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Abstract

We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh-Taylor (RT)
instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT
stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip,
and inside the spiral of the mushroom structure, which cover most of the interfacial region as
the instability develops. Conditional statistics performed on the three sets of particles and over
different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals
the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability
density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible
with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy
of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for
different particle ensembles arising from the differing evolution patterns of the particle acceleration.
In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction
with the transported fluid from the spike side, due to the shear driven Kelvin-Helmholtz instability.
Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the

spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration.

* linchensen@fudan.edu.cn



32

34

35

36

37

38

39

40

4

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

I. INTRODUCTION

When a light fluid accelerates against or supports a heavy fluid, the perturbed interface
between these two fluids is subjected to the Rayleigh-Taylor (RT) instability [1, 2], which
could lead to the formation of bubbles and spikes, and finally to turbulence at high Reynolds
numbers [3]. RT instability has important consequences in many natural and engineering
applications, such as the fingering structures of supernova explosion remnants [4] in astro-
physics, the fusion target degradation in the acceleration and deceleration stages of inertial
confinement fusion [5-9], the breakup and atomization of diesel and gasoline sprays in au-
tomotive engines [10], and the coastal upwelling phenomenon in ocean dynamics [11]. The-
oretical, experimental, and numerical investigations on RT instability have been performed
for decades to advance the fundamental understanding of this subject, as summarized by

several recent reviews [3, 12-15].

Despite extensive research efforts, many problems in RT flows remain unresolved even
in the single-mode configuration, in which the initial perturbation contains only a single
sinusoid, due to the inherent nonlinearity and also due to the complexity induced by viscos-
ity, compressibility, surface tension, mass ablation, and stratification [16-22]. According to
Wei and Livescu [16], the evolution of two-dimensional (2D) high Reynolds number single-
mode RT can be divided into five stages: diffusive growth (DG), exponential growth (EG),
potential flow growth (PFG), reacceleration (RA), and chaotic development (CD). In the
diffusive growth stage, diffusional effect governs the system and sharp interfaces are rapidly
smeared out for miscible fluids. In the exponential growth stage, RT development follows

the linear stability theory with a constant growth rate v = v/ Akg, where A = Z Z;Z Lis the

Atwood number with py, p; the heavy and light fluid densities, k = 27/ is the perturbation
wavenumber (A is the wavelength), and ¢ is the gravitational acceleration. As the magni-
tude of the instability exceeds 0.1\, the exponential growth terminates and nonlinear effect
dominates, where the uprising bubble and the sinking spike become apparent. The system
then transits to the potential flow growth stage with constant bubble and spike velocities,
which is well predicted by the potential flow theory [23-26] or the buoyancy-drag model
[27]. In the reacceleration stage, the bubble (and also the spike) velocity increases again,
which is attributed to the vortices induced by the Kelvin-Helmholtz instability near the fluid
interface and advected to the bubble tip [16, 17, 28]. Ref. [29] derived an expression for

3



63

64

65

66

67

68

69

70

71

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

the effective drift imparted by these vortices on the large scale flow. Ref [17] also showed
that the reacceleration is dependent on the perturbation Reynolds number Re, and Atwood
number A, and provided a phase diagram for RT reacceleration. Finally, if the system
Reynolds number is high enough, single-mode RT growth can lead to the chaotic mixing
stage [3, 30].

The above evolution process is altered in varying degrees of viscosity and compressibility,
which modifies the RT growth rate as well as the energy and enstrophy budgets [31]. Hu et al.
[32] investigated the single-mode RT bubble velocity and vorticity at different viscosity levels
(or Reynolds numbers), and proposed a linear relationship between bubble-tip vorticity and
viscosity in the reacceleration stage by a least square fit. After the bubble reacceleration,
if viscous effect is prominent, an alternating deceleration-acceleration pattern will emerge,
due to the combined effects of viscous-inhibition and shear-generation of vorticity near the
bubble tip. Wieland et al. [33] studied the compressibility effects on the vorticity dynamics
of 2D single-mode RT at low Atwood numbers. They found that stronger stratification
(larger Mach number) leads to more symmetric growth of bubbles and spikes, but the level
of vorticity as well as the bubble reacceleration is suppressed. By examining the individual
budget terms in the vorticity transport equation, the authors concluded that the baroclinic
torque dominates vorticity generation, which diminishes at high stratification levels and thus
RT is suppressed when Mach number is large. Similar conclusion is also drawn in Luo et
al. [22], who investigated the compressibility effects on both low and high Atwood number
single-mode RT, and distinguished the stabilization effects of initial density stratification
from the expansion-compression effect. Fu et al. [34, 35| modified the buoyancy-drag model
to account for the compressibility effect in single-mode RT, and found the critical Atwood
number 0.25 at which nonlinear saturation of bubble growth is realized at various Mach
numbers. They further found that the acceleration of the heavy fluid in front of bubble tip
is nearly constant, and numerically verified a scaling law A2° M? for this acceleration, where

M is the Mach number.

In addition to the above effects, many of the complexities in RT flows are due to the
secondary Kelvin-Helmholtz (KH) instability, which boosts the spiral structure between the
bubble and spike, accelerates the bubbles, and enhances fluid mixing. Olson et al. [36] nu-
merically studied the early nonlinear stage of multi-mode RT flows with imposed shear rates,

which leads to a combined RT/KH instability growth. Contrary to the predictions by linear
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theory, in which the instability growth rate is enhanced by the addition of shear, numerical
results show that a small amount of imposed shear rate in fact decreases the growth, while
a large shear rate enhances the instability. By visual inspection and quantitative analysis,
the suppression of instability at low shear levels is due to a small amount of energy being
channeled into vertical mixing, while the contrary is true for a high shear rate. Chen et
al. [37] numerically investigated the coupled single-mode RT-KH instability system with a
discrete Boltzmann model. They found that RT effect dominates the late stage develop-
ment, while in the early stage the dominant mechanism depends on the relative strength
between buoyancy and shear. The total boundary length of the temperature fields in the
pure RT and KH simulations can help discriminate the dominant mechanism of the coupled
RT and KH system. Hamzehloo et al. [38] performed a parametric study of RT flows with
surface tension, and found that surface tension prevents the formation of KH type vortices
especially at high Reynolds numbers. With increasing Reynolds number, the amount of KH
vortices as well as the interfacial area increases, but the penetration depths of bubble and

spike remain constant, which depend primarily on the Atwood number.

An effective yet relatively under-explored way to study fluid mixing and interfacial flows
is the Lagrangian approach [39-42], which, however, is seldom applied to the RT problem.
Despite a few studies on particle-induced RT instability [43-45] in which the RT growth rate,
particle concentration and mixing are investigated, the Lagrangian passive particle tracking,
to the best of our knowledge, has never been reported with the exception of reference [18]. In
that work, the authors studied single-mode RT using the discrete Boltzmann method with
three types of tracers marking the heavy fluid, the light fluid, and the interface. RT mixing is
quantified by the tracer defined local mixedness, and the secondary KH instability is featured
by the abrupt increase in vertical-averaged mixedness. Viscosity and compressibility on
RT mixedness show two-stage effects due to the formation of large scale structures at the
early stage, and the generation of small structures at later stages. Although reference [18§]
sheds some light on the RT interfacial evolution and mixing using tracer particles, several
important features unique to the Lagrangian description remain to be explored, such as
statistics on particle velocity, acceleration, and trajectory curvature, as we shall study in
this paper. These quantities can on one hand reflect characteristic flow kinematics such as
the oscillatory trajectories of particles trapped in coherent vortices, and on the other hand

they can be adopted to explain important flow dynamic behavior like bubble reacceleration
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in single-mode RT as discussed in later sections.

The current paper focuses on Lagrangian investigation of single-mode RT’s interfacial
growth and mixing, and aims to provide an alternative way to reveal different evolution
stages of 2D single-mode RT, which gains deep physical insights into this complex flow.
To this end, we seek to address the following questions: (i) How does the single-mode RT
interface evolve in space and time? (ii) What statistical quantities govern the interfacial
dynamics, and how does the statistics differ at different regions of single-mode RT), i.e., the
bubble, the spike, and the spiral regions? (iii) Why does single-mode RT develop directional
anisotropy between the horizontal and vertical components? Answers to the above questions
will deepen our understanding of single-mode RT physics in two dimensions, and also lays a
basis for the Lagrangian investigation of more complicated multi-mode turbulent RT flows.
For example, detailed geometric information of the interface avails many predicative models
of bubble and spike growth of single-mode RT in the highly nonlinear stage [26], while
the interfacial dynamics controls many physical and chemical processes occurring at the
interface, such as mass ablation in inertial confinement fusion and fuel /oxidizer mixing and
reaction in combustion chambers [46].

In the following, we first provide details on the numerical simulation of RT flows and
the Lagrangian tracking approach. Next, we perform statistical analysis on Lagrangian
velocity, acceleration, curvature, etc., focusing on different stages and different regions of
single-mode RT. We then study the large-scale anisotropy associated with the horizontal and

vertical kinetic energies, and finally present summaries and conclusions of our discussions.

II. GOVERNING EQUATIONS AND NUMERICAL IMPLEMENTATION

We adopt the compressible two-component Navier-Stokes equations to describe the RT
instability, which consists of the conservation equations of the mass fraction, mass, momen-

tum, and energy [22, 32]:

5+ 0(pu,Y;) = 0;(pDO;Y;) (1)

% + 0;(pu;) = 0 (2)

Q% + 9i(pusw;) = —0;P + 0735 — pgdiz (3)

%+ 05((pE + P)uy) = 0;(mijus) — puigis + 0;(k0;T) (4)
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where p,u;, P, g are density, velocity, pressure, and the gravitational acceleration, respec-
tively, Y; is the mass fraction of the i-th component (i=1,2), and F = %uQ + ¢, T is the total
energy density, in which ¢, is the specific heat at constant volume and 7' is the temper-
ature. 7;; = 2u(S;; — éSkkéij) is the viscous stress tensor and d is the spatial dimension,
Si; = (Ojuj + 0ju;)/2 is the strain rate tensor, while u, D, k are the dynamic viscosity, mass
diffusivity, and thermal conductivity, respectively. The above set of equations is comple-
mented by the ideal gas equation P = pRT(Y;/Wy + Ya/Ws), where R is the universal
gas constant, Wi, Wy are the molecular weights of the two species. Note that we have not
included the enthalpy of formation and also ignored the enthalpy diffusion term in the total
energy equation, since we set equal molecular weights W, = W5 in our RT simulations, and
thus the effects of enthalpy diffusion can be neglected [47]. Due to the constraint Y; +Y, = 1,
only one of the two mass fraction equation (1) is required for numerical simulation. In ad-
dition, by setting equal molecular weights W, = Wy = W, the ideal gas equation of state
reduces to P = p%T, and the mass fraction equation (1) is thus decoupled from other equa-
tions. Here we include the mass fraction equation merely to track the fluid interface. For
general situations with unequal molecular weight W, # W5, the physics remains unchanged
when the ratio Wy /W) is close to 1, as we have observed in a Wy /W) = 2 case whose result
shares similar RT physics as in the equal molecular weight case (Appendix A). In more
complex situations where combustion or general chemical reactions are included, this set of
equations is still applicable by adding the chemical source term and enthalpy diffusion, as

we shall explore in our future work.

We conduct 2D single-mode RT simulations using the DiNuSUR code, which is a hybrid
pseudo-spectral and six-order compact finite difference solver to account for both the homo-
geneous and the inhomogeneous directions, and fourth order Runge-Kutta scheme is used for
time integration. The code has been applied to both single- and multi-mode RT systems in
previous studies [17, 48, 49], and here we have implemented the Lagrangian particle tracking
using cubic spline for spatial interpolation and second order predictor-corrector scheme for
time advancing. The Lagrangian module can be applied both online (simultaneously with
the Eulerian time advancing) and off-line (by post-processing). For Lagrangian tracking as
a post-processing step, the Eulerian snapshots should be saved densely in time to satisfy
the Courant-Friedrichs-Lewy (CFL) condition [50] max(u,At, u,At)/Ax < 1, where At is

the time interval between two consecutive snapshots, and Az is the grid size assumed to be

7
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As for the boundary condition, the horizontal boundaries are periodic, while the top and

the bottom boundaries are assumed to be no-slip walls, in which the conditions %—Z = 0,
% =0, %—f = —pg are imposed. For the initial conditions, we impose uniform heavy fluid

of density p, on top half and uniform light fluid of density p; at the bottom half, and the
initial pressure field satisfies the hydrostatic equilibrium condition 0P/Jdz = —pg. The mass
fraction field follows from the density field. Initial perturbation is imposed on the velocity
field as a small amplitude cosine wave. More details on the initial density, pressure, and
temperature profiles, as well as the precise initial perturbation is shown in Appendix B.
Here we perform three single-mode RT simulations at low, middle, and high Atwood
numbers with parameters shown in table I. The initial fluid interface is chosen to locate
at L./2 for the low and middle Atwood cases, and at 2L./3 for the high Atwood number
case, to allow for the unequal development of bubble and spike at high A. The perturbation
Reynolds number is defined as Re, = /\\/m /v, and the mesh Grashof number is
Gr = 2AgAx®/v?, whose value below 1 indicates that the simulation is well resolved [16].
The Gr > 1 for the middle and high Atwood number cases indicates that the simulation
might be under resolved at very late time when chaotic structures emerge [17], which has
not been reached in our middle and high A simulations as will be shown below. The
A — Re, combination in 2DlowAt is to ensure that the bubble and spike would enter the
reacceleration stage, according to the prediction by the phase diagram in reference [17]. The
kinematic viscosity v = p/p; is the ratio of dynamic viscosity and interficial density defined
as pr = (pn+p)/2 [17], and the Prandtl number Pr = pc,/k as well as the Schmidt number
Sc = v/D are both unity, where ¢, is the specific heat at constant pressure. Note that in
the current paper, the main focus is on the morphology and dynamics of the low Atwood

number RT, while the middle and high A cases are included for reference purposes only.

III. VISUALIZATION AND MIXING WIDTH GROWTH

Figure 1 presents the density field snapshots of the three RT cases at different time in-
stants, together with selected tracer particles located at the bubble, the spike, and the spiral
regions. The spiral region denotes the primary vortical structure formed by baroclinicity

1/p*(Vpx VP), which arises from the misalignment between the density and pressure gradi-
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TABLE I. Parameters of the 2D single-mode RT simulations. L, and L, are the domain widths
along the horizontal and vertical directions, respectively. The Mach number M is measured as a

maximum value among all snapshots of the corresponding simulation.

Grids L,|L,| A 7 Re, | Gr | M | Pr|Sc

2DlowAt | 512 x 2048 [ 0.4 1.6 0.15| 1.2 x 1075|6621 | 0.75[0.08| 1 | 1

2DmidAt | 512 x 2048 (0.4 1.6| 0.5 | 1.2 x 1075 | 8114 | 1.47|0.11| 1 | 1

2DhighAt | 512 x 2048 [ 0.4 1.6 | 0.8 | 1.2 x 1075|7808 | 1.63 [ 0.15| 1 | 1

ents near the fluid interface. We select these particles at the time instant in which the spiral
is well developed (at non-dimensional time ¢ = t1/Ag/X = 2.94), and then perform particle
tracking both backward and forward in time to obtain their full evolution trajectories. For
the low A simulation, the three sets of particles cover most of the interfacial regions at late
time as shown in figure 1 (c¢) and (d). The total number of particles associated with the
bubble, the spike, and the spiral regions are 2772, 2670, and 5829, respectively. Similar re-
sults also hold for middle and high A cases in panels (e),(f) and (g),(h), respectively, except
that with increasing Atwood number, the fluid interface growth rate is increased and the
selected particles fail to cover all the fluid interface. The total number of bubble, spike,
and spiral particles are 2045, 1856, 4004 for the A = 0.5 case and 1880, 1738, 2360 for the
A = 0.8 case.

The single-mode bubble and spike growth rate is one of the most important quantities
for practical applications of RT [3]. To verify our numerical simulations and to introduce
the different characteristic evolution stages in single-mode RT, here we show in figure 2 the
Froude number of the bubble and the spike tip, Frp;s = Up/s/4 /liiAg)\, which represents
the non-dimensional velocity. For the low A case in figure 2(a), both the bubble and spike
experience an initial exponential growth, and then follow by a saturation at Froude number
Fr = \/317r , as is predicted by the potential flow theory [23]. After the nonlinear saturation,
both the bubble and spike start to reaccelerate and their velocities keep growing. According
to Wei and Livescu [16], the system would eventually enter the chaotic mixing stage with
constant mean acceleration in the bubble and spike tips. However, our current simulation
domain is not long enough to allow for such a stage. In figure 2 (a), we highlight different

stages in the figure, namely the exponential growth stage (EG), the nonlinear saturation

9
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FIG. 1. The visualization of the density fields at non-dimensional time t= t\/m = 1.22, 2.45,
3.67, 4.90 for 2DlowAt in panels (a)-(d), and at ¢ = 3.67, 4.90 for 2DmidAt in (e),(f) and for
2DhighAt in (g),(h), respectively. In each panel, we show 1/100 of all selected particles in green
(), black (+), and magenta (-) to mark particles at the bubble, the spiral, and the spike regions. In
the Supplementary Materials, we have included movies illustrating the temporal evolution of these

selected particles imposed on the density fields for a better visualization.

or the potential flow growth stage (PFG), and the re-acceleration stage (RA). This tempo-
ral partition into three stages allows us to perform conditional Lagrangian tracer particle
statistics, as will be illustrated below. Note that we have neglected the early part of the
exponential growth (EG) stage in our statistics (the EG stage does not start near the origin),
since during this period the tracer particles are nearly quiescent and the statistics would be
trivial.

For the middle and high Atwood number cases in figures 2(b) and (c), the bubble velocity
saturates after exponential growth, with a terminal velocity close to the theoretical predic-
tion, but the saturation velocity persists till late time and no reacceleration occurs. This
behavior is compatible with the .A-Re, phase diagram proposed by Bian et al. [17]. Growth
of the spike velocity is more complicated. For A = 0.5 in panel (b), the spike reaccelerates
after a short plateau with a velocity slightly higher than the theoretical prediction, while for

A = 0.8, no plateau is observed and the spike velocity keeps increasing. The spike behavior
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FIG. 2. The velocity at the bubble and spike tips for (a) low, (b) middle, and (c) high Atwood
number RT simulations. In each panel, the horizontal dashed lines represent theoretical predictions
[23], Frp /s = \/W for all cases. In panel (a), three stages denoted EG, PFG, and RA are
highlighted.

has also been observed in reference [17], in which the high spike velocity is attributed to the
thin vortical structures emerging from the spike tip at relatively high A.

In the following sections, we will investigate the statistics of Lagrangian tracer particles
near the fluid interface, focusing on the low A case in which the bubble-spike structure is
more symmetric and the Kelvin-Helmholtz instability is well developed, while the middle
and high A results are included for reference. The statistics is performed on the three en-
sembles of tracer particles in the bubble, the spike, and the spiral regions, which we shall
call the bubble/spike/spiral particles, and also within each of the three temporal stages
marked as EG, PFG, and RA. We will first study the geometrical properties of particle tra-
jectories, and then investigate their influences on the dynamical evolution of fluid interfaces.
Anisotropy associated with the kinetic energy of the fluid interface will also be analyzed via
the Lagrangian approach. Here, we focus on vector anisotropy, which is different from the

shape anisotropy of RT flows studied recently in [51].

IV. GEOMETRY OF PARTICLE TRAJECTORIES

As have shown in figure 1, three ensembles of Lagrangian tracer particles associated with
the bubble, the spike and the spiral regions are chosen for Lagrangian investigation. The
trajectories associated with the three groups of particles are illustrated in the three panels

of figure 3, in which visual similarity of the trajectories is shared among each group. For
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example, in panel (a) the bubble particles emerge from the middle of the domain and initially
move upwards, and then their trajectories start to bend and gradually move downwards.
Finally the bubble particle trajectories are more complex, and some of which are subjected
to swirling motions. The movement of the spike particles in panel (b) is almost opposite to
the bubble particles, since at low A the bubble and spike structures are close to symmetric.
Meanwhile, spiral particles are driven mainly by vortical flows and undergo swirling motions
during their lifetime, as is evident in the trajectories shown in panel (¢). For middle and
high A cases, the particle trajectories are qualitatively similar to their low A counterpart,
but the center of the spiral particles gradually shifts downwards in addition to the swirling
motion, due to the asymmetric movement of the heavy and the light fluids in the presence

of large density contrast.

Given the distinct characteristics of particle trajectories, the statistics associated with
each of the three ensembles would be different. Figure 4 shows the probability density
function (PDF) of trajectory curvature k associated with different particle ensembles at
various stages. The curvature is defined as k = ("2’ — 2”2)/|2"* + 2"%|3/? = (—u.,a, +
a,uz)/|ul®, where z(t) and z(t) are particle coordinates parameterized by time, the prime
symbol " denotes time derivative, and a is the particle acceleration. The trajectory curvature
(together with the torsion) fully determines any space trajectory, and it is related to small
scale dynamical quantities such as acceleration, vorticity, and dissipation [52]. We show the
correlation between particle trajectory curvature and particle acceleration in Appendix C.
Overall, curvature associated with the spiral particles is higher than the bubble and spike
particles, as can be determined from visual inspection of the respective trajectories in figure
3. The curvature magnitude of the bubble and spike particles gradually increases in time,
and in the RA stage their magnitude is comparable to the spiral particles as indicated in
figure 4 (c).

3 at

In addition, in figure 4(a)-(c) the PDFs of spiral particle trajectories scale as Kk~
the right  tail during all the three stages. This scaling of the spiral particles can be well
explained by geometrical arguments. The spiral is approximately a uniform circular region of
radius R, and the probability density of radius r inside this circle is P(r)dr = 27rdr /(7 R?),
or P(r) o< r. The curvature s, which is the inverse of the radius of curvature, is another

1

random variable which roughly satisfies K ~ r~ . By the change of variable formula of

the PDF, we get P(k) oc 73, same as the scaling in figure 4. The scalings of bubble and
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FIG. 3. The trajectories of particles associated with the bubble (a), the spike (b), and the spiral
(c¢) regions within non-dimensional time 0 < ¢ < 4.9. The domain is truncated to lie within
0.15 < 2 < 04, 0.2 < z < 1.3 for a better presentation, and only 1/100 of the particles in each
ensemble is shown here. To emphasize the time variable, the transparency of each trajectory varies
continuously from transparent colors at the initial time instant to solid colors at the final time

instant.

spike particle trajectories in the EG and PFG stages decay rapidly at the high x end, while
in the RA stage, their scalings are around x~2, corresponding to a uniform distribution of
the radius of curvature. This is a reasonable result, considering that in the RA stage the
bubble and spike particles are scattered in space and hence are weakly correlated among
their respective ensemble, such that the distribution of the radius of curvature is roughly

uniform. Gaussian statistics.

The PDF of normalized particle speed u = |u|/y/AgL, is shown in figure 4 (d)-(f), with a
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FIG. 4. The probability density functions (PDFs) of the trajectory curvature associated with the
bubble, spike, and spiral particles. Panels (a),(b), and (c) show the results during the EG, PFG,
and RA stages, respectively. A dashed line with a -3 slope is included in (a)-(c) for reference.
Panels (d)-(f) show the PDFs of normalized particle speed @ = |u|/v/AgL, in the three stages, and

a dashed line with slope 1 is included for reference.

reference line ' included in each panel. The speed of spiral particles exhibits a u! scaling in
the left tail of the PDFs during all the three stages, because the spiral particles are co-moving
along circular trajectories with |u| = Q,r (£, is the angular velocity of the spiral particles),
since P(r) ~ r! we have P(u) ~ @'. For the bubble and spike particles in the EG and PFG
stages, no clear scaling is visible, and their minimum speed is relatively large compared to
spiral particles due to the large-scale convective motion. However, it is interesting to note
that in the RA stage the ' scaling of both the bubble and spike particles is realized, with
comparable PDFs for all the three particle ensembles.

More detailed information relating particle curvature x and speed u is contained in the
joint PDFs shown in figure 5. For spiral particles in the EG stage of panel (a), at small
values k increases with u, while at large values x decreases with increasing @. In the PFG

and RA stages, the curvature of spiral particles decrease with increasing speed, consistent

with the relation k ~ 1/r and u ~ Qgr. The results for the bubble particles are included
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FIG. 5. The joint PDFs of trajectory curvature x with normalized speed u of the spiral particles

at different stages in panels (a)-(c), and of the bubble particles in panels (d)-(f).

in panels (d)-(f). During the EG stage of panel (d), the bubble particle trajectories are
close to straight lines, thus its curvature is much smaller compared to the spiral particles
at the same stage, with no clear trend exists between x and u. In the PFG stage, the
curvature is still much smaller than the spiral, but the joint PDF exhibits two branches.
The left branch (u < 0.4) is associated with slow particles, whose trajectory curvature spans
a wide range but is almost invariant with respect to @; while in the right branch s decreases
with increasing u, consistent with the fact that some of the bubble particles are subjected
to large-scale swirling motion. Finally, in the RA stage, the bubble particle curvature is
comparable to the spiral particle, and the joint PDF is also similar, which is due to more
swirling bubble particles at the late stage. The results of the spike particles are very similar
to the bubble particles, and in addition similar joint PDFs exist for the middle and high A

cases.

The different trajectories of the bubble, spike, and spiral particles will exert different
influences on the topological evolution of the fluid interface and on general RT dynamics

such as the bubble reacceleration. We will consider these influences in the next section.
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V. LAGRANGIAN DYNAMICS OF THE FLUID INTERFACE

A. Growth of the fluid interface

el
[ [ [
.| EG PFG
[ [ [
15 } total I
02 — — | horizontal |
10| -+ - | vertical I
| -
5} 7
[
o = |
0 1 2 3 4 !

(a) (b) (c)
FIG. 6. Panels (a) and (b) show the contour line Y7 = 0.5 imposed on the background field of Y;
at non-dimensional time =2.45 and 4.90. Panel (c) shows the total length of the 2D contour line
Y1 = 0.5 as a function of time, together with the lengths of its horizontal and vertical projections.

The interface length is normalized by L,.

During RT development, the heavy-light fluid interface is continuously deformed and
stretched by the instability, which leads to the formation of fractals in the case of 2D
multi-mode RT with a fractal dimension of 1.7-1.8 [53]. In our single-mode RT case, we will
measure the total interfacial length and relate its temporal growth with the tangential strain
carried by the particles associated with the bubble, spike, and spiral regions. Here the fluid
interface is defined by the contour line Y; = 0.5 in the 2D field, which is shown as black lines
in figure 6 (a), (b) at early and late times, respectively. Due to the effects of advection and
diffusion, the contour line at late time is broken into several unconnected pieces, and the
interface length is the sum of all the individual parts. Note that the topology of the interface
contour is sensitive to the Reynolds number Re under study. Increasing Re could result in
rich small-scale vortices induced by the Kelvin-Helmholtz instability, which adds fine details
to the contours shown in panels (a) and (b) of figure 6. Thus it is desirable to resort to some
quantitative measures such as the total length of the interface, whose qualitative evolution

trend is not sensitive to Re, given that the RT flow undergoes all the three stages (the EG,
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PFG, and RA stages) at the particular Re.

Figure 6 (c) shows temporal evolution of the total interface length 1, 1, together with the
length projected onto the horizontal and vertical directions. During the EG stage, the total
length as well as its horizontal and vertical projections are slowly increasing. In the RT
initial condition the interface is horizontal and the vertical projection is zero initially, but
the vertical component grows faster than horizontal, and exceeds the latter at the end of the
EG stage. In the PFG stage, the total length increases rapidly, with the vertical component
dominates over the horizontal. In the RA stage the increasing trend continues, and the
vertical component is more than two times larger than the horizontal. Compared to the EG
and PFG stages, there are wiggles appearing in the curves during the RA stage in figure 6
(c), which is attributed to the broken of contour line into several parts, and disappearance
of small isolated islands of fluids due to the excessive diffusion exerted on the long, thin
structures emerged from the spike tip, as is illustrated in figure 6 (b). The middle and high
A results are qualitatively similar to figure 6, but the total interface length increases with
Atwood number, since the potential-to-kinetic energy conversion is more efficient and the
instability grows faster when the Atwood number is higher, as is indicated by the dimensional
bubble and spike velocities Up;s = Frp/sy /1%4 g\ of the three A cases as can be inferred

from figure 2.
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FIG. 7. The PDFs of tangential strain rate §t experienced by particles at different stages in panels
(a)-(c), which is normalized by the reference time y/\/.Ag. The mean values of S, associated with
the spiral, bubble, and spike particles in panel (a) are -0.058, 0.36, 0.227, in (b) 0.228, 1.382, 1.626,
and in (c) 0.788, 1.075, 0.920.

We further adopt the tangential strain rate S; to characterize the local evolution of

fluid interface. The tangential strain rate measures the stretching or compression along the
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tangential direction of the interface and is defined as S; = (d;; — nmj)%, where 0;; is the
J

Kronecker delta and n; = 2% /|21| represents the interface normal. The tangential strain
rate constitutes a major component of the stretching K of the interfacial area A o< |VY|

that

_1dA
A dt

which is related to the tangential strain rate S; by

K = —nmjﬁiuj + @uz + Sd @nz = St + Sd 8171, (5)

1 DY

v or 18 the interface displacement speed [54].

where S; =

Figure 7 shows the PDFs of normalized tangential strain rate carried by the spiral, bubble,
and spike particles in the EG (a), PFG (b), and RA (c) stages. Qualitatively different
behavior is observed between the spiral particles and the bubble/spike particles. During all
three stages, both positive and negative S; exist for spiral particles, indicating a simultaneous
compression and stretching of the spiral interface at different locations; while for the bubble
and spike particles, tangential strain rate is predominantly positive in the EG and PFG
stages during which the interface expands, and in the RA stage the PDF of S, is close to
symmetric around 0, indicating that both compression and stretching of the interface are
at work. Different patterns of tangential strain rate would lead to different topologies of
bubble, spike, and spiral interfaces. For example, the ensemble-averaged tangential strain
rate of the spiral particles is comparatively small in the EG and PFG stages and rises in the
RA stage, thus the total length of the spiral is kept small during the initial period of RT
evolution until a increase is observed in the late RA stage. The interface associated with
bubble and spike, however, keeps increasing in all stages due to the relatively large mean
(Sy), which is compatible with the visualization in figure 1 and the interface growth in figure
6.

We further illustrate an Eulerian visualization of S; in figure 8 to complement the La-
grangian results. We observe in this figure that during the EG and PFG stages, the tangen-
tial strain rate S; at the bubble and spike regions is positive, while S; at the spiral region
attains both positive and negative values with comparable magnitude. In the RA stage,
the results are more chaotic and negative values emerge in regions where bubble and spike

particles reside, in compatible with the PDFs shown in figure 7.
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FIG. 8. Visualizations of the tangential strain rate S; at three time instants t = 1.93,2.96,4.24
which belong to the EG, PFG, and RA stages, respectively. In all three panels we have truncated

the vertical domain to show only the region 0.3 < z < 1.2.

B. Secondary Rayleigh-Taylor instability in the spiral

During the nonlinear stages of RT evolution, spiral particles are subjected to centrifugal
forces, which could potentially lead to the onset of secondary RT instability in local regions
of the spiral [55]. This secondary RT could distort the spiral motion, render it unstable,
and produce complex small-scale structures to enhance local turbulence development. An
emblematic example of secondary RT is highlighted in the red boxes of figure 9, where addi-
tional ‘arms’ emerge from the spiral and influence its further development. We shall study
the secondary RT instability based on the simple instability criterion Vp-V P < 0 resembling
the baroclinic vorticity generation [56, 57] on spiral particles. From the momentum equa-
tion (3), the pressure gradient can be expressed as VP = pg — pa if we neglect the viscous
contribution, where a = % is the acceleration field. Thus the above instability criterion
reduces to gd.p+a-Vp > 0, in which the first term g0, p denotes the contribution from the
density stratification, which we shall call the buoyancy contribution; while the second term

a - Vp arises because of the local instantaneous acceleration and density gradient, which for

spiral particles we shall denote the centrifugal contribution.
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FIG. 9. The visualization of secondary RT instability near the spiral region at time ¢ = 4.10. The
grey background shows the visualization of the Y; field, and the two red rectangles denote the

development of secondary instability.

The relative importance of the buoyancy and centrifugal contributions in the spiral region
during the RT growth is shown in the joint PDFs in figure 10 for the three stages. The
centrifugal contribution is close to symmetric in all stages, and its magnitude increases from
the EG to the PFG stage, and then decreases over the RA stage. The buoyancy contribution
is predominantly positive in the EG stage, and becomes more symmetric in the PFG and
RA stages with comparable magnitude over the whole duration. The joint PDFs in both the
PFG and RA stages in panels (b) and (c) is spontaneously split into two parts, depending
on the sign of the centrifugal contribution. As we have mentioned, positive values of the
sum of the centrifugal and buoyancy contributions indicate local RT unstable configuration,
which we denote the secondary RT instability inside the spiral. Hence in figure 10(b) and
(c), particles fall in the region above the dashed black line are RT unstable. Moreover, the
centrifugal contribution in this unstable region is almost always positive, especially in the
PFG stage. Thus we could argue that spiral particles with positive centrifugal contribution

(a-Vp > 0) leads to the secondary RT instability with Vp - VP < 0.

Since the centrifugal contribution a - Vp contains the acceleration field which is a La-
grangian quantity, it is desirable to find an Eulerian surrogate that can be calculated directly
from only one snapshot. A possible candidate is the quantity —w-(Vpxu), whose joint PDF
with the centrifugal contribution is shown in figure 11, where high correlation coefficients

are observed. In other words, we have an approximation a - Vp &~ —w - (Vp x u) such that
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FIG. 10. The joint PDFs of buoyancy contribution (g0.p) and centrifugal contribution (a - Vp)
terms at the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. In panels

(b) and (c), the black dashed line represents the anti-diagonal line y = —z.

(a) (b) (c)
FIG. 11. The joint PDF of the centrifugal contribution (a - Vp) with the surrogate —w - (Vp x u)
in the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. The correlation

coefficient between the two quantities is 0.92 in panel (a), 0.93 in panel (b), and 0.85 in panel (c).

the criterion for the secondary RT instability inside the spiral gd,p+a-Vp > 0 can be recast

as
90:p —w - (Vpxu) >0 (6)

The new criterion only depends on the instantaneous density and velocity fields, and is thus
easier to evaluate than the original criterion.

The surrogate works because we have

2
- (Vpx ) = V- (ux ¥ xu) = V- (u-Vu -V 0)
5 (7)
T

which well approximates the centrifugal contribution a - Vp for spiral particles, since these

particles are restricted to a limited region and thus both the mean time derivative term
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(%u%pmﬂ and the mean spatial transport term <V¥)Spiral are small, where the average
(-)spiral 1S Over the spiral particle ensemble. From figure 11, during all the three stages in
panels (a)-(c), the proposed surrogate is positively correlated with the centrifugal contri-
bution with high correlation coefficients. For middle and high A cases, this surrogate term
still applies, but with degraded correlation as A is increased. Also, the approximation is
only valid for the spiral particles but not for the bubble and spike particles due to the above

approximations.

C. Re-accelerations of the bubble and spike tips

Another application of interface Lagrangian tracking is to provide rationale for the re-
acceleration of single-mode RT bubble and spike. The growth of bubble and spike velocity
in figure 2(a) indicates that both the bubble and the spike tips reaccelerate in the RA
stage. This phenomenon, particularly the bubble reacceleration, has been addressed in many
previous studies [16, 17, 58, 59] due to its importance in predicting the bubble penetration
depth, and is generally attributed to the influence of vortices generated near the spike and
convected to the bubble tip. Reference [17] measured the vorticity averaged over a small
region adjacent to the bubble tip, and found good correlation between the temporal evolution
of the averaged vorticity and the bubble-tip velocity. Here we will measure the force acting
on the bubble and spike tips, as well as the mean force on the nearby particles in the
RA stage, to further corroborate the relation between bubble/spike re-acceleration and the
convected fluids from the bubble or the spike regions.

Figure 12(a) shows, in the RA stage, the PDF of vertical force f, = pa, experienced by
the Lagrangian particles inside a rectangular domain enclosing either the bubble tip or the
spike tip, with a vertical length L, /m, similar to figure 13 of reference [17]. It should be noted
that in the RA stage, particles near (below) the bubble tip are the upwards convected spike
particles, and similarly, particles near (above) the spike tip are the downwards convected
bubble particles, as is evident in the visualization of figure 1 (d). The PDF in figure 12(a)
indicates that particles near the bubble tip are subjected to downward mean forcing over the
RA stage, thus the particles will exert upward reaction force on the surrounding fluid and
accelerate the bubble tip upwards. In the same way, the spike tip is subjected to downward

forcing and also accelerate downwards in the RA stage. Panel (b) shows the temporal
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FIG. 12. (a) PDFs of vertical forces on particles near the bubble and the spike tip during the RA
stage, which are located within a rectangular domain with vertical length L, /7 as in reference [17],
where f, is the vertical force experienced by the Lagrangian particles. The mean values associated
with particles near the bubble tip (blue) and near the spike tip (red) are -0.651 and 0.637. (b)
Inside the same region, the instantaneous (vertical) forces on bubble and spike tips versus time, as
well as mean vertical forces averaged over those selected particles. The dashed lines start around
t = 4.0 when particles start to enter the enclosed region. The lines are re-scaled according to the

descriptions in the legend.

evolution of the instantaneous forces measured on the bubble and the spike tips (multiplied
by a factor of 5 for better comparison), which point along the vertical direction due to
symmetry, as well as the mean forces exerted on the rectangle-enclosed particles (multiplied
by -1 to denote the reaction forces from the particles to the surrounding fluids). The force
history on the bubble tip is well correlated with the adjacent-particle mean reaction force,
with a small time lag suggesting a possible causal relationship between the motion of particles
near the bubble tip, which is convected from the spike side, and the bubble re-acceleration.
The same situation also holds for the spike tip and the adjacent particles. Hence, figure
12 connects the bubble reacceleration to the convected fluids from the spike side using a

Lagrangian point of view, complementing the Eulerian analysis proposed in reference [17].
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VI. LARGE-SCALE VELOCITY ANISOTROPY NEAR THE INTERFACE

In this section, we study the evolution of velocity and kinetic energy (KE) of single-mode
RT interface with the Lagrangian approach, focusing on the anisotropic development of
interfacial KE along the horizontal and vertical directions. Understanding the anisotropic
growth of fluid interface is conducive to characterizing the growth rate of RT bubble and
spike in the nonlinear stage, and lays foundation for phenomenological models of RT. Figure
13 shows the PDFs of horizontal and vertical velocities associated with the spiral, bubble,
and spike particles, ranging over the EG, PFG, and RA stages, which exhibit different

statistical behavior as detailed in the follows.
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FIG. 13. The PDFs of the normalized horizontal velocity u, in panels (a)-(c), and of the normalized

vertical velocity u, in panels (d)-(f) in the EG, PFG, and RA stages, respectively. Velocity is
normalized by v/ AgL,.

In the EG stage, the PDF of horizontal velocity in figure 13 (a) is close to symmetric
for all three particle ensembles, while for the vertical velocity, panel (d) shows that bubble
particles only move upwards while the spike particles only move downwards, compatible
with early RT flow patterns. In addition, the magnitude of u, is larger than that of u,

within all three particle groups. These differences in the EG stage can be understood from
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the streamline visualization in figure 14. The streamlines indicate that the bubble velocity is
predominantly upwards and thus @, is positive for bubble particles, while (in the right half
of the visualization) u, is negative in the lower part of the bubble interface and positive in
the upper part, leading to a symmetric PDF around 0. The flow pattern near the spike tip
is similar to the bubble tip except with the flow direction reversed. Meanwhile, the spiral
particles lies around the middle of the swirling vortex in figure 14 and both the PDFs of u,

and u, are symmetric.

FIG. 14. The streamlines imposed on the density field of the low Atwood number RT within the
EG stage, at non-dimensional time ¢ = 1.72. The figure is truncated in the vertical direction for a

clear presentation. The binary color-bar represents the velocity magnitude on streamlines.

In the PFG stage of figure 13 (b) and (e), both u, and u, are predominantly positive
for the bubble particles, and are predominantly negative for the spike particles, while for
the spiral particles the PDFs of u, and u, are close to symmetric. During this stage, the
anisotropy between the horizontal and vertical velocities is apparent, with the magnitude
of u, larger than u,. As the system evolves from the PFG to the RA stage, velocity PDFs
associated with the spiral particles are qualitatively unchanged, while for the bubble and
spike velocity PDFs the changes are apparent. For u, in the RA stage, negative values
appear within the bubble particles, and positive values appear within the spike particles,
in contrast to the corresponding one-sided PDFs of u, during the PFG stage. More drastic
change appears on u,, whose PDF associated with the bubble particles shifts from positive-
dominant in the PFG stage to negative-dominant in the RA stage, and vice versa for the
spike particles. This occurs since the interface tangential velocity moves a large proportion

of the bubble particles to the spike side, and spike particles to the bubble side, hence alters

25



499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

the particle dynamics, as can be inferred from the particle locations in figure 1(c) and (d).

Given the dissimilar growth of horizontal and vertical velocities, we study quantitatively
the directional anisotropy of kinetic energy, namely the ratio of horizontal to vertical KE. The
anisotropy of RT is conducive to quantifying the distribution of energy among each direction,
and influences the RT mixing width growth [13, 49]. Figure 15 (a) shows the temporal
evolution of mean horizontal and vertical KE averaged over the whole domain, as well as over
the fluid interface defined by the region 0.4 < Y; < 0.6. Both the domain averaged horizontal
and vertical KE increases with time, with an increasingly larger difference between the two
quantities. The evolution of the interface averaged KE roughly follows a similar trend as
the domain averaged result, but is not monotonically increasing in time due to the complex
structures emerged in RT at late time. Both the horizontal and vertical interface-averaged
KE plateau in the vicinity of the PFG-to-RA transition stage, but their ratio increases
rapidly afterwards.

More detailed information of KE anisotropy is contained in the PDFs of the horizontal
KE fraction, KE, /KE, of fluid particles shown in figure 15 (b)-(d). As can be seen from the
mean values of the spiral particle PDFs; the kinetic energy is almost evenly divided along
the horizontal and vertical directions. But for the bubble and spike particles, the mean
horizontal KE is much smaller than the vertical. For example, mean values of KE, /KE for
bubble and spike particles are close to zero in the EG stage, and increases to around 0.3 in
the PFG stage, which decrease again to about 0.2 in the RA stage. Compared to the near
equipartition of KE in 2D multi-mode RT [49], single-mode RT leaves most of the energy to
the vertical direction, and its mixing width growth is thus faster than the multi-mode case.

The physical mechanism of the KE anisotropy can be explained by the statistics of hor-
izontal and vertical accelerations. Figure 16 shows the joint PDFs between a, and a,, the
horizontal and vertical acceleration fields normalized by the gravitational acceleration g, of
the three particle ensembles at different stages. For spiral particles in panels (a)-(c), the
joint PDFs of @, and @, are close to circular shapes centered at the origin, with the radius
increasing from the EG to the PFG stage, and stays similar during the RA stage. These
plots indicate an isotropic growth of horizontal and vertical velocities of the spiral particles,
in accordance with the kinetic energy ratio in figure 15 (b)-(d). However, the joint PDFs
of bubble particles in figure 16 (d)-(f) exhibit differences between @, and @, both in the

magnitude and in the sign. The mean magnitude of @, associated with bubble particles is
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FIG. 15. (a): Time evolution of horizontal and vertical kinetic energy averaged over either the
whole domain, or the fluid interface (0.4 < Y7 < 0.6). The EG, PFG, and RA stages are highlighted.
(b)-(d): The PDFs of the ratio of horizontal to total KE in the spiral, bubble, and spike regions,
for each of the three stages. The mean values of the PDFs corresponding to spiral, bubble, and

spike are 1): 0.488, 0.03, 0.03; 2): 0.408, 0.317, 0.310; 3): 0.452, 0.221, 0.194.

about 2-3 times larger than mean a,. In addition, in the PFG and RA stages, @, is mostly
negative, but a, attains both positive and negative values. In addition, u, is predominantly
negative in the two stages. Hence, @, continuously increases the magnitude of u,, but the
changing sign of a, leads to smaller magnitude of u,. This phenomenon is related to the spe-
cial configuration of single-mode RT, since along the horizontal direction the flow is confined
by the lines of symmetry, while in the vertical direction no constraint is imposed except for

the top and bottom walls which only affect RT development at very late time.
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FIG. 16. The joint PDFs of the horizontal and vertical acceleration associated with the spiral
particles in panels (a)-(c) corresponding to the EG, PFG, and RA stages, and with the bubble

particles in panels (d)-(f).
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FIG. 17. The mean values of non-dimensional velocity and acceleration versus time, averaged over
the spiral particles in (a), and over the bubble particles in (b). The horizontal dashed black line in
panel (b) corresponds to zero values. The non-dimensional velocity and acceleration are v/ AgL,

and g, respectively.

538 Figure 17 confirms the above argument by showing the temporal evolution of mean ac-
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celeration and velocity averaged over the spiral and the bubble particle ensembles. In panel
(a) for the spiral particles, both averaged (a,) and (a,) behave similarly, and (u,) and (u.)
are comparable in magnitude. In contrast, for the bubble particles in panel (b), on one
hand (a,) is 2-3 times larger than (a,) in magnitude; on the other hand (a,) changes sign
between the PFG and RA stages, while (a.) is almost always negative during this period.
Thus the averaged vertical velocity is much larger than the averaged horizontal velocity, in
accordance with our previous analysis. Numerical tests also show that for the middle and

high A cases, the KE anisotropy is similar to those low A results presented above.

VII. DISCUSSIONS AND CONCLUSIONS

This paper investigates the single-mode Rayleigh-Taylor instability with a Lagrangian
approach, focusing on the topology and dynamics of the interface. Three particle ensembles
are collected, including particles which pass through the bubble, the spike, and the spiral
regions, to perform Lagrangian statistical analysis over different RT stages. A total of three
stages, namely the exponential growth stage (EG), the potential flow growth stage (PFG),
and the re-acceleration stage (RA), are identified based on the characteristics of RT flows,
following the definition in reference [16]. The Lagrangian statistics studied in this paper
including both kinematics associated with particle trajectories and the ensuing interfacial
dynamics, which influences the topology of the interface, leads to secondary RT instability in
the spiral, and accelerates the bubble and spike tips. The interface evolution also generates
anisotropy between the horizontal and vertical kinetic energy components.

For the geometry of Lagrangian trajectories, we show that a x~2 scaling appears in the
right tail of the curvature PDF associated with the spiral particles during all stages, and
for the bubble and spike particles at the RA stage the scaling is 2 due to a uniform
distribution of the radius of curvature of particles. Fluid particles are trapped inside the
vorticity-dominated spiral with high trajectory curvature compared to the shear-dominated
bubble/spike particles undergoing large-scale convective motions. The joint PDFs between
curvature and particle speed are more coherent with negative correlations for the spiral
particles during all three stages, while for the bubble and spike particles the correlation is
more complicated due to the relatively large dispersion within each of the particle ensembles.

The expansion of fluid interface is closely related to the tangential strain rate on the inter-
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face. The PDF of tangential strain rate .S; indicates that for the bubble and spike particles,
the net effect of .S is to stretch the corresponding interface during all the evolution stages.
In contrast, the spiral region tends to be compressed in the EG stage, and stretched in the
PFG and RA stages. We then investigate the secondary RT instability inside the spiral
region through the joint PDF of the buoyancy contribution (—g - Vp) and the centrifugal
contribution (a - Vp) terms, and have found that positive centrifugal contribution is associ-
ated with the secondary RT instability. A surrogate term —w - (Vp x u) for the centrifugal
contribution in the spiral region is proposed, which depends only on the instantaneous Eu-
lerian field instead of the Lagrangian time derivative. Finally, the re-acceleration of bubble
and spike tips are shown to be correlated with the forcing exerted by Lagrangian particles
transported to the adjacent regions in the RA stage, complementing existing Eulerian results

in the literature.

The interface kinetic energy along x- and z-directions in single-mode RT exhibits distinct
statistics in different regions, as measured by the ratio between the horizontal and the total
kinetic energy. Associated with the spiral particles the flow is close to isotropy, while for
the bubble/spike particles the KE anisotropy is pronounced and the horizontal velocity
magnitude is much smaller compared to the vertical. This anisotropy is well explained by
the joint PDFs between the horizontal and vertical accelerations. For bubble/spike particles,
the ensemble-mean horizontal acceleration (a,)(t) is smaller in magnitude compared to the
vertical acceleration (a,)(t), and in addition (a,)(t) alters sign between the PFG and RA
stages leading to a cancellation effect on (u,)(t), thus giving rise to a much smaller horizontal
KE than the vertical. The pronounced anisotropy effects should be taken into account in
reduced numerical models such as Reynolds-averaged Navier—Stokes (RANS) or Large Eddy
Simulations (LES).

To conclude, we adopt the Lagrangian approach to study the interfacial kinematics and
dynamics of 2D single-mode RT instability. The ensemble of spiral particles undergoes
approximately a solid-body rotation and the PDFs of its trajectory curvature and particle
speed follow =2 and u' scalings, respectively, during all three evolution stages. In addi-
tion, the bubble and spike particles in the RA stage undergo spiral motions with uniformly
distribution radius of curvature, and the =2 and u' scalings are observed. Lagrangian inves-
tigation of interfacial dynamics indicates that the interface near the bubble and the spike are

continuously stretched, and the bubble/spike tip reacceleration is induced by the convected
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vortices inside the adjacent regions; while for the spiral structure, both interface streching
and compression exists, and the centrifugal acceleration inside the spiral induces a secondary
RT instability which can distort its motion. Finally, we find that the anisotropy in inter-
facial KE is more pronounced for bubble and spike regions compared to the spiral, which
is due to both the magnitude and the phase differences of particle ensemble acceleration

(a,(t)) and (a,(t)) over time.
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Appendix A: Simulation results with Wy /W; = 2

In the case of unequal molecular weight W; # W, between the two fluids, the mass
fraction equation is coupled to other equations, in contrast to the equal molecular weight
case where the equations are decoupled. However, from the simulation with A = 0.15 and
Wy /W, = 2 whose Y; visualizations are shown in figure 18 along with the results from the
equal W case 2DlowAt, we can observe that the flow physics does not differ much between
the two cases. The spiraling motion, the secondary RT instability inside the spiral, as well
as the bubble reacceleration are clearly visible in the visualizations of the W5 /W7 = 2 case.
However, it is not appropriate to extrapolate this observation to cases where W7 > W, or

Wy > W

Appendix B: Details on the initial conditions

The unperturbed initial conditions of the three simulation cases at various Atwood num-

bers consists of 1D profiles of density, pressure, and temperature that are uniform along
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FIG. 18. Panels (a)-(c) show the visualization of the Y; fields at non-dimensional time ¢ = 2.45,3.67,4.90

for the 2DlowAt simulation in the paper. Panels (d)-(f) show the results from a low At simulation case with

Wi :Wy=1:2and A=0.15 at the same instants.

the horizontal direction, while an initial perturbation is imposed on the quiescent vertical
velocity field. We show the initial 1D profiles of the low, middle, and high A cases in fig-
ure 19. Inside the heavy and light fluids the densities are constant, with a density jump
across the interface that is smoothed by a hyperbolic tangent function with a width approx-
imately equals to L,/64. The pressure and temperature fields in the heavy and light fluid
phases are linear profiles so that the hydrostatic condition dP/dz = —pg is satisfied and the
temperature gradient d7'/dz = —g/R uniform across the domain.
The perturbation is imposed on the vertical velocity field with the form

2 fi—"|zfzo|tanh<|zzizo‘)
Uy, = U, COS | —T ) € == z
z D I

T

where u, is a small quantity representing the initial perturbation magnitude chosen as u, =
0.005 for the simulations performed in table I, L, is the horizontal domain size, zy is the
vertical coordinate of the interface. The exponential decaying quantity is to ensure the
perturbation is localized near the interface.

The influence of perturbation magnitude w, in single-mode RT is not important provided

that the perturbed flow remains in the linear regime (u, < /gL,/10). We have tested
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FIG. 19. The one-dimensional profiles of the initial density, pressure, and temperature fields for
the simulation cases with low, middle, and high Atwood numbers in panels (a), (b), and (c),
respectively. The coordinate is normalized by L., while the density, pressure, and temperature
fields are normalized by their respective values evaluated at z = 0. In the case A = 0.8, the initial

interface is chosen to locate at 2/3L,.

for the 2DlowAt case with a larger magnitude u, = 0.01. Compared to u, = 0.005 in the
2DlowAt case, the bubble and spike velocities are shown in figure 20. With a proper shift in
time to account for the initial difference, the velocities of the bubble and the spike are very
close between the two cases, indicating that the single-mode RT statistics is not sensitive to

the initial perturbation magnitude.

o ———
— bubble, u,=0.01 /

— spike, u,=0.01 1
---- bubble, u, =0.005
spike, u, =0.005
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00k
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FIG. 20. Comparison of the bubble and spike Froude number (non-dimensional velocity) for the 2DlowAt
case with perturbation magnitude u, = 0.005 and 0.01. The u, = 0.01 plots are shifted in time to have a

fair comparison with the u, = 0.005 case.
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Appendix C: Correlation between trajectory curvature and acceleration

To corroborate the relationship between trajectory curvature and small scale quantities
such as acceleration, we show in figure 21 the time history of particle trajectory curvature
and the acceleration components that are tangent and normal to the instantaneous velocity:

a-u
Atangent — Wu; Apormal = A — Atangent

Panels (a)-(c) are the results of one representative particle in each of the bubble, spike,
and spiral ensembles, while panels (d)-(f) show the ensemble-averaged results. From vi-
sual inspection, the temporal evolution of curvature is closely correlated with the normal
component of the acceleration ayormar, With high correlation coefficients as shown in the cap-
tion of figure 21, while the tangential acceleration component aiangent captures the temporal
fluctuations as in the evolution of curvature. This figure demonstrates that the trajectory
curvature not only acts as a kinematic measure of local flow patterns, but also are closely

connected to the dynamics of the flow.
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