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Abstract16

We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh-Taylor (RT)17

instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT18

stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip,19

and inside the spiral of the mushroom structure, which cover most of the interfacial region as20

the instability develops. Conditional statistics performed on the three sets of particles and over21

different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals22

the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability23

density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible24

with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy25

of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for26

different particle ensembles arising from the differing evolution patterns of the particle acceleration.27

In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction28

with the transported fluid from the spike side, due to the shear driven Kelvin-Helmholtz instability.29

Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the30

spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration.31

∗ linchensen@fudan.edu.cn
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I. INTRODUCTION32

When a light fluid accelerates against or supports a heavy fluid, the perturbed interface33

between these two fluids is subjected to the Rayleigh-Taylor (RT) instability [1, 2], which34

could lead to the formation of bubbles and spikes, and finally to turbulence at high Reynolds35

numbers [3]. RT instability has important consequences in many natural and engineering36

applications, such as the fingering structures of supernova explosion remnants [4] in astro-37

physics, the fusion target degradation in the acceleration and deceleration stages of inertial38

confinement fusion [5–9], the breakup and atomization of diesel and gasoline sprays in au-39

tomotive engines [10], and the coastal upwelling phenomenon in ocean dynamics [11]. The-40

oretical, experimental, and numerical investigations on RT instability have been performed41

for decades to advance the fundamental understanding of this subject, as summarized by42

several recent reviews [3, 12–15].43

Despite extensive research efforts, many problems in RT flows remain unresolved even44

in the single-mode configuration, in which the initial perturbation contains only a single45

sinusoid, due to the inherent nonlinearity and also due to the complexity induced by viscos-46

ity, compressibility, surface tension, mass ablation, and stratification [16–22]. According to47

Wei and Livescu [16], the evolution of two-dimensional (2D) high Reynolds number single-48

mode RT can be divided into five stages: diffusive growth (DG), exponential growth (EG),49

potential flow growth (PFG), reacceleration (RA), and chaotic development (CD). In the50

diffusive growth stage, diffusional effect governs the system and sharp interfaces are rapidly51

smeared out for miscible fluids. In the exponential growth stage, RT development follows52

the linear stability theory with a constant growth rate γ =
√
Akg, where A = ρh−ρl

ρh+ρl
is the53

Atwood number with ρh, ρl the heavy and light fluid densities, k = 2π/λ is the perturbation54

wavenumber (λ is the wavelength), and g is the gravitational acceleration. As the magni-55

tude of the instability exceeds 0.1λ, the exponential growth terminates and nonlinear effect56

dominates, where the uprising bubble and the sinking spike become apparent. The system57

then transits to the potential flow growth stage with constant bubble and spike velocities,58

which is well predicted by the potential flow theory [23–26] or the buoyancy-drag model59

[27]. In the reacceleration stage, the bubble (and also the spike) velocity increases again,60

which is attributed to the vortices induced by the Kelvin-Helmholtz instability near the fluid61

interface and advected to the bubble tip [16, 17, 28]. Ref. [29] derived an expression for62
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the effective drift imparted by these vortices on the large scale flow. Ref [17] also showed63

that the reacceleration is dependent on the perturbation Reynolds number Rep and Atwood64

number A, and provided a phase diagram for RT reacceleration. Finally, if the system65

Reynolds number is high enough, single-mode RT growth can lead to the chaotic mixing66

stage [3, 30].67

The above evolution process is altered in varying degrees of viscosity and compressibility,68

which modifies the RT growth rate as well as the energy and enstrophy budgets [31]. Hu et al.69

[32] investigated the single-mode RT bubble velocity and vorticity at different viscosity levels70

(or Reynolds numbers), and proposed a linear relationship between bubble-tip vorticity and71

viscosity in the reacceleration stage by a least square fit. After the bubble reacceleration,72

if viscous effect is prominent, an alternating deceleration-acceleration pattern will emerge,73

due to the combined effects of viscous-inhibition and shear-generation of vorticity near the74

bubble tip. Wieland et al. [33] studied the compressibility effects on the vorticity dynamics75

of 2D single-mode RT at low Atwood numbers. They found that stronger stratification76

(larger Mach number) leads to more symmetric growth of bubbles and spikes, but the level77

of vorticity as well as the bubble reacceleration is suppressed. By examining the individual78

budget terms in the vorticity transport equation, the authors concluded that the baroclinic79

torque dominates vorticity generation, which diminishes at high stratification levels and thus80

RT is suppressed when Mach number is large. Similar conclusion is also drawn in Luo et81

al. [22], who investigated the compressibility effects on both low and high Atwood number82

single-mode RT, and distinguished the stabilization effects of initial density stratification83

from the expansion-compression effect. Fu et al. [34, 35] modified the buoyancy-drag model84

to account for the compressibility effect in single-mode RT, and found the critical Atwood85

number 0.25 at which nonlinear saturation of bubble growth is realized at various Mach86

numbers. They further found that the acceleration of the heavy fluid in front of bubble tip87

is nearly constant, and numerically verified a scaling law A2.5M2 for this acceleration, where88

M is the Mach number.89

In addition to the above effects, many of the complexities in RT flows are due to the90

secondary Kelvin-Helmholtz (KH) instability, which boosts the spiral structure between the91

bubble and spike, accelerates the bubbles, and enhances fluid mixing. Olson et al. [36] nu-92

merically studied the early nonlinear stage of multi-mode RT flows with imposed shear rates,93

which leads to a combined RT/KH instability growth. Contrary to the predictions by linear94
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theory, in which the instability growth rate is enhanced by the addition of shear, numerical95

results show that a small amount of imposed shear rate in fact decreases the growth, while96

a large shear rate enhances the instability. By visual inspection and quantitative analysis,97

the suppression of instability at low shear levels is due to a small amount of energy being98

channeled into vertical mixing, while the contrary is true for a high shear rate. Chen et99

al. [37] numerically investigated the coupled single-mode RT-KH instability system with a100

discrete Boltzmann model. They found that RT effect dominates the late stage develop-101

ment, while in the early stage the dominant mechanism depends on the relative strength102

between buoyancy and shear. The total boundary length of the temperature fields in the103

pure RT and KH simulations can help discriminate the dominant mechanism of the coupled104

RT and KH system. Hamzehloo et al. [38] performed a parametric study of RT flows with105

surface tension, and found that surface tension prevents the formation of KH type vortices106

especially at high Reynolds numbers. With increasing Reynolds number, the amount of KH107

vortices as well as the interfacial area increases, but the penetration depths of bubble and108

spike remain constant, which depend primarily on the Atwood number.109

An effective yet relatively under-explored way to study fluid mixing and interfacial flows110

is the Lagrangian approach [39–42], which, however, is seldom applied to the RT problem.111

Despite a few studies on particle-induced RT instability [43–45] in which the RT growth rate,112

particle concentration and mixing are investigated, the Lagrangian passive particle tracking,113

to the best of our knowledge, has never been reported with the exception of reference [18]. In114

that work, the authors studied single-mode RT using the discrete Boltzmann method with115

three types of tracers marking the heavy fluid, the light fluid, and the interface. RT mixing is116

quantified by the tracer defined local mixedness, and the secondary KH instability is featured117

by the abrupt increase in vertical-averaged mixedness. Viscosity and compressibility on118

RT mixedness show two-stage effects due to the formation of large scale structures at the119

early stage, and the generation of small structures at later stages. Although reference [18]120

sheds some light on the RT interfacial evolution and mixing using tracer particles, several121

important features unique to the Lagrangian description remain to be explored, such as122

statistics on particle velocity, acceleration, and trajectory curvature, as we shall study in123

this paper. These quantities can on one hand reflect characteristic flow kinematics such as124

the oscillatory trajectories of particles trapped in coherent vortices, and on the other hand125

they can be adopted to explain important flow dynamic behavior like bubble reacceleration126
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in single-mode RT as discussed in later sections.127

The current paper focuses on Lagrangian investigation of single-mode RT’s interfacial128

growth and mixing, and aims to provide an alternative way to reveal different evolution129

stages of 2D single-mode RT, which gains deep physical insights into this complex flow.130

To this end, we seek to address the following questions: (i) How does the single-mode RT131

interface evolve in space and time? (ii) What statistical quantities govern the interfacial132

dynamics, and how does the statistics differ at different regions of single-mode RT, i.e., the133

bubble, the spike, and the spiral regions? (iii) Why does single-mode RT develop directional134

anisotropy between the horizontal and vertical components? Answers to the above questions135

will deepen our understanding of single-mode RT physics in two dimensions, and also lays a136

basis for the Lagrangian investigation of more complicated multi-mode turbulent RT flows.137

For example, detailed geometric information of the interface avails many predicative models138

of bubble and spike growth of single-mode RT in the highly nonlinear stage [26], while139

the interfacial dynamics controls many physical and chemical processes occurring at the140

interface, such as mass ablation in inertial confinement fusion and fuel/oxidizer mixing and141

reaction in combustion chambers [46].142

In the following, we first provide details on the numerical simulation of RT flows and143

the Lagrangian tracking approach. Next, we perform statistical analysis on Lagrangian144

velocity, acceleration, curvature, etc., focusing on different stages and different regions of145

single-mode RT. We then study the large-scale anisotropy associated with the horizontal and146

vertical kinetic energies, and finally present summaries and conclusions of our discussions.147

II. GOVERNING EQUATIONS AND NUMERICAL IMPLEMENTATION148

We adopt the compressible two-component Navier-Stokes equations to describe the RT149

instability, which consists of the conservation equations of the mass fraction, mass, momen-150

tum, and energy [22, 32]:151

∂ρYi

∂t
+ ∂j(ρujYi) = ∂j(ρD∂jYi) (1)

∂ρ
∂t

+ ∂j(ρuj) = 0 (2)
∂ρui

∂t
+ ∂j(ρuiuj) = −∂iP + ∂jτij − ρgδiz (3)

∂ρE
∂t

+ ∂j((ρE + P )uj) = ∂j(τijui)− ρuigδiz + ∂j(κ∂jT ) (4)
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where ρ, ui, P, g are density, velocity, pressure, and the gravitational acceleration, respec-152

tively, Yi is the mass fraction of the i-th component (i=1,2), and E = 1
2
u2 + cvT is the total153

energy density, in which cv is the specific heat at constant volume and T is the temper-154

ature. τij = 2µ(Sij − 1
d
Skkδij) is the viscous stress tensor and d is the spatial dimension,155

Sij = (∂iuj + ∂jui)/2 is the strain rate tensor, while µ,D, κ are the dynamic viscosity, mass156

diffusivity, and thermal conductivity, respectively. The above set of equations is comple-157

mented by the ideal gas equation P = ρR̃T (Y1/W1 + Y2/W2), where R̃ is the universal158

gas constant, W1,W2 are the molecular weights of the two species. Note that we have not159

included the enthalpy of formation and also ignored the enthalpy diffusion term in the total160

energy equation, since we set equal molecular weights W1 = W2 in our RT simulations, and161

thus the effects of enthalpy diffusion can be neglected [47]. Due to the constraint Y1+Y2 = 1,162

only one of the two mass fraction equation (1) is required for numerical simulation. In ad-163

dition, by setting equal molecular weights W1 = W2 = W , the ideal gas equation of state164

reduces to P = ρ R̃
W
T , and the mass fraction equation (1) is thus decoupled from other equa-165

tions. Here we include the mass fraction equation merely to track the fluid interface. For166

general situations with unequal molecular weight W1 ̸= W2, the physics remains unchanged167

when the ratio W2/W1 is close to 1, as we have observed in a W2/W1 = 2 case whose result168

shares similar RT physics as in the equal molecular weight case (Appendix A). In more169

complex situations where combustion or general chemical reactions are included, this set of170

equations is still applicable by adding the chemical source term and enthalpy diffusion, as171

we shall explore in our future work.172

We conduct 2D single-mode RT simulations using the DiNuSUR code, which is a hybrid173

pseudo-spectral and six-order compact finite difference solver to account for both the homo-174

geneous and the inhomogeneous directions, and fourth order Runge-Kutta scheme is used for175

time integration. The code has been applied to both single- and multi-mode RT systems in176

previous studies [17, 48, 49], and here we have implemented the Lagrangian particle tracking177

using cubic spline for spatial interpolation and second order predictor-corrector scheme for178

time advancing. The Lagrangian module can be applied both online (simultaneously with179

the Eulerian time advancing) and off-line (by post-processing). For Lagrangian tracking as180

a post-processing step, the Eulerian snapshots should be saved densely in time to satisfy181

the Courant-Friedrichs-Lewy (CFL) condition [50] max(ux∆t, uz∆t)/∆x ≤ 1, where ∆t is182

the time interval between two consecutive snapshots, and ∆x is the grid size assumed to be183
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uniform.184

As for the boundary condition, the horizontal boundaries are periodic, while the top and185

the bottom boundaries are assumed to be no-slip walls, in which the conditions ∂T
∂z

= 0,186

∂Yi

∂z
= 0, ∂P

∂z
= −ρg are imposed. For the initial conditions, we impose uniform heavy fluid187

of density ρh on top half and uniform light fluid of density ρl at the bottom half, and the188

initial pressure field satisfies the hydrostatic equilibrium condition ∂P/∂z = −ρg. The mass189

fraction field follows from the density field. Initial perturbation is imposed on the velocity190

field as a small amplitude cosine wave. More details on the initial density, pressure, and191

temperature profiles, as well as the precise initial perturbation is shown in Appendix B.192

Here we perform three single-mode RT simulations at low, middle, and high Atwood193

numbers with parameters shown in table I. The initial fluid interface is chosen to locate194

at Lz/2 for the low and middle Atwood cases, and at 2Lz/3 for the high Atwood number195

case, to allow for the unequal development of bubble and spike at high A. The perturbation196

Reynolds number is defined as Rep = λ
√

Agλ/(1 +A)/ν, and the mesh Grashof number is197

Gr = 2Ag∆x3/ν2, whose value below 1 indicates that the simulation is well resolved [16].198

The Gr > 1 for the middle and high Atwood number cases indicates that the simulation199

might be under resolved at very late time when chaotic structures emerge [17], which has200

not been reached in our middle and high A simulations as will be shown below. The201

A − Rep combination in 2DlowAt is to ensure that the bubble and spike would enter the202

reacceleration stage, according to the prediction by the phase diagram in reference [17]. The203

kinematic viscosity ν = µ/ρI is the ratio of dynamic viscosity and interficial density defined204

as ρI = (ρh+ρl)/2 [17], and the Prandtl number Pr = µcp/κ as well as the Schmidt number205

Sc = ν/D are both unity, where cp is the specific heat at constant pressure. Note that in206

the current paper, the main focus is on the morphology and dynamics of the low Atwood207

number RT, while the middle and high A cases are included for reference purposes only.208

III. VISUALIZATION AND MIXING WIDTH GROWTH209

Figure 1 presents the density field snapshots of the three RT cases at different time in-210

stants, together with selected tracer particles located at the bubble, the spike, and the spiral211

regions. The spiral region denotes the primary vortical structure formed by baroclinicity212

1/ρ2(∇ρ×∇P ), which arises from the misalignment between the density and pressure gradi-213
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TABLE I. Parameters of the 2D single-mode RT simulations. Lx and Lz are the domain widths

along the horizontal and vertical directions, respectively. The Mach number M is measured as a

maximum value among all snapshots of the corresponding simulation.

Grids Lx Lz A µ Rep Gr M Pr Sc

2DlowAt 512× 2048 0.4 1.6 0.15 1.2× 10−5 6621 0.75 0.08 1 1

2DmidAt 512× 2048 0.4 1.6 0.5 1.2× 10−5 8114 1.47 0.11 1 1

2DhighAt 512× 2048 0.4 1.6 0.8 1.2× 10−5 7808 1.63 0.15 1 1

ents near the fluid interface. We select these particles at the time instant in which the spiral214

is well developed (at non-dimensional time t̂ = t
√

Ag/λ = 2.94), and then perform particle215

tracking both backward and forward in time to obtain their full evolution trajectories. For216

the low A simulation, the three sets of particles cover most of the interfacial regions at late217

time as shown in figure 1 (c) and (d). The total number of particles associated with the218

bubble, the spike, and the spiral regions are 2772, 2670, and 5829, respectively. Similar re-219

sults also hold for middle and high A cases in panels (e),(f) and (g),(h), respectively, except220

that with increasing Atwood number, the fluid interface growth rate is increased and the221

selected particles fail to cover all the fluid interface. The total number of bubble, spike,222

and spiral particles are 2045, 1856, 4004 for the A = 0.5 case and 1880, 1738, 2360 for the223

A = 0.8 case.224

The single-mode bubble and spike growth rate is one of the most important quantities225

for practical applications of RT [3]. To verify our numerical simulations and to introduce226

the different characteristic evolution stages in single-mode RT, here we show in figure 2 the227

Froude number of the bubble and the spike tip, FrB/S ≡ UB/S/
√

A
1±A

gλ, which represents228

the non-dimensional velocity. For the low A case in figure 2(a), both the bubble and spike229

experience an initial exponential growth, and then follow by a saturation at Froude number230

Fr =
√

1
3π

, as is predicted by the potential flow theory [23]. After the nonlinear saturation,231

both the bubble and spike start to reaccelerate and their velocities keep growing. According232

to Wei and Livescu [16], the system would eventually enter the chaotic mixing stage with233

constant mean acceleration in the bubble and spike tips. However, our current simulation234

domain is not long enough to allow for such a stage. In figure 2 (a), we highlight different235

stages in the figure, namely the exponential growth stage (EG), the nonlinear saturation236
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(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 1. The visualization of the density fields at non-dimensional time t̂ = t
√
Ag/λ = 1.22, 2.45,

3.67, 4.90 for 2DlowAt in panels (a)-(d), and at t̂ = 3.67, 4.90 for 2DmidAt in (e),(f) and for

2DhighAt in (g),(h), respectively. In each panel, we show 1/100 of all selected particles in green

(·), black (·), and magenta (·) to mark particles at the bubble, the spiral, and the spike regions. In

the Supplementary Materials, we have included movies illustrating the temporal evolution of these

selected particles imposed on the density fields for a better visualization.

or the potential flow growth stage (PFG), and the re-acceleration stage (RA). This tempo-237

ral partition into three stages allows us to perform conditional Lagrangian tracer particle238

statistics, as will be illustrated below. Note that we have neglected the early part of the239

exponential growth (EG) stage in our statistics (the EG stage does not start near the origin),240

since during this period the tracer particles are nearly quiescent and the statistics would be241

trivial.242

For the middle and high Atwood number cases in figures 2(b) and (c), the bubble velocity243

saturates after exponential growth, with a terminal velocity close to the theoretical predic-244

tion, but the saturation velocity persists till late time and no reacceleration occurs. This245

behavior is compatible with the A-Rep phase diagram proposed by Bian et al. [17]. Growth246

of the spike velocity is more complicated. For A = 0.5 in panel (b), the spike reaccelerates247

after a short plateau with a velocity slightly higher than the theoretical prediction, while for248

A = 0.8, no plateau is observed and the spike velocity keeps increasing. The spike behavior249
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FIG. 2. The velocity at the bubble and spike tips for (a) low, (b) middle, and (c) high Atwood

number RT simulations. In each panel, the horizontal dashed lines represent theoretical predictions

[23], FrB/S =
√

1/3π for all cases. In panel (a), three stages denoted EG, PFG, and RA are

highlighted.

has also been observed in reference [17], in which the high spike velocity is attributed to the250

thin vortical structures emerging from the spike tip at relatively high A.251

In the following sections, we will investigate the statistics of Lagrangian tracer particles252

near the fluid interface, focusing on the low A case in which the bubble-spike structure is253

more symmetric and the Kelvin-Helmholtz instability is well developed, while the middle254

and high A results are included for reference. The statistics is performed on the three en-255

sembles of tracer particles in the bubble, the spike, and the spiral regions, which we shall256

call the bubble/spike/spiral particles, and also within each of the three temporal stages257

marked as EG, PFG, and RA. We will first study the geometrical properties of particle tra-258

jectories, and then investigate their influences on the dynamical evolution of fluid interfaces.259

Anisotropy associated with the kinetic energy of the fluid interface will also be analyzed via260

the Lagrangian approach. Here, we focus on vector anisotropy, which is different from the261

shape anisotropy of RT flows studied recently in [51].262

IV. GEOMETRY OF PARTICLE TRAJECTORIES263

As have shown in figure 1, three ensembles of Lagrangian tracer particles associated with264

the bubble, the spike and the spiral regions are chosen for Lagrangian investigation. The265

trajectories associated with the three groups of particles are illustrated in the three panels266

of figure 3, in which visual similarity of the trajectories is shared among each group. For267
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example, in panel (a) the bubble particles emerge from the middle of the domain and initially268

move upwards, and then their trajectories start to bend and gradually move downwards.269

Finally the bubble particle trajectories are more complex, and some of which are subjected270

to swirling motions. The movement of the spike particles in panel (b) is almost opposite to271

the bubble particles, since at low A the bubble and spike structures are close to symmetric.272

Meanwhile, spiral particles are driven mainly by vortical flows and undergo swirling motions273

during their lifetime, as is evident in the trajectories shown in panel (c). For middle and274

high A cases, the particle trajectories are qualitatively similar to their low A counterpart,275

but the center of the spiral particles gradually shifts downwards in addition to the swirling276

motion, due to the asymmetric movement of the heavy and the light fluids in the presence277

of large density contrast.278

Given the distinct characteristics of particle trajectories, the statistics associated with279

each of the three ensembles would be different. Figure 4 shows the probability density280

function (PDF) of trajectory curvature κ associated with different particle ensembles at281

various stages. The curvature is defined as κ = (z′′x′ − x′′z′)/|x′2 + z′2|3/2 = (−uzax +282

azux)/|u|3, where x(t) and z(t) are particle coordinates parameterized by time, the prime283

symbol ′ denotes time derivative, and a is the particle acceleration. The trajectory curvature284

(together with the torsion) fully determines any space trajectory, and it is related to small285

scale dynamical quantities such as acceleration, vorticity, and dissipation [52]. We show the286

correlation between particle trajectory curvature and particle acceleration in Appendix C.287

Overall, curvature associated with the spiral particles is higher than the bubble and spike288

particles, as can be determined from visual inspection of the respective trajectories in figure289

3. The curvature magnitude of the bubble and spike particles gradually increases in time,290

and in the RA stage their magnitude is comparable to the spiral particles as indicated in291

figure 4 (c).292

In addition, in figure 4(a)-(c) the PDFs of spiral particle trajectories scale as κ−3 at293

the right κ tail during all the three stages. This scaling of the spiral particles can be well294

explained by geometrical arguments. The spiral is approximately a uniform circular region of295

radius R, and the probability density of radius r inside this circle is P (r)dr = 2πrdr/(πR2),296

or P (r) ∝ r. The curvature κ, which is the inverse of the radius of curvature, is another297

random variable which roughly satisfies κ ∼ r−1. By the change of variable formula of298

the PDF, we get P (κ) ∝ κ−3, same as the scaling in figure 4. The scalings of bubble and299
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(a) bubble (b) spike (c) spiral

FIG. 3. The trajectories of particles associated with the bubble (a), the spike (b), and the spiral

(c) regions within non-dimensional time 0 < t̂ < 4.9. The domain is truncated to lie within

0.15 < x < 0.4, 0.2 < z < 1.3 for a better presentation, and only 1/100 of the particles in each

ensemble is shown here. To emphasize the time variable, the transparency of each trajectory varies

continuously from transparent colors at the initial time instant to solid colors at the final time

instant.

spike particle trajectories in the EG and PFG stages decay rapidly at the high κ end, while300

in the RA stage, their scalings are around κ−2, corresponding to a uniform distribution of301

the radius of curvature. This is a reasonable result, considering that in the RA stage the302

bubble and spike particles are scattered in space and hence are weakly correlated among303

their respective ensemble, such that the distribution of the radius of curvature is roughly304

uniform. Gaussian statistics.305

The PDF of normalized particle speed û ≡ |u|/
√
AgLx is shown in figure 4 (d)-(f), with a306
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FIG. 4. The probability density functions (PDFs) of the trajectory curvature associated with the

bubble, spike, and spiral particles. Panels (a),(b), and (c) show the results during the EG, PFG,

and RA stages, respectively. A dashed line with a -3 slope is included in (a)-(c) for reference.

Panels (d)-(f) show the PDFs of normalized particle speed û = |u|/
√
AgLx in the three stages, and

a dashed line with slope 1 is included for reference.

reference line û1 included in each panel. The speed of spiral particles exhibits a û1 scaling in307

the left tail of the PDFs during all the three stages, because the spiral particles are co-moving308

along circular trajectories with |u| = Ωur (Ωu is the angular velocity of the spiral particles),309

since P (r) ∼ r1 we have P (û) ∼ û1. For the bubble and spike particles in the EG and PFG310

stages, no clear scaling is visible, and their minimum speed is relatively large compared to311

spiral particles due to the large-scale convective motion. However, it is interesting to note312

that in the RA stage the û1 scaling of both the bubble and spike particles is realized, with313

comparable PDFs for all the three particle ensembles.314

More detailed information relating particle curvature κ and speed û is contained in the315

joint PDFs shown in figure 5. For spiral particles in the EG stage of panel (a), at small316

values κ increases with û, while at large values κ decreases with increasing û. In the PFG317

and RA stages, the curvature of spiral particles decrease with increasing speed, consistent318

with the relation κ ∼ 1/r and u ∼ ΩRr. The results for the bubble particles are included319
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FIG. 5. The joint PDFs of trajectory curvature κ with normalized speed û of the spiral particles

at different stages in panels (a)-(c), and of the bubble particles in panels (d)-(f).

in panels (d)-(f). During the EG stage of panel (d), the bubble particle trajectories are320

close to straight lines, thus its curvature is much smaller compared to the spiral particles321

at the same stage, with no clear trend exists between κ and û. In the PFG stage, the322

curvature is still much smaller than the spiral, but the joint PDF exhibits two branches.323

The left branch (û < 0.4) is associated with slow particles, whose trajectory curvature spans324

a wide range but is almost invariant with respect to û; while in the right branch κ decreases325

with increasing û, consistent with the fact that some of the bubble particles are subjected326

to large-scale swirling motion. Finally, in the RA stage, the bubble particle curvature is327

comparable to the spiral particle, and the joint PDF is also similar, which is due to more328

swirling bubble particles at the late stage. The results of the spike particles are very similar329

to the bubble particles, and in addition similar joint PDFs exist for the middle and high A330

cases.331

The different trajectories of the bubble, spike, and spiral particles will exert different332

influences on the topological evolution of the fluid interface and on general RT dynamics333

such as the bubble reacceleration. We will consider these influences in the next section.334
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V. LAGRANGIAN DYNAMICS OF THE FLUID INTERFACE335

A. Growth of the fluid interface336
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FIG. 6. Panels (a) and (b) show the contour line Y1 = 0.5 imposed on the background field of Y1

at non-dimensional time t̂=2.45 and 4.90. Panel (c) shows the total length of the 2D contour line

Y1 = 0.5 as a function of time, together with the lengths of its horizontal and vertical projections.

The interface length is normalized by Lx.

During RT development, the heavy-light fluid interface is continuously deformed and337

stretched by the instability, which leads to the formation of fractals in the case of 2D338

multi-mode RT with a fractal dimension of 1.7-1.8 [53]. In our single-mode RT case, we will339

measure the total interfacial length and relate its temporal growth with the tangential strain340

carried by the particles associated with the bubble, spike, and spiral regions. Here the fluid341

interface is defined by the contour line Y1 = 0.5 in the 2D field, which is shown as black lines342

in figure 6 (a), (b) at early and late times, respectively. Due to the effects of advection and343

diffusion, the contour line at late time is broken into several unconnected pieces, and the344

interface length is the sum of all the individual parts. Note that the topology of the interface345

contour is sensitive to the Reynolds number Re under study. Increasing Re could result in346

rich small-scale vortices induced by the Kelvin-Helmholtz instability, which adds fine details347

to the contours shown in panels (a) and (b) of figure 6. Thus it is desirable to resort to some348

quantitative measures such as the total length of the interface, whose qualitative evolution349

trend is not sensitive to Re, given that the RT flow undergoes all the three stages (the EG,350
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PFG, and RA stages) at the particular Re.351

Figure 6 (c) shows temporal evolution of the total interface length ÎL, together with the352

length projected onto the horizontal and vertical directions. During the EG stage, the total353

length as well as its horizontal and vertical projections are slowly increasing. In the RT354

initial condition the interface is horizontal and the vertical projection is zero initially, but355

the vertical component grows faster than horizontal, and exceeds the latter at the end of the356

EG stage. In the PFG stage, the total length increases rapidly, with the vertical component357

dominates over the horizontal. In the RA stage the increasing trend continues, and the358

vertical component is more than two times larger than the horizontal. Compared to the EG359

and PFG stages, there are wiggles appearing in the curves during the RA stage in figure 6360

(c), which is attributed to the broken of contour line into several parts, and disappearance361

of small isolated islands of fluids due to the excessive diffusion exerted on the long, thin362

structures emerged from the spike tip, as is illustrated in figure 6 (b). The middle and high363

A results are qualitatively similar to figure 6, but the total interface length increases with364

Atwood number, since the potential-to-kinetic energy conversion is more efficient and the365

instability grows faster when the Atwood number is higher, as is indicated by the dimensional366

bubble and spike velocities UB/S = FrB/S

√
A

1+Agλ of the three A cases as can be inferred367

from figure 2.368
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FIG. 7. The PDFs of tangential strain rate Ŝt experienced by particles at different stages in panels

(a)-(c), which is normalized by the reference time
√
λ/Ag. The mean values of Ŝt associated with

the spiral, bubble, and spike particles in panel (a) are -0.058, 0.36, 0.227, in (b) 0.228, 1.382, 1.626,

and in (c) 0.788, 1.075, 0.920.

We further adopt the tangential strain rate St to characterize the local evolution of
fluid interface. The tangential strain rate measures the stretching or compression along the
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tangential direction of the interface and is defined as St = (δij − ninj)
∂ui

∂xj
, where δij is the

Kronecker delta and ni =
∂Y1

∂xi
/|∂Y1

∂xi
| represents the interface normal. The tangential strain

rate constitutes a major component of the stretching K of the interfacial area A ∝ |∇Y |

that

K =
1

A

dA

dt

which is related to the tangential strain rate St by

K = −ninj∂iuj + ∂iui + Sd ∂ini ≡ St + Sd ∂ini (5)

where Sd =
1

|∇Y |
DY
Dt

is the interface displacement speed [54].369

Figure 7 shows the PDFs of normalized tangential strain rate carried by the spiral, bubble,370

and spike particles in the EG (a), PFG (b), and RA (c) stages. Qualitatively different371

behavior is observed between the spiral particles and the bubble/spike particles. During all372

three stages, both positive and negative St exist for spiral particles, indicating a simultaneous373

compression and stretching of the spiral interface at different locations; while for the bubble374

and spike particles, tangential strain rate is predominantly positive in the EG and PFG375

stages during which the interface expands, and in the RA stage the PDF of St is close to376

symmetric around 0, indicating that both compression and stretching of the interface are377

at work. Different patterns of tangential strain rate would lead to different topologies of378

bubble, spike, and spiral interfaces. For example, the ensemble-averaged tangential strain379

rate of the spiral particles is comparatively small in the EG and PFG stages and rises in the380

RA stage, thus the total length of the spiral is kept small during the initial period of RT381

evolution until a increase is observed in the late RA stage. The interface associated with382

bubble and spike, however, keeps increasing in all stages due to the relatively large mean383

⟨St⟩, which is compatible with the visualization in figure 1 and the interface growth in figure384

6.385

We further illustrate an Eulerian visualization of St in figure 8 to complement the La-386

grangian results. We observe in this figure that during the EG and PFG stages, the tangen-387

tial strain rate St at the bubble and spike regions is positive, while St at the spiral region388

attains both positive and negative values with comparable magnitude. In the RA stage,389

the results are more chaotic and negative values emerge in regions where bubble and spike390

particles reside, in compatible with the PDFs shown in figure 7.391
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FIG. 8. Visualizations of the tangential strain rate St at three time instants t̂ = 1.93, 2.96, 4.24

which belong to the EG, PFG, and RA stages, respectively. In all three panels we have truncated

the vertical domain to show only the region 0.3 < z < 1.2.

B. Secondary Rayleigh-Taylor instability in the spiral392

During the nonlinear stages of RT evolution, spiral particles are subjected to centrifugal393

forces, which could potentially lead to the onset of secondary RT instability in local regions394

of the spiral [55]. This secondary RT could distort the spiral motion, render it unstable,395

and produce complex small-scale structures to enhance local turbulence development. An396

emblematic example of secondary RT is highlighted in the red boxes of figure 9, where addi-397

tional ‘arms’ emerge from the spiral and influence its further development. We shall study398

the secondary RT instability based on the simple instability criterion ∇ρ·∇P < 0 resembling399

the baroclinic vorticity generation [56, 57] on spiral particles. From the momentum equa-400

tion (3), the pressure gradient can be expressed as ∇P = ρg − ρa if we neglect the viscous401

contribution, where a = Du
Dt

is the acceleration field. Thus the above instability criterion402

reduces to g∂zρ+a ·∇ρ > 0, in which the first term g∂zρ denotes the contribution from the403

density stratification, which we shall call the buoyancy contribution; while the second term404

a · ∇ρ arises because of the local instantaneous acceleration and density gradient, which for405

spiral particles we shall denote the centrifugal contribution.406
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FIG. 9. The visualization of secondary RT instability near the spiral region at time t̂ = 4.10. The

grey background shows the visualization of the Y1 field, and the two red rectangles denote the

development of secondary instability.

The relative importance of the buoyancy and centrifugal contributions in the spiral region407

during the RT growth is shown in the joint PDFs in figure 10 for the three stages. The408

centrifugal contribution is close to symmetric in all stages, and its magnitude increases from409

the EG to the PFG stage, and then decreases over the RA stage. The buoyancy contribution410

is predominantly positive in the EG stage, and becomes more symmetric in the PFG and411

RA stages with comparable magnitude over the whole duration. The joint PDFs in both the412

PFG and RA stages in panels (b) and (c) is spontaneously split into two parts, depending413

on the sign of the centrifugal contribution. As we have mentioned, positive values of the414

sum of the centrifugal and buoyancy contributions indicate local RT unstable configuration,415

which we denote the secondary RT instability inside the spiral. Hence in figure 10(b) and416

(c), particles fall in the region above the dashed black line are RT unstable. Moreover, the417

centrifugal contribution in this unstable region is almost always positive, especially in the418

PFG stage. Thus we could argue that spiral particles with positive centrifugal contribution419

(a · ∇ρ > 0) leads to the secondary RT instability with ∇ρ · ∇P < 0.420

Since the centrifugal contribution a · ∇ρ contains the acceleration field which is a La-
grangian quantity, it is desirable to find an Eulerian surrogate that can be calculated directly
from only one snapshot. A possible candidate is the quantity −ω ·(∇ρ×u), whose joint PDF
with the centrifugal contribution is shown in figure 11, where high correlation coefficients
are observed. In other words, we have an approximation a · ∇ρ ≈ −ω · (∇ρ× u) such that
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(a) (b) (c)

FIG. 10. The joint PDFs of buoyancy contribution (g∂zρ) and centrifugal contribution (a · ∇ρ)

terms at the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. In panels

(b) and (c), the black dashed line represents the anti-diagonal line y = −x.

(a) (b) (c)

FIG. 11. The joint PDF of the centrifugal contribution (a · ∇ρ) with the surrogate −ω · (∇ρ× u)

in the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. The correlation

coefficient between the two quantities is 0.92 in panel (a), 0.93 in panel (b), and 0.85 in panel (c).

the criterion for the secondary RT instability inside the spiral g∂zρ+a ·∇ρ > 0 can be recast
as

g∂zρ− ω · (∇ρ× u) > 0 (6)

The new criterion only depends on the instantaneous density and velocity fields, and is thus421

easier to evaluate than the original criterion.422

The surrogate works because we have

−ω · (∇ρ× u) = −∇ρ · (u ×∇× u) = ∇ρ · (u · ∇u −∇|u|2
2

)

= ∇ρ · (a − ∂

∂t
u −∇|u|2

2
)

(7)

which well approximates the centrifugal contribution a · ∇ρ for spiral particles, since these423

particles are restricted to a limited region and thus both the mean time derivative term424
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⟨ ∂
∂t

u⟩spiral and the mean spatial transport term ⟨∇ |u|2
2
⟩spiral are small, where the average425

⟨·⟩spiral is over the spiral particle ensemble. From figure 11, during all the three stages in426

panels (a)-(c), the proposed surrogate is positively correlated with the centrifugal contri-427

bution with high correlation coefficients. For middle and high A cases, this surrogate term428

still applies, but with degraded correlation as A is increased. Also, the approximation is429

only valid for the spiral particles but not for the bubble and spike particles due to the above430

approximations.431

C. Re-accelerations of the bubble and spike tips432

Another application of interface Lagrangian tracking is to provide rationale for the re-433

acceleration of single-mode RT bubble and spike. The growth of bubble and spike velocity434

in figure 2(a) indicates that both the bubble and the spike tips reaccelerate in the RA435

stage. This phenomenon, particularly the bubble reacceleration, has been addressed in many436

previous studies [16, 17, 58, 59] due to its importance in predicting the bubble penetration437

depth, and is generally attributed to the influence of vortices generated near the spike and438

convected to the bubble tip. Reference [17] measured the vorticity averaged over a small439

region adjacent to the bubble tip, and found good correlation between the temporal evolution440

of the averaged vorticity and the bubble-tip velocity. Here we will measure the force acting441

on the bubble and spike tips, as well as the mean force on the nearby particles in the442

RA stage, to further corroborate the relation between bubble/spike re-acceleration and the443

convected fluids from the bubble or the spike regions.444

Figure 12(a) shows, in the RA stage, the PDF of vertical force fz = ρaz experienced by445

the Lagrangian particles inside a rectangular domain enclosing either the bubble tip or the446

spike tip, with a vertical length Lx/π, similar to figure 13 of reference [17]. It should be noted447

that in the RA stage, particles near (below) the bubble tip are the upwards convected spike448

particles, and similarly, particles near (above) the spike tip are the downwards convected449

bubble particles, as is evident in the visualization of figure 1 (d). The PDF in figure 12(a)450

indicates that particles near the bubble tip are subjected to downward mean forcing over the451

RA stage, thus the particles will exert upward reaction force on the surrounding fluid and452

accelerate the bubble tip upwards. In the same way, the spike tip is subjected to downward453

forcing and also accelerate downwards in the RA stage. Panel (b) shows the temporal454
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FIG. 12. (a) PDFs of vertical forces on particles near the bubble and the spike tip during the RA

stage, which are located within a rectangular domain with vertical length Lx/π as in reference [17],

where fz is the vertical force experienced by the Lagrangian particles. The mean values associated

with particles near the bubble tip (blue) and near the spike tip (red) are -0.651 and 0.637. (b)

Inside the same region, the instantaneous (vertical) forces on bubble and spike tips versus time, as

well as mean vertical forces averaged over those selected particles. The dashed lines start around

t̂ = 4.0 when particles start to enter the enclosed region. The lines are re-scaled according to the

descriptions in the legend.

evolution of the instantaneous forces measured on the bubble and the spike tips (multiplied455

by a factor of 5 for better comparison), which point along the vertical direction due to456

symmetry, as well as the mean forces exerted on the rectangle-enclosed particles (multiplied457

by -1 to denote the reaction forces from the particles to the surrounding fluids). The force458

history on the bubble tip is well correlated with the adjacent-particle mean reaction force,459

with a small time lag suggesting a possible causal relationship between the motion of particles460

near the bubble tip, which is convected from the spike side, and the bubble re-acceleration.461

The same situation also holds for the spike tip and the adjacent particles. Hence, figure462

12 connects the bubble reacceleration to the convected fluids from the spike side using a463

Lagrangian point of view, complementing the Eulerian analysis proposed in reference [17].464
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VI. LARGE-SCALE VELOCITY ANISOTROPY NEAR THE INTERFACE465

In this section, we study the evolution of velocity and kinetic energy (KE) of single-mode466

RT interface with the Lagrangian approach, focusing on the anisotropic development of467

interfacial KE along the horizontal and vertical directions. Understanding the anisotropic468

growth of fluid interface is conducive to characterizing the growth rate of RT bubble and469

spike in the nonlinear stage, and lays foundation for phenomenological models of RT. Figure470

13 shows the PDFs of horizontal and vertical velocities associated with the spiral, bubble,471

and spike particles, ranging over the EG, PFG, and RA stages, which exhibit different472

statistical behavior as detailed in the follows.473
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FIG. 13. The PDFs of the normalized horizontal velocity ûx in panels (a)-(c), and of the normalized

vertical velocity ûz in panels (d)-(f) in the EG, PFG, and RA stages, respectively. Velocity is

normalized by
√
AgLx.

In the EG stage, the PDF of horizontal velocity in figure 13 (a) is close to symmetric474

for all three particle ensembles, while for the vertical velocity, panel (d) shows that bubble475

particles only move upwards while the spike particles only move downwards, compatible476

with early RT flow patterns. In addition, the magnitude of ûz is larger than that of ûx477

within all three particle groups. These differences in the EG stage can be understood from478
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the streamline visualization in figure 14. The streamlines indicate that the bubble velocity is479

predominantly upwards and thus ûz is positive for bubble particles, while (in the right half480

of the visualization) ûx is negative in the lower part of the bubble interface and positive in481

the upper part, leading to a symmetric PDF around 0. The flow pattern near the spike tip482

is similar to the bubble tip except with the flow direction reversed. Meanwhile, the spiral483

particles lies around the middle of the swirling vortex in figure 14 and both the PDFs of ûx484

and ûz are symmetric.485

FIG. 14. The streamlines imposed on the density field of the low Atwood number RT within the

EG stage, at non-dimensional time t̂ = 1.72. The figure is truncated in the vertical direction for a

clear presentation. The binary color-bar represents the velocity magnitude on streamlines.

In the PFG stage of figure 13 (b) and (e), both ûx and ûz are predominantly positive486

for the bubble particles, and are predominantly negative for the spike particles, while for487

the spiral particles the PDFs of ûx and ûz are close to symmetric. During this stage, the488

anisotropy between the horizontal and vertical velocities is apparent, with the magnitude489

of ûz larger than ûx. As the system evolves from the PFG to the RA stage, velocity PDFs490

associated with the spiral particles are qualitatively unchanged, while for the bubble and491

spike velocity PDFs the changes are apparent. For ûx in the RA stage, negative values492

appear within the bubble particles, and positive values appear within the spike particles,493

in contrast to the corresponding one-sided PDFs of ûx during the PFG stage. More drastic494

change appears on ûz, whose PDF associated with the bubble particles shifts from positive-495

dominant in the PFG stage to negative-dominant in the RA stage, and vice versa for the496

spike particles. This occurs since the interface tangential velocity moves a large proportion497

of the bubble particles to the spike side, and spike particles to the bubble side, hence alters498
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the particle dynamics, as can be inferred from the particle locations in figure 1(c) and (d).499

Given the dissimilar growth of horizontal and vertical velocities, we study quantitatively500

the directional anisotropy of kinetic energy, namely the ratio of horizontal to vertical KE. The501

anisotropy of RT is conducive to quantifying the distribution of energy among each direction,502

and influences the RT mixing width growth [13, 49]. Figure 15 (a) shows the temporal503

evolution of mean horizontal and vertical KE averaged over the whole domain, as well as over504

the fluid interface defined by the region 0.4 < Y1 < 0.6. Both the domain averaged horizontal505

and vertical KE increases with time, with an increasingly larger difference between the two506

quantities. The evolution of the interface averaged KE roughly follows a similar trend as507

the domain averaged result, but is not monotonically increasing in time due to the complex508

structures emerged in RT at late time. Both the horizontal and vertical interface-averaged509

KE plateau in the vicinity of the PFG-to-RA transition stage, but their ratio increases510

rapidly afterwards.511

More detailed information of KE anisotropy is contained in the PDFs of the horizontal512

KE fraction, KEx/KE, of fluid particles shown in figure 15 (b)-(d). As can be seen from the513

mean values of the spiral particle PDFs, the kinetic energy is almost evenly divided along514

the horizontal and vertical directions. But for the bubble and spike particles, the mean515

horizontal KE is much smaller than the vertical. For example, mean values of KEx/KE for516

bubble and spike particles are close to zero in the EG stage, and increases to around 0.3 in517

the PFG stage, which decrease again to about 0.2 in the RA stage. Compared to the near518

equipartition of KE in 2D multi-mode RT [49], single-mode RT leaves most of the energy to519

the vertical direction, and its mixing width growth is thus faster than the multi-mode case.520

The physical mechanism of the KE anisotropy can be explained by the statistics of hor-521

izontal and vertical accelerations. Figure 16 shows the joint PDFs between âx and âz, the522

horizontal and vertical acceleration fields normalized by the gravitational acceleration g, of523

the three particle ensembles at different stages. For spiral particles in panels (a)-(c), the524

joint PDFs of âx and âz are close to circular shapes centered at the origin, with the radius525

increasing from the EG to the PFG stage, and stays similar during the RA stage. These526

plots indicate an isotropic growth of horizontal and vertical velocities of the spiral particles,527

in accordance with the kinetic energy ratio in figure 15 (b)-(d). However, the joint PDFs528

of bubble particles in figure 16 (d)-(f) exhibit differences between âx and âz, both in the529

magnitude and in the sign. The mean magnitude of âz associated with bubble particles is530
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FIG. 15. (a): Time evolution of horizontal and vertical kinetic energy averaged over either the

whole domain, or the fluid interface (0.4 < Y1 < 0.6). The EG, PFG, and RA stages are highlighted.

(b)-(d): The PDFs of the ratio of horizontal to total KE in the spiral, bubble, and spike regions,

for each of the three stages. The mean values of the PDFs corresponding to spiral, bubble, and

spike are 1): 0.488, 0.03, 0.03; 2): 0.408, 0.317, 0.310; 3): 0.452, 0.221, 0.194.

about 2-3 times larger than mean âx. In addition, in the PFG and RA stages, âz is mostly531

negative, but âx attains both positive and negative values. In addition, uz is predominantly532

negative in the two stages. Hence, âz continuously increases the magnitude of ûz, but the533

changing sign of âx leads to smaller magnitude of ûx. This phenomenon is related to the spe-534

cial configuration of single-mode RT, since along the horizontal direction the flow is confined535

by the lines of symmetry, while in the vertical direction no constraint is imposed except for536

the top and bottom walls which only affect RT development at very late time.537
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FIG. 16. The joint PDFs of the horizontal and vertical acceleration associated with the spiral

particles in panels (a)-(c) corresponding to the EG, PFG, and RA stages, and with the bubble

particles in panels (d)-(f).
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FIG. 17. The mean values of non-dimensional velocity and acceleration versus time, averaged over

the spiral particles in (a), and over the bubble particles in (b). The horizontal dashed black line in

panel (b) corresponds to zero values. The non-dimensional velocity and acceleration are
√
AgLx

and g, respectively.

Figure 17 confirms the above argument by showing the temporal evolution of mean ac-538

28



celeration and velocity averaged over the spiral and the bubble particle ensembles. In panel539

(a) for the spiral particles, both averaged ⟨âx⟩ and ⟨âz⟩ behave similarly, and ⟨ûx⟩ and ⟨ûz⟩540

are comparable in magnitude. In contrast, for the bubble particles in panel (b), on one541

hand ⟨âz⟩ is 2-3 times larger than ⟨âx⟩ in magnitude; on the other hand ⟨âx⟩ changes sign542

between the PFG and RA stages, while ⟨âz⟩ is almost always negative during this period.543

Thus the averaged vertical velocity is much larger than the averaged horizontal velocity, in544

accordance with our previous analysis. Numerical tests also show that for the middle and545

high A cases, the KE anisotropy is similar to those low A results presented above.546

VII. DISCUSSIONS AND CONCLUSIONS547

This paper investigates the single-mode Rayleigh-Taylor instability with a Lagrangian548

approach, focusing on the topology and dynamics of the interface. Three particle ensembles549

are collected, including particles which pass through the bubble, the spike, and the spiral550

regions, to perform Lagrangian statistical analysis over different RT stages. A total of three551

stages, namely the exponential growth stage (EG), the potential flow growth stage (PFG),552

and the re-acceleration stage (RA), are identified based on the characteristics of RT flows,553

following the definition in reference [16]. The Lagrangian statistics studied in this paper554

including both kinematics associated with particle trajectories and the ensuing interfacial555

dynamics, which influences the topology of the interface, leads to secondary RT instability in556

the spiral, and accelerates the bubble and spike tips. The interface evolution also generates557

anisotropy between the horizontal and vertical kinetic energy components.558

For the geometry of Lagrangian trajectories, we show that a κ−3 scaling appears in the559

right tail of the curvature PDF associated with the spiral particles during all stages, and560

for the bubble and spike particles at the RA stage the scaling is κ−2 due to a uniform561

distribution of the radius of curvature of particles. Fluid particles are trapped inside the562

vorticity-dominated spiral with high trajectory curvature compared to the shear-dominated563

bubble/spike particles undergoing large-scale convective motions. The joint PDFs between564

curvature and particle speed are more coherent with negative correlations for the spiral565

particles during all three stages, while for the bubble and spike particles the correlation is566

more complicated due to the relatively large dispersion within each of the particle ensembles.567

The expansion of fluid interface is closely related to the tangential strain rate on the inter-568
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face. The PDF of tangential strain rate St indicates that for the bubble and spike particles,569

the net effect of St is to stretch the corresponding interface during all the evolution stages.570

In contrast, the spiral region tends to be compressed in the EG stage, and stretched in the571

PFG and RA stages. We then investigate the secondary RT instability inside the spiral572

region through the joint PDF of the buoyancy contribution (−g · ∇ρ) and the centrifugal573

contribution (a · ∇ρ) terms, and have found that positive centrifugal contribution is associ-574

ated with the secondary RT instability. A surrogate term −ω · (∇ρ× u) for the centrifugal575

contribution in the spiral region is proposed, which depends only on the instantaneous Eu-576

lerian field instead of the Lagrangian time derivative. Finally, the re-acceleration of bubble577

and spike tips are shown to be correlated with the forcing exerted by Lagrangian particles578

transported to the adjacent regions in the RA stage, complementing existing Eulerian results579

in the literature.580

The interface kinetic energy along x- and z-directions in single-mode RT exhibits distinct581

statistics in different regions, as measured by the ratio between the horizontal and the total582

kinetic energy. Associated with the spiral particles the flow is close to isotropy, while for583

the bubble/spike particles the KE anisotropy is pronounced and the horizontal velocity584

magnitude is much smaller compared to the vertical. This anisotropy is well explained by585

the joint PDFs between the horizontal and vertical accelerations. For bubble/spike particles,586

the ensemble-mean horizontal acceleration ⟨ax⟩(t) is smaller in magnitude compared to the587

vertical acceleration ⟨az⟩(t), and in addition ⟨ax⟩(t) alters sign between the PFG and RA588

stages leading to a cancellation effect on ⟨ux⟩(t), thus giving rise to a much smaller horizontal589

KE than the vertical. The pronounced anisotropy effects should be taken into account in590

reduced numerical models such as Reynolds-averaged Navier–Stokes (RANS) or Large Eddy591

Simulations (LES).592

To conclude, we adopt the Lagrangian approach to study the interfacial kinematics and593

dynamics of 2D single-mode RT instability. The ensemble of spiral particles undergoes594

approximately a solid-body rotation and the PDFs of its trajectory curvature and particle595

speed follow κ−3 and u1 scalings, respectively, during all three evolution stages. In addi-596

tion, the bubble and spike particles in the RA stage undergo spiral motions with uniformly597

distribution radius of curvature, and the κ−2 and u1 scalings are observed. Lagrangian inves-598

tigation of interfacial dynamics indicates that the interface near the bubble and the spike are599

continuously stretched, and the bubble/spike tip reacceleration is induced by the convected600
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vortices inside the adjacent regions; while for the spiral structure, both interface streching601

and compression exists, and the centrifugal acceleration inside the spiral induces a secondary602

RT instability which can distort its motion. Finally, we find that the anisotropy in inter-603

facial KE is more pronounced for bubble and spike regions compared to the spiral, which604

is due to both the magnitude and the phase differences of particle ensemble acceleration605

⟨ax(t)⟩ and ⟨az(t)⟩ over time.606
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Appendix A: Simulation results with W2/W1 = 2613

In the case of unequal molecular weight W1 ̸= W2 between the two fluids, the mass614

fraction equation is coupled to other equations, in contrast to the equal molecular weight615

case where the equations are decoupled. However, from the simulation with A = 0.15 and616

W2/W1 = 2 whose Y1 visualizations are shown in figure 18 along with the results from the617

equal W case 2DlowAt, we can observe that the flow physics does not differ much between618

the two cases. The spiraling motion, the secondary RT instability inside the spiral, as well619

as the bubble reacceleration are clearly visible in the visualizations of the W2/W1 = 2 case.620

However, it is not appropriate to extrapolate this observation to cases where W1 ≫ W2 or621

W2 ≫ W1.622

Appendix B: Details on the initial conditions623

The unperturbed initial conditions of the three simulation cases at various Atwood num-624

bers consists of 1D profiles of density, pressure, and temperature that are uniform along625
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(a) (b) (c) (d) (e) (f)

FIG. 18. Panels (a)-(c) show the visualization of the Y1 fields at non-dimensional time t̂ = 2.45, 3.67, 4.90

for the 2DlowAt simulation in the paper. Panels (d)-(f) show the results from a low At simulation case with

W1 : W2 = 1 : 2 and A = 0.15 at the same instants.

the horizontal direction, while an initial perturbation is imposed on the quiescent vertical626

velocity field. We show the initial 1D profiles of the low, middle, and high A cases in fig-627

ure 19. Inside the heavy and light fluids the densities are constant, with a density jump628

across the interface that is smoothed by a hyperbolic tangent function with a width approx-629

imately equals to Lz/64. The pressure and temperature fields in the heavy and light fluid630

phases are linear profiles so that the hydrostatic condition dP/dz = −ρg is satisfied and the631

temperature gradient dT/dz = −g/R uniform across the domain.632

The perturbation is imposed on the vertical velocity field with the form

uz = up cos
(
2π

Lx

x

)
e
− 2π

Lx
|z−z0| tanh

(
|z−z0|

Lx

)

where up is a small quantity representing the initial perturbation magnitude chosen as up =633

0.005 for the simulations performed in table I, Lx is the horizontal domain size, z0 is the634

vertical coordinate of the interface. The exponential decaying quantity is to ensure the635

perturbation is localized near the interface.636

The influence of perturbation magnitude up in single-mode RT is not important provided637

that the perturbed flow remains in the linear regime (up ≪
√

gLx/10). We have tested638
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FIG. 19. The one-dimensional profiles of the initial density, pressure, and temperature fields for

the simulation cases with low, middle, and high Atwood numbers in panels (a), (b), and (c),

respectively. The coordinate is normalized by Lz, while the density, pressure, and temperature

fields are normalized by their respective values evaluated at z = 0. In the case A = 0.8, the initial

interface is chosen to locate at 2/3Lz.

for the 2DlowAt case with a larger magnitude up = 0.01. Compared to up = 0.005 in the639

2DlowAt case, the bubble and spike velocities are shown in figure 20. With a proper shift in640

time to account for the initial difference, the velocities of the bubble and the spike are very641

close between the two cases, indicating that the single-mode RT statistics is not sensitive to642

the initial perturbation magnitude.643
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FIG. 20. Comparison of the bubble and spike Froude number (non-dimensional velocity) for the 2DlowAt

case with perturbation magnitude up = 0.005 and 0.01. The up = 0.01 plots are shifted in time to have a

fair comparison with the up = 0.005 case.
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Appendix C: Correlation between trajectory curvature and acceleration644

To corroborate the relationship between trajectory curvature and small scale quantities
such as acceleration, we show in figure 21 the time history of particle trajectory curvature
and the acceleration components that are tangent and normal to the instantaneous velocity:

atangent =
a · u
∥u∥2u; anormal = a − atangent

Panels (a)-(c) are the results of one representative particle in each of the bubble, spike,645

and spiral ensembles, while panels (d)-(f) show the ensemble-averaged results. From vi-646

sual inspection, the temporal evolution of curvature is closely correlated with the normal647

component of the acceleration anormal, with high correlation coefficients as shown in the cap-648

tion of figure 21, while the tangential acceleration component atangent captures the temporal649

fluctuations as in the evolution of curvature. This figure demonstrates that the trajectory650

curvature not only acts as a kinematic measure of local flow patterns, but also are closely651

connected to the dynamics of the flow.652
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ânormal

(c) spiral, one particle

0 1 2 3 4 5

t̂

0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40 〈̂〉〈

âtangent

〉
〈
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