

¹ **Lagrangian investigation of the interface dynamics in single-mode
2 Rayleigh-Taylor instability**

³ Dongxiao Zhao (赵东晓),¹ Lanlan Xiao (肖兰兰),² Hussein
⁴ Aluie,³ Ping Wei (韦萍),⁴ and Chensen Lin (林晨森)^{5,*}

⁵ *School of Naval Architecture, Ocean and Civil Engineering,
6 Shanghai Jiao Tong University, Shanghai 200240, China*

⁷ *School of Mechanical and Automotive Engineering,
8 Shanghai University of Engineering Science, Shanghai 201620, China*

⁹ *Department of Mechanical Engineering,
10 University of Rochester, Rochester, New York*

¹¹ *School of Aerospace Engineering and Applied Mechanics,
12 Tongji University, Shanghai 200092, China*

¹³ *Artificial Intelligence Innovation and Incubation Institute,
14 Fudan University, Shanghai 200433, China*

¹⁵ (Dated: August 30, 2023)

Abstract

17 We apply Lagrangian particle tracking to the two-dimensional single-mode Rayleigh-Taylor (RT)
18 instability to study the dynamical evolution of fluid interface. At the onset of the nonlinear RT
19 stage, we select three ensembles of tracer particles located at the bubble tip, at the spike tip,
20 and inside the spiral of the mushroom structure, which cover most of the interfacial region as
21 the instability develops. Conditional statistics performed on the three sets of particles and over
22 different RT evolution stages, such as the trajectory curvature, velocity, and acceleration, reveals
23 the temporal and spatial flow patterns characterizing the single-mode RT growth. The probability
24 density functions of tracer particle velocity and trajectory curvature exhibit scalings compatible
25 with local flow topology, such as the swirling motion of the spiral particles. Large-scale anisotropy
26 of RT interfacial flows, measured by the ratio of horizontal to vertical kinetic energy, also varies for
27 different particle ensembles arising from the differing evolution patterns of the particle acceleration.
28 In addition, we provide direct evidence to connect the RT bubble re-acceleration to its interaction
29 with the transported fluid from the spike side, due to the shear driven Kelvin-Helmholtz instability.
30 Furthermore, we reveal that the secondary RT instability inside the spiral, which destabilizes the
31 spiraling motion and induces complex flow structures, is generated by the centrifugal acceleration.

* linchensen@fudan.edu.cn

32 **I. INTRODUCTION**

33 When a light fluid accelerates against or supports a heavy fluid, the perturbed interface
34 between these two fluids is subjected to the Rayleigh-Taylor (RT) instability [1, 2], which
35 could lead to the formation of bubbles and spikes, and finally to turbulence at high Reynolds
36 numbers [3]. RT instability has important consequences in many natural and engineering
37 applications, such as the fingering structures of supernova explosion remnants [4] in astro-
38 physics, the fusion target degradation in the acceleration and deceleration stages of inertial
39 confinement fusion [5–9], the breakup and atomization of diesel and gasoline sprays in au-
40 tomotive engines [10], and the coastal upwelling phenomenon in ocean dynamics [11]. The-
41 oretical, experimental, and numerical investigations on RT instability have been performed
42 for decades to advance the fundamental understanding of this subject, as summarized by
43 several recent reviews [3, 12–15].

44 Despite extensive research efforts, many problems in RT flows remain unresolved even
45 in the single-mode configuration, in which the initial perturbation contains only a single
46 sinusoid, due to the inherent nonlinearity and also due to the complexity induced by viscos-
47 ity, compressibility, surface tension, mass ablation, and stratification [16–22]. According to
48 Wei and Livescu [16], the evolution of two-dimensional (2D) high Reynolds number single-
49 mode RT can be divided into five stages: diffusive growth (DG), exponential growth (EG),
50 potential flow growth (PFG), reacceleration (RA), and chaotic development (CD). In the
51 diffusive growth stage, diffusional effect governs the system and sharp interfaces are rapidly
52 smeared out for miscible fluids. In the exponential growth stage, RT development follows
53 the linear stability theory with a constant growth rate $\gamma = \sqrt{\mathcal{A}kg}$, where $\mathcal{A} = \frac{\rho_h - \rho_l}{\rho_h + \rho_l}$ is the
54 Atwood number with ρ_h, ρ_l the heavy and light fluid densities, $k = 2\pi/\lambda$ is the perturbation
55 wavenumber (λ is the wavelength), and g is the gravitational acceleration. As the magni-
56 tude of the instability exceeds 0.1λ , the exponential growth terminates and nonlinear effect
57 dominates, where the uprising bubble and the sinking spike become apparent. The system
58 then transits to the potential flow growth stage with constant bubble and spike velocities,
59 which is well predicted by the potential flow theory [23–26] or the buoyancy-drag model
60 [27]. In the reacceleration stage, the bubble (and also the spike) velocity increases again,
61 which is attributed to the vortices induced by the Kelvin-Helmholtz instability near the fluid
62 interface and advected to the bubble tip [16, 17, 28]. Ref. [29] derived an expression for

63 the effective drift imparted by these vortices on the large scale flow. Ref [17] also showed
64 that the reacceleration is dependent on the perturbation Reynolds number Re_p and Atwood
65 number \mathcal{A} , and provided a phase diagram for RT reacceleration. Finally, if the system
66 Reynolds number is high enough, single-mode RT growth can lead to the chaotic mixing
67 stage [3, 30].

68 The above evolution process is altered in varying degrees of viscosity and compressibility,
69 which modifies the RT growth rate as well as the energy and enstrophy budgets [31]. Hu et al.
70 [32] investigated the single-mode RT bubble velocity and vorticity at different viscosity levels
71 (or Reynolds numbers), and proposed a linear relationship between bubble-tip vorticity and
72 viscosity in the reacceleration stage by a least square fit. After the bubble reacceleration,
73 if viscous effect is prominent, an alternating deceleration-acceleration pattern will emerge,
74 due to the combined effects of viscous-inhibition and shear-generation of vorticity near the
75 bubble tip. Wieland et al. [33] studied the compressibility effects on the vorticity dynamics
76 of 2D single-mode RT at low Atwood numbers. They found that stronger stratification
77 (larger Mach number) leads to more symmetric growth of bubbles and spikes, but the level
78 of vorticity as well as the bubble reacceleration is suppressed. By examining the individual
79 budget terms in the vorticity transport equation, the authors concluded that the baroclinic
80 torque dominates vorticity generation, which diminishes at high stratification levels and thus
81 RT is suppressed when Mach number is large. Similar conclusion is also drawn in Luo et
82 al. [22], who investigated the compressibility effects on both low and high Atwood number
83 single-mode RT, and distinguished the stabilization effects of initial density stratification
84 from the expansion-compression effect. Fu et al. [34, 35] modified the buoyancy-drag model
85 to account for the compressibility effect in single-mode RT, and found the critical Atwood
86 number 0.25 at which nonlinear saturation of bubble growth is realized at various Mach
87 numbers. They further found that the acceleration of the heavy fluid in front of bubble tip
88 is nearly constant, and numerically verified a scaling law $\mathcal{A}^{2.5}\mathcal{M}^2$ for this acceleration, where
89 \mathcal{M} is the Mach number.

90 In addition to the above effects, many of the complexities in RT flows are due to the
91 secondary Kelvin-Helmholtz (KH) instability, which boosts the spiral structure between the
92 bubble and spike, accelerates the bubbles, and enhances fluid mixing. Olson et al. [36] nu-
93 merically studied the early nonlinear stage of multi-mode RT flows with imposed shear rates,
94 which leads to a combined RT/KH instability growth. Contrary to the predictions by linear

theory, in which the instability growth rate is enhanced by the addition of shear, numerical results show that a small amount of imposed shear rate in fact decreases the growth, while a large shear rate enhances the instability. By visual inspection and quantitative analysis, the suppression of instability at low shear levels is due to a small amount of energy being channeled into vertical mixing, while the contrary is true for a high shear rate. Chen et al. [37] numerically investigated the coupled single-mode RT-KH instability system with a discrete Boltzmann model. They found that RT effect dominates the late stage development, while in the early stage the dominant mechanism depends on the relative strength between buoyancy and shear. The total boundary length of the temperature fields in the pure RT and KH simulations can help discriminate the dominant mechanism of the coupled RT and KH system. Hamzehloo et al. [38] performed a parametric study of RT flows with surface tension, and found that surface tension prevents the formation of KH type vortices especially at high Reynolds numbers. With increasing Reynolds number, the amount of KH vortices as well as the interfacial area increases, but the penetration depths of bubble and spike remain constant, which depend primarily on the Atwood number.

An effective yet relatively under-explored way to study fluid mixing and interfacial flows is the Lagrangian approach [39–42], which, however, is seldom applied to the RT problem. Despite a few studies on particle-induced RT instability [43–45] in which the RT growth rate, particle concentration and mixing are investigated, the Lagrangian passive particle tracking, to the best of our knowledge, has never been reported with the exception of reference [18]. In that work, the authors studied single-mode RT using the discrete Boltzmann method with three types of tracers marking the heavy fluid, the light fluid, and the interface. RT mixing is quantified by the tracer defined local mixedness, and the secondary KH instability is featured by the abrupt increase in vertical-averaged mixedness. Viscosity and compressibility on RT mixedness show two-stage effects due to the formation of large scale structures at the early stage, and the generation of small structures at later stages. Although reference [18] sheds some light on the RT interfacial evolution and mixing using tracer particles, several important features unique to the Lagrangian description remain to be explored, such as statistics on particle velocity, acceleration, and trajectory curvature, as we shall study in this paper. These quantities can on one hand reflect characteristic flow kinematics such as the oscillatory trajectories of particles trapped in coherent vortices, and on the other hand they can be adopted to explain important flow dynamic behavior like bubble reacceleration

127 in single-mode RT as discussed in later sections.

128 The current paper focuses on Lagrangian investigation of single-mode RT's interfacial
129 growth and mixing, and aims to provide an alternative way to reveal different evolution
130 stages of 2D single-mode RT, which gains deep physical insights into this complex flow.
131 To this end, we seek to address the following questions: (i) How does the single-mode RT
132 interface evolve in space and time? (ii) What statistical quantities govern the interfacial
133 dynamics, and how does the statistics differ at different regions of single-mode RT, i.e., the
134 bubble, the spike, and the spiral regions? (iii) Why does single-mode RT develop directional
135 anisotropy between the horizontal and vertical components? Answers to the above questions
136 will deepen our understanding of single-mode RT physics in two dimensions, and also lays a
137 basis for the Lagrangian investigation of more complicated multi-mode turbulent RT flows.
138 For example, detailed geometric information of the interface avails many predicitve models
139 of bubble and spike growth of single-mode RT in the highly nonlinear stage [26], while
140 the interfacial dynamics controls many physical and chemical processes occurring at the
141 interface, such as mass ablation in inertial confinement fusion and fuel/oxidizer mixing and
142 reaction in combustion chambers [46].

143 In the following, we first provide details on the numerical simulation of RT flows and
144 the Lagrangian tracking approach. Next, we perform statistical analysis on Lagrangian
145 velocity, acceleration, curvature, etc., focusing on different stages and different regions of
146 single-mode RT. We then study the large-scale anisotropy associated with the horizontal and
147 vertical kinetic energies, and finally present summaries and conclusions of our discussions.

148 II. GOVERNING EQUATIONS AND NUMERICAL IMPLEMENTATION

149 We adopt the compressible two-component Navier-Stokes equations to describe the RT
150 instability, which consists of the conservation equations of the mass fraction, mass, momen-
151 tum, and energy [22, 32]:

$$\frac{\partial \rho Y_i}{\partial t} + \partial_j(\rho u_j Y_i) = \partial_j(\rho D \partial_j Y_i) \quad (1)$$

$$\frac{\partial \rho}{\partial t} + \partial_j(\rho u_j) = 0 \quad (2)$$

$$\frac{\partial \rho u_i}{\partial t} + \partial_j(\rho u_i u_j) = -\partial_i P + \partial_j \tau_{ij} - \rho g \delta_{iz} \quad (3)$$

$$\frac{\partial \rho E}{\partial t} + \partial_j((\rho E + P)u_j) = \partial_j(\tau_{ij} u_i) - \rho u_i g \delta_{iz} + \partial_j(\kappa \partial_j T) \quad (4)$$

152 where ρ, u_i, P, g are density, velocity, pressure, and the gravitational acceleration, respec-
 153 tively, Y_i is the mass fraction of the i -th component ($i=1,2$), and $E = \frac{1}{2}u^2 + c_v T$ is the total
 154 energy density, in which c_v is the specific heat at constant volume and T is the temper-
 155 ature. $\tau_{ij} = 2\mu(S_{ij} - \frac{1}{d}S_{kk}\delta_{ij})$ is the viscous stress tensor and d is the spatial dimension,
 156 $S_{ij} = (\partial_i u_j + \partial_j u_i)/2$ is the strain rate tensor, while μ, D, κ are the dynamic viscosity, mass
 157 diffusivity, and thermal conductivity, respectively. The above set of equations is comple-
 158 mented by the ideal gas equation $P = \rho \tilde{R}T(Y_1/W_1 + Y_2/W_2)$, where \tilde{R} is the universal
 159 gas constant, W_1, W_2 are the molecular weights of the two species. Note that we have not
 160 included the enthalpy of formation and also ignored the enthalpy diffusion term in the total
 161 energy equation, since we set equal molecular weights $W_1 = W_2$ in our RT simulations, and
 162 thus the effects of enthalpy diffusion can be neglected [47]. Due to the constraint $Y_1 + Y_2 = 1$,
 163 only one of the two mass fraction equation (1) is required for numerical simulation. In ad-
 164 dition, by setting equal molecular weights $W_1 = W_2 = W$, the ideal gas equation of state
 165 reduces to $P = \rho \frac{\tilde{R}}{W}T$, and the mass fraction equation (1) is thus decoupled from other equa-
 166 tions. Here we include the mass fraction equation merely to track the fluid interface. For
 167 general situations with unequal molecular weight $W_1 \neq W_2$, the physics remains unchanged
 168 when the ratio W_2/W_1 is close to 1, as we have observed in a $W_2/W_1 = 2$ case whose result
 169 shares similar RT physics as in the equal molecular weight case (Appendix A). In more
 170 complex situations where combustion or general chemical reactions are included, this set of
 171 equations is still applicable by adding the chemical source term and enthalpy diffusion, as
 172 we shall explore in our future work.

173 We conduct 2D single-mode RT simulations using the DiNuSUR code, which is a hybrid
 174 pseudo-spectral and six-order compact finite difference solver to account for both the homo-
 175 geneous and the inhomogeneous directions, and fourth order Runge-Kutta scheme is used for
 176 time integration. The code has been applied to both single- and multi-mode RT systems in
 177 previous studies [17, 48, 49], and here we have implemented the Lagrangian particle tracking
 178 using cubic spline for spatial interpolation and second order predictor-corrector scheme for
 179 time advancing. The Lagrangian module can be applied both online (simultaneously with
 180 the Eulerian time advancing) and off-line (by post-processing). For Lagrangian tracking as
 181 a post-processing step, the Eulerian snapshots should be saved densely in time to satisfy
 182 the Courant-Friedrichs-Lowy (CFL) condition [50] $\max(u_x \Delta t, u_z \Delta t)/\Delta x \leq 1$, where Δt is
 183 the time interval between two consecutive snapshots, and Δx is the grid size assumed to be

184 uniform.

185 As for the boundary condition, the horizontal boundaries are periodic, while the top and
186 the bottom boundaries are assumed to be no-slip walls, in which the conditions $\frac{\partial T}{\partial z} = 0$,
187 $\frac{\partial Y_i}{\partial z} = 0$, $\frac{\partial P}{\partial z} = -\rho g$ are imposed. For the initial conditions, we impose uniform heavy fluid
188 of density ρ_h on top half and uniform light fluid of density ρ_l at the bottom half, and the
189 initial pressure field satisfies the hydrostatic equilibrium condition $\partial P/\partial z = -\rho g$. The mass
190 fraction field follows from the density field. Initial perturbation is imposed on the velocity
191 field as a small amplitude cosine wave. More details on the initial density, pressure, and
192 temperature profiles, as well as the precise initial perturbation is shown in Appendix B.

193 Here we perform three single-mode RT simulations at low, middle, and high Atwood
194 numbers with parameters shown in table I. The initial fluid interface is chosen to locate
195 at $L_z/2$ for the low and middle Atwood cases, and at $2L_z/3$ for the high Atwood number
196 case, to allow for the unequal development of bubble and spike at high \mathcal{A} . The perturbation
197 Reynolds number is defined as $Re_p = \lambda\sqrt{\mathcal{A}g\lambda/(1+\mathcal{A})}/\nu$, and the mesh Grashof number is
198 $Gr = 2\mathcal{A}g\Delta x^3/\nu^2$, whose value below 1 indicates that the simulation is well resolved [16].
199 The $Gr > 1$ for the middle and high Atwood number cases indicates that the simulation
200 might be under resolved at very late time when chaotic structures emerge [17], which has
201 not been reached in our middle and high \mathcal{A} simulations as will be shown below. The
202 $\mathcal{A} - Re_p$ combination in 2DlowAt is to ensure that the bubble and spike would enter the
203 reacceleration stage, according to the prediction by the phase diagram in reference [17]. The
204 kinematic viscosity $\nu = \mu/\rho_I$ is the ratio of dynamic viscosity and interfacial density defined
205 as $\rho_I = (\rho_h + \rho_l)/2$ [17], and the Prandtl number $Pr = \mu c_p/\kappa$ as well as the Schmidt number
206 $Sc = \nu/D$ are both unity, where c_p is the specific heat at constant pressure. Note that in
207 the current paper, the main focus is on the morphology and dynamics of the low Atwood
208 number RT, while the middle and high \mathcal{A} cases are included for reference purposes only.

209 III. VISUALIZATION AND MIXING WIDTH GROWTH

210 Figure 1 presents the density field snapshots of the three RT cases at different time in-
211 stants, together with selected tracer particles located at the bubble, the spike, and the spiral
212 regions. The spiral region denotes the primary vortical structure formed by baroclinicity
213 $1/\rho^2(\nabla\rho \times \nabla P)$, which arises from the misalignment between the density and pressure gradi-

TABLE I. Parameters of the 2D single-mode RT simulations. L_x and L_z are the domain widths along the horizontal and vertical directions, respectively. The Mach number \mathcal{M} is measured as a maximum value among all snapshots of the corresponding simulation.

	Grids	L_x	L_z	\mathcal{A}	μ	Re_p	Gr	\mathcal{M}	Pr	Sc
2DlowAt	512×2048	0.4	1.6	0.15	1.2×10^{-5}	6621	0.75	0.08	1	1
2DmidAt	512×2048	0.4	1.6	0.5	1.2×10^{-5}	8114	1.47	0.11	1	1
2DhighAt	512×2048	0.4	1.6	0.8	1.2×10^{-5}	7808	1.63	0.15	1	1

214 ents near the fluid interface. We select these particles at the time instant in which the spiral
 215 is well developed (at non-dimensional time $\hat{t} = t\sqrt{Ag/\lambda} = 2.94$), and then perform particle
 216 tracking both backward and forward in time to obtain their full evolution trajectories. For
 217 the low \mathcal{A} simulation, the three sets of particles cover most of the interfacial regions at late
 218 time as shown in figure 1 (c) and (d). The total number of particles associated with the
 219 bubble, the spike, and the spiral regions are 2772, 2670, and 5829, respectively. Similar re-
 220 sults also hold for middle and high \mathcal{A} cases in panels (e),(f) and (g),(h), respectively, except
 221 that with increasing Atwood number, the fluid interface growth rate is increased and the
 222 selected particles fail to cover all the fluid interface. The total number of bubble, spike,
 223 and spiral particles are 2045, 1856, 4004 for the $\mathcal{A} = 0.5$ case and 1880, 1738, 2360 for the
 224 $\mathcal{A} = 0.8$ case.

225 The single-mode bubble and spike growth rate is one of the most important quantities
 226 for practical applications of RT [3]. To verify our numerical simulations and to introduce
 227 the different characteristic evolution stages in single-mode RT, here we show in figure 2 the
 228 Froude number of the bubble and the spike tip, $Fr_{B/S} \equiv U_{B/S}/\sqrt{\frac{A}{1 \pm A} g \lambda}$, which represents
 229 the non-dimensional velocity. For the low \mathcal{A} case in figure 2(a), both the bubble and spike
 230 experience an initial exponential growth, and then follow by a saturation at Froude number
 231 $Fr = \sqrt{\frac{1}{3\pi}}$, as is predicted by the potential flow theory [23]. After the nonlinear saturation,
 232 both the bubble and spike start to reaccelerate and their velocities keep growing. According
 233 to Wei and Livescu [16], the system would eventually enter the chaotic mixing stage with
 234 constant mean acceleration in the bubble and spike tips. However, our current simulation
 235 domain is not long enough to allow for such a stage. In figure 2 (a), we highlight different
 236 stages in the figure, namely the exponential growth stage (EG), the nonlinear saturation

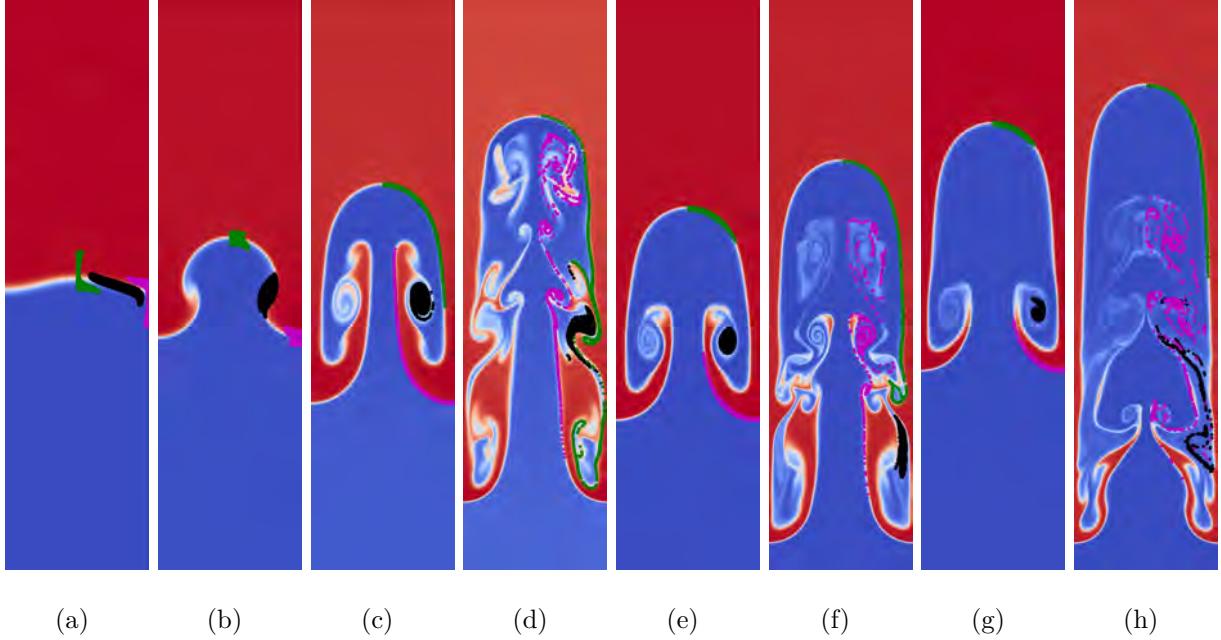


FIG. 1. The visualization of the density fields at non-dimensional time $\hat{t} = t\sqrt{\mathcal{A}g/\lambda} = 1.22, 2.45, 3.67, 4.90$ for 2DlowAt in panels (a)-(d), and at $\hat{t} = 3.67, 4.90$ for 2DmidAt in (e),(f) and for 2DhighAt in (g),(h), respectively. In each panel, we show 1/100 of all selected particles in green (.), black (•), and magenta (•) to mark particles at the bubble, the spiral, and the spike regions. In the Supplementary Materials, we have included movies illustrating the temporal evolution of these selected particles imposed on the density fields for a better visualization.

237 or the potential flow growth stage (PFG), and the re-acceleration stage (RA). This tempo-
 238 ral partition into three stages allows us to perform conditional Lagrangian tracer particle
 239 statistics, as will be illustrated below. Note that we have neglected the early part of the
 240 exponential growth (EG) stage in our statistics (the EG stage does not start near the origin),
 241 since during this period the tracer particles are nearly quiescent and the statistics would be
 242 trivial.

243 For the middle and high Atwood number cases in figures 2(b) and (c), the bubble velocity
 244 saturates after exponential growth, with a terminal velocity close to the theoretical predic-
 245 tion, but the saturation velocity persists till late time and no reacceleration occurs. This
 246 behavior is compatible with the \mathcal{A} - Re_p phase diagram proposed by Bian et al. [17]. Growth
 247 of the spike velocity is more complicated. For $\mathcal{A} = 0.5$ in panel (b), the spike reaccelerates
 248 after a short plateau with a velocity slightly higher than the theoretical prediction, while for
 249 $\mathcal{A} = 0.8$, no plateau is observed and the spike velocity keeps increasing. The spike behavior

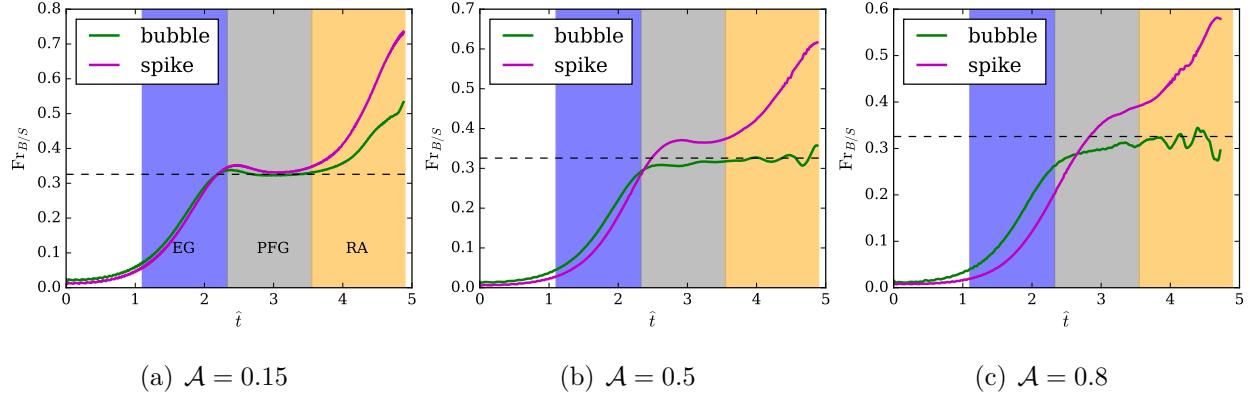


FIG. 2. The velocity at the bubble and spike tips for (a) low, (b) middle, and (c) high Atwood number RT simulations. In each panel, the horizontal dashed lines represent theoretical predictions [23], $\text{Fr}_{B/S} = \sqrt{1/3\pi}$ for all cases. In panel (a), three stages denoted EG, PFG, and RA are highlighted.

250 has also been observed in reference [17], in which the high spike velocity is attributed to the
 251 thin vortical structures emerging from the spike tip at relatively high \mathcal{A} .

252 In the following sections, we will investigate the statistics of Lagrangian tracer particles
 253 near the fluid interface, focusing on the low \mathcal{A} case in which the bubble-spike structure is
 254 more symmetric and the Kelvin-Helmholtz instability is well developed, while the middle
 255 and high \mathcal{A} results are included for reference. The statistics is performed on the three en-
 256 sembles of tracer particles in the bubble, the spike, and the spiral regions, which we shall
 257 call the bubble/spike/spiral particles, and also within each of the three temporal stages
 258 marked as EG, PFG, and RA. We will first study the geometrical properties of particle tra-
 259 jectories, and then investigate their influences on the dynamical evolution of fluid interfaces.
 260 Anisotropy associated with the kinetic energy of the fluid interface will also be analyzed via
 261 the Lagrangian approach. Here, we focus on vector anisotropy, which is different from the
 262 shape anisotropy of RT flows studied recently in [51].

263 IV. GEOMETRY OF PARTICLE TRAJECTORIES

264 As have shown in figure 1, three ensembles of Lagrangian tracer particles associated with
 265 the bubble, the spike and the spiral regions are chosen for Lagrangian investigation. The
 266 trajectories associated with the three groups of particles are illustrated in the three panels
 267 of figure 3, in which visual similarity of the trajectories is shared among each group. For

268 example, in panel (a) the bubble particles emerge from the middle of the domain and initially
 269 move upwards, and then their trajectories start to bend and gradually move downwards.
 270 Finally the bubble particle trajectories are more complex, and some of which are subjected
 271 to swirling motions. The movement of the spike particles in panel (b) is almost opposite to
 272 the bubble particles, since at low \mathcal{A} the bubble and spike structures are close to symmetric.
 273 Meanwhile, spiral particles are driven mainly by vortical flows and undergo swirling motions
 274 during their lifetime, as is evident in the trajectories shown in panel (c). For middle and
 275 high \mathcal{A} cases, the particle trajectories are qualitatively similar to their low \mathcal{A} counterpart,
 276 but the center of the spiral particles gradually shifts downwards in addition to the swirling
 277 motion, due to the asymmetric movement of the heavy and the light fluids in the presence
 278 of large density contrast.

279 Given the distinct characteristics of particle trajectories, the statistics associated with
 280 each of the three ensembles would be different. Figure 4 shows the probability density
 281 function (PDF) of trajectory curvature κ associated with different particle ensembles at
 282 various stages. The curvature is defined as $\kappa = (z''x' - x''z')/|x'^2 + z'^2|^{3/2} = (-u_z a_x +$
 283 $a_z u_x)/|u|^3$, where $x(t)$ and $z(t)$ are particle coordinates parameterized by time, the prime
 284 symbol ' denotes time derivative, and a is the particle acceleration. The trajectory curvature
 285 (together with the torsion) fully determines any space trajectory, and it is related to small
 286 scale dynamical quantities such as acceleration, vorticity, and dissipation [52]. We show the
 287 correlation between particle trajectory curvature and particle acceleration in Appendix C.
 288 Overall, curvature associated with the spiral particles is higher than the bubble and spike
 289 particles, as can be determined from visual inspection of the respective trajectories in figure
 290 3. The curvature magnitude of the bubble and spike particles gradually increases in time,
 291 and in the RA stage their magnitude is comparable to the spiral particles as indicated in
 292 figure 4 (c).

293 In addition, in figure 4(a)-(c) the PDFs of spiral particle trajectories scale as κ^{-3} at
 294 the right κ tail during all the three stages. This scaling of the spiral particles can be well
 295 explained by geometrical arguments. The spiral is approximately a uniform circular region of
 296 radius R , and the probability density of radius r inside this circle is $P(r)dr = 2\pi r dr/(\pi R^2)$,
 297 or $P(r) \propto r$. The curvature κ , which is the inverse of the radius of curvature, is another
 298 random variable which roughly satisfies $\kappa \sim r^{-1}$. By the change of variable formula of
 299 the PDF, we get $P(\kappa) \propto \kappa^{-3}$, same as the scaling in figure 4. The scalings of bubble and

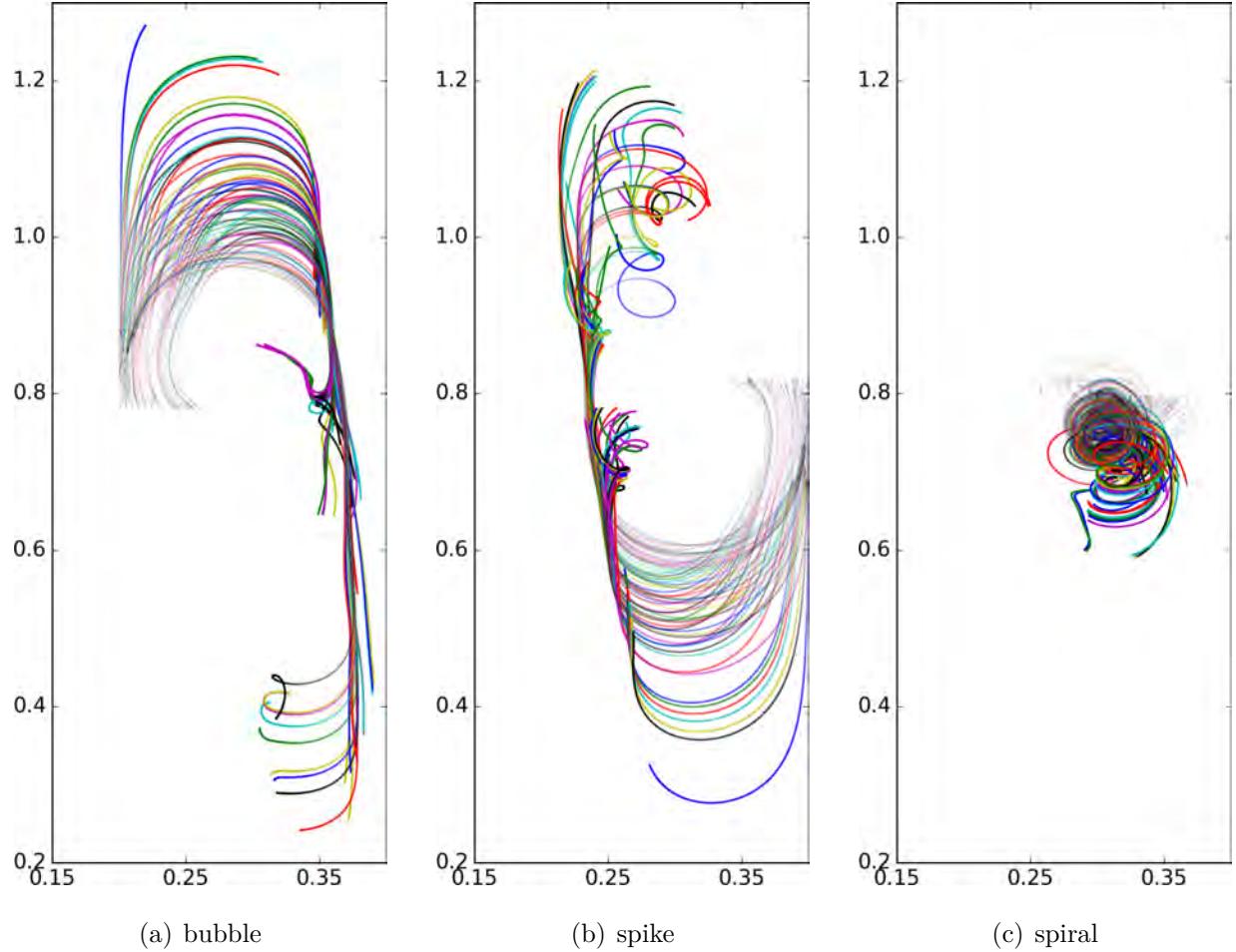


FIG. 3. The trajectories of particles associated with the bubble (a), the spike (b), and the spiral (c) regions within non-dimensional time $0 < \hat{t} < 4.9$. The domain is truncated to lie within $0.15 < x < 0.4$, $0.2 < z < 1.3$ for a better presentation, and only 1/100 of the particles in each ensemble is shown here. To emphasize the time variable, the transparency of each trajectory varies continuously from transparent colors at the initial time instant to solid colors at the final time instant.

300 spike particle trajectories in the EG and PFG stages decay rapidly at the high κ end, while
 301 in the RA stage, their scalings are around κ^{-2} , corresponding to a uniform distribution of
 302 the radius of curvature. This is a reasonable result, considering that in the RA stage the
 303 bubble and spike particles are scattered in space and hence are weakly correlated among
 304 their respective ensemble, such that the distribution of the radius of curvature is roughly
 305 uniform. Gaussian statistics.

306 The PDF of normalized particle speed $\hat{u} \equiv |\mathbf{u}|/\sqrt{\mathcal{A}gL_x}$ is shown in figure 4 (d)-(f), with a

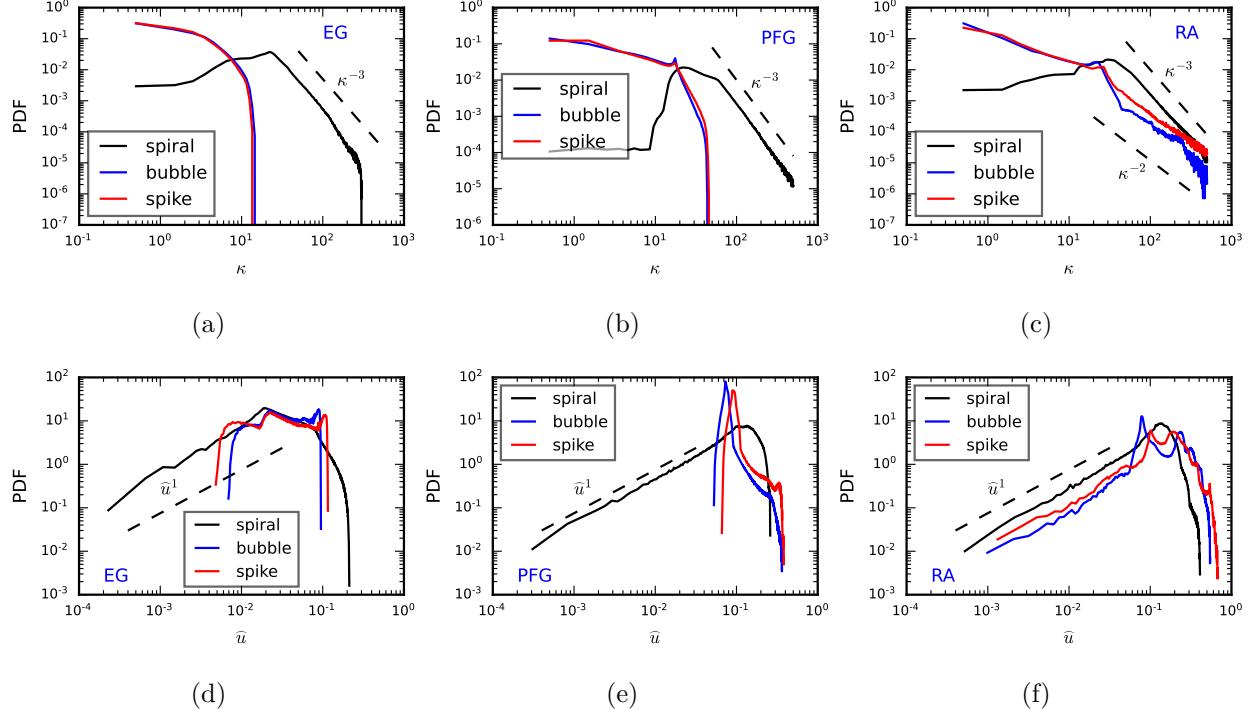


FIG. 4. The probability density functions (PDFs) of the trajectory curvature associated with the bubble, spike, and spiral particles. Panels (a),(b), and (c) show the results during the EG, PFG, and RA stages, respectively. A dashed line with a -3 slope is included in (a)-(c) for reference. Panels (d)-(f) show the PDFs of normalized particle speed $\hat{u} = |\mathbf{u}|/\sqrt{\mathcal{A}gL_x}$ in the three stages, and a dashed line with slope 1 is included for reference.

reference line \hat{u}^1 included in each panel. The speed of spiral particles exhibits a \hat{u}^1 scaling in the left tail of the PDFs during all the three stages, because the spiral particles are co-moving along circular trajectories with $|\mathbf{u}| = \Omega_u r$ (Ω_u is the angular velocity of the spiral particles), since $P(r) \sim r^1$ we have $P(\hat{u}) \sim \hat{u}^1$. For the bubble and spike particles in the EG and PFG stages, no clear scaling is visible, and their minimum speed is relatively large compared to spiral particles due to the large-scale convective motion. However, it is interesting to note that in the RA stage the \hat{u}^1 scaling of both the bubble and spike particles is realized, with comparable PDFs for all the three particle ensembles.

More detailed information relating particle curvature κ and speed \hat{u} is contained in the joint PDFs shown in figure 5. For spiral particles in the EG stage of panel (a), at small values κ increases with \hat{u} , while at large values κ decreases with increasing \hat{u} . In the PFG and RA stages, the curvature of spiral particles decrease with increasing speed, consistent with the relation $\kappa \sim 1/r$ and $u \sim \Omega_u r$. The results for the bubble particles are included

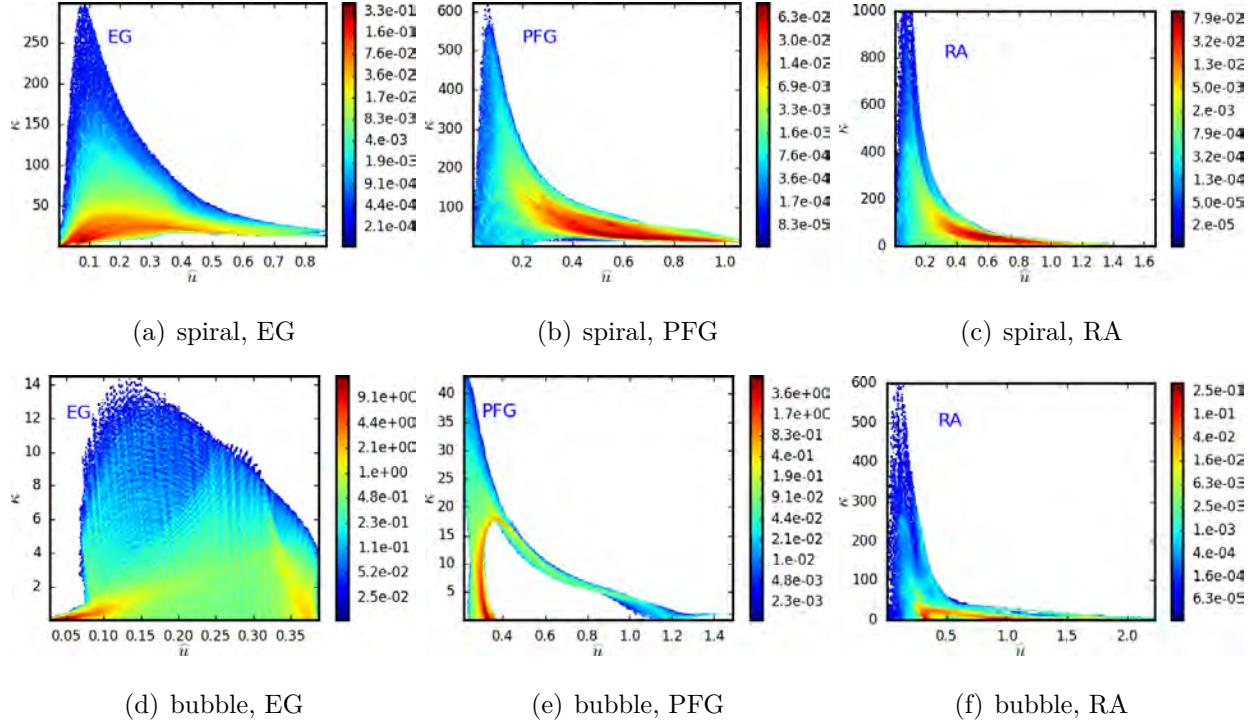


FIG. 5. The joint PDFs of trajectory curvature κ with normalized speed \hat{u} of the spiral particles at different stages in panels (a)-(c), and of the bubble particles in panels (d)-(f).

320 in panels (d)-(f). During the EG stage of panel (d), the bubble particle trajectories are
 321 close to straight lines, thus its curvature is much smaller compared to the spiral particles
 322 at the same stage, with no clear trend exists between κ and \hat{u} . In the PFG stage, the
 323 curvature is still much smaller than the spiral, but the joint PDF exhibits two branches.
 324 The left branch ($\hat{u} < 0.4$) is associated with slow particles, whose trajectory curvature spans
 325 a wide range but is almost invariant with respect to \hat{u} ; while in the right branch κ decreases
 326 with increasing \hat{u} , consistent with the fact that some of the bubble particles are subjected
 327 to large-scale swirling motion. Finally, in the RA stage, the bubble particle curvature is
 328 comparable to the spiral particle, and the joint PDF is also similar, which is due to more
 329 swirling bubble particles at the late stage. The results of the spike particles are very similar
 330 to the bubble particles, and in addition similar joint PDFs exist for the middle and high \mathcal{A}
 331 cases.

332 The different trajectories of the bubble, spike, and spiral particles will exert different
 333 influences on the topological evolution of the fluid interface and on general RT dynamics
 334 such as the bubble reacceleration. We will consider these influences in the next section.

335 **V. LAGRANGIAN DYNAMICS OF THE FLUID INTERFACE**

336 **A. Growth of the fluid interface**

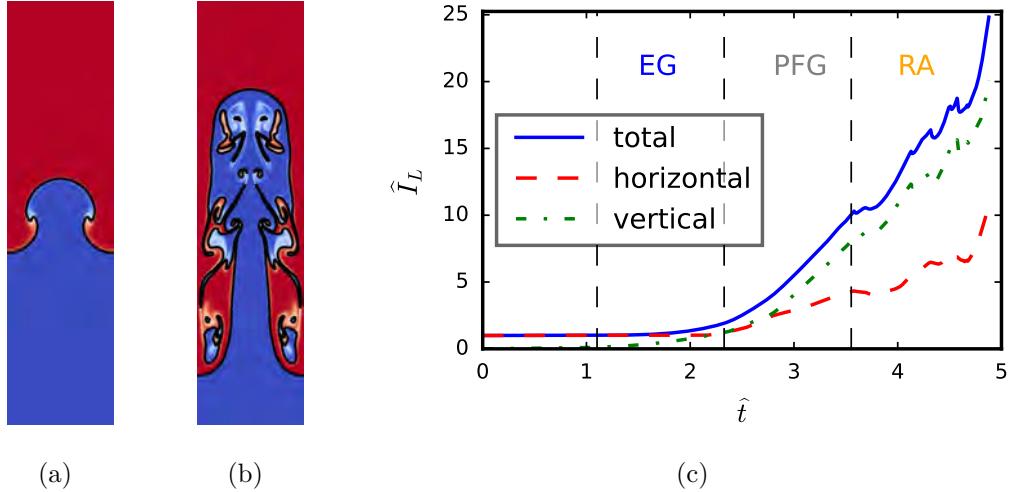


FIG. 6. Panels (a) and (b) show the contour line $Y_1 = 0.5$ imposed on the background field of Y_1 at non-dimensional time $\hat{t}=2.45$ and 4.90 . Panel (c) shows the total length of the 2D contour line $Y_1 = 0.5$ as a function of time, together with the lengths of its horizontal and vertical projections. The interface length is normalized by L_x .

337 During RT development, the heavy-light fluid interface is continuously deformed and
 338 stretched by the instability, which leads to the formation of fractals in the case of 2D
 339 multi-mode RT with a fractal dimension of 1.7-1.8 [53]. In our single-mode RT case, we will
 340 measure the total interfacial length and relate its temporal growth with the tangential strain
 341 carried by the particles associated with the bubble, spike, and spiral regions. Here the fluid
 342 interface is defined by the contour line $Y_1 = 0.5$ in the 2D field, which is shown as black lines
 343 in figure 6 (a), (b) at early and late times, respectively. Due to the effects of advection and
 344 diffusion, the contour line at late time is broken into several unconnected pieces, and the
 345 interface length is the sum of all the individual parts. Note that the topology of the interface
 346 contour is sensitive to the Reynolds number Re under study. Increasing Re could result in
 347 rich small-scale vortices induced by the Kelvin-Helmholtz instability, which adds fine details
 348 to the contours shown in panels (a) and (b) of figure 6. Thus it is desirable to resort to some
 349 quantitative measures such as the total length of the interface, whose qualitative evolution
 350 trend is not sensitive to Re , given that the RT flow undergoes all the three stages (the EG,

351 PFG, and RA stages) at the particular Re .

352 Figure 6 (c) shows temporal evolution of the total interface length \hat{I}_L , together with the
 353 length projected onto the horizontal and vertical directions. During the EG stage, the total
 354 length as well as its horizontal and vertical projections are slowly increasing. In the RT
 355 initial condition the interface is horizontal and the vertical projection is zero initially, but
 356 the vertical component grows faster than horizontal, and exceeds the latter at the end of the
 357 EG stage. In the PFG stage, the total length increases rapidly, with the vertical component
 358 dominates over the horizontal. In the RA stage the increasing trend continues, and the
 359 vertical component is more than two times larger than the horizontal. Compared to the EG
 360 and PFG stages, there are wiggles appearing in the curves during the RA stage in figure 6
 361 (c), which is attributed to the broken of contour line into several parts, and disappearance
 362 of small isolated islands of fluids due to the excessive diffusion exerted on the long, thin
 363 structures emerged from the spike tip, as is illustrated in figure 6 (b). The middle and high
 364 \mathcal{A} results are qualitatively similar to figure 6, but the total interface length increases with
 365 Atwood number, since the potential-to-kinetic energy conversion is more efficient and the
 366 instability grows faster when the Atwood number is higher, as is indicated by the dimensional
 367 bubble and spike velocities $U_{B/S} = Fr_{B/S} \sqrt{\frac{\mathcal{A}}{1+\mathcal{A}} g \lambda}$ of the three \mathcal{A} cases as can be inferred
 368 from figure 2.

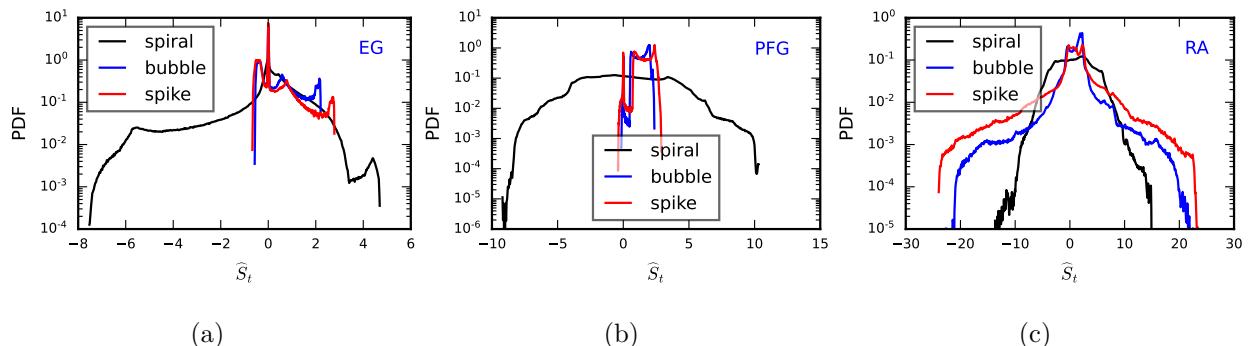


FIG. 7. The PDFs of tangential strain rate \hat{S}_t experienced by particles at different stages in panels (a)-(c), which is normalized by the reference time $\sqrt{\lambda/\mathcal{A}g}$. The mean values of \hat{S}_t associated with the spiral, bubble, and spike particles in panel (a) are -0.058, 0.36, 0.227, in (b) 0.228, 1.382, 1.626, and in (c) 0.788, 1.075, 0.920.

We further adopt the tangential strain rate S_t to characterize the local evolution of fluid interface. The tangential strain rate measures the stretching or compression along the

tangential direction of the interface and is defined as $S_t = (\delta_{ij} - n_i n_j) \frac{\partial u_i}{\partial x_j}$, where δ_{ij} is the Kronecker delta and $n_i = \frac{\partial Y_i}{\partial x_i} / |\frac{\partial Y_i}{\partial x_i}|$ represents the interface normal. The tangential strain rate constitutes a major component of the stretching K of the interfacial area $A \propto |\nabla Y|$ that

$$K = \frac{1}{A} \frac{dA}{dt}$$

which is related to the tangential strain rate S_t by

$$K = -n_i n_j \partial_i u_j + \partial_i u_i + S_d \partial_i n_i \equiv S_t + S_d \partial_i n_i \quad (5)$$

369 where $S_d = \frac{1}{|\nabla Y|} \frac{DY}{Dt}$ is the interface displacement speed [54].

370 Figure 7 shows the PDFs of normalized tangential strain rate carried by the spiral, bubble,
 371 and spike particles in the EG (a), PFG (b), and RA (c) stages. Qualitatively different
 372 behavior is observed between the spiral particles and the bubble/spike particles. During all
 373 three stages, both positive and negative S_t exist for spiral particles, indicating a simultaneous
 374 compression and stretching of the spiral interface at different locations; while for the bubble
 375 and spike particles, tangential strain rate is predominantly positive in the EG and PFG
 376 stages during which the interface expands, and in the RA stage the PDF of S_t is close to
 377 symmetric around 0, indicating that both compression and stretching of the interface are
 378 at work. Different patterns of tangential strain rate would lead to different topologies of
 379 bubble, spike, and spiral interfaces. For example, the ensemble-averaged tangential strain
 380 rate of the spiral particles is comparatively small in the EG and PFG stages and rises in the
 381 RA stage, thus the total length of the spiral is kept small during the initial period of RT
 382 evolution until a increase is observed in the late RA stage. The interface associated with
 383 bubble and spike, however, keeps increasing in all stages due to the relatively large mean
 384 $\langle S_t \rangle$, which is compatible with the visualization in figure 1 and the interface growth in figure
 385 6.

386 We further illustrate an Eulerian visualization of S_t in figure 8 to complement the La-
 387 grangian results. We observe in this figure that during the EG and PFG stages, the tangen-
 388 tial strain rate S_t at the bubble and spike regions is positive, while S_t at the spiral region
 389 attains both positive and negative values with comparable magnitude. In the RA stage,
 390 the results are more chaotic and negative values emerge in regions where bubble and spike
 391 particles reside, in compatible with the PDFs shown in figure 7.

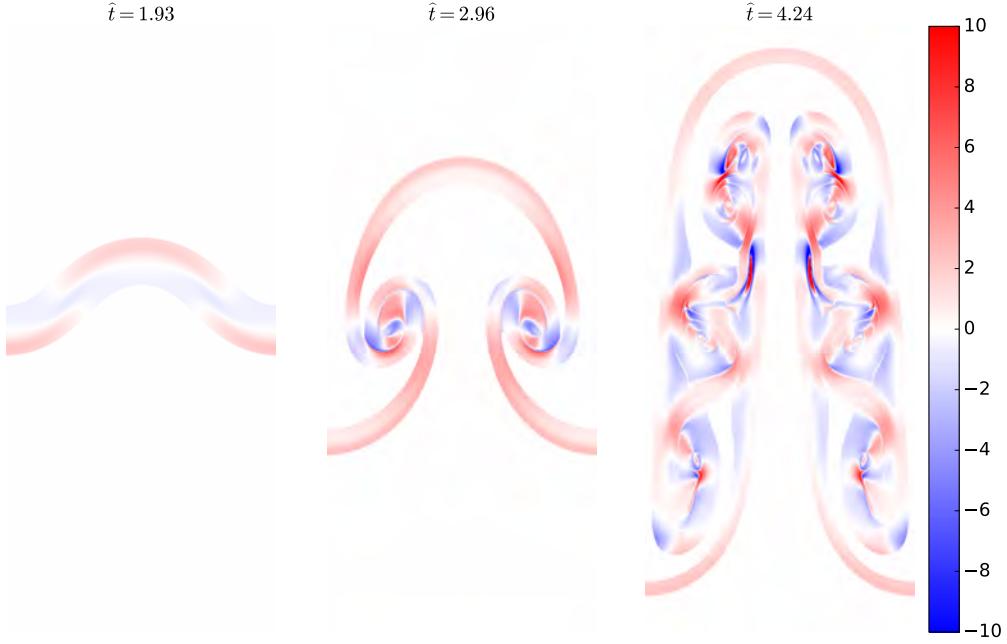


FIG. 8. Visualizations of the tangential strain rate S_t at three time instants $\hat{t} = 1.93, 2.96, 4.24$ which belong to the EG, PFG, and RA stages, respectively. In all three panels we have truncated the vertical domain to show only the region $0.3 < z < 1.2$.

392 **B. Secondary Rayleigh-Taylor instability in the spiral**

393 During the nonlinear stages of RT evolution, spiral particles are subjected to centrifugal
 394 forces, which could potentially lead to the onset of secondary RT instability in local regions
 395 of the spiral [55]. This secondary RT could distort the spiral motion, render it unstable,
 396 and produce complex small-scale structures to enhance local turbulence development. An
 397 emblematic example of secondary RT is highlighted in the red boxes of figure 9, where addi-
 398 tional ‘arms’ emerge from the spiral and influence its further development. We shall study
 399 the secondary RT instability based on the simple instability criterion $\nabla\rho \cdot \nabla P < 0$ resembling
 400 the baroclinic vorticity generation [56, 57] on spiral particles. From the momentum equa-
 401 tion (3), the pressure gradient can be expressed as $\nabla P = \rho\mathbf{g} - \rho\mathbf{a}$ if we neglect the viscous
 402 contribution, where $\mathbf{a} = \frac{D\mathbf{u}}{Dt}$ is the acceleration field. Thus the above instability criterion
 403 reduces to $g\partial_z\rho + \mathbf{a} \cdot \nabla\rho > 0$, in which the first term $g\partial_z\rho$ denotes the contribution from the
 404 density stratification, which we shall call the buoyancy contribution; while the second term
 405 $\mathbf{a} \cdot \nabla\rho$ arises because of the local instantaneous acceleration and density gradient, which for
 406 spiral particles we shall denote the centrifugal contribution.

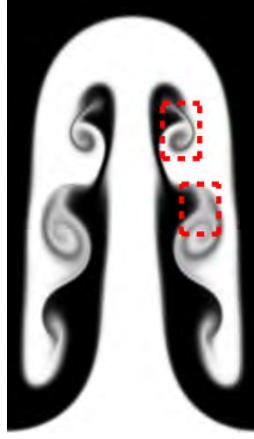


FIG. 9. The visualization of secondary RT instability near the spiral region at time $\hat{t} = 4.10$. The grey background shows the visualization of the Y_1 field, and the two red rectangles denote the development of secondary instability.

407 The relative importance of the buoyancy and centrifugal contributions in the spiral region
 408 during the RT growth is shown in the joint PDFs in figure 10 for the three stages. The
 409 centrifugal contribution is close to symmetric in all stages, and its magnitude increases from
 410 the EG to the PFG stage, and then decreases over the RA stage. The buoyancy contribution
 411 is predominantly positive in the EG stage, and becomes more symmetric in the PFG and
 412 RA stages with comparable magnitude over the whole duration. The joint PDFs in both the
 413 PFG and RA stages in panels (b) and (c) is spontaneously split into two parts, depending
 414 on the sign of the centrifugal contribution. As we have mentioned, positive values of the
 415 sum of the centrifugal and buoyancy contributions indicate local RT unstable configuration,
 416 which we denote the secondary RT instability inside the spiral. Hence in figure 10(b) and
 417 (c), particles fall in the region above the dashed black line are RT unstable. Moreover, the
 418 centrifugal contribution in this unstable region is almost always positive, especially in the
 419 PFG stage. Thus we could argue that spiral particles with positive centrifugal contribution
 420 ($\mathbf{a} \cdot \nabla \rho > 0$) leads to the secondary RT instability with $\nabla \rho \cdot \nabla P < 0$.

Since the centrifugal contribution $\mathbf{a} \cdot \nabla \rho$ contains the acceleration field which is a Lagrangian quantity, it is desirable to find an Eulerian surrogate that can be calculated directly from only one snapshot. A possible candidate is the quantity $-\boldsymbol{\omega} \cdot (\nabla \rho \times \mathbf{u})$, whose joint PDF with the centrifugal contribution is shown in figure 11, where high correlation coefficients are observed. In other words, we have an approximation $\mathbf{a} \cdot \nabla \rho \approx -\boldsymbol{\omega} \cdot (\nabla \rho \times \mathbf{u})$ such that

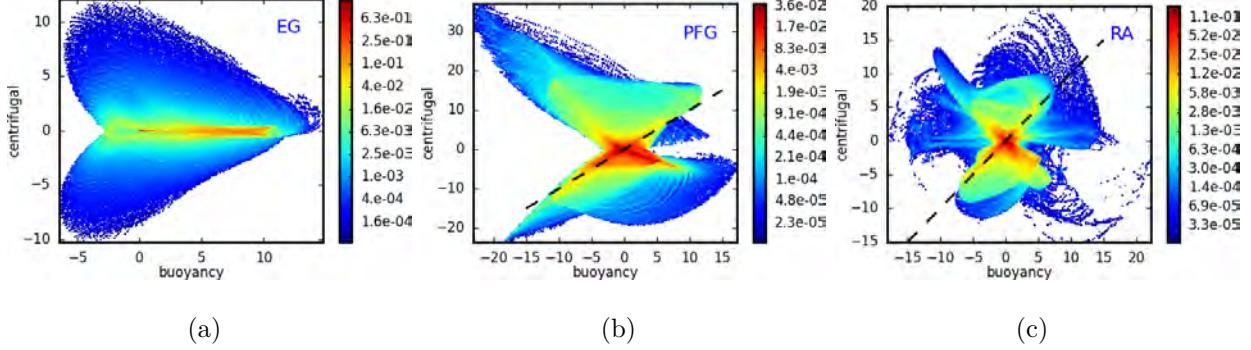


FIG. 10. The joint PDFs of buoyancy contribution ($g\partial_z\rho$) and centrifugal contribution ($\mathbf{a} \cdot \nabla\rho$) terms at the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. In panels (b) and (c), the black dashed line represents the anti-diagonal line $y = -x$.

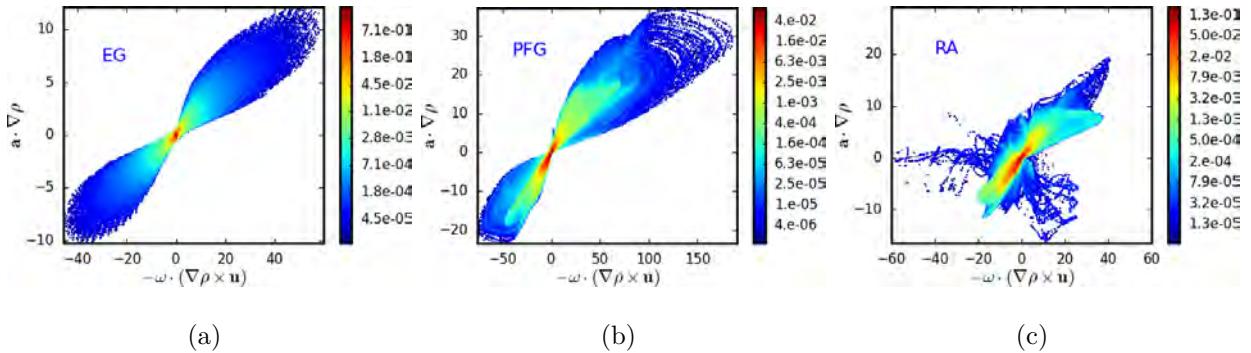


FIG. 11. The joint PDF of the centrifugal contribution ($\mathbf{a} \cdot \nabla\rho$) with the surrogate $-\omega \cdot (\nabla\rho \times \mathbf{u})$ in the EG (a), PFG (b), and RA (c) stages associated with the spiral particles. The correlation coefficient between the two quantities is 0.92 in panel (a), 0.93 in panel (b), and 0.85 in panel (c).

the criterion for the secondary RT instability inside the spiral $g\partial_z\rho + \mathbf{a} \cdot \nabla\rho > 0$ can be recast as

$$g\partial_z\rho - \boldsymbol{\omega} \cdot (\nabla\rho \times \mathbf{u}) > 0 \quad (6)$$

421 The new criterion only depends on the instantaneous density and velocity fields, and is thus
 422 easier to evaluate than the original criterion.

The surrogate works because we have

$$\begin{aligned} -\boldsymbol{\omega} \cdot (\nabla\rho \times \mathbf{u}) &= -\nabla\rho \cdot (\mathbf{u} \times \nabla \times \mathbf{u}) = \nabla\rho \cdot (\mathbf{u} \cdot \nabla \mathbf{u} - \nabla \frac{|\mathbf{u}|^2}{2}) \\ &= \nabla\rho \cdot (\mathbf{a} - \frac{\partial}{\partial t} \mathbf{u} - \nabla \frac{|\mathbf{u}|^2}{2}) \end{aligned} \quad (7)$$

423 which well approximates the centrifugal contribution $\mathbf{a} \cdot \nabla\rho$ for spiral particles, since these
 424 particles are restricted to a limited region and thus both the mean time derivative term

425 $\langle \frac{\partial}{\partial t} \mathbf{u} \rangle_{\text{spiral}}$ and the mean spatial transport term $\langle \nabla \frac{|\mathbf{u}|^2}{2} \rangle_{\text{spiral}}$ are small, where the average
 426 $\langle \cdot \rangle_{\text{spiral}}$ is over the spiral particle ensemble. From figure 11, during all the three stages in
 427 panels (a)-(c), the proposed surrogate is positively correlated with the centrifugal contri-
 428 bution with high correlation coefficients. For middle and high \mathcal{A} cases, this surrogate term
 429 still applies, but with degraded correlation as \mathcal{A} is increased. Also, the approximation is
 430 only valid for the spiral particles but not for the bubble and spike particles due to the above
 431 approximations.

432 C. Re-accelerations of the bubble and spike tips

433 Another application of interface Lagrangian tracking is to provide rationale for the re-
 434 acceleration of single-mode RT bubble and spike. The growth of bubble and spike velocity
 435 in figure 2(a) indicates that both the bubble and the spike tips reaccelerate in the RA
 436 stage. This phenomenon, particularly the bubble reacceleration, has been addressed in many
 437 previous studies [16, 17, 58, 59] due to its importance in predicting the bubble penetration
 438 depth, and is generally attributed to the influence of vortices generated near the spike and
 439 convected to the bubble tip. Reference [17] measured the vorticity averaged over a small
 440 region adjacent to the bubble tip, and found good correlation between the temporal evolution
 441 of the averaged vorticity and the bubble-tip velocity. Here we will measure the force acting
 442 on the bubble and spike tips, as well as the mean force on the nearby particles in the
 443 RA stage, to further corroborate the relation between bubble/spike re-acceleration and the
 444 convected fluids from the bubble or the spike regions.

445 Figure 12(a) shows, in the RA stage, the PDF of vertical force $f_z = \rho a_z$ experienced by
 446 the Lagrangian particles inside a rectangular domain enclosing either the bubble tip or the
 447 spike tip, with a vertical length L_x/π , similar to figure 13 of reference [17]. It should be noted
 448 that in the RA stage, particles near (below) the bubble tip are the upwards convected spike
 449 particles, and similarly, particles near (above) the spike tip are the downwards convected
 450 bubble particles, as is evident in the visualization of figure 1 (d). The PDF in figure 12(a)
 451 indicates that particles near the bubble tip are subjected to downward mean forcing over the
 452 RA stage, thus the particles will exert upward reaction force on the surrounding fluid and
 453 accelerate the bubble tip upwards. In the same way, the spike tip is subjected to downward
 454 forcing and also accelerate downwards in the RA stage. Panel (b) shows the temporal

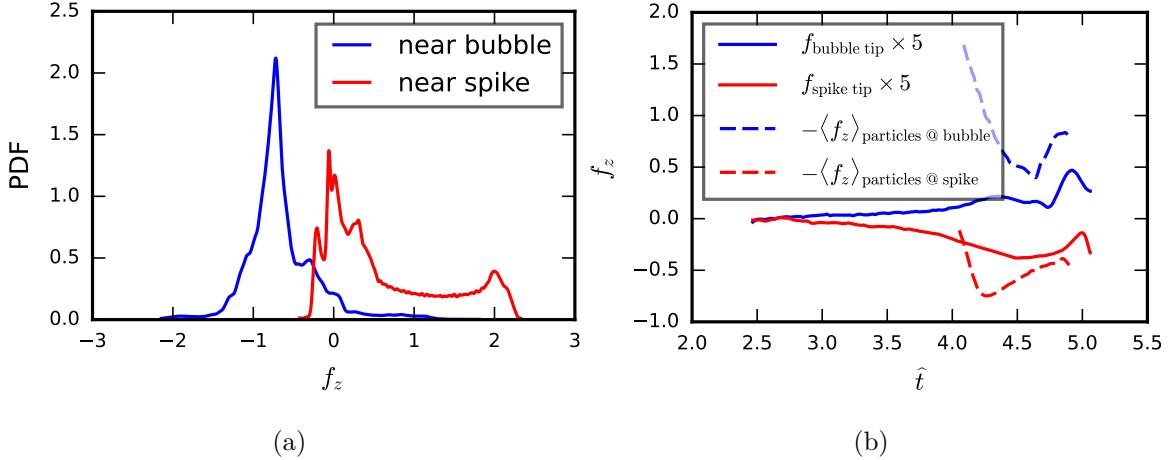


FIG. 12. (a) PDFs of vertical forces on particles near the bubble and the spike tip during the RA stage, which are located within a rectangular domain with vertical length L_x/π as in reference [17], where f_z is the vertical force experienced by the Lagrangian particles. The mean values associated with particles near the bubble tip (blue) and near the spike tip (red) are -0.651 and 0.637. (b) Inside the same region, the instantaneous (vertical) forces on bubble and spike tips versus time, as well as mean vertical forces averaged over those selected particles. The dashed lines start around $\hat{t} = 4.0$ when particles start to enter the enclosed region. The lines are re-scaled according to the descriptions in the legend.

455 evolution of the instantaneous forces measured on the bubble and the spike tips (multiplied
 456 by a factor of 5 for better comparison), which point along the vertical direction due to
 457 symmetry, as well as the mean forces exerted on the rectangle-enclosed particles (multiplied
 458 by -1 to denote the reaction forces from the particles to the surrounding fluids). The force
 459 history on the bubble tip is well correlated with the adjacent-particle mean reaction force,
 460 with a small time lag suggesting a possible causal relationship between the motion of particles
 461 near the bubble tip, which is convected from the spike side, and the bubble re-acceleration.
 462 The same situation also holds for the spike tip and the adjacent particles. Hence, figure
 463 12 connects the bubble reacceleration to the convected fluids from the spike side using a
 464 Lagrangian point of view, complementing the Eulerian analysis proposed in reference [17].

465 **VI. LARGE-SCALE VELOCITY ANISOTROPY NEAR THE INTERFACE**

466 In this section, we study the evolution of velocity and kinetic energy (KE) of single-mode
 467 RT interface with the Lagrangian approach, focusing on the anisotropic development of
 468 interfacial KE along the horizontal and vertical directions. Understanding the anisotropic
 469 growth of fluid interface is conducive to characterizing the growth rate of RT bubble and
 470 spike in the nonlinear stage, and lays foundation for phenomenological models of RT. Figure
 471 13 shows the PDFs of horizontal and vertical velocities associated with the spiral, bubble,
 472 and spike particles, ranging over the EG, PFG, and RA stages, which exhibit different
 473 statistical behavior as detailed in the follows.

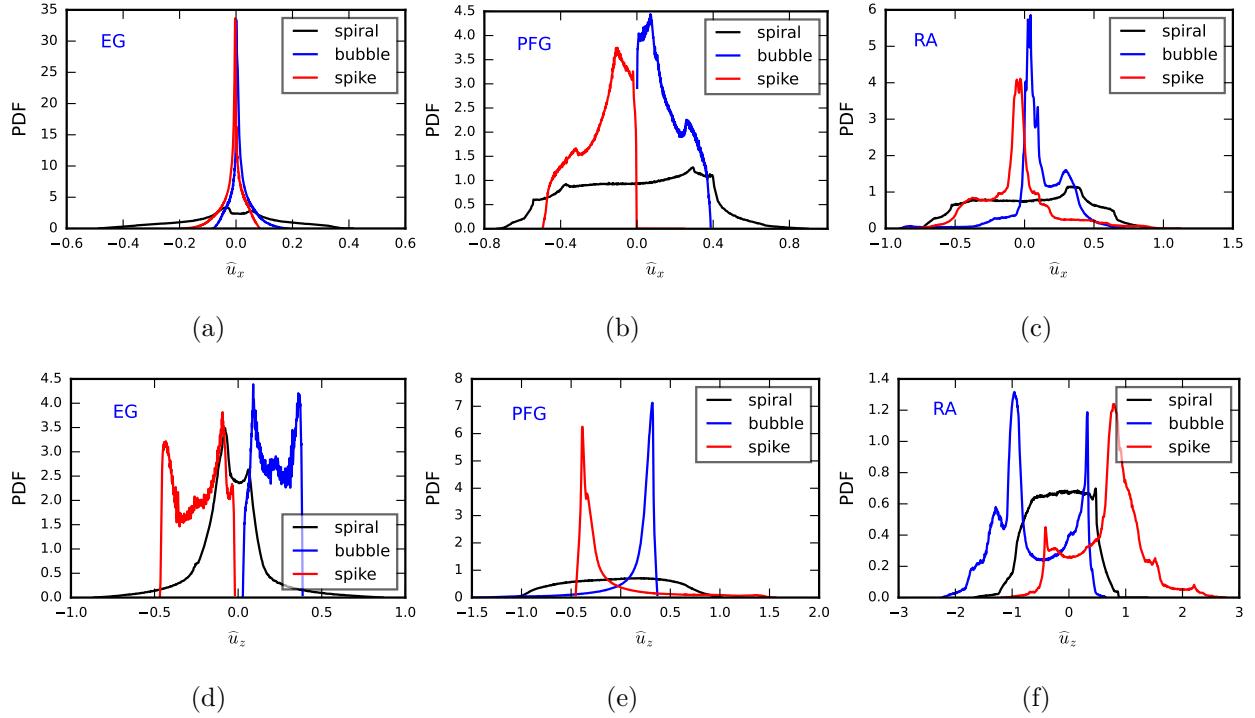


FIG. 13. The PDFs of the normalized horizontal velocity \hat{u}_x in panels (a)-(c), and of the normalized vertical velocity \hat{u}_z in panels (d)-(f) in the EG, PFG, and RA stages, respectively. Velocity is normalized by $\sqrt{AgL_x}$.

474 In the EG stage, the PDF of horizontal velocity in figure 13 (a) is close to symmetric
 475 for all three particle ensembles, while for the vertical velocity, panel (d) shows that bubble
 476 particles only move upwards while the spike particles only move downwards, compatible
 477 with early RT flow patterns. In addition, the magnitude of \hat{u}_z is larger than that of \hat{u}_x
 478 within all three particle groups. These differences in the EG stage can be understood from

479 the streamline visualization in figure 14. The streamlines indicate that the bubble velocity is
 480 predominantly upwards and thus \hat{u}_z is positive for bubble particles, while (in the right half
 481 of the visualization) \hat{u}_x is negative in the lower part of the bubble interface and positive in
 482 the upper part, leading to a symmetric PDF around 0. The flow pattern near the spike tip
 483 is similar to the bubble tip except with the flow direction reversed. Meanwhile, the spiral
 484 particles lies around the middle of the swirling vortex in figure 14 and both the PDFs of \hat{u}_x
 485 and \hat{u}_z are symmetric.

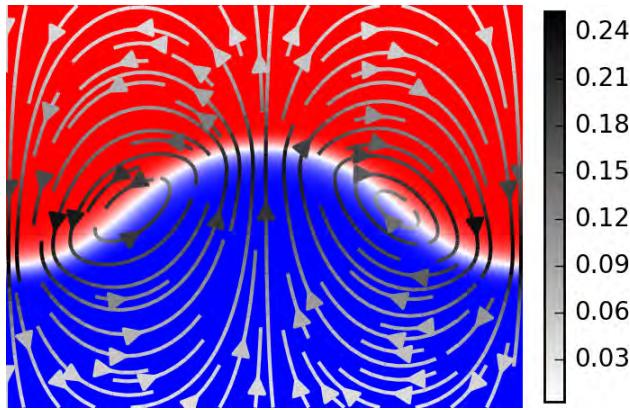


FIG. 14. The streamlines imposed on the density field of the low Atwood number RT within the EG stage, at non-dimensional time $\hat{t} = 1.72$. The figure is truncated in the vertical direction for a clear presentation. The binary color-bar represents the velocity magnitude on streamlines.

486 In the PFG stage of figure 13 (b) and (e), both \hat{u}_x and \hat{u}_z are predominantly positive
 487 for the bubble particles, and are predominantly negative for the spike particles, while for
 488 the spiral particles the PDFs of \hat{u}_x and \hat{u}_z are close to symmetric. During this stage, the
 489 anisotropy between the horizontal and vertical velocities is apparent, with the magnitude
 490 of \hat{u}_z larger than \hat{u}_x . As the system evolves from the PFG to the RA stage, velocity PDFs
 491 associated with the spiral particles are qualitatively unchanged, while for the bubble and
 492 spike velocity PDFs the changes are apparent. For \hat{u}_x in the RA stage, negative values
 493 appear within the bubble particles, and positive values appear within the spike particles,
 494 in contrast to the corresponding one-sided PDFs of \hat{u}_x during the PFG stage. More drastic
 495 change appears on \hat{u}_z , whose PDF associated with the bubble particles shifts from positive-
 496 dominant in the PFG stage to negative-dominant in the RA stage, and vice versa for the
 497 spike particles. This occurs since the interface tangential velocity moves a large proportion
 498 of the bubble particles to the spike side, and spike particles to the bubble side, hence alters

499 the particle dynamics, as can be inferred from the particle locations in figure 1(c) and (d).

500 Given the dissimilar growth of horizontal and vertical velocities, we study quantitatively
501 the directional anisotropy of kinetic energy, namely the ratio of horizontal to vertical KE. The
502 anisotropy of RT is conducive to quantifying the distribution of energy among each direction,
503 and influences the RT mixing width growth [13, 49]. Figure 15 (a) shows the temporal
504 evolution of mean horizontal and vertical KE averaged over the whole domain, as well as over
505 the fluid interface defined by the region $0.4 < Y_1 < 0.6$. Both the domain averaged horizontal
506 and vertical KE increases with time, with an increasingly larger difference between the two
507 quantities. The evolution of the interface averaged KE roughly follows a similar trend as
508 the domain averaged result, but is not monotonically increasing in time due to the complex
509 structures emerged in RT at late time. Both the horizontal and vertical interface-averaged
510 KE plateau in the vicinity of the PFG-to-RA transition stage, but their ratio increases
511 rapidly afterwards.

512 More detailed information of KE anisotropy is contained in the PDFs of the horizontal
513 KE fraction, KE_x/KE , of fluid particles shown in figure 15 (b)-(d). As can be seen from the
514 mean values of the spiral particle PDFs, the kinetic energy is almost evenly divided along
515 the horizontal and vertical directions. But for the bubble and spike particles, the mean
516 horizontal KE is much smaller than the vertical. For example, mean values of KE_x/KE for
517 bubble and spike particles are close to zero in the EG stage, and increases to around 0.3 in
518 the PFG stage, which decrease again to about 0.2 in the RA stage. Compared to the near
519 equipartition of KE in 2D multi-mode RT [49], single-mode RT leaves most of the energy to
520 the vertical direction, and its mixing width growth is thus faster than the multi-mode case.

521 The physical mechanism of the KE anisotropy can be explained by the statistics of hor-
522 izontal and vertical accelerations. Figure 16 shows the joint PDFs between \hat{a}_x and \hat{a}_z , the
523 horizontal and vertical acceleration fields normalized by the gravitational acceleration g , of
524 the three particle ensembles at different stages. For spiral particles in panels (a)-(c), the
525 joint PDFs of \hat{a}_x and \hat{a}_z are close to circular shapes centered at the origin, with the radius
526 increasing from the EG to the PFG stage, and stays similar during the RA stage. These
527 plots indicate an isotropic growth of horizontal and vertical velocities of the spiral particles,
528 in accordance with the kinetic energy ratio in figure 15 (b)-(d). However, the joint PDFs
529 of bubble particles in figure 16 (d)-(f) exhibit differences between \hat{a}_x and \hat{a}_z , both in the
530 magnitude and in the sign. The mean magnitude of \hat{a}_z associated with bubble particles is

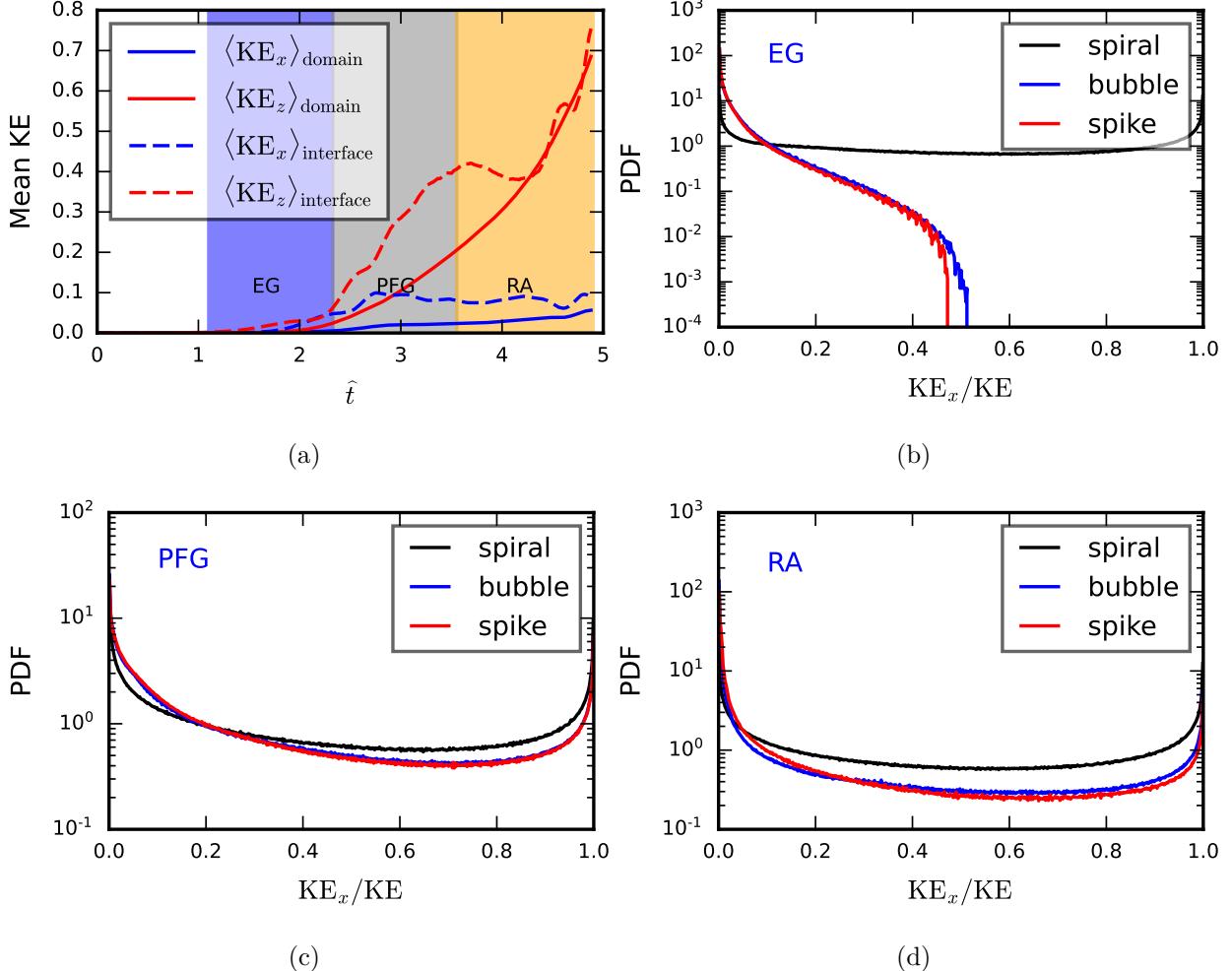


FIG. 15. (a): Time evolution of horizontal and vertical kinetic energy averaged over either the whole domain, or the fluid interface ($0.4 < Y_1 < 0.6$). The EG, PFG, and RA stages are highlighted. (b)-(d): The PDFs of the ratio of horizontal to total KE in the spiral, bubble, and spike regions, for each of the three stages. The mean values of the PDFs corresponding to spiral, bubble, and spike are 1): 0.488, 0.03, 0.03; 2): 0.408, 0.317, 0.310; 3): 0.452, 0.221, 0.194.

about 2-3 times larger than mean \hat{a}_x . In addition, in the PFG and RA stages, \hat{a}_z is mostly negative, but \hat{a}_x attains both positive and negative values. In addition, u_z is predominantly negative in the two stages. Hence, \hat{a}_z continuously increases the magnitude of \hat{u}_z , but the changing sign of \hat{a}_x leads to smaller magnitude of \hat{u}_x . This phenomenon is related to the special configuration of single-mode RT, since along the horizontal direction the flow is confined by the lines of symmetry, while in the vertical direction no constraint is imposed except for the top and bottom walls which only affect RT development at very late time.

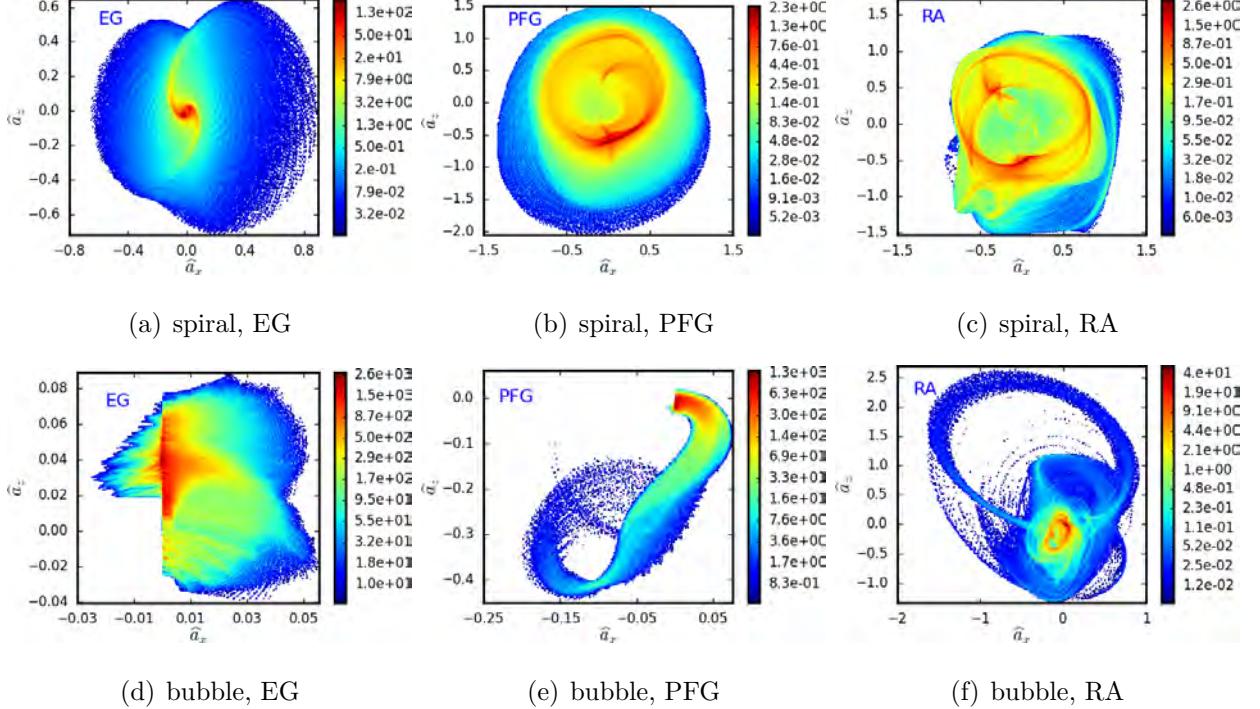


FIG. 16. The joint PDFs of the horizontal and vertical acceleration associated with the spiral particles in panels (a)-(c) corresponding to the EG, PFG, and RA stages, and with the bubble particles in panels (d)-(f).

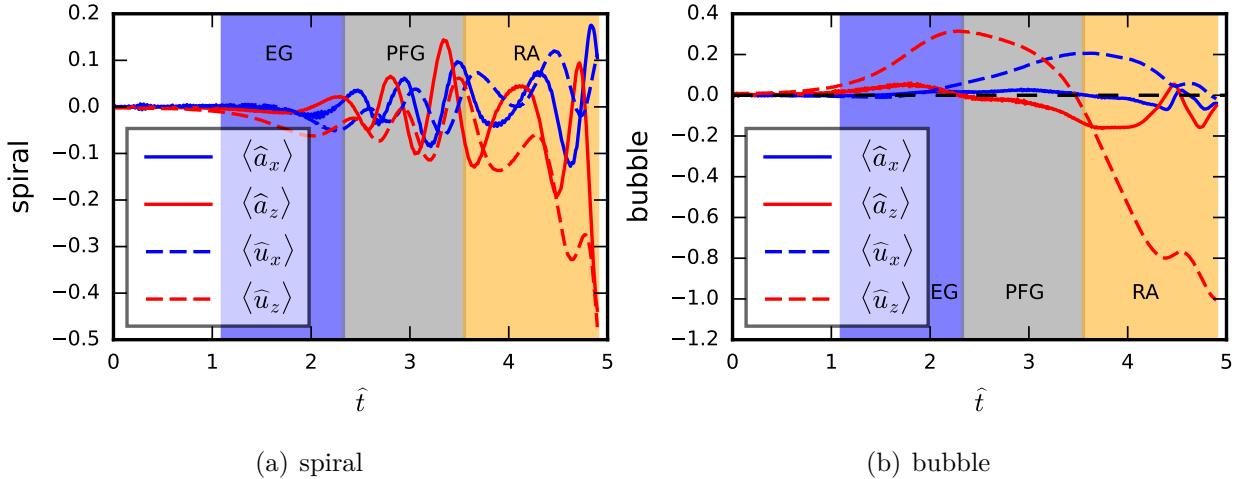


FIG. 17. The mean values of non-dimensional velocity and acceleration versus time, averaged over the spiral particles in (a), and over the bubble particles in (b). The horizontal dashed black line in panel (b) corresponds to zero values. The non-dimensional velocity and acceleration are $\sqrt{\mathcal{A}g}L_x$ and g , respectively.

celeration and velocity averaged over the spiral and the bubble particle ensembles. In panel (a) for the spiral particles, both averaged $\langle \hat{a}_x \rangle$ and $\langle \hat{a}_z \rangle$ behave similarly, and $\langle \hat{u}_x \rangle$ and $\langle \hat{u}_z \rangle$ are comparable in magnitude. In contrast, for the bubble particles in panel (b), on one hand $\langle \hat{a}_z \rangle$ is 2-3 times larger than $\langle \hat{a}_x \rangle$ in magnitude; on the other hand $\langle \hat{a}_x \rangle$ changes sign between the PFG and RA stages, while $\langle \hat{a}_z \rangle$ is almost always negative during this period. Thus the averaged vertical velocity is much larger than the averaged horizontal velocity, in accordance with our previous analysis. Numerical tests also show that for the middle and high \mathcal{A} cases, the KE anisotropy is similar to those low \mathcal{A} results presented above.

547 VII. DISCUSSIONS AND CONCLUSIONS

548 This paper investigates the single-mode Rayleigh-Taylor instability with a Lagrangian approach, focusing on the topology and dynamics of the interface. Three particle ensembles 549 are collected, including particles which pass through the bubble, the spike, and the spiral 550 regions, to perform Lagrangian statistical analysis over different RT stages. A total of three 551 stages, namely the exponential growth stage (EG), the potential flow growth stage (PFG), 552 and the re-acceleration stage (RA), are identified based on the characteristics of RT flows, 553 following the definition in reference [16]. The Lagrangian statistics studied in this paper 554 including both kinematics associated with particle trajectories and the ensuing interfacial 555 dynamics, which influences the topology of the interface, leads to secondary RT instability in 556 the spiral, and accelerates the bubble and spike tips. The interface evolution also generates 557 anisotropy between the horizontal and vertical kinetic energy components.

559 For the geometry of Lagrangian trajectories, we show that a κ^{-3} scaling appears in the 560 right tail of the curvature PDF associated with the spiral particles during all stages, and 561 for the bubble and spike particles at the RA stage the scaling is κ^{-2} due to a uniform 562 distribution of the radius of curvature of particles. Fluid particles are trapped inside the 563 vorticity-dominated spiral with high trajectory curvature compared to the shear-dominated 564 bubble/spike particles undergoing large-scale convective motions. The joint PDFs between 565 curvature and particle speed are more coherent with negative correlations for the spiral 566 particles during all three stages, while for the bubble and spike particles the correlation is 567 more complicated due to the relatively large dispersion within each of the particle ensembles.

568 The expansion of fluid interface is closely related to the tangential strain rate on the inter-

569 face. The PDF of tangential strain rate S_t indicates that for the bubble and spike particles,
570 the net effect of S_t is to stretch the corresponding interface during all the evolution stages.
571 In contrast, the spiral region tends to be compressed in the EG stage, and stretched in the
572 PFG and RA stages. We then investigate the secondary RT instability inside the spiral
573 region through the joint PDF of the buoyancy contribution ($-\mathbf{g} \cdot \nabla \rho$) and the centrifugal
574 contribution ($\mathbf{a} \cdot \nabla \rho$) terms, and have found that positive centrifugal contribution is associ-
575 ated with the secondary RT instability. A surrogate term $-\omega \cdot (\nabla \rho \times \mathbf{u})$ for the centrifugal
576 contribution in the spiral region is proposed, which depends only on the instantaneous Eu-
577 lerian field instead of the Lagrangian time derivative. Finally, the re-acceleration of bubble
578 and spike tips are shown to be correlated with the forcing exerted by Lagrangian particles
579 transported to the adjacent regions in the RA stage, complementing existing Eulerian results
580 in the literature.

581 The interface kinetic energy along x - and z -directions in single-mode RT exhibits distinct
582 statistics in different regions, as measured by the ratio between the horizontal and the total
583 kinetic energy. Associated with the spiral particles the flow is close to isotropy, while for
584 the bubble/spike particles the KE anisotropy is pronounced and the horizontal velocity
585 magnitude is much smaller compared to the vertical. This anisotropy is well explained by
586 the joint PDFs between the horizontal and vertical accelerations. For bubble/spike particles,
587 the ensemble-mean horizontal acceleration $\langle a_x \rangle(t)$ is smaller in magnitude compared to the
588 vertical acceleration $\langle a_z \rangle(t)$, and in addition $\langle a_x \rangle(t)$ alters sign between the PFG and RA
589 stages leading to a cancellation effect on $\langle u_x \rangle(t)$, thus giving rise to a much smaller horizontal
590 KE than the vertical. The pronounced anisotropy effects should be taken into account in
591 reduced numerical models such as Reynolds-averaged Navier–Stokes (RANS) or Large Eddy
592 Simulations (LES).

593 To conclude, we adopt the Lagrangian approach to study the interfacial kinematics and
594 dynamics of 2D single-mode RT instability. The ensemble of spiral particles undergoes
595 approximately a solid-body rotation and the PDFs of its trajectory curvature and particle
596 speed follow κ^{-3} and u^1 scalings, respectively, during all three evolution stages. In addi-
597 tion, the bubble and spike particles in the RA stage undergo spiral motions with uniformly
598 distribution radius of curvature, and the κ^{-2} and u^1 scalings are observed. Lagrangian inves-
599 tigation of interfacial dynamics indicates that the interface near the bubble and the spike are
600 continuously stretched, and the bubble/spike tip reacceleration is induced by the convected

601 vortices inside the adjacent regions; while for the spiral structure, both interface stretching
602 and compression exists, and the centrifugal acceleration inside the spiral induces a secondary
603 RT instability which can distort its motion. Finally, we find that the anisotropy in inter-
604 facial KE is more pronounced for bubble and spike regions compared to the spiral, which
605 is due to both the magnitude and the phase differences of particle ensemble acceleration
606 $\langle a_x(t) \rangle$ and $\langle a_z(t) \rangle$ over time.

607 **ACKNOWLEDGMENTS**

608 DZ, PW, and CL acknowledge the financial support from the National Natural Science
609 Foundation of China (12202270, 11872281, 12272271, 12002242).

610 **DATA AVAILABILITY STATEMENT**

611 The data that support the findings of this study are available from the corresponding
612 author upon reasonable request.

613 **Appendix A: Simulation results with $W_2/W_1 = 2$**

614 In the case of unequal molecular weight $W_1 \neq W_2$ between the two fluids, the mass
615 fraction equation is coupled to other equations, in contrast to the equal molecular weight
616 case where the equations are decoupled. However, from the simulation with $\mathcal{A} = 0.15$ and
617 $W_2/W_1 = 2$ whose Y_1 visualizations are shown in figure 18 along with the results from the
618 equal W case 2DlowAt, we can observe that the flow physics does not differ much between
619 the two cases. The spiraling motion, the secondary RT instability inside the spiral, as well
620 as the bubble reacceleration are clearly visible in the visualizations of the $W_2/W_1 = 2$ case.
621 However, it is not appropriate to extrapolate this observation to cases where $W_1 \gg W_2$ or
622 $W_2 \gg W_1$.

623 **Appendix B: Details on the initial conditions**

624 The unperturbed initial conditions of the three simulation cases at various Atwood num-
625 bers consists of 1D profiles of density, pressure, and temperature that are uniform along

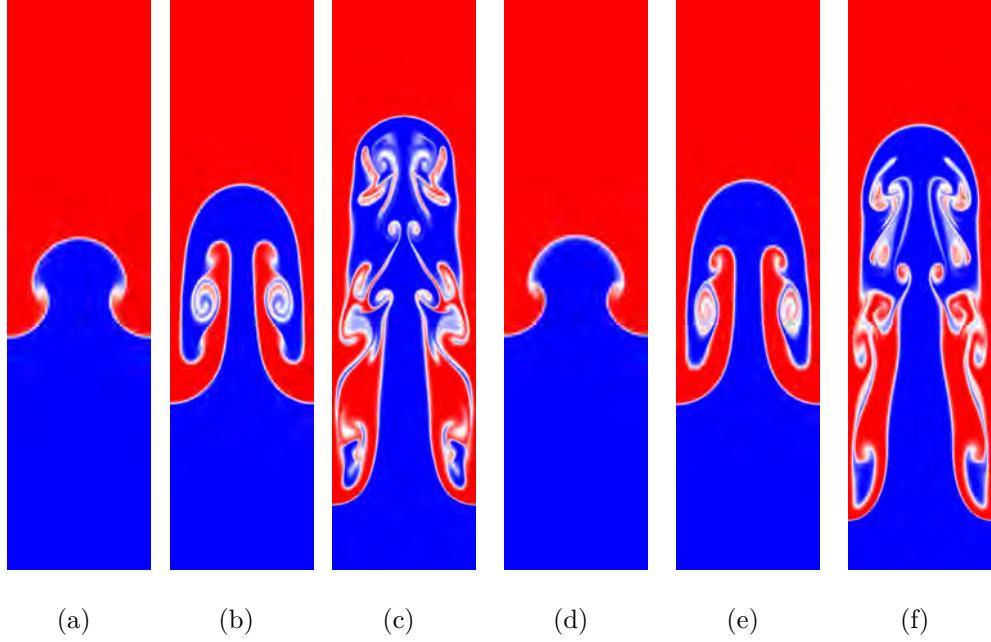


FIG. 18. Panels (a)-(c) show the visualization of the Y_1 fields at non-dimensional time $\hat{t} = 2.45, 3.67, 4.90$ for the 2DlowAt simulation in the paper. Panels (d)-(f) show the results from a low At simulation case with $W_1 : W_2 = 1 : 2$ and $\mathcal{A} = 0.15$ at the same instants.

626 the horizontal direction, while an initial perturbation is imposed on the quiescent vertical
 627 velocity field. We show the initial 1D profiles of the low, middle, and high \mathcal{A} cases in figure 19. Inside the heavy and light fluids the densities are constant, with a density jump
 628 across the interface that is smoothed by a hyperbolic tangent function with a width approx-
 629 imately equals to $L_z/64$. The pressure and temperature fields in the heavy and light fluid
 630 phases are linear profiles so that the hydrostatic condition $dP/dz = -\rho g$ is satisfied and the
 631 temperature gradient $dT/dz = -g/R$ uniform across the domain.
 632

The perturbation is imposed on the vertical velocity field with the form

$$u_z = u_p \cos\left(\frac{2\pi}{L_x}x\right) e^{-\frac{2\pi}{L_x}|z-z_0| \tanh\left(\frac{|z-z_0|}{L_x}\right)}$$

633 where u_p is a small quantity representing the initial perturbation magnitude chosen as $u_p =$
 634 0.005 for the simulations performed in table I, L_x is the horizontal domain size, z_0 is the
 635 vertical coordinate of the interface. The exponential decaying quantity is to ensure the
 636 perturbation is localized near the interface.

637 The influence of perturbation magnitude u_p in single-mode RT is not important provided
 638 that the perturbed flow remains in the linear regime ($u_p \ll \sqrt{gL_x/10}$). We have tested

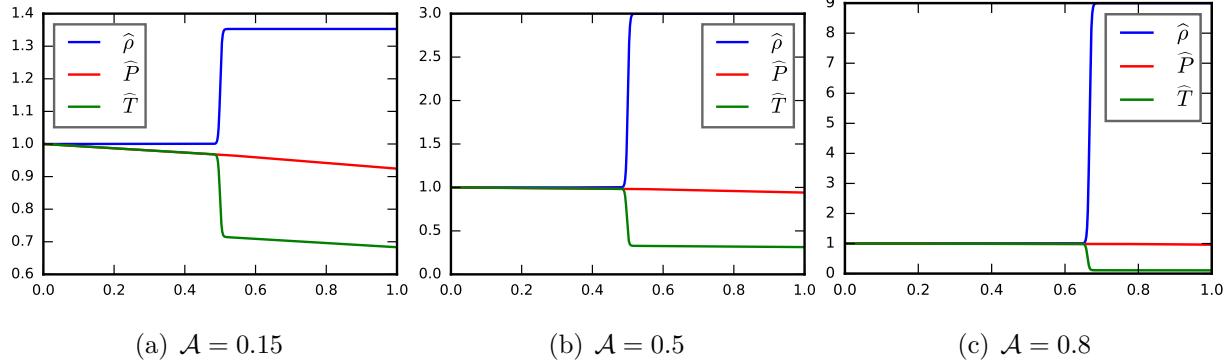


FIG. 19. The one-dimensional profiles of the initial density, pressure, and temperature fields for the simulation cases with low, middle, and high Atwood numbers in panels (a), (b), and (c), respectively. The coordinate is normalized by L_z , while the density, pressure, and temperature fields are normalized by their respective values evaluated at $z = 0$. In the case $\mathcal{A} = 0.8$, the initial interface is chosen to locate at $2/3L_z$.

for the 2DlowAt case with a larger magnitude $u_p = 0.01$. Compared to $u_p = 0.005$ in the 2DlowAt case, the bubble and spike velocities are shown in figure 20. With a proper shift in time to account for the initial difference, the velocities of the bubble and the spike are very close between the two cases, indicating that the single-mode RT statistics is not sensitive to the initial perturbation magnitude.

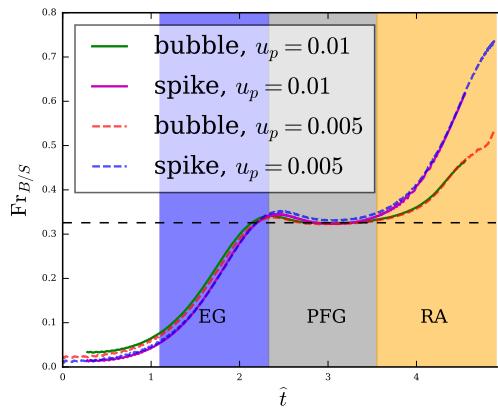


FIG. 20. Comparison of the bubble and spike Froude number (non-dimensional velocity) for the 2DlowAt case with perturbation magnitude $u_p = 0.005$ and 0.01 . The $u_p = 0.01$ plots are shifted in time to have a fair comparison with the $u_p = 0.005$ case.

644

Appendix C: Correlation between trajectory curvature and acceleration

To corroborate the relationship between trajectory curvature and small scale quantities such as acceleration, we show in figure 21 the time history of particle trajectory curvature and the acceleration components that are tangent and normal to the instantaneous velocity:

$$\mathbf{a}_{\text{tangent}} = \frac{\mathbf{a} \cdot \mathbf{u}}{\|\mathbf{u}\|^2} \mathbf{u}; \quad \mathbf{a}_{\text{normal}} = \mathbf{a} - \mathbf{a}_{\text{tangent}}$$

645 Panels (a)-(c) are the results of one representative particle in each of the bubble, spike,
 646 and spiral ensembles, while panels (d)-(f) show the ensemble-averaged results. From vi-
 647 sual inspection, the temporal evolution of curvature is closely correlated with the normal
 648 component of the acceleration a_{normal} , with high correlation coefficients as shown in the cap-
 649 tion of figure 21, while the tangential acceleration component a_{tangent} captures the temporal
 650 fluctuations as in the evolution of curvature. This figure demonstrates that the trajectory
 651 curvature not only acts as a kinematic measure of local flow patterns, but also are closely
 652 connected to the dynamics of the flow.

-
- 653 [1] Rayleigh Rayleigh. Investigation of the character of the equilibrium of an incompressible heavy
 654 fluid of variable density. *Proceedings of the London mathematical society*, 1(1):170–177, 1882.
- 655 [2] Geoffrey Ingram Taylor. The instability of liquid surfaces when accelerated in a direction
 656 perpendicular to their planes. i. *Proceedings of the Royal Society of London. Series A. Math-
 657 ematical and Physical Sciences*, 201(1065):192–196, 1950.
- 658 [3] Ye Zhou. Rayleigh–taylor and richtmyer–meshkov instability induced flow, turbulence, and
 659 mixing. i. *Physics Reports*, 720:1–136, 2017.
- 660 [4] W David Arnett, John N Bahcall, Robert P Kirshner, and Stanford E Woosley. Supernova
 661 1987a. *Annual review of Astronomy and Astrophysics*, 27(1):629–700, 1989.
- 662 [5] R Betti and OA Hurricane. Inertial-confinement fusion with lasers. *Nature Physics*, 12(5):435,
 663 2016.
- 664 [6] Huasen Zhang, Riccardo Betti, R Yan, D Zhao, D Shvarts, and H Aluie. Self-similar multimode
 665 bubble-front evolution of the ablative rayleigh–taylor instability in two and three dimensions.
 666 *Physical review letters*, 121(18):185002, 2018.

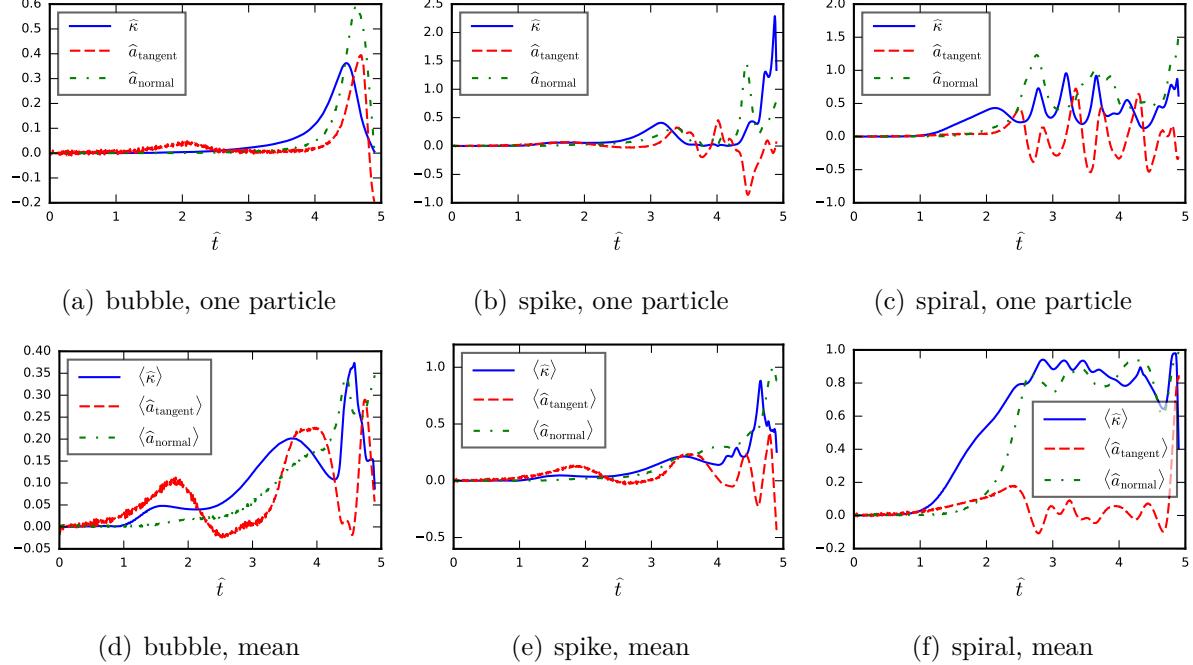


FIG. 21. Panels (a)-(c), the temporal evolution of trajectory curvature κ , tangential and normal accelerations $a_{\text{tangent}}, a_{\text{normal}}$ for a single representative point in the bubble, spike, and spiral ensembles, respectively. The curvature is normalized by the domain size L_x , while accelerations are normalized by the gravity acceleration g . The correlation coefficients between κ and a_{normal} is 0.70, 0.77, 0.60 for the three panels. Panels (d)-(f), similar to (a)-(c), but show the mean value over the respective particle ensemble. The correlation coefficients between κ and a_{normal} is 0.93, 0.85, 0.86 for the three panels.

- 667 [7] H Zhang, R Betti, V Gopalswamy, R Yan, and H Aluie. Nonlinear excitation of the ablative
668 rayleigh-taylor instability for all wave numbers. *Physical Review E*, 97(1):011203, 2018.
- 669 [8] J Xin, R Yan, Z-H Wan, D-J Sun, J Zheng, H Zhang, H Aluie, and R Betti. Two mode
670 coupling of the ablative rayleigh-taylor instabilities. *Physics of Plasmas*, 26(3), 2019.
- 671 [9] Huasen Zhang, R Betti, Rui Yan, and Hussein Aluie. Nonlinear bubble competition of the
672 multimode ablative rayleigh-taylor instability and applications to inertial confinement fusion.
673 *Physics of Plasmas*, 27(12), 2020.
- 674 [10] Jennifer C Beale and Rolf D Reitz. Modeling spray atomization with the kelvin-
675 helmholtz/rayleigh-taylor hybrid model. *Atomization and sprays*, 9(6), 1999.
- 676 [11] Anqing Cui and Robert L Street. Large-eddy simulation of coastal upwelling flow. *Environ-
677 mental Fluid Mechanics*, 4(2):197–223, 2004.

- 678 [12] Guido Boffetta and Andrea Mazzino. Incompressible rayleigh–taylor turbulence. *Annual*
679 *Review of Fluid Mechanics*, 49:119–143, 2017.
- 680 [13] Ye Zhou. Rayleigh–taylor and richtmyer–meshkov instability induced flow, turbulence, and
681 mixing. ii. *Physics Reports*, 723:1–160, 2017.
- 682 [14] Daniel Livescu. Turbulence with large thermal and compositional density variations. *Annual*
683 *Review of Fluid Mechanics*, 52:309–341, 2020.
- 684 [15] Ye Zhou, Robin JR Williams, Praveen Ramaprabhu, Michael Groom, Ben Thornber, Andrew
685 Hillier, Wouter Mostert, Bertrand Rollin, S Balachandar, Phillip D Powell, et al. Rayleigh–
686 taylor and richtmyer–meshkov instabilities: A journey through scales. *Physica D: Nonlinear*
687 *Phenomena*, page 132838, 2021.
- 688 [16] Tie Wei and Daniel Livescu. Late-time quadratic growth in single-mode rayleigh–taylor insta-
689 bility. *Physical Review E*, 86(4):046405, 2012.
- 690 [17] Xin Bian, Hussein Aluie, Dongxiao Zhao, Huasen Zhang, and Daniel Livescu. Revisiting the
691 late-time growth of single-mode rayleigh–taylor instability and the role of vorticity. *Physica*
692 *D: Nonlinear Phenomena*, 403:132250, 2020.
- 693 [18] Ge Zhang, Aiguo Xu, Dejia Zhang, Yingjun Li, Huilin Lai, and Xiaomian Hu. Delineation of
694 the flow and mixing induced by rayleigh–taylor instability through tracers. *Physics of Fluids*,
695 33(7):076105, 2021.
- 696 [19] Raphael Zanella, György Tegze, Romain Le Tellier, and Hervé Henry. Two-and three-
697 dimensional simulations of rayleigh–taylor instabilities using a coupled cahn–hilliard/navier–
698 stokes model. *Physics of fluids*, 32(12), 2020.
- 699 [20] Hong Liang, Zhenhua Xia, and Haowei Huang. Late-time description of immiscible rayleigh–
700 taylor instability: A lattice boltzmann study. *Physics of Fluids*, 33(8), 2021.
- 701 [21] JY Fu, HS Zhang, HB Cai, PL Yao, and SP Zhu. Effect of ablation on the nonlinear spike
702 growth for the single-mode ablative rayleigh–taylor instability. *Matter and Radiation at Ex-
703 tremes*, 8(1), 2023.
- 704 [22] Tengfei Luo, Jianchun Wang, Chenyue Xie, Minping Wan, and Shiying Chen. Effects of com-
705 pressibility and atwood number on the single-mode rayleigh–taylor instability. *Physics of*
706 *Fluids*, 32(1):012110, 2020.
- 707 [23] VN Goncharov. Analytical model of nonlinear, single-mode, classical rayleigh–taylor instability
708 at arbitrary atwood numbers. *Physical review letters*, 88(13):134502, 2002.

- 709 [24] Sung-Ik Sohn. Simple potential-flow model of rayleigh-taylor and richtmyer-meshkov instabil-
710 ities for all density ratios. *Physical Review E*, 67(2):026301, 2003.
- 711 [25] Wanhai Liu, Xiang Wang, Xingxia Liu, Changping Yu, Ming Fang, and Wenhua Ye. Pure
712 single-mode rayleigh-taylor instability for arbitrary atwood numbers. *Scientific Reports*,
713 10(1):4201, 2020.
- 714 [26] Changwen Liu, Yousheng Zhang, and Zuoli Xiao. A unified theoretical model for spatiotempo-
715 ral development of rayleigh-taylor and richtmyer-meshkov fingers. *Journal of Fluid Mechanics*,
716 954:A13, 2023.
- 717 [27] D Oron, L Arazi, D Kartoon, A Rikanati, U Alon, and D Shvarts. Dimensionality dependence
718 of the rayleigh-taylor and richtmyer-meshkov instability late-time scaling laws. *Physics of*
719 *Plasmas*, 8(6):2883–2889, 2001.
- 720 [28] P Ramaprabhu, Guy Dimonte, P Woodward, C Fryer, G Rockefeller, K Muthuraman, P-H
721 Lin, and J Jayaraj. The late-time dynamics of the single-mode rayleigh-taylor instability.
722 *Physics of Fluids*, 24(7):074107, 2012.
- 723 [29] Hussein Aluie, Shikhar Rai, Hao Yin, Aarne Lees, Dongxiao Zhao, Stephen M Griffies, Alistair
724 Adcroft, and Jessica K Shang. Effective drift velocity from turbulent transport by vorticity.
725 *Physical Review Fluids*, 7(10):104601, 2022.
- 726 [30] D Livescu. Numerical simulations of two-fluid turbulent mixing at large density ratios and
727 applications to the Rayleigh-Taylor instability. *Philosophical Transactions of the Royal Society*
728 *a-Mathematical Physical and Engineering Sciences*, 371(2003), 2013.
- 729 [31] Rui Wang, Yang Song, Zongqiang Ma, Yang Zhang, Jun Wang, Yaofeng Xu, Lili Wang, and Pei
730 Wang. Scale-to-scale energy transfer in rarefaction-driven rayleigh-taylor instability-induced
731 transitional mixing. *Physics of Fluids*, 35(2), 2023.
- 732 [32] Ze-Xi Hu, You-Sheng Zhang, Baolin Tian, Zhiwei He, and Li Li. Effect of viscosity on two-
733 dimensional single-mode rayleigh-taylor instability during and after the reacceleration stage.
734 *Physics of Fluids*, 31(10):104108, 2019.
- 735 [33] Scott A Wieland, Peter E Hamlington, Scott J Reckinger, and Daniel Livescu. Effects of
736 isothermal stratification strength on vorticity dynamics for single-mode compressible rayleigh-
737 taylor instability. *Physical Review Fluids*, 4(9):093905, 2019.
- 738 [34] Cheng-Quan Fu, Zhiye Zhao, Xin Xu, Pei Wang, Nan-Sheng Liu, Zhen-Hua Wan, and Xi-
739 Yun Lu. Nonlinear saturation of bubble evolution in a two-dimensional single-mode stratified

- 740 compressible rayleigh-taylor instability. *Physical Review Fluids*, 7(2):023902, 2022.
- 741 [35] Cheng-Quan Fu, Zhiye Zhao, Pei Wang, Nan-Sheng Liu, Zhen-Hua Wan, and Xi-Yun Lu.
742 Bubble re-acceleration behaviours in compressible rayleigh-taylor instability with isothermal
743 stratification. *Journal of Fluid Mechanics*, 954:A16, 2023.
- 744 [36] Britton J Olson, Johan Larsson, Sanjiva K Lele, and Andrew W Cook. Nonlinear effects in
745 the combined rayleigh-taylor/kelvin-helmholtz instability. *Physics of Fluids*, 23(11):114107,
746 2011.
- 747 [37] Feng Chen, Aiguo Xu, Yudong Zhang, and Qingkai Zeng. Morphological and non-
748 equilibrium analysis of coupled rayleigh-taylor–kelvin–helmholtz instability. *Physics of Fluids*,
749 32(10):104111, 2020.
- 750 [38] Arash Hamzehloo, Paul Bartholomew, and Sylvain Laizet. Direct numerical simulations of
751 incompressible rayleigh-taylor instabilities at low and medium atwood numbers. *Physics of
752 Fluids*, 33(5):054114, 2021.
- 753 [39] Paul E Dimotakis. Turbulent mixing. *Annu. Rev. Fluid Mech.*, 37:329–356, 2005.
- 754 [40] Federico Toschi and Eberhard Bodenschatz. Lagrangian properties of particles in turbulence.
755 *Annual review of fluid mechanics*, 41:375–404, 2009.
- 756 [41] Markus Holzner, Alex Liberzon, Nikolay Nikitin, Beat Lüthi, Wolfgang Kinzelbach, and
757 Arkady Tsinober. A lagrangian investigation of the small-scale features of turbulent entrainment
758 through particle tracking and direct numerical simulation. *Journal of Fluid Mechanics*,
759 598:465–475, 2008.
- 760 [42] II Wertgeim, MA Zaks, RV Sagitov, and AN Sharifulin. Instabilities, bifurcations, and non-
761 linear dynamics in two-dimensional generalizations of kolmogorov flow. *Fluid Dynamics*,
762 57(4):430–443, 2022.
- 763 [43] Hiroki Michioka and Ikuro Sumita. Rayleigh-taylor instability of a particle packed viscous
764 fluid: Implications for a solidifying magma. *Geophysical research letters*, 32(3), 2005.
- 765 [44] Yi-Ju Chou and Yun-Chuan Shao. Numerical study of particle-induced rayleigh-taylor insta-
766 bility: Effects of particle settling and entrainment. *Physics of Fluids*, 28(4):043302, 2016.
- 767 [45] Marta Magnani, Stefano Musacchio, and Guido Boffetta. Inertial effects in dusty rayleigh–
768 taylor turbulence. *Journal of Fluid Mechanics*, 926, 2021.
- 769 [46] Nitesh Attal and Praveen Ramaprabhu. The stability of reacting single-mode rayleigh–taylor
770 flames. *Physica D: Nonlinear Phenomena*, 404:132353, 2020.

- 771 [47] Andrew W Cook. Enthalpy diffusion in multicomponent flows. *Physics of Fluids*, 21(5):055109,
772 2009.
- 773 [48] Dongxiao Zhao and Hussein Aluie. Inviscid criterion for decomposing scales. *Physical Review*
774 *Fluids*, 3(5):054603, 2018.
- 775 [49] Dongxiao Zhao, Riccardo Betti, and Hussein Aluie. Scale interactions and anisotropy in
776 rayleigh–taylor turbulence. *Journal of Fluid Mechanics*, 930, 2022.
- 777 [50] Richard Courant, Kurt Friedrichs, and Hans Lewy. Über die partiellen differenzengleichungen
778 der mathematischen physik. *Mathematische annalen*, 100(1):32–74, 1928.
- 779 [51] Dongxiao Zhao and Hussein Aluie. Measuring scale-dependent shape anisotropy by
780 coarse-graining: Application to inhomogeneous rayleigh-taylor turbulence. *arXiv preprint*
781 *arXiv:2307.08918*, 2023.
- 782 [52] Wolfgang Braun, Filippo De Lillo, and Bruno Eckhardt. Geometry of particle paths in tur-
783 bulent flows. *Journal of turbulence*, (7):N62, 2006.
- 784 [53] SUSUMU HASEGAWA, KATSUNOBU NISHIHARA, and HITOSHI SAKAGAMI. Numer-
785 ical simulation of mixing by rayleigh-taylor instability and its fractal structures. *Fractals*,
786 4(03):241–250, 1996.
- 787 [54] Thierry Poinsot and Denis Veynante. *Theoretical and numerical combustion*. RT Edwards,
788 Inc., 2005.
- 789 [55] Yosuke Matsumoto and Masahiro Hoshino. Onset of turbulence induced by a kelvin-helmholtz
790 vortex. *Geophysical Research Letters*, 31(2), 2004.
- 791 [56] Hyun Geun Lee and Junseok Kim. Numerical simulation of the three-dimensional rayleigh–
792 taylor instability. *Computers & Mathematics with Applications*, 66(8):1466–1474, 2013.
- 793 [57] Oleg Schilling. Progress on understanding rayleigh–taylor flow and mixing using synergy
794 between simulation, modeling, and experiment. *Journal of Fluids Engineering*, 142(12), 2020.
- 795 [58] James Glimm, Xiao-lin Li, and An-Der Lin. Nonuniform approach to terminal velocity for
796 single mode rayleigh-taylor instability. *Acta Mathematicae Applicatae Sinica*, 18(1):1–8, 2002.
- 797 [59] P Ramaprabhu, Guy Dimonte, Yuan-Nan Young, AC Calder, and B Fryxell. Limits of
798 the potential flow approach to the single-mode rayleigh-taylor problem. *Physical Review*
799 *E*, 74(6):066308, 2006.