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Abstract

Maraging steels are known for their exceptional strength but suffer from limited work hardening and
ductility. Here, we report an intermittent printing approach to tailor the microstructure and mechanical
properties of maraging 250 steel via engineering of the thermal history during plasma arc additive
manufacturing (PAAM). Through introducing a dwell time between adjacent layers, the maraging 250 steel
is cooled below the martensite start temperature, triggering a thermally driven, in-situ martensitic
transformation during the printing process. Re-heating or thermal cycling during subsequent layer
deposition impedes complete martensitic transformation, enabling coexistence of martensite and retained
austenite phases with elemental segregation. The enrichment of Ni in the austenite phase promotes
stabilization of the retained austenite upon cooling down to room temperature. The retained austenite is yet
metastable during deformation, leading to stress-induced martensitic transformation under loading.
Specifically, a 3 min interlayer dwell time produces a maraging 250 steel with approximately 8% retained
austenite, resulting in improved work hardening via martensitic transformation induced plasticity (TRIP)
during deformation. Meanwhile, the higher cooling rate induced by the dwell time results in substantially
refined grain structures with an increased dislocation density, leading to a simultaneously improved yield
strength. Notably, the yield strength increases from 836 MPa (0 min dwell) to 990 MPa (3 min dwell), and
the uniform elongation increases from 3.2% (0 min dwell) to 6.5% (3 min dwell). This intermittent
deposition strategy demonstrates the potential to tune the microstructure and mechanical properties of
maraging steels through engineering the thermal history during additive manufacturing.
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1. Introduction

Maraging steels are a critical class of alloys for many structural applications such as aircraft construction,
submarine hulls, tooling, and molding [1-4]. These steels typically show a high Ni content, which stabilizes
the austenite phase and prevents the formation of ferrite upon solidification [5,6]. During cooling, the
metastable face-centered cubic (FCC) austenite phase can transform into BCC martensite [7]. Maraging
steels are well known for their excellent mechanical properties, particularly high strength (> 1GPa) due to
the presence of a lath body-centered cubic (BCC) martensite matrix [8,9]. Despite their high yield strength,
maraging steels often show limited work hardening and thus tend to exhibit necking almost immediately
after yielding under tensile testing [10]. This weak work hardening is rooted in the limited capability of
intragranular dislocation multiplication of the BCC martensite during plastic deformation as the BCC phase
does not have close packed slip planes and requires high flow stresses to activate dislocation motion [11,12].
The combination of the high yield strength and low uniform elongation also makes traditional thermo-
mechanical processing of maraging steels a significant challenge. For example, typical forging of maraging
steels to achieve desired application dimensions must be carried out at elevated temperatures of up to 1000
°C, making the process highly cumbersome and expensive [13].

Additive manufacturing (AM) offers a unique means to fabricate net-shaped components with non-
equilibrium microstructures that are not readily accessible by conventional manufacturing approaches such
as casting [ 14—17]. The solidification microstructure and mechanical properties of additively manufactured
alloys are highly dependent on the cooling rate and thermal history during AM [18-23]. Among AM
technologies, plasma arc additive manufacturing (PAAM) enables production of large-scale parts with
significant savings in costs and time over laser-based AM techniques such as powder-bed fusion (PBF) or
directed energy deposition (DED) [24]. In PAAM, a large high-frequency voltage is built up between a
tungsten electrode and a plasma torch nozzle that initiates an arc between the two. An inert gas like argon
flows to the torch tip and becomes an ionized plasma directed towards the substrate. The plasma in the
nozzle creates a path for a lower voltage arc with a large constant current to initiate between the torch and
substrate. This arc is referred to as the main arc. Then, feedstock wire is fed into the plasma arc, melted,
and deposited onto the substrate to achieve layer-by-layer deposition. A separate stream of argon from the
plasma gas acts as a shielding gas to protect the melt pool from oxidation [25]. The large heat input during
PAAM can cause severe heat accumulation in lower layers as the part may not completely cool before the
deposition of the subsequent layers. In particular, this heat accumulation can induce large residual stresses
in the as-printed part [26]. The increased thermal build-up also results in a lower cooling rate, leading to
microstructural coarsening and degraded mechanical properties [27—29]. Furthermore, the printed maraging
steels by PAAM often show an almost fully BCC martensitic structure with poor work hardening and tensile
ductility [30].

In this work, an intermittent printing strategy with a dwell-time between adjacent layers is introduced to
mitigate the severe heat accumulation during PAAM of maraging 250 steel. This dwell time is used to allow
the previously deposited layers to cool, thus enabling a higher cooling rate in the overall part. The addition
of this dwell-time results in a controlled thermal history where the temperature in the deposited layer is
allowed to drop below the martensite start (M) temperature and is subsequently re-heated before the
temperature reaches the martensite finish (My) temperature. Through precisely tailoring the thermal history
in this manner, the martensitic transformation remains incomplete during printing, and the martensite and
austenite phases can coexist. The coexistence of the two phases during printing enables the redistribution
of Ni between the austenite and martensite phases. The enrichment of Ni in the austenite phase promotes
stabilization of the retained austenite upon cooling down to room temperature. Such retained austenite is
yet metastable during deformation, a feature that helps enhance the work hardening and tensile ductility of



the printed maraging 250 steel via martensitic transformation induced plasticity (TRIP) under loading.
Meanwhile, the higher cooling rate by adding a dwell time also results in remarkably refined grain structures
with an increased dislocation density, leading to a higher yield strength. The intermittent deposition strategy
during PAAM allows us to achieve an outstanding strength-ductility synergy that outperforms conventional
wrought and other additively manufactured maraging steel counterparts. This work suggests that
engineering the thermal history to tune the microstructure and phase transformation pathway presents new
opportunities to design additively manufactured maraging steels with improved mechanical performance.

2. Materials and Methods
2.1 Material fabrication

The PAAM system consists of a welding torch body attached to a large gantry system controlled by
Aerotech drivers and software. Maraging 250 steel wire was used as a feedstock material and remotely fed
under the PAAM electrode to coincide with the plasma arc during printing. Before printing bulk samples,
12 single tracks were printed as a preliminary study to identify optimized printing parameters (see Fig. 2
later). The optimized printing parameters were set as: welding voltage 30 V, current 182 A, welding speed
3 mm/s and wire feed speed 50 mm/s. During printing, ultrahigh purity argon was used as both the welding
gas and the shielding gas. Using these parameters, thin walls of 80 mm X 10 mm X 20 mm with a layer
thickness of 1.2 mm were printed with different interlayer dwell times of 0 min, 1min, and 3 min to study
the effects of different thermal histories on the microstructure and mechanical properties of the printed
maraging 250 steel.

2.2 Mechanical testing

Tensile dog-bone samples were cut by wire electric discharge machining with a gauge dimension of 2 mm
(width) X 1.5 mm (thickness) X 6.5 mm (length). Uniaxial tension tests were carried out at a strain rate of
2 X 107* s~ on an Instron 5969 machine with a built-in laser extensometer to precisely measure the strain.
The tensile specimens were polished using 400, 800, and 1200 grit SiC abrasive papers prior to testing. All
tension tests in this work were carried out parallel to the plasma arc scan direction.

2.3 Microstructural characterization

The microstructures of as-printed samples were studied by optical microscope (OM, OLYMPUS SC50)
and electron backscatter diffraction (EBSD). EBSD was performed using a Helios Dual-Beam Nanolab
scanning electron microscope operating at 30 kV with a scanning step size of 200 nm. The cross-sections
of the samples were polished using SiC abrasive papers, followed by 20 nm oxide polishing suspension
(OPS). Samples were electrochemically etched using a solution of 10% nitric acid and 90% ethanol at 0.6
V for 5 seconds. Image] was used to quantify the porosity of the as-printed samples and gas pycnometry
measurements of these samples revealed that the porosity of all the samples were below 0.5%. Transmission
electron microscopy (TEM) was used to investigate nanoscale microstructural features on a JEOL JEM
2100F system operated at 200 kV. Scanning transmission electron microscopy (STEM) was used in
conjunction with energy dispersive X-ray spectroscopy (EDX) to measure the elemental segregation. TEM
samples were prepared using focused ion beam (FIB) lift-out on the Helios. In-situ high-energy synchrotron
X-ray diffraction (SXRD) was carried out at Argonne National Laboratory (ANL) at the 11-ID-C beamline
to investigate the phase fraction in the as-printed samples as well as to explore the deformation mechanism
under real-time tensile loading. The beam energy was set at 105.7 keV and the beam size was controlled
by slits to maintain at 0.5 mm X 0.5 mm.

2.4 Thermal modeling



Using the Abaqus/Standard 2019 AM modeler plugin, two finite element thermal simulations were created
for the 0 min and 3 min interlayer dwell times based on the as-printed part geometry. The heat transfer in
the PAAM process is driven by the transient heat conduction equation below:
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where C, is the specific heat capacity, p the density, T the temperature, k the thermal conductivity, and ¢
the volumetric heat input. The thermal model utilizes a moving double ellipsoidal heat source defined by
the Goldak heat source equation to simulate the arc power source [31]. The heat source includes two
ellipsoidal shapes which are combined to simulate the different temperature gradients at the front and rear
of the melt pool. Because of this separation of front and back, the temperature gradient fractions at the front
(ff) and at the rear (f;-) of the melt pool are used, where fr + f. = 2. The volumetric heat source equation
for the power density of the front ellipsoid is:
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and the power density equation for the rear ellipsoid is similarly:
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where g(x, y, z, t) is the power density of the heat source, P the power input, n the efficiency of the arc, and
a, b, and ¢ the radii in the x, y, and z directions, respectively [31]. Goldak’s heat source model was developed
for arc welding applications and has since been used widely for many AM modeling efforts [32-37]. The
heat source parameters used for the finite element thermal simulation were calibrated based on the
experimentally measured bead widths and heights. The double ellipsoidal parameters and shape used for
the two finite element thermal simulations can be found in Table 1 and Figure 1.

Table 1. The goldak heat source parameters used for the finite element thermal simulation.

Dwell Time b C ar a fr f;
3 min 6.5 2.0 7.0 13.0 0.7 1.3
0 min 7.3 2.0 7.0 13.0 0.7 1.3

Fig. 1 Schematic illustration of the Goldak double ellipsoidal heat source shape used in the finite element
thermal simulation.



3. Results
3.1 Process development

Printing defects such as keyhole pore, lack of fusion pores, and cracking are ubiquitous in metal additive
manufacturing [38]. These printing defects can significantly degrade the properties of printed components
[39-42]. Before printing multilayer bulk samples, an array of single tracks was printed with different
processing parameters to explore the process window toward defect-free samples. The macrostructures of
the deposited single tracks are shown in Fig. 2. The corresponding printing parameters used for these tracks
are outlined in Supplementary Information Table S1. Tracks #1-6 were deposited at increasing scan speeds
from 2 mm/s to 20 mm/s while under a constant voltage (29 V), current (165 A), and wire feed rate (50
mm/s). A higher scan speed results in less deposited material, which leads to a thinner track. The welding
deposit becomes discontinuous in track #6 due to insufficient material feeding at an overhigh printing speed.
Tracks #7-9 were printed at a higher voltage (30.5 V) and current (182 A) with increasing scan speeds from
5 mm/s to 12 mm/s. Again, the width of the tracks decreases with increasing the scan speed, accompanied
by increased spattering. Previous studies have shown that spattering during plasma welding typically occurs
due to strong penetration of the plasma into the working surface, which blows away molten metal at the
edge of the melt pool [43].

The welding voltage and current were then further increased to 31.5 V and 195 A, respectively for tracks
#10-12. As the scan speed increases from 5 mm/s (#10) to 12 mm/s (#12), the melt deposition shows a
noticeable balling effect with significant spattering. Balling effect during wire-based welding or AM
process is often associated with insufficient heat input as the temperature of the melt pool remains low [44].
The low temperature results in a high surface tension that prevents the melt pool from spreading out and
leads to balling [44]. Thus, the heat input must be balanced to ensure sufficient melting to inhibit balling,
while avoiding the over-penetration of the arc to prevent spattering. The optimal printing parameters were
chosen based on the single track #7 which exhibits the most linear shape, consistent and reproducible
thickness, and minimal spattering. After process optimization, multilayer thin walls with a layer thickness
of 1.2 mm were printed using the printing conditions of track #7. Different interlayer dwell times of 0 min,
1 min, and 3 min were used to tune the thermal history and study their effects on solidification
microstructures and material properties. Fig. 3 shows a representative thin wall deposition with 0 min dwell
time between consecutive layers. The thin-wall sample exhibits a smooth surface and minimal spatter,
making it suitable for further investigation.
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Fig. 2 Macrostructures of single tracks printed using different printing parameters. The printing parameters
for each track are outlined in Supplementary Information Table S1.

Fig. 3 A representative thin wall printed using processing parameters for single track #7.
3.2 Microstructural analysis

The purpose of this work is to study how tuning the thermal history can influence the solidification
microstructure and mechanical properties of maraging 250 steel produced via PAAM. To this end, the
printed thin walls were sectioned, polished, and etched to investigate the microstructural changes with
different dwell times. Fig. 4 shows the optical micrographs of different samples with the build direction
oriented vertically in the plane of the images. While gas pycnometry measurements of these samples reveal
that the porosity of all the samples are below 0.5%, they show distinct microstructures. The 0 min and 1
min dwell samples appear a single-phase structure (Fig. 4a, b, d, and e). In contrast, the 3 min dwell sample
(Fig, 4c and f) shows a significant phase contrast, suggesting there are different phases present. All the
samples are featured by a columnar dendritic structure, which is typical for many metal alloys produced by
AM techniques due to the strong thermal gradients along the build direction [45,46].



Fig. 4 Optical micrographs of as-printed samples with different dwell times between consecutive layers.
(a) 0 min dwell time. (b) 1 min dwell time. (c) 3 min dwell time. (d-f) High magnification images of (a-c),
respectively.

Due to the microstructural similarity between the 0 min and 1 min dwell samples, only the 0 min and 3 min
dwell samples were further investigated by EBSD and TEM for comparison. Fig. 5 presents the inverse
pole figure (IPF) maps, pole figures (PF), and multiple of uniform random distribution (MUD) of the 0 min
and 3 min dwell samples. The MUD measures the relative intensity of a given crystallographic orientation
compared to the expected intensity of a fully random texture. A higher MUD value implies a stronger
crystallographic texture. The 0 min dwell sample shows a coarse and columnar grained structure with an
average grain size of 82.6 um (Fig. 5a). Fig. 5b shows the {100} PF of the 0 min sample with a high
maximum MUD of 18.41, indicative of a strong <100> texture. Both the strong crystallographic texture
and large grain size observed in the 0 min dwell sample result from the high thermal gradients across
subsequent printed layers created by the deep penetration of the plasma arc that re-melts and heats previous
layers. This strong thermal gradient induces epitaxial solidification growth of columnar grains along the
build direction [47-50].

On the other hand, Fig. Sc shows that the 3 min dwell sample exhibits a substantially refined microstructure
with an average grain size of 15.3 um. Further, the 3 min dwell sample shows a much weaker <100> texture
along the build direction compared to that in the 0 min dwell sample (Fig. 5d). Fig S1 illustrates the phase
maps of both samples. The 0 min dwell sample appears to be fully BCC martensite while the 3 min dwell
sample shows some minor FCC austenite inclusions. The presence of retained austenite as a secondary
phase may disrupt the epitaxial growth of the martensite phase along the build direction, thus weakening
the crystallographic texture in the 3 min dwell sample. Although the 3 min dwell sample shows apparently
a minor inclusion of retained austenite (Fig. S1), it should be noted that the mechanical polishing process
may induce stresses on the sample surface that lead to martensitic transformation in many retained austenite
grains present on the surface [51]. Therefore, EBSD may underestimate the volume fraction of the retained
austenite. To overcome this challenge, high-energy SXRD that can penetrate through a bulk volume was
employed to precisely measure the phase constitute in the bulk sample, to be discussed in Section 3.3.
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Fig. 5 EBSD data of the 0 min and 3 min dwell samples. (a) IPF map of the 0 min dwell sample, (b) {100}
pole figure of the 0 min dwell sample together with the MUD result, (c) IPF map of the 3 min dwell sample,
(d) {100} pole figure of the 3 min dwell sample together with the MUD result. The IPF legend in the bottom
right corner of (a) applies to (c) as well.

We further examined the microstructures of the 0 min and 3 min dwell samples by TEM. Fig. 6 confirms
that the 3 min dwell sample exhibits a more refined microstructure compared to the 0 min dwell sample.
Selected-area electron diffraction (SAED) clearly reveals a fully single-phase BCC martensite structure in
the 0 min dwell sample (Fig. 6a inset) while a dual-phase martensite and austenite structure in the 3 min
dwell sample (Fig. 6b inset). These results are consistent with the prior EBSD results. Fig. 7a shows a
STEM micrograph of the 3 min sample with an austenite grain labeled to explore the elemental segregation
between the austenite and martensite phases. The white line indicates the scan path of STEM EDX
measurement, and the yellow dotted box indicates the region where elemental mapping was carried out.
Fig. 7b presents the elemental concentration of Ni and Mo measured along the white line in Fig. 7a. Notably,
the concentration of Ni shows a peak within the austenite grain (labeled as y). It is well known that Ni acts
as a stabilizing element for austenite phase and reduces the martensite start (M) temperature [52]. Thus,
Ni-enriched regions in the as-printed maraging 250 steel tend to increase the stability of the austenite phase,
thereby deferring the martensitic transformation during cooling. This results in the formation of some
retained austenite upon cooling down to room temperature. The elemental mapping of the yellow dotted
box in Fig. 7a is shown in Fig. 7c. Here, we confirm that the austenite grain is rich in Ni and Mo compared
to the surrounding martensite matrix. Such elemental segregation in the 3 min dwell sample is presumably



related to the incomplete martensitic transformation that allows for the elemental redistribution (or
partitioning) between the martensite and retained austenite phases during printing. Such thermal-history-
dependent phase transformation pathway will be discussed in detail in Section 4.3.

‘0 min dwell time min dwell time

Fig. 6 TEM micrographs and SAED patterns of the 0 min and 3 min dwell samples. (a) TEM micrograph
of the 0 min dwell sample, where the inset displays the SAED pattern. (b) TEM micrograph of the 3 min
dwell, where the inset displays the SAED pattern.
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Fig. 7 STEM micrograph and STEM-EDX results of the 3 min dwell sample, showing chemical segregation
between the austenite and martensite phases. (a) STEM micrograph showing the EDX line scan and
elemental mapping region which contains the austenite (y) phase, (b) Atomic percent of Mo and Ni
measured along the line scan, (c) Element maps of Ni, Fe, and Mo showing that the austenite phase is rich
in Ni and Mo, compared to the martensite phase.

3.3 Mechanical properties and in situ SXRD patterns

Fig. 8a shows the tensile stress-strain curves of different samples in this study and the tensile properties are
summarized in Table 2. Interestingly, the 3 min dwell sample shows simultaneously enhanced strength and
uniform elongation with more sustained work-hardening compared to the 0 min and 1 min dwell samples.
Specifically, the 3 min dwell sample exhibits remarkable increases in yield strength o, and ultimate tensile
strength oyrs (990 MPa and 1250 MPa) compared to the 0 min (836 MPa and 1023 MPa) and 1 min (960
MPa and 1092 MPa) dwell samples. The 3 min dwell sample also shows an over two-fold increase in
uniform elongation (6.5%) compared to the 0 min (3.2%) and 1 min (2.6%) dwell samples. In addition, the
3 min dwell sample exhibits a higher Young’s modulus (164.9 GPa) compared to the 0 min (99.3 GPa) and
1 min (125.0 GPa) dwell samples. The simultaneous increases in o, gyrs, and uniform elongation are
surprising as most materials demonstrate a strength-ductility trade-off, yet the inclusion of the retained
austenite breaks this commonly observed trade-off. The reason for this enhanced strength-ductility synergy
will be discussed in detail in Sections 4.1 and 4.2.
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To illustrate the exceptional strength-ductility synergy, we compare the tensile properties of the 3 min dwell
sample with those of wrought and other maraging steel counterparts processed by wire arc additive
manufacturing (WAAM) or laser powder-bed fusion (L-PBF). Fig. 8b shows that the 3 min dwell sample
exhibits simultaneously enhanced yield strength and uniform elongation than maraging 250 steels processed
by other methods [48,53,54]. The 3 min dwell sample even outperforms the L-PBF maraging 300 steels in
terms of strength-ductility combination [9,55-62]. This result is particularly encouraging considering that
maraging 300 steel contains a higher content of Co than maraging 250 steel, which typically results in
increased strength and also material cost [63]. In addition to improved mechanical performance, it is worth
noting that the wire feedstock material for PAAM is significantly cheaper than the powder feedstock
material for L-PBF [64,65].

Fig. 9a and b present the in situ SXRD patterns of the 0 min and 3 min dwell samples at various strain levels
during tensile deformation. Through Rietveld refinement of the diffraction patterns, it is seen that in the as-
printed state no austenite is observed in the 0 min dwell sample while a volume fraction of 8% austenite is
present in the 3 min dwell sample. However, we notice that the intensity of the austenite peaks of the 3 min
dwell sample continuously decreases during deformation, indicating that the retailed austenite phase is
metastable and undergoes a stress-induced martensitic phase transformation under loading. Meanwhile, the
width of most diffraction peaks of both samples steadily increases during deformation, suggesting a
continuously increased dislocation density. Section 4.1 will focus on comparing the deformation behavior
of these two samples and in-depth peak line profile analysis will be utilized to unravel the mechanistic
origin of their different mechanical properties.
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Fig. 8 Tensile properties of as-printed maraging 250 steel. (a) Tensile stress-strain curves of as-printed
samples with different dwell times. (b) Comparison of tensile yield strength and uniform elongation of the
3 min dwell sample with those of wrought and WAAM maraging 250 steel and L-PBF maraging 300 steel
[9,48,53-62].

11



Table 2 Tensile properties of the as-printed samples with different dwell times.

Dwell time oys (MPa) outs (MPa) Uniform Elongation (%) Total Elongation (%)

0 min 836 1023 3.2 10.8

1 min 960 1092 2.6 14.1

3 min 990 1250 6.5 11.6
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Fig. 9 In-situ synchrotron X-ray diffraction peak profiles of (a) 0 min dwell and (b) 3 min dwell samples
during tensile deformation.
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4. Discussion
4.1 In-situ synchrotron XRD analysis and deformation mechanism

In-situ SXRD can decipher stress partitioning between different crystallographic plane families and phases
as well as quantify crystalline defect (e.g., dislocation) density evolution during deformation to provide
mechanistic insight into the origin of the enhanced strength-ductility synergy for the 3 min dwell sample
[19,66-68]. To reveal the deformation micro-mechanisms of the as-printed maraging 250 steel samples,
analysis of the lattice strain as a function of true applied stress is performed. The lattice strain is calculated
as:

dpri—d
ghkl — hkl hkl,0 [1]
dnklo

where gy, is the strain of a specific lattice plane family {/kl}, dyy; the d-spacing of that plane at a specific
stress level, and dyy; o the d-spacing of that plane under no load. Representative plane families in the 0 min
and 3 min dwell samples are selected to depict the deformation micro-mechanism within each sample. Fig.
10a presents the lattice strain plots of the 0 min dwell sample. It is seen that all of the plane families exhibit
a linear increase of lattice strain against the true stress when the macroscopic tensile stress-strain response
is within the elastic regime. The slope of the macro-stress versus the lattice strain curves in the elastic region
is referred to as the diffraction elastic constant (DEC), which is specific to each crystal orientation and
reflects the inherent crystal anisotropy [69]. As the true stress increases, the strains of the {110} and {220}
planes deviate from linearity and turn upwards as the stress approaches the macroscopic yield stress. Such
a softening response indicates the onset of microyielding of these crystallographic plane families prior to
macroyielding. Simultaneously, the {200} and {310} planes also deviate from linearity but turn downward.
Such a stiffening response arises from the load shedding of the plastic {110} and {220} planes to the elastic
{200} and {310} planes.

Fig. 10b shows the lattice strain plots of the BCC and FCC phases in the 3 min dwell sample. The lattice
strains for the 3 min dwell sample show some kinks below 200 MPa. These kinks likely occur due to a
combination of fitting error and residual stresses. The lattice strains of all planes in both phases initially
follows a linear trend. Again, the different slopes of the macro-stress versus the lattice strain of different
plane families arise from the inherent elastic anisotropy of a polycrystalline solid. As the true macroscopic
stress increases the lattice planes in the BCC phase show a similar trend to those in the 0 min dwell sample,
where the {200} plane carries more load while the {110} and {220} planes show a slight relaxation. This
indicates the onset of microyielding of the {110} and {220} planes before macroyielding. From Fig. 10b,
one can notice that the FCC-{220} shows significant microyielding and the FCC-{200} plane takes
significantly higher load before macroyielding. The increase in the lattice strain of the FCC- {200} plane
is even greater than that of the BCC-{200} plane, which suggests that the FCC experiences more load
shedding between its plastic reflection ({220}) and elastic reflection ({200}).
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Fig. 10 In-situ evolution of lattice strain against macroscopic true stress in the as-printed samples during
uniaxial tension. (a) Evolution of lattice strain for representative BCC crystallographic plane families in the
0 min dwell sample. (b) Evolution of lattice strain for representative crystallographic plane families of the
BCC and FCC phases in the 3 min dwell sample.

In addition to the lattice strains, the stress partitioning between different phases in the 3 min dwell sample
is also analyzed to investigate the contribution of each phase to the elastic/plastic deformation of the
material. The stress within each phase is approximated based on the lattice strain via the Hooke's law [70]:

(2]

where gy, is the stress acting on the plane {hkl} and Epj; is the DEC of the plane. The {211} plane in the
BCC phase and the {311} plane in the FCC phase are used to represent the overall stress taken by each
phase as these planes are least sensitive to intergranular strains [71,72]. The stress partitioning between
different phases as well as the overall flow stress in the sample are shown in Fig. 11a. This figure illustrates
that the FCC austenite phase exhibits higher strain hardening rates than the BCC martensite phase after
macroscopic yielding. In order to understand the contribution of each phase in more detail, Rietveld
refinement is also used to calculate phase fraction evolution during deformation. Fig. 11b displays the
variation in the volume fraction of the FCC phase (i.e., retained austenite) as a function of the true applied
strain. It is seen that the volume fraction of the retained austenite decreases continuously during plastic
deformation, indicating the occurrence of dynamic martensitic transformation during deformation of the 3
min dwell sample. As the stress level approaches the UTS, the retained austenite almost completely
diminishes and necking sets in subsequently. This result indicates that once the martensitic transformation
is fully completed, the martensite phase can no longer offer sustained work hardening and necking
instability follows. Therefore, the increase in the uniform elongation of the 3 min dwell sample is largely
attributed to the stress-induced phase transformation from the retained austenite to martensite during
deformation.

Onkt = Enki * €nkt

We further analyzed the dislocation density in different samples based on the modified Williamson-Hall
method [73]. Fig. 11c illustrates the plot of the dislocation density (p) vs. the true applied strain for both
samples. Initially, the BCC phases in the 0 min and 3 min dwell samples show a high dislocation density
of approximately 2.5 x 10%®> m? and 1.5 X 10> m™, respectively. The FCC phase in the 3 min dwell
sample shows an even higher dislocation density of 3.7 X 10> m?. During deformation, the dislocation
density in the BCC phase of the 0 min dwell sample increases slowly to about 3.0 x 101> m™ at 3% strain.
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In the case of the 3 min dwell sample, the dislocation density in the BCC phase also increases slowly when
the strain level is below 3% strain. On the other hand, the dislocation density in the FCC phase increases
much more rapidly up to a maximum value of 9.0 X 10> m™? at 6% strain. Interestingly, the dislocation
density in the BCC phase of the 3 min dwell sample only slightly exceeds the dislocation density in the 0
min dwell sample after 4% strain. Previous studies have revealed that the martensite phase partially inherits
the dislocation structure of the prior austenite grains [74]. Thus, the increase in dislocation density in the
BCC phase of the 3 min dwell sample is likely due to the increase in dislocation density of the FCC grains
that subsequently undergo a martensitic transformation. Nevertheless, the dislocation density in the BCC
phase of both samples saturates at ~3-4X 101> m? until necking, which may be rooted in the generally
limited dislocation multiplication capability of the martensite.
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Fig. 11 Deformation mechanism analysis based on the in situ SXRD results. (a) Plot of the estimated stress
partitioning between the FCC and BCC phases, the weighted sum of stresses from each phase, and the
experimentally measured flow stress in the sample, (b) evolution of the phase fraction of retained austenite
during deformation, (c) Dislocation density evolution during deformation.

4.2 Strengthening mechanisms

As previously mentioned, the 3 min dwell sample shows a significant increase in uniform elongation and
yield strength compared to the 0 min dwell sample. The increase in uniform elongation arises due to the
enhanced work hardening enabled by the stress-induced phase transformation of retained austenite into
martensite during deformation, which has been shown to delay the onset of plastic instability (i.e., necking).
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It is well known that the yield strength of the FCC austenite phase in maraging steels is often substantially
lower than that of the BCC martensite phase [10,55]. As such, it would be reasonable to expect that the
inclusion of retained austenite phase would lead to a decrease in the yield strength, but the opposite trend
is surprisingly observed in this work. This section presents the theoretical calculations and quantitative
estimations of various strengthening mechanisms that result in the different yield strengths between the 0
min and 3 min dwell samples.

In the case of the as-printed maraging 250 steel, there are four main strengthening mechanisms that
collectively contribute to the yield strength of the material. These strengthening sources are the lattice
friction (ay), grain boundary or Hall-Petch strengthening (oyp), dislocation strengthening (o)), and solid
solution strengthening (dss). The yield strength (o;,) can be estimated as:

gy = 0f + 0yp + 0, + 0Oss [3]

The lattice friction in maraging steels is approximated as 50 MPa [75]. The Hall-Petch strengthening in
maraging steels can be quantified based on the martensite block size (dp;ocx) Which is analogous to the
grain size measured via EBSD [48,57,76] and often correlates with the prior austenite grain (PAG) size
[57,75,77]:

300

=229 4
Ohp \/m [ ]

The value of dp;ycr is measured from the EBSD data as 82.6 um and 15.3 pm for the 0 min and 3 min
dwell samples, respectively. The dislocation strengthening is estimated by the Taylor hardening law [78] :

0, = MaGbp*/? [5]

where M is the average Taylor factor measured from EBSD as ~3.0 for both samples. « is a geometric
constant that is approximately 0.3. G is the shear modulus calculated from the Young’s modulus of each
material using the results of the tensile tests (38.1 GPa for the 0 min sample and 63.4 GPa for the 3 min
sample). b =~ 0.25 nm is the burgers vector. p is the dislocation density, which is calculated in the previous
section based on the SXRD data. The dislocation strengthening contribution in the 3 min dwell sample is
approximated as a weighted sum of the dislocation strengthening in both the austenite and martensite
phases. Finally, the solid solution strengthening is estimated based on the Fleischer equation [57,79]:

ass = N(Bi°x;)? [6]

where f3; is the solid solution strengthening constant for the i™ solute elements and x; denotes the atomic
fraction of that element. For this work, the 5; constants for the different alloying elements in the maraging
250 steel are extracted from the literature [57]. The solid solution strengthening contribution is
approximated as deriving purely from the martensite phase in both samples and yields a similar
strengthening effect of ~455 MPa, which is consistent with the prior studies [48].

The combination of the different strengthening mechanisms for both the 3 min and 0 min dwell samples is
considered and compared to the experimentally measured yield strengths, as shown in Fig. 12. Notably, the
theoretically estimated yield strengths are within 5-7% deviations from the experimentally measured values,
which illustrates the accuracy of the previously described strengthening models in predicting the yield
strengths of the additively manufactured maraging 250 steels. Given that both the solid solution
strengthening, and lattice friction contributions are essentially the same in the 3 min and 0 min dwell
samples, it is clear that the enhanced yield strength for the 3 min dwell sample stems from the significantly
smaller grain size (Fig. 5) and higher dislocation density (Fig. 11). Both these microstructural features are
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achieved via the inclusion of retained FCC austenite that helps to break up the BCC martensite phase,
resulting in grain refinement and accommodation of a higher dislocation density in the 3 min dwell sample.
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Fig. 12 Theoretically calculated yield strength in comparison to experimentally measured yield strength for
different samples.

4.3 Origin of retained austenite formation

The presence of the retained austenite is crucial to the improved mechanical performance of the additively
manufactured maraging 250 steel. This section focuses on understanding how the implementation of a dwell
time between consecutive layers facilitates the formation of retained austenite. To this end, we first explore
the thermal history during printing by finite element thermal modeling of the PAAM process. The
temperature distribution in the 0 min and 3 min dwell time samples are illustrated in Fig. 13a and b,
respectively. The point of interest (POI) from which the temperature vs time data is extracted is shown in
these plots. The POI is positioned in the center of the x-z plane of the first deposited layer as this location
represents a point that experiences repeated thermal cycling during the entire printing process and is
representative of the thermal history of the bulk material. It is seen that the 0 min dwell sample shows a
larger melt pool size than the 3 min dwell sample. Furthermore, the time-temperature curves for the 0 min
and 3 min dwell samples are shown in Fig. 13c and d, respectively. The red dotted lines in Fig, 13c, d and
the inset of Fig. 13d denote martensite start (M) and martensite finish (My) temperatures. From Fig. 13¢
we observe that when no dwell time is permitted between consecutive layers, there is inadequate time to
cool the sample to the M; temperature. Consequently, the material remains a fully austenitic structure during
the printing process. After the printing process is completed, the sample is allowed to cool, causing the
entire structure to completely undergo the martensitic transformation to form a fully martensite structure.
Fig. 13d shows that when a 3 min dwell time is included, the temperature drops to lower temperatures. The
inset of Fig. 13d shows a close-up view of the time-temperature profile where it is observed that the
temperature at the POI drops below the M; temperature during the 3 min dwell time, suggesting that the
martensitic transformation is activated during cooling. Nonetheless, this POI is then re-heated during
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deposition of the next layer before the temperature drops below the Mt temperature, which implies that the
martensitic transformation is incomplete. Thus, the austenite and martensite phases co-exist during thermal
cycling in the 3 min dwell sample.

The coexistence of the martensite and retained austenite phases allows for elemental partitioning between
the dual phases during printing, which can result in stabilization of the retained austenite phase upon cooling
down to room temperature. It is well documented that the Ni element redistributes between austenite and
martensite phases in maraging steels, enriching the austenite phase in Ni [80]. Ni is a well-known austenite
stabilizer that can lower the M, and M; temperatures [81] and Ni segregation during AM has been shown
to cause austenite stabilization in other steel alloys as well [82]. Recall in Fig. 7 that the austenite in the 3
min dwell samples is rich in Ni compared to the surrounding martensite. The addition of a dwell time results
in incomplete martensitic phase transformation such that both the martensite and retained austenite phases
are present during the solidification process. Additional thermal cycling during subsequent layer deposition
may further induce segregation of the Ni element to the austenite to further stabilize the retained austenite
phase upon cooling down to room temperature. It should be noted that in the 0 min dwell sample the
thermally driven martensitic transformation does not occur during printing because the temperature does
not drop below M; until after the printing process is completed (see Fig. 13c). Hence, there is no opportunity
to redistribute the Ni content to form retained austenite, leading to a fully martensitic structure at room
temperature. These results underscore the importance of precisely controlling the thermal history during
AM of maraging steels to enable incomplete martensitic transformation and elemental segregation to
stabilize the retained austenite upon thermal cycling. In fact, this method of engineering the thermal history
by adding a dwell time is unique to the high heating/cooling rates and repeated thermal cycling under AM
conditions, where a sample is thermomechanically processed layer by layer. In traditional manufacturing
techniques such as casting, the entire part may only experience one thermal cycle and thus requires delicate
post-processing protocols to properly tune the microstructure. The introduced thermal history engineering
strategy in this work illustrates the unique benefit of AM during which the microstructure and phase
transformation pathway of a material can be readily tailored without the need for expensive and time-
consuming post-processing procedures.
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Fig. 13 Simulated time-temperature profiles during printing with 0 min and 3 min dwell times. (a)
Temperature distribution in the 0 min dwell time sample. (b) Temperature distribution in the 3 min dwell
time sample. (c) Plot of the temperature vs. time profile of the POI in the 0 min dwell sample. (d) Plot of
the temperature vs. time profile of the POI in the 3 min dwell sample. The inset of (d) presents a close-up
view of the time-temperature profile. The dotted red-lines in (c) and (d) represent the martensite start (M)
and martensite finish (My) temperatures, respectively [48].

5. Conclusions

This study demonstrates the capability of PAAM in controlling the phase and microstructure of maraging
steels by strategically engineering the thermal history. By introducing a dwell time between layer
depositions, the printed structure undergoes controlled cooling, initiating the martensitic phase
transformation while preventing its completion. Subsequent layer depositions and thermal cycling ensure
that the temperature of the previous layers remains above the Mt temperature, preserving the coexistence
of martensite and austenite phases upon thermal cycling. The controlled thermal history enables the
redistribution of crucial alloying elements, such as Ni, from the martensite into the retained austenite phase.
This stabilizes the austenite, allowing it to persist when cooling down to room temperature. The retained
austenite acts as a barrier to disrupt the epitaxial growth of martensitic grains across layers. Consequently,
the printed structure exhibits a weaker texture and smaller martensitic grain size.

With a dwell time between adjacent layers, the cooling rate is elevated, which leads to a higher dislocation
density and refined grain size to elevate the yield strength. Furthermore, the retained austenite phase is
metastable under loading, a feature that facilitates the stress-induced martensitic transformation during
deformation to enhance the overall work hardening and uniform elongation of the additively manufactured
maraging 250 steel. The intermittent deposition strategy during PAAM allows us to achieve an outstanding
strength-ductility synergy that outperforms conventional wrought and other additively manufactured
maraging steel counterparts. By leveraging the high heating/cooling rates as well as the thermal cycling
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effect inherent to AM processing, the introduced approach offers a unique opportunity to tailor the phase
transformation pathway and microstructure of maraging steels. In summary, our work suggests that
engineering the thermal history during AM holds great promise to design novel processing paths for
achieving superior mechanical properties in multi-phase alloys with complex microstructures.
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