega = (x_{\min}, x_{\max}) \subset \mathbb{R}$ with density $0 < \rho_{\min} \leq \rho(x) \leq \rho_{\max} < +\infty$.
 571 Assume a binary classification structure on this dataset, and further assume we have been
 572 given at least one labeled point per class. Let the pairs $\{(x_i, y_i)\}_{i=1}^{\ell} \subset \Omega \times \{1, 2\}$ be the
 573 input-class values for the currently labeled points ordered such that $x_i < x_{i+1}$. For ease in
 574 our discussion, we also assume that $x_1 = x_{\min}$ and $x_{\ell} = x_{\max}$ (Figure 10).

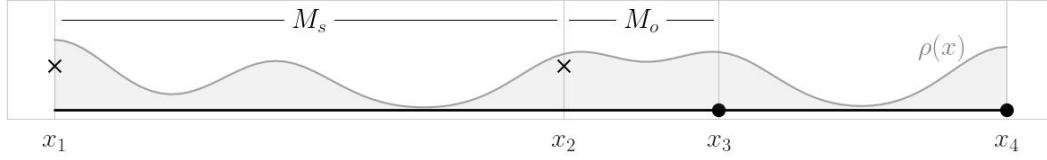


Figure 10. Visualization of the 1D continuum example setup. The density $\rho(x)$ is plotted in gray, while the labeled points x_1, x_2, x_3, x_4 are plotted where the corresponding label is denoted by \times or a solid dot. M_s marks the length between two similarly labeled points, while M_o marks the length between two oppositely labeled points.

575 Solving the PWLL- τ equation⁶ (4.1) on Ω can be broken into subproblems defined on the
 576 intervals $(x_1, x_2), \dots, (x_{\ell-1}, x_{\ell}) \subset \mathbb{R}$, with boundary conditions determined by the correspond-
 577 ing labels of the endpoints x_i . There are two separate kinds of subproblems to be solved, as
 578 determined by these boundary conditions; namely, (1) the *oppositely labeled problem* (when
 579 $y_i \neq y_{i+1}$) and (2) the *similarly labeled problem* (when $y_i = y_{i+1}$). Recall from (4.1) that the
 580 boundary conditions for solutions u_1, u_2 at the labeled points correspond to the entries of the
 581 one-hot encoding of the labels $y_i \in \{1, 2\}$. For example, if $y_i = 2$ then $u_1(x_i) = 0, u_2(x_i) = 1$
 582 will be the respective Dirichlet boundary conditions at the labeled point $x_i \in \mathcal{L}$.

583 Given the current labeled data, the active learning process selects a new query point
 584 $x^* = \operatorname{argmin}_{x \in \Omega} \mathcal{A}(x)$ via the minimum norm acquisition function (4.2). We can quantify
 585 the explorative behavior of our acquisition function (4.2) by comparing the minimizers of
 586 $\mathcal{A}(x)$ in (i) an interval of length M_o between *oppositely labeled points* and (ii) an interval of
 587 length M_s between *similarly labeled points*. In this simple one-dimensional problem, we may
 588 characterize “explorative” query points as residing in relatively *large* intervals between labeled
 589 points, regardless of the labels of the endpoints. Conversely, we characterize “exploitative”
 590 query points as residing between *oppositely labeled points that are close together*. In Figure
 591 10, exploration would correspond to sampling in (x_1, x_2) or (x_3, x_4) , while exploitation would
 592 correspond to sampling in (x_2, x_3) .

⁶Without the reweighting (4.4) due to the simple geometry in one dimension.

593 The acquisition function (4.2) is directly a function of the magnitudes of the solutions to
 594 (4.1) with the corresponding boundary conditions; the decay of these solutions depends on
 595 the value of $\tau > 0$ (Figure 1). As such, we identify how τ must be chosen in order to produce
 596 small acquisition function values between similarly labeled points in relatively large regions
 597 as compared to large values in relatively small regions between oppositely labeled points.

598 In order to rigorously quantify the choice of $\tau > 0$, we give the mild assumptions that
 599 the density $\rho(x)$ (i) is sufficiently smooth, (ii) is *symmetric about the midpoint of the interval*
 600 between similarly labeled points, and (iii) obeys *a bounded derivative condition at the ends*
 601 *of the interval* between oppositely labeled points. Under these mild assumptions, we give the
 602 following simplified guarantee on exploration, which we prove rigorously in Section ??.

603 **Proposition 4.1 (Simplified version of Proposition ??).** *Suppose that the density $\rho(x)$ sat-
 604 isfies the above assumptions. Let the interval length M_o be relatively small compared to M_s ;
 605 i.e., $M_o = \beta M_s$ for some $\beta \leq \frac{1}{4}$. Then we are ensured that*

$$606 \quad \min_x \mathcal{A}_s(x) < \min_x \mathcal{A}_o(x)$$

607 as long as $\tau > 0$ and M_s jointly satisfy the following inequality

$$608 \quad (4.3) \quad M_s^2 (C_0(\rho_s)\sqrt{\tau} - C_1(\rho_o)\beta^2\tau) \geq 8 \ln 2,$$

609 where $C_0(\rho_s)$ and $C_1(\rho_o)$ are constants that depend on the density ρ on the similarly and
 610 oppositely labeled intervals, respectively denoted ρ_s and ρ_o .

611 As long as the similarly labeled region has significantly large regions where the density
 612 $\rho(x)$ is sufficiently small compared to the oppositely labeled region, then we can be assured
 613 that choosing $\tau > 0$ large enough will result in query points between similarly labeled points
 614 that are relatively far from each other (as quantified by $\beta > 0$). We refer the reader to ?? in
 615 the Supplemental Material for further discussion of this result.

616 **4.2. Exploration bounds in arbitrary dimensions.** In this section, we show how larger val-
 617 ues for τ lead to explorative behaviour in higher dimensional problems. In particular, we show
 618 that the acquisition function $\mathcal{A}(x)$ is small on unexplored clusters, and large on sufficiently
 619 well-explored clusters. This ensures that adequate exploration occurs before exploitation.

620 Let us remark that the reweighting term γ must be sufficiently singular near the labels \mathcal{L}
 621 to ensure that (4.1) is well-posed. We recall from [17] that we require that γ has the form

$$622 \quad (4.4) \quad \gamma(x) = 1 + \text{dist}(x, \mathcal{L})^{-\alpha},$$

623 where $\alpha > d - 2$. In practice, we choose γ as the solution of the graph Poisson equation
 624 (2.3) introduced earlier. To make the analysis in this section tractable, we assume here
 625 that γ satisfies (4.4), as was assumed in [17]. We emphasize here that without the singular
 626 reweighting γ , the equation (4.1) is ill-posed when the label set \mathcal{L} is finite, and as such, there
 627 is no continuum version of active learning for us to study.

628 For an open set $A \subset \mathbb{R}^d$ and $r > 0$ we define the nonlocal boundary $\partial_r A$ as

$$629 \quad \partial_r A = \overline{(A + B_r)} \setminus A.$$

630 The nonlocal boundary is essentially a tube of radius r surrounding the set A . The usual
 631 boundary is obtained by taking $r = 0$, so $\partial A = \partial_0 A$.

632 Our first result concerns upper bounds on the acquisition function in an unexplored cluster.

633 **Theorem 4.2.** *Let $\tau \geq 0$, $s, R > 0$ and $\mathcal{D} \subset \Omega$ with $\partial_2 s \mathcal{D} \subset \Omega$ and $\mathcal{L} \cap (\mathcal{D} + B_{R+2s}) = \emptyset$.*

634 *Let $\delta = \max_{\partial_2 s \mathcal{D}} \rho$. Then the following hold.*

635 (i) *If*

$$636 \quad (4.5) \quad \sqrt{\frac{\tau}{\delta}} \geq 3 \left(\frac{d}{s} + 2 \|\nabla \log \rho\|_{L^\infty(\partial_s \mathcal{D})} \right) (1 + R^{-\alpha}) + 3R^{-\alpha-1}$$

637 *then we have that*

$$638 \quad (4.6) \quad \sup_{\mathcal{D}} \mathcal{A} \leq \sqrt{C} \exp \left(-\frac{s}{4} \sqrt{\frac{\tau}{\delta}} \right).$$

639 (ii) *Suppose that $B_r(x) \subset \mathcal{D}$ and let $M = \sup_{B_r(x)} \rho$. If (4.5) holds and*

$$640 \quad (4.7) \quad \sqrt{\frac{\tau}{M}} \geq 3 \left(\frac{d}{r} + 2 \|\nabla \log \rho\|_{L^\infty(B_r(x_0))} \right) (1 + R^{-\alpha}) + 3R^{-\alpha-1}$$

641 *then we have that*

$$642 \quad (4.8) \quad \sup_{B_{\frac{r}{2}}(x)} \mathcal{A} \leq \sqrt{C} \exp \left(-\frac{1}{4} \left(s \sqrt{\frac{\tau}{\delta}} + r \sqrt{\frac{\tau}{M}} \right) \right).$$

643 **Remark 4.3.** Theorem 4.2(i) shows that the acquisition function \mathcal{A} is exponentially small
 644 on an unexplored cluster \mathcal{D} provided there is a thin surrounding set $\partial_s \mathcal{D}$ of the cluster on which
 645 the density is small (less than δ), relatively smooth (so $\nabla \log \rho$ is not too large), and relatively
 646 far away from other labeled data points (so that R is not too small). All of these smallness
 647 assumptions are relative to the size of the ratio τ/δ as expressed in (4.5). In particular,
 648 regardless of the size of the right-hand side in (4.5), the condition can always be satisfied if
 649 the ratio τ/δ is sufficiently large, so we can view (4.5) as a condition on how small δ must be
 650 (i.e., how isolated \mathcal{D} must be from other clusters).

651 Theorem 4.2(ii) improves the result in part (i) when \mathcal{D} is a large cluster, in the sense that
 652 a large ball $B_r(x)$ fits inside \mathcal{D} . In this case, we expect the density ρ to be large within the
 653 cluster, so M will possibly be large relative to τ , and the estimate (4.8) is only a significant
 654 improvement to (4.6) when r is also large, that is, the cluster \mathcal{D} has a large diameter. Hence, we
 655 can view (4.7) as a condition on how large r and R must be, and how small $\|\nabla \log \rho\|_{L^\infty(B_r(x_0))}$
 656 must be, in order to obtain further exponential decay of the acquisition function within \mathcal{D} .
 657 In particular, regardless of how small τ/M is, the condition (4.7) will hold for large enough
 658 r, R and small enough $\|\nabla \log \rho\|_{L^\infty(B_r(x_0))}$ (i.e., the density is roughly constant within a ball
 659 in the cluster). We also mention that in 4.2(ii) we do not require δ to be small; that is, we do
 660 not require \mathcal{D} to be a cluster that is separated from the rest of the dataset in order to have
 661 exponential decay of the acquisition function. Thus, 4.2(ii) applies to datasets that do not
 662 admit a clusterability structure.

663 However, we caution the reader that Theorem 4.2(ii) does not imply that our method
 664 will always choose the largest unexplored cluster to label next. The estimates in the theorem
 665 are upper bounds; they are quite likely loose and corresponding lower bounds (on unexplored
 666 clusters) do not exist. The question of which cluster will be sampled next depends also on
 667 the geometric arrangement of the clusters relative to the existing labeled data points, which
 668 is not addressed by the theorem. That is, a small cluster located very far away from existing
 669 labeled data points may be sampled prior to a large cluster that is much closer to the labeled
 670 data. In many situations, this is a completely reasonable action to take, and we would argue
 671 that it is not always desirable to choose the largest unexplored cluster next.

672 To ensure that new clusters are explored, we also need to lower bound the acquisition
 673 function near the existing labeled set. To do this, we need to introduce a model for the
 674 clusterability of the dataset. Let $\Omega_1, \Omega_2, \dots, \Omega_K \subset \Omega$ be disjoint sets representing each of the
 675 K clusters in the dataset. There are generally more clusters than classes ($K \geq C$) and often
 676 $K \gg C$. We assume there is a positive separation between clusters, measured by the quantity
 677

$$678 \quad (4.9) \quad \mathcal{S} := \min_{i \neq j} \text{dist}(\Omega_i, \Omega_j).$$

679 The definition of \mathcal{S} implies that $(\Omega_i + B_{\mathcal{S}}) \cap \Omega_j = \emptyset$ for all $i \neq j$. We define the union of the
 680 clusters as $\Omega' = \bigcup_{i=1}^K \Omega_i$. We note that we do not have $\Omega' = \Omega$, and it is important that there is
 681 room in the background $\Omega \setminus \Omega'$, which provides a separation between clusters. The background
 682 $\Omega \setminus \Omega'$ may have low density (though we do not assume this below), and can consist of outliers
 683 or data points that have characteristics of multiple classes and may be hard to classify.

684 **Theorem 4.4.** *Let $\tau \geq 0$ and $\alpha > d - 2$. Let $r > 0$ be small enough so that $r \leq \frac{1}{4}\mathcal{S}$,*

$$685 \quad (4.10) \quad \tau r^d \leq \frac{1}{2^{d-1}} (\alpha + 2 - d)^2 \inf_{\Omega'} \rho,$$

686 and

$$687 \quad (4.11) \quad 4 \|\nabla \log \rho\|_{L^\infty(\Omega')} (1 + 2^\alpha r^\alpha) r + \alpha 2^\alpha r^\alpha \leq \frac{1}{4} (\alpha + 2 - d).$$

688 Assume that $\mathcal{L} + B_{2r} \subset \Omega'$. Then we have

$$689 \quad (4.12) \quad \inf_{\mathcal{L} + B_r} \mathcal{A} \geq 1 - 2^{-\frac{1}{2}(\alpha+2-d)}.$$

690 We now combine Theorems 4.2 and 4.4 to obtain a sample complexity result for the
 691 exploration performance of our algorithm. We need to introduce some notation for this. For
 692 $\mathcal{D} \subset \Omega$ we define $\mathcal{D}_\varepsilon = \{x \in \mathcal{D} : B_\varepsilon(x) \subset \mathcal{D}\}$. We define an ε -packing of Ω_i as a disjoint union
 693 of ε -balls that are centered at points in Ω_i . The ε -packing number of Ω_i is defined as

$$694 \quad M(\Omega_i, \varepsilon) = \max \{m : \text{there exists an } \varepsilon\text{-packing of } \Omega_i \text{ with } m \text{ balls.}\}.$$

695 We can now state our result on sample complexity.

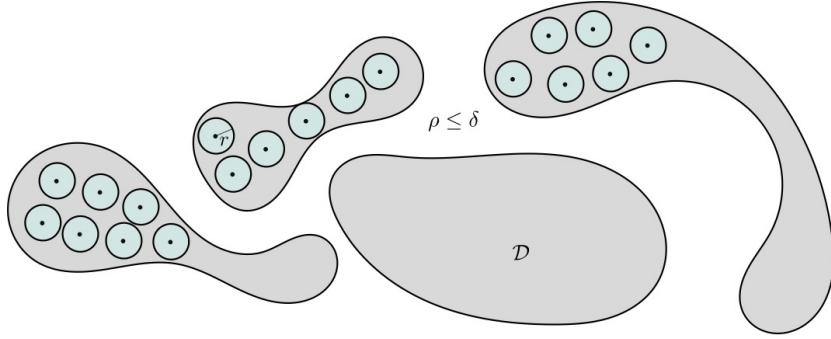


Figure 11. Illustration of the implications of Theorems 4.2 and 4.4, and the discussion in Remark 4.6. The gray regions are the 4 clusters of high density in the dataset, and the density is small $\rho \leq \delta$ between clusters. The current labeled set are the points at the centers of the blue balls. Theorems 4.2 and 4.4 guarantee that the next labeled point cannot lie in any of the blue balls, which correspond to the dilated label set $\mathcal{L} + B_r$. Once the dilated labels cover the existing clusters, the algorithm is guaranteed to select a point from the unexplored cluster \mathcal{D} . The number of labeled points selected from a given cluster during exploration is bounded by its $\frac{r}{2}$ -packing number, as explained in Remark 4.6.

696 **Theorem 4.5 (Sample Complexity).** Let $\alpha > d - 2$. Let $R = s = \frac{1}{4}\mathcal{S}$ in Theorem 4.2 and
 697 choose τ to ensure (4.5) holds with $\mathcal{D} = \Omega_i + B_s$ for every i , where

$$698 \quad \delta = \max_{\Omega \setminus (\Omega' + B_s)} \rho.$$

699 Choose $r > 0$ to satisfy the conditions in Theorem 4.4 and assume that

$$700 \quad (4.13) \quad \sqrt{C} \exp\left(-\frac{\mathcal{S}}{16} \sqrt{\frac{\tau}{\delta}}\right) \leq 1 - 2^{-\frac{1}{2}(\alpha+2-d)}.$$

701 If the next active learning point is chosen sequentially to minimize the acquisition function
 702 \mathcal{A} over Ω'_r then the algorithm will choose at most $M(\Omega_i, \frac{r}{2})$ points from Ω_i before all other
 703 clusters in $\Omega' \setminus \Omega_i$ have been sampled at least once. In particular, the algorithm will sample
 704 from all clusters within the first $\sum_{i=1}^K M(\Omega_i, \frac{r}{2})$ samples.

705 **Remark 4.6.** Theorem 4.5 shows that the number of samples required to explore all clusters in the dataset is $O(K)$, where the constant depends on the geometry and clusterability properties of the dataset (i.e., the packing numbers of the clusters). Thus, the method is very efficient at exploring the dataset in the early stages of active learning when τ is large. We can compare this to random sampling, which is also guaranteed to eventually explore all clusters, but takes in expectation $O(K \log(K))$ samples to do so (i.e., the coupon collector problem). Thus, our method improves on random sampling by a $\log(K)$ factor. We can see this improvement over random sampling and other existing methods in our experimental results. For example, on the **MNIST** dataset, Figure 7 shows that our algorithm explores all clusters after only 10 active learning iterations, at which point random sampling has explored less than 80% of the clusters (random sampling does not get close to full exploration until 30 iterations). On **FASHIONMNIST** (see Figure 8) we explore all clusters by 20 iterations,

717 at which point random sampling has explored around 90% of clusters. Similar results are
 718 observed on the **EMNIST** dataset in Figure 9.

719 In the idealized case of a dataset comprised of disconnected clusters (i.e., the background
 720 density between clusters Ω_i is $\delta = 0$), our theory would imply that K samples would ensure
 721 the exploration of all clusters, regardless of the size of clusters. While this would prove
 722 to be a further improvement over naive random sampling in the case of very disparately
 723 sized clusters, we note that the exploration of clusters would not be unique to our proposed
 724 acquisition function in practice since the identification of clusters would be immediate from
 725 the connected components of the similarity graph.

726 *Remark 4.7.* We note that the choices of the parameters r, s, R and τ are all dependent
 727 on the domain, the clusterability assumption, and the density, but are independent of the
 728 choices of labeled points \mathcal{L}_i . We also mention that there is an assumption made in Theorem
 729 4.5 that there are no labeled points selected near the background region $\Omega \setminus \Omega'$. Indeed, if such
 730 outlying data points are selected as labeled points, then our results do not hold. In practice,
 731 one can perform sampling proportional to a density estimation, or simply remove outliers, to
 732 avoid such an issue. We discuss how this can be done in Supplemental Material Section ??,
 733 and we have performed experiments with this. We have found that our experimental results
 734 are similar with and without outlier removal. We accordingly see this as an extra step that
 735 one has the option of performing in practice in order to maximally align the algorithm with
 736 the theory, but we do not see it as a necessary step in practice.

737 *Remark 4.8.* We also mention that there are certain features of the PWLL model that are
 738 used in the theoretical results in this section; namely, the continuum limit PDE is well-posed
 739 with arbitrarily few labels, and it satisfies a maximum (or comparison) principle, which is the
 740 main tool in our proofs. The p -Laplace models (see [10, 28, 64]) also satisfy these conditions
 741 when $p > d$ where d is the intrinsic dimension of the ambient space (or underlying manifold),
 742 and we fully expect that some results analogous to those in this section would hold for the
 743 p -Laplacian. We leave such investigations to future work and simply note here that solving the
 744 p -Laplace equation on a graph is far more computationally complex than the linear equation
 745 that constitutes PWLL. Thus, p -Laplace learning is not ideal for use in active learning, where
 746 the model is constantly re-evaluated throughout the active learning process.

747 *Remark 4.9.* In similar fashion to Remark 4.8, the theoretical tools we utilize for proving
 748 exploration guarantees of the PWLL model do not readily apply to methods like VOpt [41]
 749 and Σ Opt [50] due to the lack of a well-defined continuum limit of the (non-reweighted)
 750 Laplace learning model. The theoretical work for those acquisition functions presented in [50]
 751 focused on guarantees of greedy optimization of submodular set functions over finite sets,
 752 which can reasonably be assumed to imply exploration of the dataset in practice. However,
 753 as of the writing of this paper, the authors are not aware of explicit theoretical guarantees for
 754 exploration in active learning similar to our work or previous works in active learning [18, 44,
 755 55]. Furthermore, our maximum principle arguments are tailored to the simple and efficient-
 756 to-compute acquisition function (Unc. Norm) that is a function of the semi-supervised classifier
 757 at each active learning iteration; in contrast, the VOpt and Σ Opt acquisition functions are
 758 computationally expensive and are derived from the underlying differential operator, not the

759 semi-supervised classifier, at each iteration. Potential future work could investigate how a
 760 reweighting of the differential operator (as done in the PWLL model) may allow for exploration
 761 guarantees for the VOpt and Σ Opt acquisition functions.

762 **5. Conclusion.** We have demonstrated that uncertainty sampling is sufficient for explo-
 763 ration in graph-based active learning by using the norm of the output node function of the
 764 PWLL- τ model as an acquisition function. We provide rigorous mathematical guarantees on
 765 the explorative behavior of the proposed acquisition function. This is made possible by the
 766 well-posedness of the corresponding continuum limit PDE of the PWLL- τ model. Our analysis
 767 elucidates how the choice of hyperparameter $\tau > 0$ directly influences these guarantees; in the
 768 one dimensional case this effect is most clearly illustrated. In addition, we provide numerical
 769 experiments that further illustrate the effect of both our acquisition function and the hyper-
 770 parameter τ on the sequence of active learning query points. Other numerical experiments
 771 confirm our theoretical guarantees and demonstrate favorable performance in terms of both
 772 accuracy and cluster exploration.

773 **REFERENCES**

- 774 [1] M.-F. BALCAN, A. BEYGELZIMER, AND J. LANGFORD, *Agnostic active learning*, J. of Computer and
 775 System Sciences, 75 (2009), pp. 78–89, <https://doi.org/10.1016/j.jcss.2008.07.003>.
- 776 [2] M.-F. BALCAN, A. BRODER, AND T. ZHANG, *Margin based active learning*, in International Conference
 777 on Computational Learning Theory, vol. 4539, Springer Berlin Heidelberg, 2007, pp. 35–50, https://doi.org/10.1007/978-3-540-72927-3_5.
- 778 [3] M. BELKIN, I. MATVEEVA, AND P. NIYOGI, *Regularization and semi-supervised learning on large graphs*,
 779 in Learning Theory: 17th Annual Conference on Learning Theory, COLT 2004, Banff, Canada, July
 780 1–4, 2004. Proceedings 17, Springer, 2004, pp. 624–638.
- 781 [4] M. BELKIN AND P. NIYOGI, *Laplacian eigenmaps for dimensionality reduction and data representation*,
 782 Neural computation, 15 (2003), pp. 1373–1396.
- 783 [5] M. BELKIN AND P. NIYOGI, *Semi-supervised learning on Riemannian manifolds*, Machine learning, 56
 784 (2004), pp. 209–239.
- 785 [6] Y. BENGIO, O. DELALLEAU, AND N. LE ROUX, *Label Propagation and Quadratic Criterion*, MIT
 786 Press, semi-supervised learning ed., January 2006, pp. 193–216, <https://www.microsoft.com/en-us/research/publication/label-propagation-and-quadratic-criterion/>.
- 787 [7] A. L. BERTOZZI AND A. FLENNER, *Diffuse interface models on graphs for classification of high dimensional
 788 data*, SIAM Review, (2016), <https://doi.org/10.1137/16M1070426>.
- 789 [8] A. L. BERTOZZI AND E. MERKURJEV, *Graph-based optimization approaches for machine learning, un-
 790 certainty quantification and networks*, in Handbook of Numerical Analysis, vol. 20, Elsevier, 2019,
 791 pp. 503–531.
- 792 [9] H. CAI, V. W. ZHENG, AND K. C.-C. CHANG, *Active learning for graph embedding*, preprint arXiv,
 793 (2017), <https://arxiv.org/abs/1705.05085>.
- 794 [10] J. CALDER, *The game theoretic p -Laplacian and semi-supervised learning with few labels*, Nonlinearity,
 795 32 (2018), p. 301.
- 796 [11] J. CALDER, *Consistency of Lipschitz learning with infinite unlabeled data and finite labeled data*, SIAM
 797 J. on Mathematics of Data Science, 1 (2019), pp. 780–812, <https://doi.org/10.1137/18m1199241>.
- 798 [12] J. CALDER, *GraphLearning Python package*, Jan. 2022, <https://doi.org/10.5281/zenodo.5850940>.
- 799 [13] J. CALDER, B. COOK, M. THORPE, AND D. SLEPČEV, *Poisson learning: Graph-based semi-supervised
 800 learning at very low label rates*, in Proceedings of the 37th International Conference on Machine
 801 Learning, Proceedings of Machine Learning Research, Nov. 2020, pp. 1306–1316.
- 802 [14] J. CALDER, B. COOK, M. THORPE, D. SLEPČEV, Y. ZHANG, AND S. KE, *Graph-based semi-supervised
 803 learning with Poisson equations*, In preparation, (2022).

806 [15] J. CALDER AND N. GARCÍA TRILLOS, *Improved spectral convergence rates for graph Laplacians on ε -*
 807 *graphs and k -NN graphs*, Applied and Computational Harmonic Analysis, 60 (2022), pp. 123–175,
 808 <https://doi.org/10.1016/j.acha.2022.02.004>.

809 [16] J. CALDER, D. SLEPČEV, AND M. THORPE, *Rates of convergence for Laplacian semi-supervised learning*
 810 *with low labeling rates*, preprint arXiv, (2020), <http://arxiv.org/abs/2006.02765>.

811 [17] J. CALDER AND D. SLEPČEV, *Properly-weighted graph Laplacian for semi-supervised learning*, Applied
 812 Mathematics and Optimization: Special Issue on Optimization in Data Science, 82 (2020), pp. 1111–
 813 1159, <https://doi.org/10.1007/s00245-019-09637-3>.

814 [18] A. CLONINGER AND H. N. MHASKAR, *Cautious active clustering*, Applied and Computational Harmonic
 815 Analysis, 54 (2021), pp. 44–74, <https://doi.org/10.1016/j.acha.2021.02.002>.

816 [19] G. COHEN, S. AFSHAR, J. TAPSON, AND A. VAN SCHAIK, *EMNIST: An extension of MNIST to hand-
 817 written letters*, 2017, <http://arxiv.org/abs/1702.05373>.

818 [20] R. R. COIFMAN AND S. LAFON, *Diffusion maps*, Applied and computational harmonic analysis, 21 (2006),
 819 pp. 5–30.

820 [21] G. DASARATHY, R. NOWAK, AND X. ZHU, *S2: An efficient graph based active learning algorithm with
 821 application to nonparametric classification*, in Proceedings of The 28th Conference on Learning Theory,
 822 P. Grünwald, E. Hazan, and S. Kale, eds., vol. 40 of Proceedings of Machine Learning Research,
 823 Paris, France, 2015, pp. 503–522.

824 [22] S. DASGUPTA, *Coarse sample complexity bounds for active learning*, in Advances in Neural Information
 825 Processing Systems, vol. 18, MIT Press, 2006, pp. 235–242.

826 [23] S. DASGUPTA, *Two faces of active learning*, Theoretical Computer Science, 412 (2011), pp. 1767–1781,
 827 <https://doi.org/10.1016/j.tcs.2010.12.054>, <https://doi.org/10.1016/j.tcs.2010.12.054>.

828 [24] S. DASGUPTA AND D. HSU, *Hierarchical sampling for active learning*, in Proceedings of the 25th Interna-
 829 tional Conference on Machine Learning, Helsinki, Finland, July 2008, Association for Computing
 830 Machinery, pp. 208–215, <https://doi.org/10.1145/1390156.1390183>.

831 [25] D. L. DONOHO AND C. GRIMES, *Hessian eigenmaps: Locally linear embedding techniques for high-
 832 dimensional data*, Proceedings of the National Academy of Sciences, 100 (2003), pp. 5591–5596.

833 [26] D. DUA AND C. GRAFF, *UCI machine learning repository*, 2017, <http://archive.ics.uci.edu/ml>.

834 [27] M. M. DUNLOP, D. SLEPČEV, A. M. STUART, AND M. THORPE, *Large data and zero noise limits of
 835 graph-based semi-supervised learning algorithms*, Applied and Computational Harmonic Analysis, 49
 836 (2020), pp. 655–697.

837 [28] A. EL ALAOUI, X. CHENG, A. RAMDAS, M. J. WAINWRIGHT, AND M. I. JORDAN, *Asymptotic behavior
 838 of ℓ_p -based Laplacian regularization in semi-supervised learning*, in Conference on Learning Theory,
 839 PMLR, 2016, pp. 879–906.

840 [29] M. FLORES, J. CALDER, AND G. LERMAN, *Analysis and algorithms for ℓ_p -based semi-supervised learning
 841 on graphs*, Applied and Computational Harmonic Analysis, 60 (2022), pp. 77–122.

842 [30] Y. GAL, R. ISLAM, AND Z. GHAHRAMANI, *Deep Bayesian active learning with image data*, in Proceedings
 843 of the 34th International Conference on Machine Learning, Sydney, NSW, Australia, 2017, Journal
 844 of Machine Learning Research, pp. 1183–1192.

845 [31] L. GAO, H. YANG, C. ZHOU, J. WU, S. PAN, AND Y. HU, *Active discriminative network repres-
 846 entation learning*, in Proceedings of the Twenty-Seventh International Joint Conference on Artificial
 847 Intelligence, IJCAI-18, International Joint Conferences on Artificial Intelligence Organization, 2018,
 848 pp. 2142–2148, <https://doi.org/10.24963/ijcai.2018/296>.

849 [32] N. GARCÍA TRILLOS, M. GERLACH, M. HEIN, AND D. SLEPČEV, *Error estimates for spectral convergence
 850 of the graph Laplacian on random geometric graphs toward the Laplace–Beltrami operator*, Foundations
 851 of Computational Mathematics, 20 (2020), pp. 827–887.

852 [33] J. HAM, D. LEE, AND L. SAUL, *Semisupervised alignment of manifolds*, in International Workshop on
 853 Artificial Intelligence and Statistics, PMLR, 2005, pp. 120–127.

854 [34] S. HANNEKE, *A bound on the label complexity of agnostic active learning*, in Proceedings of the 24th
 855 International Conference on Machine Learning, New York, NY, USA, 2007, Association for Computing
 856 Machinery, pp. 353–360, <https://doi.org/10.1145/1273496.1273541>.

857 [35] S. HANNEKE, *Theory of disagreement-based active learning*, Foundations and Trends® in Machine Learn-
 858 ing, 7 (2014), pp. 131–309, <https://doi.org/10.1561/2200000037>.

859 [36] S. HANNEKE AND L. YANG, *Minimax analysis of active learning*, Journal of Machine Learning Research,

860 16 (2015), pp. 3487–3602, <http://jmlr.org/papers/v16/hanneke15a.html>.

861 [37] Y. HE, W. LIANG, D. ZHAO, H.-Y. ZHOU, W. GE, Y. YU, AND W. ZHANG, *Attribute surrogates learning*
862 *and spectral tokens pooling in transformers for few-shot learning*, in 2022 IEEE/CVF Conference on
863 Computer Vision and Pattern Recognition (CVPR), 2022, pp. 9109–9119, <https://doi.org/10.1109/CVPR52688.2022.00891>.

864 [38] M. HEIN, J.-Y. AUDIBERT, AND U. V. LUXBURG, *Graph Laplacians and their convergence on random*
865 *neighborhood graphs.*, Journal of Machine Learning Research, 8 (2007).

866 [39] M. HEIN, J.-Y. AUDIBERT, AND U. VON LUXBURG, *From graphs to manifolds-weak and strong pointwise*
867 *consistency of graph laplacians.*, in COLT, vol. 3559, Springer, 2005, pp. 470–485.

868 [40] S. HU, Z. XIONG, M. QU, X. YUAN, M.-A. CÔTÉ, Z. LIU, AND J. TANG, *Graph policy network*
869 *for transferable active learning on graphs*, in Advances in Neural Information Processing Systems,
870 H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc.,
871 2020, pp. 10174–10185.

872 [41] M. JI AND J. HAN, *A variance minimization criterion to active learning on graphs*, in Artificial Intelligence
873 and Statistics, Mar. 2012, pp. 556–564.

874 [42] H. JIANG AND M. GUPTA, *Minimum-margin active learning*, preprint arXiv, (2019), <https://arxiv.org/abs/1906.00025>.

875 [43] K.-S. JUN AND R. NOWAK, *Graph-based active learning: A new look at expected error minimization*, in
876 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Dec. 2016, pp. 1325–
877 1329, <https://doi.org/10.1109/GlobalSIP.2016.7906056>.

878 [44] M. KARZAND AND R. D. NOWAK, *Maximin active learning in overparameterized model classes*, IEEE
879 Journal on Selected Areas in Information Theory, 1 (2020), pp. 167–177, <https://doi.org/10.1109/JSAIT.2020.2991518>.

880 [45] D. P. KINGMA AND M. WELLING, *Auto-encoding variational Bayes*, preprint arXiv, (2013), <https://arxiv.org/abs/1312.6114>.

881 [46] D. P. KINGMA AND M. WELLING, *An introduction to variational autoencoders*, Foundations and Trends®
882 in Machine Learning, 12 (2019), pp. 307–392, <https://doi.org/10.1561/2200000056>. Publisher: Now
883 Publishers, Inc.

884 [47] D. KUSHNIR AND L. VENTURI, *Diffusion-based deep active learning*, preprint arXiv, (2020), <https://arxiv.org/abs/2003.10339>.

885 [48] Y. LECUN AND C. CORTES, *MNIST handwritten digit database*, (2010), <http://yann.lecun.com/exdb/mnist/>.

886 [49] W.-Y. LEE, L.-C. HSIEH, G.-L. WU, AND W. HSU, *Graph-based semi-supervised learning with multi-*
887 *modality propagation for large-scale image datasets*, Journal of visual communication and image
888 representation, 24 (2013), pp. 295–302.

889 [50] Y. MA, R. GARNETT, AND J. SCHNEIDER, *Σ -optimality for active learning on Gaussian random fields*,
890 in Advances in Neural Information Processing Systems 26, C. J. C. Burges, L. Bottou, M. Welling,
891 Z. Ghahramani, and K. Q. Weinberger, eds., Curran Associates, Inc., 2013, pp. 2751–2759.

892 [51] K. MILLER AND A. L. BERTOZZI, *Model-change active learning in graph-based semi-supervised learning*,
893 preprint arXiv, (2021), <http://arxiv.org/abs/2110.07739>.

894 [52] K. MILLER, H. LI, AND A. L. BERTOZZI, *Efficient graph-based active learning with probit likelihood via*
895 *Gaussian approximations*, in ICML Workshop on Experimental Design and Active Learning, July
896 2020, <http://arxiv.org/abs/2007.11126>.

897 [53] K. MILLER, J. MAURO, J. SETIADI, X. BACA, Z. SHI, J. CALDER, AND A. BERTOZZI, *Graph-based active*
898 *learning for semi-supervised classification of sar data*, in Proceedings of Society of Photo-Optical
899 Instrumentation Engineers (SPIE) 2022 Conference on Defense + Commercial Sensing, SPIE, 2022.

900 [54] B. MIRZASOLEIMAN, *Big Data Summarization Using Submodular Functions*, PhD thesis, ETH Zurich,
901 2017.

902 [55] J. M. MURPHY AND M. MAGGIONI, *Unsupervised clustering and active learning of hyperspectral images*
903 *with nonlinear diffusion*, IEEE Transactions on Geoscience and Remote Sensing, 57 (2019), pp. 1829–
904 1845, <https://doi.org/10.1109/TGRS.2018.2869723>.

905 [56] B. NADLER, N. SREBRO, AND X. ZHOU, *Semi-supervised learning with the graph Laplacian: The limit of*
906 *infinite unlabelled data*, in Proceedings of the 22nd International Conference on Neural Information
907 Processing Systems, NIPS'09, Red Hook, NY, USA, 2009, Curran Associates Inc., p. 1330–1338.

914 [57] Y.-L. QIAO, C. X. SHI, C. WANG, H. LI, M. HABERLAND, X. LUO, A. M. STUART, AND A. L.
 915 BERTOZZI, *Uncertainty quantification for semi-supervised multi-class classification in image processing*
 916 *and ego-motion analysis of body-worn videos*, Image Processing: Algorithms and Systems, (2019),
 917 <https://doi.org/10.2352/issn.2470-1173.2019.11.ipas-264>.

918 [58] P. SELLARS, A. I. AVILES-RIVERO, AND C.-B. SCHÖNLIEB, *Laplacenet: A hybrid graph-energy neural*
 919 *network for deep semisupervised classification*, IEEE Transactions on Neural Networks and Learning
 920 *Systems*, (2022), pp. 1–13, <https://doi.org/10.1109/TNNLS.2022.3203315>.

921 [59] O. SENER AND S. SAVARESE, *Active learning for convolutional neural networks: A core-set approach*,
 922 preprint arXiv, (2018), <http://arxiv.org/abs/1708.00489>.

923 [60] B. SETTLES, *Active Learning*, vol. 6, Morgan & Claypool Publishers LLC, June 2012, <https://doi.org/10.2200/s00429ed1v01y201207aim018>.

925 [61] Z. SHI, S. OSHER, AND W. ZHU, *Weighted nonlocal Laplacian on interpolation from sparse data*, Journal
 926 of Scientific Computing, 73 (2017), pp. 1164–1177.

927 [62] C. SHUI, F. ZHOU, C. GAGNÉ, AND B. WANG, *Deep active learning: Unified and principled method for*
 928 *query and training*, preprint arXiv, (2020), <http://arxiv.org/abs/1911.09162>.

929 [63] O. SIMÉONI, M. BUDNIK, Y. AVRITHIS, AND G. GRAVIER, *Rethinking deep active learning: Using unlabeled*
 930 *data at model training*, in The 25th International Conference on Pattern Recognition (ICPR),
 931 2021, <https://doi.org/10.1109/ICPR48806.2021.9412716>.

932 [64] D. SLEPCEV AND M. THORPE, *Analysis of p -Laplacian regularization in semisupervised learning*, SIAM
 933 *Journal on Mathematical Analysis*, 51 (2019), pp. 2085–2120.

934 [65] K. SOHN, D. BERTHELOT, N. CARLINI, Z. ZHANG, H. ZHANG, C. A. RAFFEL, E. D. CUBUK, A. KU-
 935 RAKIN, AND C.-L. LI, *FixMatch: Simplifying semi-supervised learning with consistency and confi-*
 936 *dence*, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell,
 937 M. Balcan, and H. Lin, eds., vol. 33, Curran Associates, Inc., 2020, pp. 596–608.

938 [66] S. TONG AND D. KOLLER, *Support vector machine active learning with applications to text classification*,
 939 *Journal of Machine Learning Research*, 2 (2001), pp. 45–66.

940 [67] S. VAHIDIAN, B. MIRZASOLEIMAN, AND A. CLONINGER, *Coresets for estimating means and mean square*
 941 *error with limited greedy samples*, in Proceedings of the 36th Conference on Uncertainty in Artificial
 942 *Intelligence (UAI)*, Proceedings of Machine Learning Research, Aug. 2020, pp. 350–359.

943 [68] U. VON LUXBURG, *A tutorial on spectral clustering*, *Statistics and Computing*, 17 (2007), pp. 395–
 944 416, <https://doi.org/10.1007/s11222-007-9033-z> (ac-
 945 cessed 2020-10-28).

946 [69] B. WANG, Z. TU, AND J. K. TSOTSOS, *Dynamic label propagation for semi-supervised multi-class multi-*
 947 *label classification*, in Proceedings of the IEEE international conference on computer vision, 2013,
 948 pp. 425–432.

949 [70] M. WELLING AND T. N. KIPF, *Semi-supervised classification with graph convolutional networks*, in J.
 950 *International Conference on Learning Representations (ICLR 2017)*, 2016.

951 [71] H. XIAO, K. RASUL, AND R. VOLLGRAF, *Fashion-mnist: a novel image dataset for benchmarking machine*
 952 *learning algorithms*, 2017, <http://arxiv.org/abs/1708.07747>.

953 [72] N. ZHANG, L. LI, X. CHEN, S. DENG, Z. BI, C. TAN, F. HUANG, AND H. CHEN, *Differentiable prompt*
 954 *makes pre-trained language models better few-shot learners*, in International Conference on Learning
 955 *Representations*, 2022, <https://openreview.net/forum?id=ek9a0qIafW>.

956 [73] Y. ZHANG, H. TONG, Y. XIA, Y. ZHU, Y. CHI, AND L. YING, *Batch active learning with graph neural*
 957 *networks via multi-agent deep reinforcement learning*, vol. 36, Jun. 2022, pp. 9118–9126, <https://doi.org/10.1609/aaai.v36i8.20897>.

958 [74] M. ZHENG, S. YOU, L. HUANG, F. WANG, C. QIAN, AND C. XU, *SimMatch: Semi-supervised learning*
 959 *with similarity matching*, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recog-
 960 *nition (CVPR)*, 06 2022, pp. 14451–14461, <https://doi.org/10.1109/CVPR52688.2022.01407>.

961 [75] J. ZHOU, G. CUI, S. HU, Z. ZHANG, C. YANG, Z. LIU, L. WANG, C. LI, AND M. SUN, *Graph neural*
 962 *networks: A review of methods and applications*, *AI Open*, 1 (2020), pp. 57–81, <https://doi.org/https://doi.org/10.1016/j.aiopen.2021.01.001>.

963 [76] X. ZHOU AND M. BELKIN, *Semi-supervised learning by higher order regularization*, in Proceedings of
 964 the fourteenth international conference on artificial intelligence and statistics, JMLR Workshop and
 965 Conference Proceedings, 2011, pp. 892–900.

968 [77] D. ZHU, Z. LI, X. WANG, B. GONG, AND T. YANG, *A robust zero-sum game framework for pool-based*
969 *active learning*, in The 22nd International Conference on Artificial Intelligence and Statistics, Apr.
970 2019, pp. 517–526.

971 [78] X. ZHU, Z. GHAHRAMANI, AND J. LAFFERTY, *Semi-supervised learning using Gaussian fields and har-*
972 , in Proceedings of the 20th International Conference on International Conference on
973 Machine Learning, Washington, DC, USA, Aug. 2003, AAAI Press, pp. 912–919.

974 [79] X. ZHU, J. LAFFERTY, AND Z. GHAHRAMANI, *Combining active learning and semi-supervised learning*
975 *using Gaussian fields and harmonic functions*, in International Conference on Machine Learning
976 (ICML) 2003 workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning
977 and Data Mining, 2003, pp. 58–65.