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ABSTRACT

Anomaly detection in spatiotemporal data is a challenging problem
encountered in a variety of applications including urban traffic mon-
itoring. Existing anomaly detection methods mostly focus on point
anomalies and cannot deal with temporal and spatial dependencies
that arise in spatiotemporal data. Tensor-based anomaly detection
methods have been proposed to address this problem. While these
methods are able to capture the dependencies across the different
modes, they are mostly supervised and do not take the particular
nature of anomalies into account. In this paper, we introduce an
unsupervised tensor-based anomaly detection method that simulta-
neously considers the sparse and spatiotemporally smooth nature
of anomalies. The anomaly detection problem is formulated as a
regularized robust low-rank + sparse tensor decomposition where
the spatiotemporal smoothness of the anomalies is quantified by the
graph total variation with respect to the underlying spatial and tem-
poral graphs. This minimization ensures that the extracted anomalies
are temporally persistent and spatially smooth. The proposed frame-
work is evaluated on both synthetic and real spatiotemporal urban
traffic data.

Index Terms— Anomaly Detection, Tensor Decomposition,
Spatiotemporal Smoothness, Graph Total Variation, Urban Spa-
tiotemporal Data.

1. INTRODUCTION

Large volumes of spatiotemporal (ST) data are commonly encoun-
tered in a diverse range of applications including climate science,
social sciences, neuroscience, epidemiology [1], and transportation
systems [2]. Detecting anomalies from these large data volumes is
important for identifying interesting but rare phenomena, e.g., traffic
congestion or irregular crowd movement in urban areas.

While various techniques have been developed for identifying
anomalies in time-series [3] and spatial data [4], the joint presence
of spatial and temporal aspects introduces novel ways of describ-
ing anomalies in ST data, resulting in unique anomaly detection
problems. The most commonly addressed types of anomalies in ST
data are point anomalies, trajectory anomalies and group anomalies.
In this paper, we focus on group anomalies, which are defined as
anomalies that appear as spatially contiguous groups of locations
(regions) that show anomalous values consistently for a short dura-
tion of time. Some examples of such group anomalies include rare
events such as traffic accidents that result in abnormally high traffic
volume in a given region for a certain duration of time or an ab-
normal number of tweets from a spatial region in a small time win-
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dow. Most approaches for detecting group anomalies decompose
the anomaly detection problem by first treating the spatial and tem-
poral properties of the outliers independently, which are then merged
together in a post-processing step [5]. Recently, low-rank tensor de-
composition methods have been proposed as they can capture the
higher order correlations across spatial and temporal modes and re-
cover the low-dimensional structure of data as the normal activity
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
Relationship to Existing Work: Existing tensor decomposition
based anomaly detection methods have multiple shortcomings.
First, they [16] are mostly supervised or semi-supervised relying
on historical data. Unsupervised tensor-based anomaly detection
methods [12], on the other hand, aim to learn spatiotemporal fea-
tures within a representation learning framework [17, 12, 18]. The
learned features, i.e., factor matrices or core tensors, are then used to
detect anomalies by monitoring the reconstruction error at each time
point [19, 20, 21, 12] or by applying well-known statistical tests to
the extracted multivariate features [17, 8]. Second, current methods
rely on well-known low-rank tensor approximation models such as
Tucker [17, 8, 12] CP [11], higher order RPCA (HoRPCA) [6, 7],
and do not explicitly consider the particular structure of anomalies.

In this paper, we simultaneously take into account the char-
acteristics of normal and anomalous data where normal activity is
low-rank; anomalies are sparse, temporally persistent, i.e., the local
changes last for a reasonably long time period, and spatially smooth,
i.e., neighboring regions are likely to exhibit similar anomalous
activity. In prior work, we proposed Low-rank plus Temporally
Smooth Sparse Decomposition (LOSS) [13] to incorporate temporal
persistence into robust low-rank + sparse tensor decomposition. In
the current paper, we generalize this framework by formulating the
anomaly detection problem as a low-rank+sparse tensor decompo-
sition with additional geometric structure on the sparse part. The
temporal persistence and spatial contiguity of the sparse part, i.e.,
anomalies, are quantified by minimizing the graph signal variation
with respect to both temporal and spatial graphs. This formulation
also introduces a generalization of the conventional total variation
norm to non-Euclidean domains by considering the corresponding
graph Laplacian operators.

2. BACKGROUND

2.1. Notation and Tensor Operations

We use the calligraphic letters e.g., X , to denote a multiway array
(tensors), bold capital letters for 2-way arrays (matrices), e.g., X,
bold lowercase letters for 1-way arrays (vectors) e.g. x, lowercase
letters for scalars e.g. x, I to denote the identity matrix with appro-
priate dimensions and xi1,...,in to denote the entry of the tensor X
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indexed by (i1, . . . , in)
Let X ∈ RI1×I2×...×IN be an N -mode tensor. We call vectors

obtained by fixing all but the n-th index, mode-n fibers of the ten-
sor. The mode-n unfolding of the tensor X is the matrix denoted
as X(n) ∈ RIn×

∏
n′ ̸=n In′ where the mode-n fibers of X are the

columns of X(n).
The matricized tensor is defined as X(R×C) ∈ RJ×K , with

J =
∏
n∈R In and K =

∏
n∈C In, where the ordered sets R =

{r1, . . . , rL} and C = {c1, . . . , cM} correspond to a partitioning of
the modes N = {1, . . . , N}. The indices in R are mapped to the
rows and the indices in C are mapped to the columns. Specifically,
(X(R×C))i,j = xi1,i2,...,iN [22].

The mode-n product of X and matrix a U ∈ RJ×In is denoted
as Y = X ×n U where Y ∈ RI1×...×In−1×J×In+1×...×IN . The
mode-n product can also be expressed in matrix form as Y(n) =
UX(n). We use the symbols, ◦ for Hadamard product and ⊗ for the
Kronecker product operations.

2.2. Graph Signal Model

An undirected graph is denoted by G = (V,E,W ) where V is the
node set with |V | = n , E ⊆ V × V is the edge set with |E| = m.
An edge between nodes i and j is shown by eij and is associated
with a weight Wij . Algebraically, G can be represented by an n×n
symmetric adjacency matrix W where Wij = Wji = wij if eij ∈
E and 0, otherwise. The Laplacian matrix is defined as L = D −
W, where D is the diagonal degree matrix, i.e., Dii =

∑n
j=1Wij .

The symmetrically normalized Laplacian is defined as Ln = I −
D−1/2WD−1/2. A graph signal x ∈ Rn is a vector whose entries
reside on the nodes of an unsigned graph G.

Signal smoothness is a qualitative characteristic that expresses
how much the signal samples vary with respect to the underlying
graph. The notion of smoothness for a graph signal, x, has been
quantified using different definitions of total variation. In this paper,
we use the graph total variation based on the ℓp norm used in [23]:

Sp(x) = ∥x−Anx∥pp, (1)

where An is the normalized adjacency matrix to ensure that the
shifted signal is properly scaled with respect to the original one.

2.3. Higher Order RPCA

For two-way data, robust PCA (RPCA) was introduced to address
the limitations of PCA against outliers and non-Gaussian errors [24].
In this approach, a given data matrix is decomposed into a low-rank
plus a sparse model:

minimizeX,S { rank(X) + λ||S||0 | X+ S = Y }. (2)

In [25] higher-order RPCA (HoRPCA) is defined for tensors with
(2) modified by replacing the rank of a matrix by the Tucker rank
(Trank) of a tensor. Similar to RPCA, Trank and l0 norms are re-
placed with their convex counterparts CTrank, i.e., the sum of the
nuclear norms of each mode unfoldings, and l1 norm yielding

minimizeX ,S{ CTrank(X ) + λ||S||1 | X + S = Y }. (3)

Goldfarb and Qin [25] proposed various models to solve this opti-
mization problem. One such model is the Singleton model, which
estimates the nuclear norm of the tensor as the weighted sum of the
nuclear norms of the mode-n unfoldings of the tensor yielding (4),
where the nuclear norm is the Schatten-1 norm of the matrix.

minimizeX ,S{
N∑
i=1

ψi||X(n)||∗ + λ||S||1 | X + S = Y }. (4)

3. METHOD

In our method, we model the spatiotemporal data as a multi-way
tensor Y ∈ RI1×···×IN where different modes correspond to spatial
and temporal domains as well as different types of features. In order
to extract the anomalies, we make three assumptions. First, normal
activity can be modeled as a low-rank tensor while the anomalies are
modeled as the sparse part, i.e., Y = X + S. Second, the anomalies
are assumed to last for periods of time, i.e., have strong short-term
dependencies. This assumption ensures that instantaneous changes
in the data, which may be due to errors in sensing, are not mistaken
for actual anomalies. This assumption can be quantified as ∥S ×t
∆∥1, where ∆ is the first order discrete time differentiation operator
which can be expressed as the Laplacian of the time domain line
graph, i.e. ∆ = I−At, with At being the cyclic time shift operator
defined in [26]. The graph total variation in the time domain with
p = 1 can then be expressed as

S1(S(t)) = ∥S(t) −AS(t)∥11 = ∥∆S(t)∥1 = ∥S ×t ∆∥1. (5)

Finally, we assume that group anomalies within spatiotemporal data
exhibit themselves as spatially contiguous groups of locations, i.e.,
the local variation of the anomalies is sparse. This assumption can be
quantified by minimizing the variation of the anomaly with respect to
the spatial graph, As, with p = 1. In our case, the graph signals with
respect to the spatial domain are the column vectors of the unfolding
of S across the location mode, l.

S1(S(l)) = ∥S(l) −AnS(l)∥1 = ∥LnS(l)∥1 = ∥S ×l Ln∥1. (6)

3.1. Optimization Formulation and Algorithm

Taking into account the three assumptions, we formulate the follow-
ing optimization problem for ST anomaly detection.

minimize
X ,S

N∑
i=1

(ψi∥X(i)∥∗) + λ1∥S∥1

+ λl∥S ×l Ln∥1 + λt∥S ×t ∆∥1
subject to X + S = Y,

(7)

where λ1, λl and λt are the regularization parameters that control
the level of sparsity, amount of smoothing in the spatial domain and
amount of smoothing in the temporal domain, respectively.

In order to separate the dependencies between the different terms
containing S, we introduce auxiliary variablesW = S,Wl = S ×l
Ln, Wt = S ×t ∆. Similarly, we define the auxiliary variables
X1, . . . ,XN = X to separate the dependencies between the sum of
nuclear norms containing the unfoldings of X . In addition, the con-
straint X + S = Y can be replaced by a fidelity term with regular-
ization parameter λ2. The problem can be solved with a two block
ADMM algorithm where the update blocks are, {X ,W,Wt,Wl}
and {S,X 1, . . . ,XN}. The optimization problem in ADMM form
becomes

minimize
X ,W,Wt,Wl,

{Xi}i=1,...,N ,S

N∑
i=1

(
ψi∥Xi(i)∥∗

)
+ λ1∥W∥1 + λl∥Wl∥1

+ λt∥Wt∥1 +
λ2

2
∥X + S − Y∥2F

subject to X =Xi, i = 1, ..., N,

W =S, Wt = S ×t ∆,Wl = S ×l Ln.
(8)
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The convergence of two-block ADMM algorithms has been
proven in [27]. Since (8) is a convex problem with two-block
ADMM form, global convergence is guaranteed. A sketch of the
proof of convergence is given in [13] for a similar model.

Augmented Lagrangian of the optimization problem in (8) is

Lρ =

N∑
i=1

(
ψi∥Xi(i)∥∗ +

ρ

2
∥X − Xi +

Λi
ρ
∥2F

)
+
λ2

2
∥X + S − Y∥2F

+ λ1∥W∥1 +
ρ

2
∥W − S +

Λ

ρ
∥2F

+ λl∥Wl∥1 +
ρ

2
∥Wl − S ×l Ln +

Λl
ρ
∥2F

+ λt∥Wt∥1 +
ρ

2
∥Wt − S ×t ∆+

Λt
ρ
∥2F , (9)

where ρ is the step size and {Λi}i=1,...,N ,Λ, Λt, Λl are the dual
variables for the constraints {X = Xi}i=1,...,N , W = S, Wt =
S ×t ∆,Wl ×l Ln, respectively.

Iterative update scheme for (8) is given in Algorithm 1. The
update steps for the variablesW,Wl,Wt are the proximal mappings
of ℓ1 norm defined as proxλ∥.∥1(B) = sign(B) ◦max(|B| − λ, 0),
and update steps for the variables X1, . . . ,XN are obtained via the
proximal operator of the Schatten-1 norm denoted as proxψ∥.∥∗(B)
which corresponds to soft thresholding the singular value matrix of
B. The update step for the variable S involves the solution of (10),
which is a quadratic problem with an analytical solution.

minimizeS
λ

2
∥X k+1 + S − Y∥2F +

ρ

2
∥Wk+1

t − S ×t ∆+
Λkt
ρ
∥2F

+
ρ

2
∥Wk+1

l − S × Ln +
Λkl
ρ
∥2F .+

ρ

2
∥Wk+1 − S +

Λk

ρ
∥2F .

(10)

Let B̃k = ρ
(
Wk+1
t − Λkt

ρ
×t∆T+Wk+1

l − Λkl
ρ
×lLTn+Wk+1−

Λk

ρ

)
+λ2

(
Y−X k+1

)
and G = ρ

[
Il⊗(∆T∆+ ρ+λ2

2ρ
It)+(LTnLn+

ρ+λ2
2ρ

Il) ⊗ It
]
. Solution for S matricized across the location (l)

and time (t) modes, S(l,t), becomes G−1B̃(l,t). For large Ln, S
can be updated approximately using conjugate gradient method. We
calculate the exact solution by caching the eigendecomposition of
matrices (LTnLn + ρ+λ

2ρ
Il) and (∆T∆ + ρ+λ2

2ρ
It) and using them

to avoid inverting a matrix of size nl.nt × nl.nt. The details of the
implementation are given in 1.

4. RESULTS

In this section, we evaluate the performance of LR-STSS on both
synthetic and real datasets and compare it with HoRPCA, low rank
temporally smooth (LR-TS), i.e., λl = 0 in (8), and low rank spa-
tially smooth (LR-SS), i.e., λt = 0 in (8). Absolute value of the
recovered sparse part is used as the anomaly score. These anomaly
scores are used to evaluate the area under the curve for the ROC
curves (AUC-ROC). For real data, the number of detected events
were reported for varying percentage of top K anomalies. For hy-
perparameter selection, we used the python library Optuna [28] with
tree Parzen estimator [29]. In the synthetic experiment setting, the
hyperparameters were selected to maximize the AUC score. In the
real experiment setting, the hyperparameters were selected to maxi-
mize the number of total detected events.

1https://github.com/indibi/TensorAnomalyDetection

Algorithm 1 Low-rank and spatiotemporally smooth anomaly sepa-
ration (LR-STSS) pseudocode

procedure LR-STSS(Y , Ln, λ1, λ2, λt, λl, ψi, ρ)
X ,S,W,Wt,Wl ← 0
Xi ← 0, i = 1 · · ·N ▷ Initialize primal variables
Λ,Λt,Λl ← 0
Λi ← 0, i = 1 · · ·N ▷ Initialize dual variables
for k = 0, . . . ,maximum iteration do

▷ First ADMM block updates

X k+1 ← 1
λ2+Nρ

(∑
i(X

k
i ρ+ Λki ) + λ2(Y − Sk)

)
Wk+1
t ← proxλt

ρ
∥.∥1

(
Sk ×t ∆− Λkt

ρ

)
Wk+1
l ← proxλl

ρ
∥.∥1

(
Sk ×l Ln − Λkl

ρ

)
Wk+1 ← proxλ1

ρ
∥.∥1

(
Sk − Λkl

ρ

)
▷ Second ADMM block updates

Xk+1
i(i)
← proxψi

ρ
∥.∥∗

(
Xk+1

(i) +
Λki
ρ

)
, i = 1, ..., N

Sk+1
(l,t) ← G−1B̃k

(l,t)

▷ Dual variable updates
Λk+1
i ← Λkl + ρ(Wk+1 − Sk+1)

Λk+1
t ← Λkt + ρ(Wk+1

t − Sk+1 ×t ∆)
Λk+1
i ← Λkl + ρ(Wk+1

l − Sk+1 ×l Ln)
Λk+1
i ← Λki + ρ(X k+1 −X k+1

i ) i = 1, ..., N
end for

end procedure

4.1. Synthetic Data Experiments

For synthetic data experiments, we generate the anomalous dataY =
X+S with dimensions n1×n2×n3×n4 = 40×24×7×20 repre-
senting the locations, hours in a day, days in a week and the number
of subsequent weeks, respectively. Low-rank X corresponding to
the normal activity is constructed with TRank(X ) = (8, 8, 5, 5) =
(m1,m2,m3,m4) by first generating a core tensor C ∈ R8×8×5×5

whose entries are drawn from the standard normal distribution then
taking the mode-n products of the core tensor with random orthonor-
mal matrices Ui ∈ Rni×mi with appropriate conditioning [25], i.e.,
X = C×1U1×2U2×3U3×4U4. We then normalizeX by the stan-
dard deviation std(X ). Synthetic anomaly groups in S are randomly
generated to be locally contiguous over an 8×5 Cartesian grid graph
with a nonzero temporal duration. This is achieved by first randomly
selecting an element indexed by (i1, i2, i3, i4) per anomaly group in
the tensor where i1 is the local center of the anomaly and setting all
of the vertices within a r-hop distance to 1, where r is the spatial
radius of the anomaly. A rectangular pulse with duration d centered
around index i4 is applied to each of these locations to generate the
ST anomaly with temporal persistence. In our experiments, we study
the performance of the algorithms by varying the number of anomaly
groups, d and r. The experiments were repeated 10 times and the
mean AUC scores are reported.

4.1.1. Synthetic Experiment 1: Varying the Number of Anomalies

In the first experiment, we evaluate the performance of the different
methods for varying number of anomalies when r = 1 and d =
1. Fig. 1 shows that the performance of all methods drops as the
number of anomalies increase since the sparsity of the anomaly is
no longer a valid assumption. LR-SSTS performs the best followed
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Fig. 1: Mean AUC vs. Number of Anoma-
lies for r = 1 and d = 1

Fig. 2: Mean AUC vs. Varying Temporal
Duration of Anomalies

Fig. 3: Mean AUC vs. Varying Local Ra-
dius of Anomalies

by LR-TS. It’s also interesting to note that LR-SSTS is robust to
increasing number of anomalies as the performance drop is much
smaller compared to HoRPCA.

4.1.2. Synthetic Experiment 2: Varying Anomaly Duration

In the second experiment, we evaluate the performance of the dif-
ferent methods for varying anomaly duration, d. In this case, the
number of anomaly groups is set to 450 and the anomaly radius is
set to 2. For short anomaly durations, LR-STSS performs the best.
However, as the duration of the anomaly increases (d > 5), LR-TS
becomes the best performing method since temporal persistence of
the anomaly becomes important. When the duration becomes larger
than 8, the performance starts to drop for LR-TS since the number
of anomalies increases with the increase in duration.

4.1.3. Synthetic Experiment 3: Varying Local Anomaly Radius

In the third experiment, we evaluate the performance of the different
methods for varying local anomaly radius, r. In this case, the number
of anomaly groups is set to 100 and the anomaly duration is set to
4. From Fig. 3, it can be seen that as r increases the performance
of LR-SS increases since the spatial contiguity assumption becomes
more dominant. The performance of LR-STSS is better than LR-SS
for r < 3, after that point their performances become comparable
with LR-SS having slightly higher AUC.

4.2. Real Data: 2018 NYC Taxi Data Anomaly Detection

We use the NYC yellow taxi trip records for 2018 as our real spa-
tiotemporal data. This dataset consists of trip information such as the
departure zone and time, arrival zone and time, number of passen-
gers, tips for each yellow taxi trip in NYC. In the following experi-
ments, we only use the arrival zone and time to collect the number
of arrivals for each zone aggregated over one hour time intervals.
We selected 81 central zones to avoid zones with very low traffic.
Thus, we created a tensor Y of size 24 × 7 × 53 × 81, where the
first mode corresponds to hours within a day, the second mode cor-
responds to days of a week, the third mode corresponds to weeks of
a year and the last mode corresponds to the zones. The adjacency
matrix of the physical locations graphs is constructed using a k-NN
binary graph with k = 2 where the Euclidean distance between lo-
cation pairs is computed between the vectors corresponding to the
number of hourly arrivals.

To evaluate the performance of the proposed methods on real
data, we compiled a list of 20 urban events that took place in the im-
portant urban activity centers such as city squares, concert halls etc.

% 0.014 0.07 0.14 0.3 0.7 1 2 3

LR-STSS 3 4 7 12 15 17 19 19

LR-TS 3 4 5 6 13 13 18 19

LR-SS 1 1 2 3 5 6 13 16

HoRPCA 0 0 2 2 2 3 7 10

Table 1: Number of detected events among 20 compiled events in
NYC for varying top-K% of the anomaly scores

during 2018 [13]. To detect the events, top-K percent, with vary-
ing K, of the highest anomaly scores of the extracted sparse tensors
are selected as anomalies and compared against the compiled list. In
previous work, similar case studies were presented for experiments
on real data [13, 30, 31].

From Table 1, it can be seen that LR-STSS can detect more
events by using smaller percentage of the top anomaly scores. This is
followed by LR-TS which implies that for real urban traffic temporal
persistence in the hours mode plays an important role in identifying
anomalies. HoRPCA, on the other hand, does not perform well as it
cannot detect most of the events. This result shows the importance of
taking the spatiotemporal characteristics of anomalies into account
as sparsity by itself is not sufficient to model them.

5. CONCLUSIONS

In this paper, we introduced a new tensor based anomaly detection
method for group anomaly detection in spatiotemporal data. The
proposed method models the group anomalies as sparse, spatially
contiguous and temporally persistent entries of the observed ten-
sor. These assumptions are quantified by graph total variation of the
sparse part of the tensor with respect to the underlying temporal and
spatial adjacency graphs. The performance of the resulting algorithm
is evaluated for both synthetic and real ST data and shown to be su-
perior compared to HoRPCA, LR-SS and LR-TS. While the current
paper focuses on the smoothness of the anomaly across the tempo-
ral and spatial modes, the proposed framework can be generalized to
other types of higher order data including video and functional MRI
(fMRI) data where the smoothness can be defined for more than two
domains. The current formulation can also be extended by increas-
ing the order of the highpass graph filtering, i.e., powers of L, to
consider higher order neighborhoods for different anomaly profiles
across time and space.
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