
A Closest Point Method for PDEs on Manifolds with Interior Boundary
Conditions for Geometry Processing
NATHAN KING, University of Waterloo, Canada
HAOZHE SU, LightSpeed Studios, USA
MRIDUL AANJANEYA, Rutgers University, USA
STEVEN RUUTH, Simon Fraser University, Canada
CHRISTOPHER BATTY, University of Waterloo, Canada

(a) Diffusion Curves (b) Geodesic Distance (c) Vector Field Design

Fig. 1. We extend the closest point method to support solving PDEs on manifolds with interior boundary conditions. Our method enables the solution of
various geometry processing tasks on general surfaces, given only the ability to perform closest point queries. (a) Colouring a triangulated surface using
diffusion curves. (b) Geodesic distance to a parametric curve (black) on an analytical closest point surface. (c) Vector field design on a triangulation of a Möbius
strip, which is an open and nonorientable surface.

Many geometry processing techniques require the solution of partial differen-
tial equations (PDEs) on manifolds embedded in R2 or R3, such as curves or
surfaces. Such manifold PDEs often involve boundary conditions (e.g., Dirich-
let or Neumann) prescribed at points or curves on the manifold’s interior or
along the geometric (exterior) boundary of an open manifold. However, in-
put manifolds can take many forms (e.g., triangle meshes, parametrizations,
point clouds, implicit functions, etc.). Typically, one must generate a mesh
to apply finite element-type techniques or derive specialized discretization
procedures for each distinct manifold representation. We propose instead

Authors’ Contact Information: Nathan King, University of Waterloo, Waterloo, Ontario,
Canada, n5king@uwaterloo.ca; Haozhe Su, LightSpeed Studios, Los Angeles, California,
USA, haozhesu@global.tencent.com; Mridul Aanjaneya, Rutgers University, Piscataway,
New Jersey, USA, mridul.aanjaneya@rutgers.edu; Steven Ruuth, Simon Fraser Univer-
sity, Burnaby, British Columbia, Canada, sruuth@sfu.ca; Christopher Batty, University
of Waterloo, Waterloo, Ontario, Canada, christopher.batty@uwaterloo.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1557-7368/2024/1-ART1
https://doi.org/10.1145/3673652

to address such problems in a unified manner through a novel extension
of the closest point method (CPM) to handle interior boundary conditions.
CPM solves the manifold PDE by solving a volumetric PDE defined over the
Cartesian embedding space containing the manifold, and requires only a
closest point representation of the manifold. Hence, CPM supports objects
that are open or closed, orientable or not, and of any codimension. To enable
support for interior boundary conditions we derive a method that implicitly
partitions the embedding space across interior boundaries. CPM’s finite
difference and interpolation stencils are adapted to respect this partition
while preserving second-order accuracy. Additionally, we develop an effi-
cient sparse-grid implementation and numerical solver that can scale to
tens of millions of degrees of freedom, allowing PDEs to be solved on more
complex manifolds. We demonstrate our method’s convergence behaviour
on selected model PDEs and explore several geometry processing problems:
diffusion curves on surfaces, geodesic distance, tangent vector field design,
harmonic map construction, and reaction-diffusion textures. Our proposed
approach thus offers a powerful and flexible new tool for a range of geometry
processing tasks on general manifold representations.

CCS Concepts: • Mathematics of computing→ Discretization; Partial
differential equations; • Computing methodologies→ Shape analysis.

Additional Key Words and Phrases: manifold partial differential equations,
embedding methods, closest point method, boundary conditions, geometry

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3673652

1:2 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

processing, diffusion curves, geodesic distance, vector field design, harmonic
maps, reaction-diffusion textures

ACM Reference Format:
Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher
Batty. 2024. A Closest Point Method for PDEs on Manifolds with Interior
Boundary Conditions for Geometry Processing. ACM Trans. Graph. 1, 1,
Article 1 (January 2024), 26 pages. https://doi.org/10.1145/3673652

1 INTRODUCTION
A manifold partial differential equation is a partial differential equa-
tion (PDE) whose solution is restricted to lie on a manifold S. Such
manifold PDEs arise naturally in many fields, including applied
mathematics, mathematical physics, image processing, computer vi-
sion, fluid dynamics, and computer graphics. We focus on geometry
processing, where a numerical solution is typically sought by ap-
proximating the manifold as a mesh and discretizing the PDE using
finite element or discrete exterior calculus techniques. However, the
introduction of a mesh entails some drawbacks. One must perform
mesh generation if the input manifold is not given as a mesh. The
mesh quality also strongly influences the resulting solution and
therefore remeshing is required if the input mesh is of low quality
or inappropriate resolution. Both mesh generation and remeshing
are nontrivial tasks. Finally, depending on the chosen numerical
method, the discretization of a particular manifold PDE can differ
significantly from the corresponding discretized PDE on Cartesian
domains; further analysis can be needed to derive an appropriate
convergent scheme for the manifold case.

A powerful alternative is the use of embedding techniques, which
solve the manifold problem by embedding it into a surrounding
higher-dimensional Cartesian space. The closest point method (CPM)
[Ruuth and Merriman 2008] is an especially attractive instance of
this strategy, as it offers a remarkable combination of simplicity
and generality. Its simplicity lies in its ability to leverage standard
Cartesian numerical methods in the embedding space to solve the
desired manifold problem, given only a closest point function for
the manifold. Its generality lies in its support for diverse manifold
characteristics, manifold representations, and manifold PDEs.

Requiring only a closest point function allows input manifolds
to be open or closed, orientable or not, and of any codimension
or even mixed codimension. Closest point queries are available for
many common manifold representations (as highlighted by Sawhney
and Crane [2020]), and therefore CPM can be applied to meshes,
level sets, point clouds, parametric manifolds, constructive solid
geometry, neural implicit surfaces, etc. (see Figure 2). Such generality
is appealing given the increasing demand for algorithms that can
ingest general “in-the-wild” and high-order geometries ([Barill et al.
2018; Hu et al. 2018; Marschner et al. 2021; Sawhney and Crane
2020]). Furthermore, the embedding PDE solved on the Cartesian
domain is often simply the Cartesian analog of the desired manifold
PDE. Thus, CPM has been applied to the heat equation, Poisson
and screened-Poisson equations, Laplace-Beltrami eigenproblem,
biharmonic equation, advection-diffusion and reaction-diffusion
equations, Hamilton-Jacobi equation, Navier-Stokes equation, Cahn-
Hilliard equation, computation of (𝑝-)harmonic maps, and more.

Yet, despite the desirable properties of CPM and its adoption in
applied mathematics, CPM has only infrequently been employed

(D, E)

Fig. 2. CPM can be applied to any manifold representation that supports
closest point queries, including parametrizations, meshes, and point clouds,
as well as discrete or continuous level sets and closest point functions.

by computer graphics researchers, and almost exclusively for fluid
animation [Auer et al. 2012; Auer and Westermann 2013; Hong et al.
2010; Kim et al. 2013; Morgenroth et al. 2020]. In the present work,
we demonstrate CPM’s wider potential value for computer graphics
problems by extending CPM to handle several applications in ge-
ometry processing: diffusion curves on surfaces, geodesic distance,
tangent vector field design, harmonic maps with feature (landmark)
points and curves, and reaction-diffusion textures.

However, a crucial limitation of the existing CPM stands in the
way of the objective above. CPM supports standard boundary con-
ditions on the geometric (exterior) boundary of an open manifold,
𝜕S, but it does not yet support accurate interior boundary conditions
(IBCs), i.e., boundary conditions at manifold points or curves away
from 𝜕S. CPM’s use of the embedding space makes enforcing IBCs
nontrivial, but they are vital for the applications above. For example,
the curves in diffusion curves or the source points for geodesic dis-
tance computation generally lie on the interior of S. Therefore, we
propose a novel mechanism that enables accurate IBC enforcement
for CPM in R2 and R3, while retaining its simplicity and generality.

To scale up to surfaces with finer details, we further develop a tai-
lored numerical framework and solver. The computational domain
is only required near S, so we use a sparse grid structure to im-
prove memory efficiency. We then develop a custom preconditioned
BiCGSTAB solver for solving the linear system that also better uti-
lizes memory. The combination of the sparse grid structure near S
and the custom solver allows us to efficiently scale to tens of millions
of degrees of freedom. To foster wider adoption of CPM, our code has
been released publicly at https://github.com/nathandking/cpm-ibc.

In summary, the key contributions of our work are to:

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3673652
https://github.com/nathandking/cpm-ibc

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:3

• introduce a novel treatment of interior boundary conditions
for CPM with up to second-order accuracy;
• employ a sparse grid structure and develop a custom solver for

memory efficiency, which enables scaling to tens of millions
of degrees of freedom; and
• demonstrate the effectiveness of our new CPM scheme for

several geometry processing tasks.

2 RELATED WORK

2.1 CPM in Applied Mathematics
CPM was introduced by Ruuth and Merriman [2008], who applied
it to diffusion, advection, advection-diffusion, mean curvature flow
of curves on surfaces, and reaction-diffusion. They drew inspira-
tion from earlier embedding methods based on level sets [Bertalmıo
et al. 2001; Greer 2006], while eliminating the restriction to closed
manifolds, supporting more general PDEs, and allowing for narrow-
banding without loss of convergence order. Subsequently, CPM has
been shown to be effective for a wide range of additional PDEs
including the screened-Poisson (a.k.a. positive-Helmholtz) equa-
tion [Chen and Macdonald 2015; May et al. 2020], Hamilton-Jacobi
equations/level-set equations [Macdonald and Ruuth 2008], bihar-
monic equations [Macdonald and Ruuth 2010], Cahn-Hilliard equa-
tion [Gera and Salac 2017], Navier-Stokes equation [Auer et al. 2012;
Yang et al. 2020], construction of (𝑝-)harmonic maps [King and Ru-
uth 2017], and more. Despite being initially designed for manifold
PDEs, CPM can additionally be applied to volumetric (codimension-
0) problems and surface-to-bulk coupling scenarios [Macdonald
et al. 2013]. Related closest point mapping approaches have also
been used to handle integral equations [Chen and Tsai 2017; Chu
and Tsai 2018; Kublik et al. 2013; Kublik and Tsai 2016].

Some prior work on CPM has focused on problems of relevance
to geometry processing. For example, Macdonald et al. [2011] com-
puted eigenvalues and eigenfunctions of the Laplace-Beltrami oper-
ator via CPM, and the resulting eigenvalues of surfaces were used by
Arteaga and Ruuth [2015] to compute the ‘Shape-DNA’ [Reuter et al.
2006] for clustering similar surfaces into groups. Segmentation of
data on surfaces was demonstrated by Tian et al. [2009] who adapted
the Chan-Vese algorithm common in image processing. Different
approaches to compute normals and curvatures were discussed in
the appendix of the original CPM paper [Ruuth and Merriman 2008].

CPM has mostly been used on static manifolds with a uniform
grid in the embedding space as the computational domain. However,
Petras and Ruuth [2016] combined CPM with a grid-based particle
method to solve PDEs on moving surfaces. A mesh-free CPM ap-
proach was investigated in [Cheung et al. 2015; Petras et al. 2019,
2018, 2022; Piret 2012] using radial-basis functions.

The CutFEM family of methods [Burman et al. 2015a] represent
another embedding approach. They use finite elements (rather than
finite differences) on a non-conforming simplicial embedding mesh.
They have been used to solve various manifold PDEs (e.g., Laplace-
Beltrami [Burman et al. 2015b], convection [Burman et al. 2019]).

2.2 CPM in Computer Graphics
Embedding methods similar to CPM have also been proposed and
used in the computer graphics community. Perhaps most closely

related is the work of Chuang et al. [2009] who solved Poisson
problems using the finite element method over a function space
consisting of 3D grid-based B-spline basis functions restricted to
the shape’s surface. They demonstrated geometry processing appli-
cations such as texture back-projection and curvature estimation.
They also showed that the observed eigenspectra are much less de-
pendent on the surface triangulation than with standard mesh-based
methods. While their approach has some conceptual connections to
CPM, it does not possess the same degree of simplicity or generality
as CPM, nor does it support IBCs. The thesis by Chuang [2013]
further demonstrates an extension of this approach to use locally
non-manifold grids to address narrow bottlenecks, where two pieces
of a surface are close in Euclidean distance but far apart in geodesic
distance. Our work also introduces a non-manifold grid structure,
but with the distinct aim of handling IBCs.

CPM itself has been applied in computer graphics, primarily for
fluid animation. Hong et al. [2010] used a modified CPM to evolve
and control the motion of flame fronts restricted to surfaces. The
work of Kim et al. [2013] increased the apparent spatial resolution
of an existing volumetric liquid simulation by solving a wave simu-
lation on the liquid surface. The surface wave equation and Navier-
Stokes equations were solved by Auer et al. [2012] with a real-time
implementation on the GPU. Auer and Westermann [2013] subse-
quently extended this work to support deforming surfaces given by
a sequence of time-varying triangle meshes (predating the moving
surface work of Petras and Ruuth [2016] in computational physics).
Morgenroth et al. [2020] employed CPM for one-way coupling be-
tween a volumetric fluid simulation and a surface fluid simulation
for applications such as oil films spreading on liquid surfaces.

Wang et al. [2020] coupled moving-least-squares approximations
on codimension-1 and 2 objects with grid-based approximations for
codimension-0 operators in surface-tension driven Navier-Stokes
systems. The ability of CPM to handle mixed-codimension objects
makes it an ideal candidate for a unified solver.

2.3 Interior Boundary Conditions on Manifolds
Existing numerical methods for manifold PDEs support IBCs in
various ways depending on the chosen manifold representation and
method of discretization. In the Dirichlet case, the nearest degrees
of freedom (DOFs) to the interior boundary can often simply be
assigned the desired Dirichlet value. For example, on a point cloud
representation, the nearest interior points in the cloud could be set
to the Dirichlet value, similar to how exterior Dirichlet BCs have
been handled in point clouds [Liang and Zhao 2013]. With triangle
mesh-based discretizations (finite element, discrete exterior calculus,
etc.) one can similarly enforce the Dirichlet condition at the nearest
surface vertices to the interior boundaries. However, enforcing the
IBC at the nearest DOF is inaccurate if the DOF does not lie exactly
on the interior boundary C (i.e., the mesh does not precisely conform
to C). Specifically, an error of𝑂 (∥h∥) is introduced where ∥h∥ is the
distance between the nearest DOF and C. Moreover, only Dirichlet
conditions can be treated in this manner; depending on the chosen
manifold representation and/or discretization, it can be nontrivial
to enforce Neumann boundary conditions.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

For Dirichlet IBCs in CPM, Auer et al. [2012; 2013] fixed all the
nearest DOFs in the embedding space within a ball centred around
C (considering only the case when C is a point). This again is only
first-order accurate, incurring an 𝑂 (Δ𝑥) error, where Δ𝑥 is the
grid spacing in the embedding space. Enforcing the IBC over a ball
effectively inflates the boundary region to a wider area of the surface.
That is, a circular region of the surface around the point C will be
fixed with the prescribed condition. We show in Section 6 that this
approach can also be applied to boundary curves, but the observed
error is much larger compared to our proposed method. Moreover,
it cannot be applied when Dirichlet values differ on each side of C.

With a surface triangulation, a more accurate approach is to
remesh the surface with constrained Delaunay refinement (possibly
with an intrinsic triangulation) so that vertices or edges of the
mesh conform to C, as discussed for example by Sharp and Crane
[2020]. However, this necessarily introduces remeshing as an extra
preprocess. Another mesh-based approach, which avoids remeshing,
is the extended finite element method [Kaufmann et al. 2009; Moës
et al. 1999], which uses modified basis functions to enforce non-
conforming boundaries or discontinuities.

Most similar to our approach is the method of Shi et al. [2007] who
enforced Dirichlet IBCs for a manifold PDE method based on level
sets. As with CPM, solving surface PDEs with level sets [Bertalmıo
et al. 2001] involves extending the problem to the surrounding em-
bedding space. For such embedding methods, it is crucial not only
to account for the interior boundary itself but also its influence
into the associated embedding space. To do so, the approach of
Shi et al. [2007] explicitly constructs a triangulation to represent a
normal manifold S⊥ (see (6)) extending outwards from the interior
boundary curve C (notably contrasting with the implicit nature
of level-sets). They then perform geometric tests to determine if
stencils intersect S⊥ and modify the discretization locally. We in-
stead introduce a simple triangulation-free approach to determine
if stencils cross S⊥ that only involves closest points, bypassing
explicit construction of S⊥. Moreover, such level-set approaches
necessarily require a well-defined inside and outside, which makes
handling open manifolds, nonorientable manifolds, and manifolds
of codimension-two or higher impossible with a single level set.

Our proposed CPM extension overcomes several limitations of
the existing CPM (Dirichlet-only) IBC treatment of Auer et al. [2012].
We demonstrate that our method can easily be extended to second-
order, for both Dirichlet and zero-Neumann cases. It can also handle
jump discontinuities in Dirichlet values across interior boundary
curves. Furthermore, our approach supports what we call mixed
boundary conditions, e.g., Dirichlet on one side and Neumann on
the other. Both jump discontinuities and mixed IBCs are useful for
various applications, such as diffusion curves [Orzan et al. 2008].

The key attribute of our IBC approach that allows the above
flexibility for BC types is the introduction of new DOFs near C. This
idea shares conceptual similarities with virtual node algorithms
[Molino et al. 2004], which have been used for codimension-zero
problems [Azevedo et al. 2016; Bedrossian et al. 2010; Hellrung Jr.
et al. 2012]. It is also similar to the CPM work of Cheung et al.
[2015], who used new DOFs near sharp features of S (albeit with
the radial-basis function discretization of CPM).

2.4 Efficiency of CPM
CPM involves constructing a computational domain Ω(S) in the em-
bedding space R𝑑 surrounding S. Linear systems resulting from the
PDE discretization on Ω(S) must then be solved. For large systems
(usually resulting from problems with 𝑑 ≥ 3) memory consumption
is dominated by the storage of Ω(S). However, computation time
is dominated by the linear system solve.

CPM naturally allows Ω(S) to occupy only a narrow tubular
region of the embedding space nearS, analogous to narrow banding
for level-set techniques [Adalsteinsson and Sethian 1995]. Therefore,
the number of unknowns scales with dim(S) rather than 𝑑 . Note
that dim(S) ≤ 𝑑 for manifold PDEs. The linear system solve will be
faster with fewer unknowns, so it is important that the construction
of the computational domain be carried out local to S only. Ruuth
and Merriman [2008] used a simple procedure to construct Ω(S)
that involved storing a uniform grid in a bounding box of S and
computing the closest point for every grid point in the bounding
box. Finally, an indexing array was used to label which grid points
are within a distance 𝑟Ω (S) of S, where 𝑟Ω (S) is the computational
tube-radius (see (4)).

The procedure of Ruuth and Merriman [2008] gives linear sys-
tems that scale with dim(S), but memory usage and closest point
computation still scale with 𝑑 . Macdonald and Ruuth [2010] used
a breadth-first-search (BFS), starting at a grid point near S, that
allows the number of closest points computed to scale with dim(S).
We use a similar BFS when constructing Ω(S); see Section 5 for
details. However, Macdonald and Ruuth [2010] still required stor-
ing the grid in the bounding box of S, while we adopt sparse grid
structures which achieve efficient memory use by allocating only
grid points of interest instead of the full grid.

May et al. [2020] overcame memory restrictions arising from
storing the full bounding-box grid by using domain decomposi-
tion to solve the PDE with distributed memory parallelism. The
code detailed by May et al. [2022] is publicly available but requires
specialized hardware to exploit distributed memory parallelism.

Auer et al. [2012] also used specialized hardware, i.e., their CPM-
based fluid simulator was implemented on a GPU. However, they
employed a two-level sparse block structure for memory-efficient
construction of Ω(S) that is also suitable for the CPU. A coarse-
level grid in the bounding box of S is used to find blocks of the
fine-level grid (used to solve the PDE) that intersect S. Thus, the
memory usage to construct the fine-level grid Ω(S) scales with
dim(S), as desired. The coarse-level grid still scales with 𝑑, but does
not cause memory issues because its resolution is much lower than
the fine-level one. We adopt a similar approach for constructing
Ω(S), although our implementation is purely CPU-based.

There has also been work on efficient linear system solvers for
CPM. Chen and Macdonald [2015] developed a geometric multigrid
solver for the manifold screened-Poisson equation. May et al. [2020,
2022] proposed Schwarz-based domain decomposition solvers and
preconditioners for elliptic and parabolic manifold PDEs. We im-
plement a custom BiCGSTAB solver (with OpenMP parallelism), as
detailed in Section 5.4, that avoids explicit construction of the full lin-
ear system. Our solver is more efficient, with respect to memory and
computation time (see Section 6.5), compared to Eigen’s SparseLU

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:5

and BiCGSTAB implementations [Guennebaud et al. 2010]. More-
over, it circumvents the intricacies associated with implementing
multigrid or domain decomposition techniques.

3 CLOSEST POINT METHOD AND EXTERIOR
BOUNDARY CONDITIONS

3.1 Continuous Setting

Consider a manifold S embedded in R𝑑 , where 𝑑 ≥ dim(S). The
closest point method uses a closest point (CP) representation of S,
which is a mapping from points x ∈ R𝑑 to points cpS (x) ∈ S. The
point cpS (x) is defined as the closest point on S to x in Euclidean
distance, i.e.,

cpS (x) = arg min
y∈S

∥x − y∥.

A CP representation can be viewed as providing both implicit and
explicit representations. The mapping cpS : R𝑑 → S represents S
implicitly: a traditional scalar (though unsigned) implicit manifold
can be recovered by computing the distance ∥x − cpS (x)∥. Mean-
while, the closest points themselves give an explicit representation
of S, albeit without connectivity (i.e., a point cloud).

CPM embeds the manifold problem into the space surrounding
S. Consider a tubular neighbourhood defined as

N(S) =
{
x ∈ R𝑑

��� ∥x − cpS (x)∥ ≤ 𝑟N(S)
}
,

N(S)

D̂

D

where 𝑟N(S) is called the tube radius. The
inset (top) shows an example of a tubeN(S)
(gray) around a 1D curve S (coloured) em-
bedded in R2. To solve manifold PDEs with
CPM an embedding PDE is constructed on
N(S), whose solution agrees with the solu-
tion of the manifold PDE at points y ∈ S.
Let𝑢 (y), for y ∈ S, and𝑢 (x), for x ∈ N (S),
denote the solutions to the manifold PDE
and embedding PDE, respectively. Funda-
mentally, CPM is based on extending mani-
fold data 𝑢 from S ontoN(S) such that the
data is constant in the normal direction of S.
This task is accomplished using the closest
point extension, which is the composition of
𝑢 with cpS , i.e., we take 𝑢 (x) = 𝑢 (cpS (x))
for all x ∈ N (S). The inset (bottom) vi-
sualizes 𝑢 ∈ N (S) resulting from the CP
extension of 𝑢 ∈ S (inset, top).

Crucially, Ruuth and Merriman [2008] observed that this exten-
sion allows manifold differential operators LS on S to be replaced
with Cartesian differential operators L onN(S). Since the function
𝑢 on N(S) is constant in the normal direction, 𝑢 only changes in
the tangential direction of S. Hence, Cartesian gradients on N(S)
are equivalent to manifold gradients for points on the manifold. By a
similar argument, manifold divergence operators can be replaced by
Cartesian divergence operators on N(S). Higher order derivatives
are handled by combining these gradient and divergence principles
with CP extensions onto N(S).

In this section, we illustrate CPM for solving the manifold Pois-
son equation ΔS𝑢 = 𝑓 , with the embedding PDE Δ𝑢 (cpS (x)) =

𝑓 (cpS (x)) or equivalently Δ𝑢 (x) = 𝑓 (x) . (Technically, this em-
bedding PDE is ill-posed because 𝑓 (x) is constant in the normal
direction of S, but Δ𝑢 (x) is not. It is used here for ease of exposition.
Chen and Macdonald [2015, Section 2.3] and Macdonald et al. [2011]
discuss the well-posed version which modifies Δ𝑢 (x). The well-
posed version is used in our numerical examples, see Section 5.3.)

3.2 Discrete Setting
In the discrete setting, the computational domain is a collection of
Cartesian grid points Ω(S) ⊆ N (S) with uniform spacing Δ𝑥 . The
closest point cpS (x𝑖) to each grid point x𝑖 ∈ Ω(S) is computed and
stored. Discrete approximations of the CP extension and differential
operators are needed to solve the embedding PDE. For our example
Poisson equation, Δ𝑢 (x) = 𝑓 (x), we need to approximate the CP
extensions 𝑢 (x) = 𝑢 (cpS (x)) and 𝑓 (x) = 𝑓 (cpS (x)), as well as the
Laplacian Δ. Interpolation is used to approximate the CP extension
and finite-differences (FDs) are used for differential operators.

The CP extension requires interpolation since cpS (x𝑖) is gener-
ally not a grid point in Ω(S). Thus, the manifold value 𝑢 (cpS (x𝑖))
is approximated by interpolating from discrete values 𝑢𝑖 ≈ 𝑢 (x𝑖)
stored at grid points x𝑖 ∈ Ω(S) surrounding cpS (x𝑖). The interpola-
tion degree should be chosen such that interpolation error does not
dominate the solution. Throughout we use barycentric-Lagrange
interpolation with polynomial degree 𝑝 [Berrut and Trefethen 2004].
This is an efficient form of Lagrange interpolation for CPM [Ruuth
and Merriman 2008, Section 2.5]. (Manifold data given in the man-
ifold PDE problem, e.g., the function 𝑓 or an initial condition for
time-dependent problems, is extended onto Ω(S) in a different way
that depends on the data representation. See Section 5.2 for details.)

For a given grid point x𝑘 ∈ Ω(S), we have the following approx-
imation of the closest point extension:

𝑢 (cpS (x𝑘)) = 𝑢 (x𝑘) ≈
∑︁
𝑗∈I𝑘

𝑤𝑘
𝑗 𝑢 𝑗 , (1)

where I𝑘 denotes the set of indices corresponding to grid points in
the interpolation stencil for the query point cpS (x𝑘) and 𝑤𝑘

𝑗 are
the barycentric-Lagrange interpolation weights corresponding to
each grid point in I𝑘 .

FD discretizations on Ω(S) are used to approximate a Cartesian
differential operator L as

L𝑢 (x𝑖) ≈
∑︁
𝑘∈D𝑖

𝑙𝑖𝑘𝑢𝑘 , (2)

where D𝑖 denotes the set of indices corresponding to grid points
in the FD stencil centred at the grid point x𝑖 . The FD weights
are denoted 𝑙𝑖

𝑘
for each x𝑘 with 𝑘 ∈ D𝑖 . For example, the com-

mon second-order centred-difference for the discrete Laplacian has
weights 1/(Δ𝑥)2 if 𝑘 ≠ 𝑖 and −2𝑑/(Δ𝑥)2 if 𝑘 = 𝑖 .

With these CP extension and differential operator approximations,
the Laplace-Beltrami operator ΔS𝑢 is approximated on Ω(S) as

ΔS𝑢 (cpS (x𝑖)) ≈
∑︁
𝑘∈D𝑖

𝑙𝑖𝑘
©­«
∑︁
𝑗∈I𝑘

𝑤𝑘
𝑗 𝑢 𝑗

ª®¬ . (3)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

Hence, to solve the discrete embedding PDE (for ΔS𝑢 = 𝑓) we form
a linear system using the equation∑︁

𝑘∈D𝑖

𝑙𝑖𝑘
©­«
∑︁
𝑗∈I𝑘

𝑤𝑘
𝑗 𝑢 𝑗

ª®¬ = 𝑓𝑖 ,

to solve for unknowns 𝑢𝑖 at grid points x𝑖 ∈ Ω(S). Finally, the
solution to the original manifold PDE can be recovered at any y ∈ S
by interpolation as needed. The reader may refer to prior CPM
work [Macdonald et al. 2011; Macdonald and Ruuth 2010; Ruuth
and Merriman 2008] for further background.

Tube Radius of the Computational Domain. One could use a grid
Ω(S) that completely fills R𝑑 , but this choice is inefficient since
only a subset of those points (i.e., those near S) affect the numerical
solution on the manifold. It is only required that all grid points
within the interpolation stencil of any point on the manifold have
accurate approximations of the differential operators. Barycentric-
Lagrange interpolation uses a hypercube stencil of 𝑝 + 1 grid points
in each dimension. Consider a hyper-cross FD stencil that uses 𝑞
grid points from the centre of the stencil in each dimension. An
upper bound estimate of the computational tube-radius, 𝑟Ω (S) , for
the computational domain Ω(S) is [Ruuth and Merriman 2008]

𝑟Ω (S) = Δ𝑥

√︄
(𝑑 − 1)

(
𝑝 + 1

2

)2
+
(
𝑞 + 𝑝 + 1

2

)2
. (4)

Therefore, our computational domain Ω(S) consists of all grid
points x𝑖 satisfying ∥x𝑖 − cpS (x𝑖)∥ ≤ 𝑟Ω (S) . Explicit construction
of Ω(S) is discussed in Section 5.1.

3.3 Exterior Boundary Conditions for Open Manifolds
When the manifold S is open (i.e., its geometric boundary 𝜕S ≠ ∅)
some choice of boundary condition (BC) must usually be imposed on
𝜕S (e.g., Dirichlet, Neumann, etc.). We will refer to these as exterior
boundary conditions. In many applications, however, similar types
of boundary conditions may be needed at locations on the interior
of S, irrespective of S being open or closed. In this case, interior
boundary conditions (IBCs) should be enforced on a subset C ⊂ S,
which typically consists of points C on a 1D curve S, or points
and/or curves C on a 2D surface S. Our proposed approach for IBCs
in Section 4 builds on existing CPM techniques for applying exterior
BCs at open manifold boundaries, which we review below.

A subset Ω(𝜕S) ⊂ Ω(S) of grid points called the boundary
subset is used to enforce exterior BCs. It consists of all x𝑖 satisfying
cpS (x𝑖) ∈ 𝜕S, i.e., grid points whose closest manifold point is on
the boundary of S. Equivalently,

Ω(𝜕S) = {
x𝑖 ∈ Ω(S)

�� cpS (x𝑖) = cp𝜕S (x𝑖)
}
, (5)

where cp𝜕S is the closest point function to 𝜕S. Geometrically,
Ω(𝜕S) is a half-tubular region of grid points past 𝜕S, halved by
the manifold orthogonal to S at 𝜕S defined by
S⊥ = {x ∈ N (S) | x = y + 𝑡 nS (y), y ∈ 𝜕S, |𝑡 | ≤ 𝑟Ω (S) }, (6)

when S is codimension one. The manifold normal at y ∈ 𝜕S is
defined as the limiting normal nS (y) = limz→y nS (z), where z ∈ S
and nS (z) is the unit normal of S at z. Figure 3 illustrates this for a
1D curve embedded in R2.

CPM naturally applies first-order homogeneous Neumann BCs,
∇S𝑢 ·n𝜕S = 0, where n𝜕S is the unit conormal of 𝜕S. The conormal
is a vector normal to 𝜕S, tangential to S, and oriented outward
[Dziuk and Elliott 2007]. Therefore, n𝜕S (y) ≠ nS (y) for y ∈ 𝜕S, and
n𝜕S (y) is orthogonal to nS (y) since n𝜕S (y) is in the tangent space
of S. The CP extension propagates manifold data constant in both
nS and n𝜕S at 𝜕S. Hence, finite differencing across the boundary
subset Ω(𝜕S) will measure zero conormal derivatives [Ruuth and
Merriman 2008] and the discretization of the manifold differential
operator can be used without any changes at x𝑖 ∈ Ω(𝜕S).

However, to enforce first-order Dirichlet BCs on 𝜕S, the CP ex-
tension step must be changed. The prescribed Dirichlet value at the
closest point of x𝑖 ∈ Ω(𝜕S) is extended to x𝑖 (instead of the interpo-
lated value in (1)). That is, the CP extension assigns𝑢𝑖 = 𝑢 (cpS (x𝑖))
for all x𝑖 ∈ Ω(𝜕S), where 𝑢 (cpS (x𝑖)) is the Dirichlet value at
cpS (x𝑖) ∈ 𝜕S. Only this extension procedure changes; the FD dis-
cretization is unchanged for all exterior BC types and orders.

For improved accuracy, second-order Dirichlet and zero-Neumann
exterior BCs were introduced by Macdonald et al. [2011] using a
simple modification to the closest point function. The closest point
function is replaced with

cpS (x) = cpS (2cpS (x) − x). (7)

Effectively, rather than finding the closest point, this expression
determines a “reflected” point, and returns its closest point instead.

Observe that cpS satisfies cpS (x𝑗) = cpS (x𝑗) if x𝑗 ∉ Ω(𝜕S)

S

cpS (x:)

cpS (x:)2cpS (x:) � x:

x:

cpS (x9) = cpS (x9)
2cpS (x9) � x9

x9

(and cpS (x) is unique). Therefore, no
change occurs to CPM on the interior
ofS (see inset, bottom), so we continue
to use cpS (x) for x ∈ Ω(S) \ Ω(𝜕S).
However, for boundary points x𝑘 ∈
Ω(𝜕S), we have cpS (x𝑘) ≠ cpS (x𝑘),
since cpS (x𝑘) is a point on the interior
of S while cpS (x𝑘) is a point on 𝜕S
(see inset, top). Hence, for a flat mani-
fold,𝑢 (cpS (x𝑘)) gives the interior mirror value for x𝑘 . For a general,
curved manifold 𝑢 (cpS (x𝑘)) gives an approximate mirror value.

Thus, replacing cpS with cpS will naturally apply second-order
homogeneous Neumann exterior BCs: approximate mirror values
are extended to x𝑘 ∈ Ω(𝜕S), so the effective conormal derivative
becomes zero at 𝜕S. This approach generalizes popular methods

⌦(mS)

⌦(S)

mS

S? S

Fig. 3. The boundary subset Ω (𝜕S) (purple points) for a curve S (blue)
comprises those grid points in Ω (S) (black grid) whose closest point is on
the boundary 𝜕S (white point). The points x𝑖 ∈ Ω (𝜕S) are those past the
normal manifold S⊥ based at 𝜕S (green).

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:7

S

C
S?

Fig. 4. On the left, a normal manifold S⊥ (green) extends perpendicularly
outwards from a curve C (white) where an IBC is to be applied. On the
right, closest points cpS (x𝑖) for x𝑖 ∈ Ω (C) (yellow and purple) cannot be
globally partitioned into two disjoint sets by C on a nonorientable S (blue).

for codimension-zero problems with embedded boundaries, where
mirror values are also assigned to ghost points (see e.g., Section
2.12 of [LeVeque 2007]). In practice, the only change required is to
replace I𝑘 and corresponding weights in (1) with those for cpS (x𝑘).

Second-order Dirichlet exterior BCs similarly generalize their
codimension-zero counterparts, e.g., the ghost fluid method [Gibou
et al. 2002] that fills ghost point values by linear extrapolation. The
CP extension at x𝑘 ∈ Ω(𝜕S) becomes 𝑢 (x𝑘) = 2𝑢 (cpS (x𝑘)) −
𝑢 (cpS (x)), where 𝑢 (cpS (x𝑘)) is the prescribed Dirichlet value on
𝜕S. Hence, for x𝑘 ∈ Ω(𝜕S) we change (1) to

𝑢𝑘 = 2𝑢 (cpS (x𝑘)) −
∑︁
𝑗∈I𝑘

𝑤𝑘
𝑗𝑢 𝑗 , (8)

where I𝑘 and 𝑤𝑘
𝑗 are the interpolation stencil indices and weights

for cpS (x𝑘), respectively.
Remark that S can have multiple boundaries, so there may be

multiple Ω(𝜕S) regions where this BC treatment must be applied.

4 INTERIOR BOUNDARY CONDITIONS
As discussed in Section 3, the discrete setting of CPM involves
two main operations: interpolation for CP extensions and finite
differences (FDs) for differential operators. Exterior BCs are handled
by modifying the CP extension interpolation while keeping the
finite differencing the same (Section 3.3). Below we describe our
proposed technique to extend CPM with support for interior BCs,
which consists of two key changes: adding new degrees of freedom
(DOFs) and carefully altering both the interpolation and FD stencils.

Table 1 summarizes important notation. For the rest of this paper
we focus on the cases where the manifold S is a curve embedded
in R2 or a surface embedded in R3 . Let C ⊂ S denote the interior
region where the BC is to be applied, which can be a point (in 2D or
3D) or an open or closed curve (in 3D). Since CPM is an embedding
method we must consider the influence of C on the embedding
space N(S). Let S⊥ denote a (conceptual) manifold orthogonal
to S along C, i.e., analogous to S⊥ defined in (6) for the exterior
boundary case, but with 𝜕S replaced by C. See Figure 4 (left) for an
example curve C on a surface S and its normal manifold S⊥ at C.

Table 1. A summary of symbols used in this paper.

Symbol Description
S Manifold
C Subset of S where IBC is enforced
dim(S) Dimension of manifold S
𝑑 Dimension of embedding space surrounding S
𝑢̂ Manifold intrinsic function
𝑢 Function in embedding space R𝑑
N(S) Tubular neighbourhood surrounding S
nS Unit manifold normal vector
n𝜕S Unit conormal vector along 𝜕S
S⊥ Manifold orthogonal to S along C
cpS (x) Closest point in S to x ∈ R𝑑
cpC (x) Closest point in C to x ∈ R𝑑
cpS−C (x) Difference between closest point to S and C
Ω (S) Grid surrounding S (subset of N(S))
Ω (C) Interior boundary subset of Ω (S)
Ω (𝜕S) (Exterior) boundary subset of Ω (S)
Ω (𝜕C) Boundary subset of interior boundary subset Ω (C)
𝑟N(S) Tube radius of N(S)
𝑟Ω (S) Computational tube-radius
𝑁S Number of grid points in Ω (S)
𝑁C Number of grid points in Ω (C)
𝐽S Set of indices for x𝑖 ∈ Ω (S)
𝐽C Set of indices for x𝛼 ∈ Ω (C)
𝑖 Index in 𝐽S
𝛼 Index in 𝐽C
x𝑖 Grid point in Ω (S)
x𝛼 Grid point in Ω (C)
D𝑖 Indices of grid points in finite-difference stencil of x𝑖
I𝑖 Indices of grid points in interpolation stencil of cpS (x𝑖)

4.1 Adding Interior Boundary DOFs
Exterior BCs incorporate the BC using grid points x𝑖 ∈ Ω(𝜕S) as
defined in (5). These grid points x𝑖 ∈ Ω(𝜕S) are only needed to
enforce the exterior BC since they lie on the opposite side of S⊥
from S. Therefore, CP extension stencils for x𝑖 ∈ Ω(𝜕S) can be
safely modified to enforce exterior BCs.

For interior BCs, the situation is more challenging. Similar to
Ω(𝜕S), a new interior boundary subset Ω(C) ⊂ Ω(S) is defined as

Ω(C) = {x𝑖 ∈ Ω(S) | ∥x𝑖 − cpC (x𝑖)∥ ≤ 𝑟Ω (S) }, (9)

where cpC is the closest point function of C. Comparing with (5), the
subsets Ω(𝜕S) and Ω(C) are defined in the same way, except Ω(𝜕S)
has the extra property cpS (x𝑖) = cp𝜕S (x𝑖) for all x𝑖 ∈ Ω(𝜕S);
i.e., points in the exterior boundary subset have a closest manifold
point that is also their closest boundary point. Grid points in the
interior boundary subset do not: x𝑖 ∈ Ω(C) will in general have
cpS (x𝑖) ≠ cpC (x𝑖) unless the point x𝑖 ∈ S⊥.

Ideally, we would use the grid points x𝑖 ∈ Ω(C) to enforce the
IBC, analogous to the exterior case. However, the tubular volume
surrounding C, {x ∈ N (S) | ∥x − cpC (x)∥ ≤ 𝑟Ω (S) }, which
contains Ω(C), also intersects with S. Therefore, we cannot simply
repurpose and modify CP extension stencils for x𝑖 ∈ Ω(C), since
they are needed to solve the manifold PDE on S \ C.

We propose to add a second set of spatially colocated DOFs, called
the BC DOFs, at all x𝑖 ∈ Ω(C). The BC DOFs allow us to apply

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

⌦(C)
⌦(S)

S?
⌦(S) [⌦(C)

C

S S?

Fig. 5. A conceptual illustration of our approach to interior boundaries for a point C (white) on a curve S (blue) in R2. Left column: Duplicated BC DOFs are
generated in the boundary subset Ω (C) around C (thick black grid). Middle column: The normal manifold S⊥ (green) locally partitions the grid into two sides
(yellow, purple). Right column: The modified grid connectivity is illustrated by warping it into R3.

similar techniques for interior BCs as was done for exterior BCs.
Specifically, given a computational domain Ω(S) of 𝑁S grid points
and the subset Ω(C) of 𝑁C grid points, the discrete linear system
to be solved will now involve 𝑁S + 𝑁C DOFs. We order the BC
DOFs after the original PDE DOFs. That is, indices in the set 𝐽S =
{ 𝑗 ∈ N | 0 ≤ 𝑗 < 𝑁S} give x𝑗 ∈ Ω(S) while indices in the set
𝐽C = {𝛼 ∈ N | 𝑁S ≤ 𝛼 < 𝑁S + 𝑁C} give x𝛼 ∈ Ω(C). Throughout
we use Greek letters to denote indices in 𝐽C to clearly distinguish
from indices in 𝐽S . Note that for every BC DOF 𝛼 ∈ 𝐽C there is a
corresponding PDE DOF 𝑗 ∈ 𝐽S such that x𝛼 = x𝑗 . The key question
then becomes: when do we use PDE DOFs versus BC DOFS?

Intuitively, the answer is simple: interpolation and FD stencils
(I𝑖 and D𝑖 from (1) and (2)) must only use manifold data 𝑢 from the
same side of S⊥ that the stencil belongs to. Therefore, if a stencil
involves manifold data on the opposite side of S⊥, the IBC must be
applied using the BC DOFs.

Figure 5 gives a conceptual illustration of the process for a point
C on a circle S embedded in R2. Both BC DOFs and PDE DOFs are
present in the region of Ω(𝐶). The BC DOFs are partitioned into one
of two sets depending on which side of S⊥ the closest point cpS (x𝑖)
is on. The original grid Ω(S) and duplicated portion Ω(C) are cut,
and each half of Ω(C) is joined to the opposing side of Ω(S).

The same treatment of BCs as in the exterior case is then applied
on this nonmanifold grid Ω(S) ∪ Ω(C). That is, the required mod-
ifications to the CP extension interpolation stencils in Section 3.3
are applied. Unlike the exterior BC case, however, changes to FD
stencils do occur for IBCs since Ω(C) and Ω(S) are cut and joined
to opposite sides of each other.

If S is orientable then this intuitive picture in Figure 5 is an
accurate depiction of the necessary grid connectivity. That is, near
C we must duplicate DOFs and cut and join opposite pieces of Ω(S)

and Ω(C) to produce regions (similar to Ω(𝜕S)) where BCs can be
imposed. However, if S is nonorientable the closest points cpS (x𝑖)
for x𝑖 ∈ Ω(C) cannot be globally partitioned into two sides. For
example, on the Möbius strip in Figure 4 (right), an apparent flip
in the partitioning of cpS (x𝑖) is unavoidable as one moves along a
curve C that loops around the whole strip.

Fortunately, IBCs can still be enforced on nonorientable manifolds
because the manifold can be oriented locally. The interpolation and
FD stencils only perform operations in a small local region of Ω(S),
so locally orienting the manifold is sufficient to enforce IBCs.

4.2 S⊥ Crossing Test
We must keep computation local to each stencil to handle nonori-
entable manifolds. Therefore, first consider testing if any two closest
points of x1, x2 ∈ N (S) are on opposite sides of S⊥. A naive ap-
proach would be to construct S⊥ explicitly, e.g., with a surface
triangulation (as was done by Shi et al. [2007]), and then test if the
line segment between cpS (x1) and cpS (x2) intersects the triangula-
tion. However, building an explicit surface is counter to the implicit
spirit of CPM.

Determining if cpS (x1) and cpS (x2) are on opposite sides of
S⊥ can instead be accomplished based on closest points on C. Let
cpC (x1) and cpC (x2) be the closest points to x1 and x2 on C, re-
spectively. Define the vector cpS−C (x) as

cpS−C (x) ≡ cpS (x) − cpC (x). (10)

Denote the locally-oriented unit normal to S⊥ at y ∈ C as nS⊥ (y).
The function

𝐹 (x) ≡ cpS−C (x) · nS⊥ (cpC (x)) (11)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:9

S

x1
x2

cpS (x1)

cpS (x2)

cpC (x1)
cpC (x2)

C S?

Fig. 6. For two points x1, x2 ∈ N(S) , we can determine if the closest points,
cpS (x1) , cpS (x2) , lie on opposite sides of C based on their orientations
relative to the corresponding closest points on C, cpC (x1) , cpC (x2) .

will have different signs for 𝐹 (x1) and 𝐹 (x2) if cpS (x1) and cpS (x2)
are on different sides of S⊥, or equivalently 𝐹 (x1)𝐹 (x2) < 0. How-
ever, this direct test would require computing nS⊥ along C and
locally orienting that normal vector.

Instead of checking the directions cpS−C relative to the locally
oriented normals nS⊥ , we can check the directions of cpS−C (x1)
and cpS−C (x2) relative to each other. As illustrated in Figure 6, if
cpS (x1) and cpS (x2) are on opposite sides of S⊥ the associated
cpS−C (x) vectors will point in opposing directions; thus, we can
simply check if their dot product is negative:

cpS−C (x1) · cpS−C (x2) < 0. (12)

In practice, we find (12) sufficient to obtain second-order accuracy
in the convergence studies of Section 6 on smooth S and C.

When x is close to S⊥ the vector cpS−C (x) ≈ 0, which can result
in an inaccurate classification of which side cpS (x) is on. Therefore,
if ∥cpS−C (x)∥ = O(Δ𝑥2) the point cpS (x) is considered to lie
on C and can be safely assigned to either side, while maintaining
second-order accuracy. In practice, we consider cpS (x) to lie on C
if ∥cpS−C (x)∥ < 0.1Δ𝑥2.

As we have noted, the locality of this S⊥ crossing test allows it to
handle nonorientable manifolds with CPM and IBCs. However, on
orientable manifolds one can still globally orient stencils in Ω(C)
to impose different values or types of IBCs on either side of C. For
example, different prescribed Dirichlet values on each side of C are
useful for vector field design. Mixing Dirichlet and Neumann IBCs
on C in this way can also be useful for diffusion curves.

4.3 Stencil Modifications
In this section, we describe how to use theS⊥ crossing test to impose
IBCs by altering interpolation and FD stencils. The S⊥ crossing
test (12) allows us to determine if any two points x1, x2 ∈ N (S) have
closest points cpS (x1), cpS (x2) on opposite sides ofS⊥. Ultimately,
we employ this test to determine if the closest points cpS (x𝑗) for
𝑗 ∈ I𝑖 or D𝑖 are on the opposite side of S⊥ relative to a stencil for
x𝑖 , so the stencil can use the correct PDE vs. BC data.

A stencil is itself assigned to a particular side of S⊥ based on
the location of an associated point on S that we call the stencil
director, denoted y★. For the FD stencil of x𝑖 the stencil director is

y★𝑖 = cpS (x𝑖), since grid data at x𝑖 corresponds to manifold data at
cpS (x𝑖). For the interpolation stencil of x𝑖 used for the CP extension,
the stencil director is the interpolation query point cpS (x𝑖), i.e.,
y★𝑖 = cpS (x𝑖). Each stencil director also has a corresponding stencil
direction denoted d★. For FD and CP extension interpolation stencils
d★𝑖 = cpS−C (x𝑖) = y★𝑖 − cpC (x𝑖) .

It is, however, not always the case that y★𝑖 = cpS (x𝑖) . Interpola-
tion of the solution on the grid Ω(S) ∪ Ω(C) can also be used to
obtain the final solution at any set of manifold points. For example,
if one desires to transfer the solution to a mesh or a point cloud
(e.g., for display or downstream processing), interpolation can be
used to obtain the solution on vertices of the mesh or points in the
cloud (see Section 5.5). In this case, the stencil director is just the
interpolation query point y★ = y𝑞 ∈ S and the stencil direction is
d★ = y★ − cpC (y★).
PDE DOF Modifications. The first step to incorporate IBCs is to alter
the stencils for the PDE DOFs in 𝐽S . The computation in both (1)
and (2) for 𝑖 ∈ 𝐽S has the form

𝑢𝑖 =
∑︁
𝑗∈G𝑖

𝑐𝑖𝑗𝑢 𝑗 ,

whereG𝑖 ⊂ 𝐽S are indices corresponding to grid points in the stencil
for 𝑖 (i.e., G𝑖 = I𝑖 or G𝑖 = D𝑖) and 𝑐𝑖𝑗 are corresponding weights.

To incorporate IBCs, the index 𝑗 ∈ G𝑖 is replaced with its cor-
responding BC DOF index 𝛼 ∈ 𝐽C if data at x𝑗 comes from the
opposite side of S⊥. The corresponding stencil weight 𝑐𝑖𝑗 remains
unchanged. Using theS⊥ crossing test (12), for all 𝑗 ∈ G𝑖 , we replace
𝑗 ∈ 𝐽S with its corresponding 𝛼 ∈ 𝐽C if

d★𝑖 · cpS−C (x𝑗) < 0. (13)

If our equations are written in matrix form, these modifications
to the PDE DOFs above would change 𝑁S × 𝑁S matrices to be
size 𝑁S × (𝑁S + 𝑁C). The next step is to add the BC equations
for the BC DOFs in 𝐽C , resulting in square matrices again of size
(𝑁S + 𝑁C) × (𝑁S + 𝑁C).
BC DOF Modifications. Finite-difference stencils are added for the
BC DOFs with 𝛼 ∈ 𝐽C and modified in a similar way to the PDE
DOFs above. The same grid connectivity is present in Ω(C) as the
corresponding portion of Ω(S) (except at the boundary of Ω(C)).
Therefore, the same FD stencils on Ω(S) are used on Ω(C) except
with indices 𝛽 ∈ 𝐽C (and indices not present in Ω(C), i.e., grid points
in Ω(S) around the edge of Ω(C), are removed). Hence, using the
S⊥ crossing test (12) for all 𝛽 ∈ D𝛼 , the index 𝛽 ∈ 𝐽C is replaced
with its corresponding 𝑗 ∈ 𝐽S if

d★𝛼 · cpS−C (x𝛽) < 0. (14)

The CP extension BC equations discussed in Section 3.3 for ex-
terior BCs are used on the BC DOFs with 𝛼 ∈ 𝐽C . However, first-
order zero-Neumann IBCs are no longer automatically imposed as
in Section 3.3. Instead, for first-order zero-Neumann IBCs, the CP
extension extends manifold data 𝑢 at cpC (x𝛼) for x𝛼 ∈ Ω(C), i.e.,

𝑢 (cpC (x𝛼)) = 𝑢 (x𝛼) ≈
∑︁
𝛽∈I𝛼

𝑤𝛼
𝛽𝑢𝛽 .

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

Once again the S⊥ crossing test (12) is used to ensure DOFs are
used from the correct sides of S⊥. In this case, the stencil director
(interpolation query point) is y★𝛼 = cpC (x𝛼), which gives d★𝛼 = 0
since y★𝛼 is on both C and S. However, the vector d★𝛼 ≡ cpS (x𝛼) −
cpC (x𝛼) gives the correct direction to define which side of S⊥ the
interpolation stencil belongs to. Then, for all 𝛽 ∈ I𝛼 , we replace
𝛽 ∈ 𝐽C with its corresponding 𝑗 ∈ 𝐽S if (14) holds.

For second-order zero-Neumann IBCs, the only modification re-
quired is to replace cpC (x) with

cpC (x) = cpS (2cpC (x) − x). (15)

Note that (15) is different from the form used for exterior BCs in (7),
as it involves both cpS and cpC . However, the purpose of this mod-
ified closest point function (15) remains the same, i.e., the point
cpC (x) is an approximate mirror location.

The CP extension equations for BC DOFs, with 𝛼 ∈ 𝐽C, to en-
force Dirichlet IBCs are analogous to Section 3.3. The prescribed
Dirichlet value,𝑢 on C, is extended for first-order Dirichlet IBCs, i.e.,
𝑢 (x) = 𝑢 (cpC (x)) or in the discrete setting 𝑢𝛼 = 𝑢 (cpC (x𝛼)) . For
second-order Dirichlet IBCs, the extension is 𝑢 (x) = 2𝑢 (cpC (x)) −
𝑢 (cpC (x)), which becomes analogous to (8) in the discrete setting.

4.4 Open Curves C in R3

Past the endpoints of an open curve C the PDE should be solved
without the IBC being enforced. However, the set Ω(C) includes
half-spherical regions of grid points past the boundary point 𝜕C.
These half-spherical regions are analogous to the exterior boundary
subsets Ω(𝜕S) in Section 3.3 and are defined as

Ω(𝜕C) = {x𝛼 ∈ Ω(C) | cpC (x𝛼) = cp𝜕C (x𝛼)}. (16)

We do not perform the modifications of Section 4.3 for points x𝛼 ∈
Ω(𝜕C) since this would enforce the IBC where only the PDE should
be solved. In other words, the BC DOFs in Ω(𝜕C) are not added to
the linear system.

4.5 Points C in R3

Remarkably, and unlike for open curves, when C is a point on S
embedded in R3 no change to the stencil modification procedure
in Section 4.3 is needed. To understand why, consider two simpler
options. First, without any boundary treatment whatsoever near C
the PDE is solved but the IBC is ignored. Second, a naive first-order
treatment simply sets either the nearest grid point or a ball of grid
points around C to the Dirichlet value; however, at those grid points
the PDE is now ignored. Instead, the grid points near C should be
influenced by the IBC at C, while also satisfying the PDE.

Under the procedure of Section 4.3, the cpS−C (x𝑗) and d★𝑖 vectors
will point radially outward from the point C (approximately in the
tangent space of S at C). The S⊥ crossing test (12) becomes a half-
space test, where the plane 𝑃 partitioning the space goes through C
with its normal given by the stencil direction vector, d★𝑖 . In the stencil
for y★𝑖 , points on the same side of 𝑃 as y★𝑖 are treated as PDE DOFs,
while points on the opposite side receive the IBC treatment (either
first or second-order as desired). However, the direction of d★𝑖 , and
hence the half-space, changes for each grid point’s stencil (radially
around C). The d★𝑖 changes because the location of y★𝑖 changes for
each 𝑖 with cpC (x𝑖) fixed at C. This spinning of 𝑃 radially around

C allows the PDE and the IBC to be enforced simultaneously since
both PDE and IBC equations are added to the linear system for all
points x𝑖 ∈ Ω(C).

Therefore, for a point C ∈ S ⊂ R3, our first-order Dirichlet IBC
method acts as an improvement of the approach of Auer et al. [2012],
where only points x𝑗 ∈ Ω(C) on one side of 𝑃 (which revolves
around C) are fixed with the prescribed Dirichlet value. We observe
that this reduces the error constant compared to Auer et al. [2012]
in convergence studies in Section 6. Furthermore, our approach in
Section 4.3 allows us to achieve second-order accuracy, whereas
the method of Auer et al. [2012] is restricted to first-order accuracy.
Neumann IBCs at a point C are not well-defined since there is no
preferred direction conormal to C.

4.6 Localizing Computation Near C
Computation to enforce IBCs should only be performed locally
around C for efficiency. The new BC DOFs satisfy this requirement
since they are only added at grid points x𝑖 within a distance 𝑟Ω (S) of
C. This banding of Ω(C) is possible for the same reason it is possible
to band Ω(S) (see Section 3.2): grid points are only needed near S
and C because accurate approximations of differential operators are
only needed at grid points within interpolation stencils.

The use of the S⊥ crossing test (12) has been discussed in terms
of checking all interpolation and FD stencils in Ω(S) and Ω(C)
above. For efficiency, we would rather only check if cpS (x1) and
cpS (x2) are on different sides of S⊥ if x1 and x2 are near C. How-
ever, depending on the geometry of S and C, points x𝑖 ∉ Ω(C) can
have stencils for interpolating at cpS (x𝑖) that cross S⊥, so testing
only points x𝑖 ∈ Ω(C) does not suffice.

We therefore check stencils that include grid points x𝑖 ∈ Ω(S)
with ∥x𝑖 − cpC (x𝑖)∥ < 2𝑟Ω (S) for all the examples in this paper.
The closest points cpC (x𝑖) are needed to compute ∥x𝑖 − cpC (x𝑖)∥.
Computation of cpC for all x𝑖 ∈ Ω(S) is avoided using a similar
breadth-first search to the one used in the construction of Ω(S)
(see Algorithm 1 discussed in Section 5).

4.7 Improving Robustness of S⊥ Crossing Test
In practice, manifolds with small bumps of high curvature relative
to the grid resolution can cause the S⊥ crossing test (12) to be
inaccurate. For example, the headdress of the Nefertiti mesh in
Figure 1(a) has many small bumps, which causes the cpS−C and d★

vectors to be far from orthogonal to S⊥ and C. The closest points
near C are then misclassified as being on the wrong side of S⊥.

To make (12) more robust, we modify the cpS−C and d★ vectors
to be orthogonal to S⊥ and C before computing the dot product. We
illustrate this for a surface (2D manifold) embedded in R3 through-
out this section. For this case, (12) is used with cpS−C (x) replaced
by

cp⊥S−C (x) =
(
I − nSn𝑇S − tCt𝑇C

)
cpS−C (x), (17)

(and similarly for d★) where I is the identity matrix and tC is the unit
tangent vector along C. The manifold normal nS and tangent tC
are evaluated at cpC (x). Projecting out the nS and tC components
is equivalent to projecting cpS−C (x) onto nS⊥ (cpC (x)). Therefore,
the S⊥ crossing test (12) becomes equivalent to the direct test that
checks if 𝐹 (x1)𝐹 (x2) < 0 (see Section 4.2), but without needing to

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:11

orient nS⊥ . The vectors nS and tC must be evaluated at cpC (x)
since the vector cpS−C (x) starts at cpC (x) (and goes to cpS (x)).
When C is a single point the tangent direction is undefined, so only
the nS component is projected out in this case. Let us now consider
how to compute nS and tC .

For a codimension-one manifold S the Jacobian of the closest
point function, JcpS , is the projection operator onto the tangent
space of S for points on the manifold [King and Ruuth 2017; Marz
and Macdonald 2012]. Therefore, for a surface in R3, the eigenvec-
tors of JcpS are the manifold normal nS and two tangent vectors.
However, two arbitrary tangent vectors of S will not suffice; we
need the tangent tC along C. The curve C ∈ R3 has codimension
two. The corresponding Jacobian for C, JcpC , is likewise equivalent
to a projection operator onto the tangent space of C [Kublik and
Tsai 2016]. However, the eigenvectors of JcpC only provide a unique
tangent vector tC , since the normal and binormal to C can freely
rotate around tC . Hence, we compute the manifold normal nS from
the eigendecomposition of JcpS , while tC is computed from the
eigendecomposition of JcpC .

Second-order centred FDs in Ω(S) are used to compute JcpS . The
Jacobian JcpS is only equivalent to the tangent space projection
operator at points on S. Therefore, a CP extension must be per-
formed to obtain the projection operator at all points x𝑖 ∈ Ω(S), i.e.,
JcpS (x𝑖) = JcpS (cpS (x𝑖)). In the discrete setting, the CP extension
is computed with the same interpolation discussed in Section 3.2.
The Jacobian of cpC is computed similarly over Ω(C).

From the above computation of JcpS and JcpC , the projection
operators are known at points cpS (x𝑖) and cpC (x𝑖), respectively.
However, since the nS vectors are computed from JcpS , they are
not yet available at cpC (x𝑖) where we need them. The nS vectors
are therefore computed at cpC (x𝑖) via barycentric-Lagrange inter-
polation (with the same degree 𝑝 polynomials as the CP extension).
Interpolating nS vectors requires some care since they are unori-
ented manifold normals. We adapt a technique proposed by Auer
et al. [2012]: when interpolating nS, given at points x𝑖 ∈ Ω(S),
we locally orient the vectors within each interpolation stencil by
negating vectors satisfying

nS (x𝑖) · nS (x̃) < 0,

where x̃ is a single, fixed grid point in the interpolation stencil.

4.8 A Nearest Point Approach for Dirichlet IBCs
It is also interesting to consider a nearest point approach for handling
Dirichlet IBCs at C, similar to techniques discussed in Section 2.3 for
other manifold representations. That is, simply fix the grid points
x𝑖 ∈ Ω(S) nearest to C with the prescribed Dirichlet value, and
remove them as DOFs. If C is a point, a single grid point is assigned
the Dirichlet value and removed as a DOF. If C is a curve, a set of
nearest grid points is obtained (i.e., a raster representation of C) and
removed as DOFs by assigning Dirichlet values. To our knowledge,
this approach has not been used with CPM in any previous work.

This nearest point approach is attractive since new BC DOFs
are unnecessary, i.e., Ω(C) is not needed. However, it can only
be used for Dirichlet IBCs with the same value on both sides of
C. That is, two-sided Dirichlet IBCs cannot be imposed with the
nearest point approach, nor can Neumann IBCs. The nearest point

approach is also only first-order accurate since the nearest point
can be Δ𝑥

√
𝑑/2 away from C. In Section 6, we observe that the

nearest point approach has a better error constant than the method
of Auer et al. [2012], but a similar or worse error constant than our
first-order IBC approach above (see Figure 9(d)).

5 IMPLEMENTATION ASPECTS

5.1 Closest Points and Computational Domain Setup
The method of computing closest points, and its cost, will depend
on the underlying manifold representation. In Appendix A, we dis-
cuss the computation of closest points for some popular represen-
tations, including parameterized manifolds, triangulated surfaces,
point clouds, signed-distance functions, and more general level-set
functions (i.e., implicit manifolds).

To solve PDEs with CPM, the first step is to construct the compu-
tational domain Ω(S) around S. We use a breadth-first search (BFS)
procedure to only compute cpS near Ω(S). We adopt a sparse-grid
data structure and allocate memory for it only as needed during the
BFS. The BFS can be started from any grid point x0 within 𝑟Ω (S)
distance to the manifold. The BFS for Ω(S) construction is detailed
in Algorithm 1. A similar BFS to Algorithm 1 is used to construct
Ω(C) around C. The use of a BFS could fail if S is composed of dis-
joint pieces. However, PDEs are only solved on a single, connected
manifold throughout this paper. Since IBCs can consist of multiple
C, we perform a BFS for each C independently.

Algorithm 1: BFS to construct Ω(S)
Given x0 near S, i.e., with ∥x0 − cpS (x0)∥ ≤ 𝑟Ω (S)
Add x0 to Ω(S) and store cpS (x0)
Add x0 to the queue 𝑄
while 𝑄 ≠ ∅ do

Set xcurrent ← 𝑄 .front()
for each neighbour xnbr of xcurrent do

if xnbr has not been visited then
Compute cpS (xnbr)
if ∥xnbr − cpS (xnbr)∥ ≤ 𝑟Ω (S) then

Add xnbr to Ω(S) and store cpS (xnbr)
Add xnbr to 𝑄

end
end

end
Pop front of 𝑄

end

The computational tube-radius 𝑟Ω (S) given by (4) is an upper
bound on the grid points needed in Ω(S). The stencil set approach
to construct Ω(S) given by Macdonald and Ruuth [2008, 2010] can
reduce the number of DOFs by including only the strictly neces-
sary grid points for interpolation and FD stencils. It was shown
by Macdonald and Ruuth [2008] that the reduction in the number
of DOFs is between 6-15% for S as the unit sphere. We opted for
implementation simplicity over using the stencil set approach due
to this low reduction in the number of DOFs.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

5.2 Specifying Initial and Boundary Data
Manifold PDEs generally involve some given data on the manifold,
for initial or boundary conditions, that must first be extended onto
Ω(S) or Ω(C). Examples include 𝑓 in Poisson problems ΔS𝑢 = 𝑓 ,
initial conditions𝑢 (𝑡 = 0) for time-dependent problems, or Dirichlet
IBC values on C. The necessary extension procedure depends on
the specific representation of the manifold and the data, e.g., an
analytical function on a parameterization or discrete data on mesh
vertices. However, the extension must still be a CP extension: data
at cpS (x𝑖) (or cpC (x𝑖)) is assigned to x𝑖 ∈ Ω(S) (or ∈ Ω(C)).

5.3 Operator Discretization
With the initial data on Ω(S) and Ω(C), the PDE is then discretized
using the equations given in Sections 3 and 4. Matrices E and L are
constructed for the CP extension and discrete Laplacian, respectively.
The standard 7-point discrete Laplacian in R3 (5-point in R2) is used.
In our implementation E and L are constructed as discussed by
Macdonald and Ruuth [2010]. Constructing the (sparse) matrices
amounts to storing stencil weights for DOF 𝑖 in the columns of
row 𝑖 . Instead of M̃ = LE, we use the more numerically stable CPM
approximation of the Laplace-Beltrami operator [Macdonald et al.
2011; Macdonald and Ruuth 2010]

M = diag(L) + (L − diag(L))E.

5.4 Linear Solver
The linear system resulting from CPM could be solved with direct
solvers, e.g., Eigen’s SparseLU was used in Section 6.1, but they are
only appropriate for smaller linear systems (usually obtained from
1D curves embedded in R2). Iterative solvers are preferred for larger
linear systems (as noted in [Chen and Macdonald 2015; Macdonald
and Ruuth 2010]), particularly from problems involving 2D surfaces
embedded in R3 or higher. The linear system is non-symmetric due
to the closest point extension, therefore Eigen’s BiCGSTAB is an
option for larger systems. However, we show in Section 6.5 that
using Eigen’s BiCGSTAB with the construction of the full matrix
system can be too memory intensive.

To efficiently accommodate large-scale problems, we have de-
signed a custom BiCGSTAB solver tailored to CPM. Our implemen-
tation closely follows Eigen’s BiCGSTAB solver1, with key differ-
ences for memory-efficiency and parallelization. This is achieved
by exploiting a key property of iterative Krylov solvers: explicit
construction of the system matrix is not required (in contrast to
direct solvers). For iterative Krylov solvers, only the action of the
matrix on a given input vector is required (i.e., the matrix-vector
product).

Specifically, we implemented our solver with the goal of solving
linear systems Au = f with

A =𝑚I + 𝑛 [diag(L) + (L − diag(L)) E] ,
where 𝑚 ∈ {0, 1} and 𝑛 ∈ {1,−Δ𝑡,−Δ𝑡/2}. This generalized form
for A supports the applications described in Sections 6 and 7. For
example, setting 𝑚 = 𝑛 = 1 results in the linear system for the
screened-Poisson problem described in Section 6.3. The matrices

1https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

E and L are stored explicitly, as discussed in Section 5.3, and the
matrix-vector product Au is computed as follows:

(1) Compute a = Eu.
(2) Compute b = (L − diag(L))a.
(3) Compute a = diag(L)u.
(4) Return v =𝑚u + 𝑛a + 𝑛b.

OpenMP is used for parallelizing each of the steps over the DOFs.
In addition, iterative Krylov solvers allow for a preconditioner (i.e.,

approximate inverse operator) for improving convergence of the
linear solver. The preconditioner step requires solving the equation
Mz = r, where M is an approximation to A and r is the residual vector.
Depending on the particular problem, we either use a diagonal
preconditioner or a damped-Jacobi preconditioner. Computing the
diagonal entries of A would require extra computations since the full
matrix is not constructed. In practice, however, we found that the
diagonal values of𝑚I + 𝑛diag(L) are a good enough approximation.
(In our experiments, we have verified that the infinity norm of the
error matches the result produced by Eigen’s solver.) For damped-
Jacobi preconditioning, the iteration u← u+𝜔diag(L)−1r is applied
for a fixed number of iterations with 𝜔 = 2/3.

5.5 Visualization
The solution can be visualized in multiple ways. Demir and Wester-
mann [2015] proposed a direct raycasting approach based on the
closest points cpS (x𝑖) for x𝑖 ∈ Ω(S). The set of cpS (x𝑖) can also be
considered a point cloud and visualized as such. Lastly, interpolation
allows the solution to be transferred to any explicit representation,
e.g., triangle mesh, point cloud, etc.

For convenience, we visualize the surface solution at points cpS (x𝑖)
(e.g., Figure 18) or interpolate onto a triangulation. If the given sur-
face S is provided as a triangulation we use it; if a surface can be
described by a parameterization, we connect evenly spaced points in
the parameter space to create a triangulation. Both point clouds and
triangulations are visualized using polyscope [Sharp et al. 2019b].

6 CONVERGENCE STUDIES
We begin our evaluation by verifying that our proposed IBC schemes
achieve the expected convergence orders on various analytical prob-
lems. We also compare our approach with the existing CPM ap-
proach of Auer et al. [2012], the nearest point approach, as well
as a standard mesh-based method for reference. Lastly, we com-
pare our partially matrix-free solver against Eigen’s SparseLU and
BiCGSTAB implementations [Guennebaud et al. 2010] as well as
Intel MKL PARDISO. All error values are computed using the max-
norm. Throughout the rest of the paper, the hat symbol has been
dropped from manifold functions (e.g., 𝑢), since it is apparent from
the context.

6.1 Poisson Equation with Discontinuous Solution
Consider the Poisson equation

− 𝜕
2𝑢

𝜕𝜃2 = 2 cos(𝜃 − 𝜃C),
𝑢 (𝜃−C) = 2,
𝑢 (𝜃+C) = 22,

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://eigen.tuxfamily.org/dox/BiCGSTAB_8h_source.html

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:13

�G �G �G �G �G

(a) Discontinous Poisson
Dirichlet IBC

(b) Heat Equation
Dirichlet IBC

(c) Heat Equation
Neumann IBC

(d) Screened Poisson
Closed Curve

(e) Screened Poisson
Open Curve

Fig. 7. Convergence studies and associated geometries for the model problems in Sections 6.1-6.3. The plots show results for our CPM approach using first
(blue) and second (orange) order IBCs, along with lines of slopes 1 (gray, dashed) and 2 (gray, dotted). In (a)-(c) analytical cpS are used, while (d) and (e)
compute cpS from the level-set representation of S. All examples use analytical cpC .

on the unit circle parameterized by 𝜃 . The right-hand-side expres-
sion is found by differentiating the exact solution

𝑢 (𝜃) = 2 cos(𝜃 − 𝜃C) +
10
𝜋
(𝜃 − 𝜃C),

where 𝜃C is the location of the Dirichlet IBC. The Dirichlet IBC is
two-sided and thus discontinuous at the point 𝜃C , with 𝑢 = 2 as
𝜃 → 𝜃−C and 𝑢 = 22 as 𝜃 → 𝜃+C . We use 𝜃C = 1.022𝜋 ; no grid points
coincide with the IBC location.

Eigen’s SparseLU is used to solve the linear system for this prob-
lem on the circle embedded in R2. Figure 7(a) shows that the first
and second-order IBCs discussed in Section 4 achieve the expected
convergence rates. Neither the nearest point approach (Section 4.8)
nor the method of Auer et al. [2012] can handle discontinuous IBCs.

6.2 Heat Equation
CPM can also be applied to time-dependent problems. Consider the
heat equation

𝜕𝑢

𝜕𝑡
= ΔS𝑢, with

{
𝑢 = 𝑔, or
∇S𝑢 · bC = 0,

on C, (18)

where bC is the binormal direction to C that is also in the tangent
plane of S, i.e., bC = nS × tC (see Section 4.7). If imposing the
Dirichlet IBC, the exact solution,𝑔, is used as the prescribed function
on C. Here we solve the heat equation on the unit sphere with the
exact solution

𝑔(𝜃, 𝜙, 𝑡) = 𝑒−2𝑡 cos(𝜙),
where 𝜃 is the azimuthal angle and 𝜙 is the polar angle. The IBC is
imposed with C as a circle defined by the intersection of a plane
with S. The initial condition is taken as 𝑔(𝜃, 𝜙, 0) = cos(𝜙).

Crank-Nicolson time-stepping [LeVeque 2007] (i.e., trapezoidal
rule) is used with Δ𝑡 = 0.1Δ𝑥 until time 𝑡 = 0.1. Figure 7 (b) and (c)

show convergence studies for (18) with Dirichlet and zero-Neumann
IBCs imposed, respectively. The expected order of accuracy for first
and second-order IBCs is achieved for both the Dirichlet and zero-
Neumann cases. Recall that the nearest point approach and the
method of Auer et al. [2012] cannot handle Neumann IBCs.

6.3 Screened-Poisson Equation
Exact solutions for manifold PDEs can also be derived on more
complex manifolds defined as level sets. Consider the screened-
Poisson problem in Section 4.6.5 of [Chen and Macdonald 2015],
which was inspired by an example by Dziuk [1988]. The surface is
defined as S = {x ∈ R3 | (𝑥1 − 𝑥2

3)2 + 𝑥2
2 + 𝑥2

3 = 1}, which we refer
to as the Dziuk surface.

The screened-Poisson equation we solve is

−ΔS𝑢 + 𝑢 = 𝑓 ,

∇S𝑢 · bC = 0, (19)

with exact solution𝑢 (x) = 𝑥1𝑥2 . Although the solution is simple, the
function 𝑓 is complicated; we derived it by symbolic differentiation
using the formulas in [Chen and Macdonald 2015; Dziuk 1988].

The zero-Neumann IBC of (19) is satisfied on the intersection ofS
with the 𝑥1𝑥2-plane. From the definition ofS, this intersection is the
unit circle in the 𝑥1𝑥2-plane. Figure 7 (d) and (e) show convergence
studies imposing the zero-Neumann IBC on the full circle (closed
curve) and the arc with 𝜃 ∈ [− 3𝜋

4 , 𝜋4] (open curve), respectively.
The expected order of accuracy is observed for the implementations
of first and second-order IBCs.

6.4 Different CPM approaches vs. a Mesh-Based Method
CPM is principally designed to solve problems on general manifolds,
given by their closest point functions. The closest point function can

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

T𝑔 T𝑏

Fig. 8. Triangulations of the Dziuk surface used for testing. Top-left: Good-
quality base triangulation, T𝑔 . Top-right: Low-quality base triangulation,
T𝑏 . Bottom row: The same triangulations after four rounds of refinement.

be thought of as a black box allowing many manifold representations
to be handled in a unified framework. Hence, we emphasize that
one should not expect CPM to universally surpass specially tailored,
well-studied approaches for particular manifold representations,
such as finite elements on (quality) triangle meshes. Nevertheless,
mesh-based schemes provide a useful point of reference for our
evaluation. CPM also retains some advantages even for triangle
meshes, such as mesh-independent behaviour.

With the above caveat in mind, we compare the various CPM
approaches to the standard cotangent Laplacian [Dziuk 1988; Pinkall
and Polthier 1993] that approximates the Laplace-Beltrami operator
on a triangulation of the surface. We use the implementation from
geometry-central [Sharp et al. 2019a], adapted slightly to include
IBCs. The Poisson equation−ΔS𝑢 = 𝑓 is solved on the Dziuk surface
defined in Section 6.3. The same exact solution 𝑢 (x) = 𝑥1𝑥2 is used,
but Dirichlet IBCs are imposed using this exact solution.

“Good” and “bad” triangulations of the Dziuk surface, denoted
T𝑔 and T𝑏 respectively, are used to illustrate the dependence of
the mesh-based method on triangulation quality (Figure 8). Both
triangulations are constructed starting from six vertices on S as in
[Dziuk 1988]. An initial round of 1:4 subdivision is performed by
adding new vertices along each edge, at the midpoint for T𝑔 and
at the 20% position for T𝑏 , to induce skinnier triangles in the latter.
The new vertices are projected to their closest points on S.

Evaluations under refinement for the mesh-based method are
performed starting with the above first-level T𝑔 and T𝑏 . We refine
with uniform 1:4 subdivision, for both T𝑔 and T𝑏 , by adding new
vertices at midpoints of edges and then projecting them onto S (see
Figure 8). Delaunay edge flips are also performed to improve the
quality of T𝑔 at each refinement level.

Triangle mesh resolution is measured as the mean edge-length in
T𝑔 or T𝑏 , whereas for CPM resolution is measured as the uniform

Δ𝑥 used in the computational-tube Ω(S). This core incompatibility
makes it inappropriate to use resolution as the independent variable
for comparative evaluations of error, computation time, or memory
usage. A more equitable comparison is to investigate computation
time versus error and memory versus error. Computation times for
CPM include the construction of Ω(S) and Ω(C) (which involves
computing cpS and cpC) and the time for constructing and solving
the linear system. Computation times for the mesh-based method
include the triangulation refinement and the construction and solu-
tion of the linear system. Separate evaluations are performed with
C as a closed curve, an open curve, and a point, since CPM IBC
enforcement is slightly different for each type of C.

Closed Curve IBC. The boundary curve C is constructed using the
flip geodesics algorithm in geometry-central [Sharp et al. 2019a].
The resulting C is represented as a polyline P, which in general
does not conform to edges or vertices of T . For IBC enforcement,
the nearest vertex in the triangulation T to each vertex in P is
assigned the prescribed Dirichlet value.

This treatment of Dirichlet IBCs for the mesh-based method is
first-order accurate in general. More accurate (and involved) Dirich-
let IBC approaches could be used as discussed in Section 2.3. How-
ever, we set these options aside, as the goal of this comparison is
simply to show that CPM with our first and second-order IBC ap-
proaches gives comparable results to basic mesh-based methods,
that is, mesh-based methods where the representations of S and C
are held fixed, e.g., no (extrinsic or intrinsic) remeshing is performed.

Figure 9 (top row) compares all types of CPM IBC approaches
against the mesh-based method on T𝑔 and T𝑏 in columns (b) and
(c). CPM with second-order IBCs achieves the lowest error for the
same computation time and memory usage as other approaches. The
mesh-based method with T𝑔 outperforms the use of T𝑏 , as expected.
CPM with first-order IBCs and nearest point approaches are similar
and lie between the mesh-based method with T𝑔 and T𝑏 . The method
of Auer et al. [2012] has the largest error compared to all others. The
expected order of convergence is seen for all CPM IBC approaches
in the error versus Δ𝑥 plot of Figure 9 (top row, (d)).

Open Curve IBC. The open curve C is also constructed using the flip
geodesics algorithm in geometry-central [Sharp et al. 2019a]. The
Dirichlet IBC is enforced in the mesh-based solver in the same way
as the closed curve above. Figure 9 (middle row) shows the same
ranking of the methods as in the closed curve case, except CPM
with first-order IBCs now outperforms both triangulations and the
nearest point CPM approach. The expected order of convergence is
seen for all CPM IBC approaches in Figure 9 (middle row, (d)).

Point IBC. The point C is intentionally chosen as one of the vertices
in the base triangulation so that it is present in all refinements of T𝑔
and T𝑏 . The Dirichlet IBC at C is imposed by replacing the vertex
DOF in T with the prescribed Dirichlet value. Figure 9 (bottom row)
shows the results for a point C.

The mesh-based solver on T𝑔 converges with second-order accu-
racy (since the IBC is a vertex), but only first-order accuracy on T𝑏 .
Therefore, the mesh-based method with T𝑔 outperforms CPM with
second-order IBCs in the larger error regime. In the lower error

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:15

(a) (b) (c) (d)
�G

�G

�G

Fig. 9. A comparison of CPM vs. the mesh-based cotangent Laplacian for the Poisson equation with Dirichlet IBC. Top row: Closed curve C. Middle row: Open
curve C. Bottom row: Point C. Columns (b) and (c) show computation time vs. error and memory vs. error, respectively. Mesh results are shown separately for
the T𝑔 and T𝑏 triangulations. Column (d) illustrates the convergence behaviour of error vs. Δ𝑥 for only the CPM schemes. The cpS are computed from a
level-set representation, while cpC are computed from polyline representations for curves C and exactly for the point C.

regime, the latter methods are similar. All other methods show the
same ranking as the open curve case.

The expected order of convergence is seen for all CPM IBC ap-
proaches in Figure 9 (bottom row, (d)). Notably, the second-order
IBC version of CPM exhibits slightly higher than expected errors at
the finest grid resolution for the closed and open curve IBCs (see
Figure 9, top and middle rows, (d)). This is caused by the resolu-
tion of the polyline representation of C: at fine grid resolutions,

the inherent sharp features of the coarse polyline C begin to be
resolved more fully by the discrete CP function. Accordingly, no
such reduction in convergence order is seen for the point IBC.

6.5 Linear System Solvers
Our partially matrix-free BiCGSTAB solver (see Section 5.4) is faster
and more memory efficient than Eigen’s SparseLU and BiCGSTAB
implementations [Guennebaud et al. 2010] as well as the Intel MKL

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

�G�G�G�G

Fig. 10. Left pair: Computation time vs. Δ𝑥 plots for the heat equation (18) with Dirichlet and zero-Neumann IBCs with four solver options. Right pair:
Memory vs. Δ𝑥 plots for the same problems and solvers. Our solver (orange) achieves the lowest computation time and memory costs.

Table 2. Ratios of computation time 𝑇spdup and memory usage 𝑀red for
Eigen’s SparseLU and BiCGSTAB as well as PARDISO as compared to our
tailored BiCGSTAB solver, for the experiments of Figure 10.

Solver IBC 𝑇spdup 𝑀red
Max Avg. Max Avg.

Eigen’s SparseLU Dirichlet 16.6 11.8 17.9 9.1
Neumann 86.2 38.3 18.1 9.1

Eigen’s BiCGSTAB Dirichlet 9.5 6.6 1.9 1.8
Neumann 40.9 18.0 1.9 1.8

MKL PARDISO Dirichlet 13.7 10.5 10.6 7.3
Neumann 54.2 27.3 10.3 7.0

PARDISO. An example of the improved efficiency is shown in Fig-
ure 10 for the heat problem in Section 6.2 with Dirichlet and zero-
Neumann IBCs. Solving the heat equation involves multiple lin-
ear system solves (i.e., one for each time step). SparseLU requires
the most computation time, even though it prefactors the matrix
once and just performs forward/backward solves for each time step.
SparseLU also uses the most memory, as expected. PARDISO facili-
tates parallelism during factorization, enhancing the speed of the
initialization process compared to Eigen’s SparseLU. However, the
forward/backward solves are still conducted sequentially, limiting
the magnitude of the performance improvement.

Table 2 gives the max and average computation time speedup,
𝑇spdup, and memory reduction, 𝑀red, for the results in Figure 10. The
computation time speedup compared to Eigen’s SparseLU (similarly
for BiCGSTAB and PARDISO) is computed as

𝑇spdup = 𝑇 (SparseLU)/𝑇 (Ours),

where 𝑇 (SparseLU) and 𝑇 (Ours) are the computation times of
SparseLU and our solver, respectively. The memory reduction fac-
tor is calculated in an analogous manner with computation times
replaced by memory consumption. The max and average𝑇spdup and
𝑀red are computed over all Δ𝑥 .

The speedup of our solver is significant compared to Eigen’s
SparseLU and BiCGSTAB as well as PARDISO. The memory reduc-
tion of our method is significant compared to Eigen’s SparseLU and
PARDISO, but less significant compared to Eigen’s BiCGSTAB. The
speedup exhibits problem-dependence since𝑇spdup factors in Table 2
are larger for the zero-Neumann IBC compared to the Dirichlet IBC.
However, as expected, 𝑀red is not problem-dependent.

7 APPLICATIONS
We now show the ability of our CPM approach to solve PDEs with
IBCs that are common in applications from geometry processing:
diffusion curves, geodesic distance, vector field design, harmonic
maps, and reaction-diffusion textures.

Quadratic polynomial interpolation, i.e., 𝑝 = 2, is used for all the
examples in this section. Current CPM theory suggests that only
first-order accuracy can be expected with quadratic polynomial
interpolation, but CPM has been observed to give second-order
convergence numerically (see [Macdonald and Ruuth 2010], Section
4.1.1). This behaviour is confirmed with IBCs in Figure 11.

The main motivation for choosing quadratic interpolation is to ob-
tain smaller computational tube-radii, 𝑟Ω (S) , which allows higher
curvature S and C to be handled with larger Δ𝑥 . The resulting
Ω(S) and Ω(C) contain fewer DOFs and therefore the computa-
tion is more efficient. Furthermore, Figure 11 shows that, for the
same Δ𝑥 , quadratic interpolation has lower computation times. Qua-
dratic interpolation is 1.1-2.1 times faster than cubic interpolation
in Figure 11. We used 𝑝 = 3 in the convergence studies of Section 6
because the error for second-order BCs with 𝑝 = 2 can sometimes be
less regular (i.e., decreasing unevenly or non-monotonically) than
with 𝑝 = 3 (Figure 11, bottom right).

CPM with first-order IBCs is used in all the examples in this
section. The geodesic distance, vector field design, and harmonic
map algorithms used here are themselves all inherently first-order
accurate; hence using second-order IBCs would only improve accu-
racy near C. Second-order IBCs could have been used for diffusion
curves and reaction-diffusion textures, but the first-order method

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:17

�G �G

�G �G

Fig. 11. A comparison of CPMwith quadratic vs. cubic interpolation stencils
for the heat (top row) and Poisson (bottom row) problems of Figure 7 (b)
and (d). Comparable results are achieved, but quadratic is often faster while
cubic typically exhibits more regular convergence.

was used for consistency. Note also that any surface represented as
a mesh is scaled (with fixed aspect ratio) to fit in [−1, 1]3.

7.1 Diffusion Curves
Diffusion curves offer a sparse representation of smoothly varying
colours for an image [Orzan et al. 2008] or surface texture [Jeschke
et al. 2009]. Obtaining colours over all of S requires solving the
Laplace-Beltrami equation with IBCs:

ΔS𝑢𝑖 = 0, with
{
𝑢𝑖 = 𝑔𝑖 , or
∇S𝑢𝑖 · bC = 0.

on C. (20)

The Laplace-Beltrami equation (20) is solved for each colour chan-
nel𝑢𝑖 independently with CPM. The colour vector is composed of all
the colour channels, e.g., for RGB colours u = [𝑢1, 𝑢2, 𝑢3]𝑇 . Dirichlet
IBCs, 𝑢𝑖 = 𝑔𝑖 on C, are used to specify the colour values at sparse
locations on S. These colours spread over all of S when the Laplace-
Beltrami equation is solved. Zero-Neumann IBCs can be used to
treat C as a passive barrier that colours cannot cross. Two-sided
IBCs along C are also easily handled, and can even be of mixed
Dirichlet-Neumann type (not to be confused with Robin BCs).

The surface of the Nefertiti bust [Al-Badri and Nelles 2024] is
coloured by solving the Laplace-Beltrami equation with CPM with
Δ𝑥 = 0.00315 and IBCs specified by diffusion curves in Figure 1 (a).
IBC curves are polylines created using the flip geodesics algorithm
in geometry-central [Sharp et al. 2019a]. Most curves are two-
sided Dirichlet IBCs (white curves, Figure 1 (a) left). However, the

Fig. 12. Diffusion curves on a nonmanifold object of mixed codimension.
Line segments connect the torus to the sphere, which are all representedwith
analytical cpS . The cpC for the circle on the sphere is computed analytically,
while cpC for the torus knot is computed from a parametrization.

red and green band on the headdress is created using two-sided red-
green Dirichlet IBCs vertically and two-sided Neumann-Dirichlet
IBCs horizontally (black curves, Figure 1 (a) left).

Mixed-Codimensional Objects. The generality of CPM allows PDEs
on mixed-codimensional objects to be solved. The theoretical as-
sumption that cpS is unique is violated in this case (near pieces
of differing codimension). However, CPM gives the expected re-
sult in practice on mixed-codimensional objects (e.g., Figure 4.4
of [Macdonald and Ruuth 2010]).

Figure 12 shows a diffusion curves example (with Δ𝑥 = 0.05)
featuring a mixed 1D and 2D object embedded in R3. This mixed-
codimensional S is created using analytical closest point functions
for the torus, sphere, and line segment. The torus has minor radius
𝑟 = 1 and major radius 𝑅 = 3, while the sphere is of radius 1.25. The
closest point to S is determined by computing the closest point to
each of the torus, sphere, and line segments, then taking the closest
of all four. The two curves C in this example are two-sided Dirichlet
IBCs. C on the torus is a torus knot specified by the parametric
equation

𝑥 (𝑠) = 𝑣 (𝑠) cos(𝑎𝑠), 𝑦 (𝑠) = 𝑣 (𝑠) sin(𝑎𝑠), 𝑧 (𝑠) = sin(𝑏𝑠), (21)

with 𝑣 (𝑠) = 𝑅 + cos(𝑏𝑠), 𝑎 = 3, 𝑏 = 7, and 𝑠 ∈ [0, 2𝜋]. Closest points
for the torus knot are computed using the optimization problem
discussed in Appendix A. C on the sphere is an analytical closest
point function for a circle defined as the intersection of the sphere
and a plane. Notice the colour from the torus to the sphere blends
across the line segments as expected (see Figure 12 zoom).

Codimension-ZeroManifolds. Interestingly, CPM can also be applied
with codimension-zero manifolds (see Section 6.2.4 of [Macdonald
et al. 2013]). A codimensional-zero manifold is a solid object that is a
subset of Rdim(S) . Consider a codimension-zero S, with a boundary
𝜕S. The computational domain Ω(S) consists of all grid points

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

Fig. 13. CPM applied to a codimension-zero diffusion curve problem, with
the Dirichlet colour value varying along the white IBC curve. Top row: At an
insufficient grid resolution of Δ𝑥 = 0.05 (left), high curvature regions exhibit
errors near the curve’s medial axis (right). Bottom row: A high-resolution grid
with Δ𝑥 = 0.005 (left) resolves the artifacts (right). The cpS are computed
analytically and cpC are computed from a parametric representation.

x𝑖 ∈ S (having cpS (x𝑖) = x𝑖) plus a layer of grid points outside S
where cpS (x𝑖) ∈ 𝜕S and ∥x𝑖 − cpS (x𝑖)∥ ≤ 𝑟Ω (S) .

Figure 13 shows an example of applying CPM to the diffusion
curves problem with S as the square [−1, 1]2 and Ω(S) ⊂ R2 .

A parametric curve on the interior of S defines a diffusion curve
C as a two-sided Dirichlet IBC, given by

𝑥 (𝑠) = 𝑣 (𝑠) cos(𝑠) + 𝑐, 𝑦 (𝑠) = 𝑣 (𝑠) sin(𝑠) + 𝑐, (22)

where

𝑣 (𝑠) =
cos(𝑠)

(
1
2 (𝑎 + 𝑏) + sin(𝑎𝑠) + sin(𝑏𝑠)

)
+ 1

2 (𝑎 + 𝑏)
𝑎 + 𝑏 ,

with 𝑎 = 3,𝑏 = 4, 𝑐 = − 1
2 , and 𝑠 ∈ [0, 2𝜋]. Note that the colour varies

along C from red to green inside C and blue to green outside C.
(Such colour variations along boundaries C can also easily be applied
to problems where the embedding domain has higher dimension
than S.) First-order zero-Neumann exterior BCs are applied on 𝜕S
naturally by CPM, which enforces no (conormal, i.e., normal to 𝜕𝑆
and in the tangent space of S) colour gradient at 𝜕S.

The grid spacing Δ𝑥 needs to be fine enough near C to give an
accurate solution. Artifacts can occur if stencils undesirably cross
the medial axis of C when Δ𝑥 is too large (cf. Figure 13 top and
bottom rows). A promising direction of future work is therefore
to explore the use of adaptive grids based on the geometry of C.
Adaptivity would reduce the total number of DOFs in the linear
system and thus improve efficiency. Adaptive grids based on the
geometry of S would also improve efficiency when codim(S) > 0.

Applying CPM with codim(S) = 0 represents an alternative to (or
generalization of) various existing embedded boundary methods for
irregular domains, e.g., [Gibou et al. 2002; Ng et al. 2009; Schwartz
et al. 2006]. Advantages and disadvantages of this approach should
be explored further in future work. One advantage shown by Mac-
donald et al. [2013] is the ability to couple volumetric and surface
PDEs in a unified framework.

7.2 Geodesic Distance
The heat method for geodesic distance computation [Crane et al.
2013] has been implemented on many surface representations, in-
cluding polygonal surfaces, subdivision surfaces [De Goes et al.
2016b], spline surfaces [Nguyen et al. 2016], tetrahedral meshes
[Belyaev and Fayolle 2015], and point clouds [Crane et al. 2013],
with each requiring nonnegligible tailoring and implementation ef-
fort. By introducing our Dirichlet IBC treatment for CPM, we enable
a single implementation covering all these cases, since closest points
can be computed to these and many other manifold representations.

The heat method approximates the geodesic distance 𝜙 using the
following three steps:

(1) Solve 𝜕𝑢
𝜕𝑡 = ΔS𝑢 to give 𝑢𝑡 at time 𝑡,

(2) Evaluate the vector field X = −∇S𝑢𝑡/∥∇S𝑢𝑡 ∥,
(3) Solve ΔS𝜙 = ∇S · X for 𝜙 .

Step (1) uses a Dirac-delta heat source for a point C or a generalized
Dirac distribution over a curve C as the initial condition. The time
discretization of step (1) employs implicit Euler, for one time-step,
which is equivalent (up to a multiplicative constant) to solving

(I − 𝑡ΔS)𝑣𝑡 = 0 on S\C,
𝑣𝑡 = 1 on C. (23)

The discrete system for (23) can be written as Av = f , where A ∈
R(𝑁S+𝑁C)×(𝑁S+𝑁C) and v, f ∈ R𝑁S+𝑁C .

Imposing first-order IBCs involves the Heaviside step function
for f . That is, f𝑖 = 0 if 𝑖 is in the PDE DOF set (𝑖 ∈ 𝐽S) and f𝑖 = 1
if 𝑖 is in the BC DOF set (𝑖 ∈ 𝐽C). When imposing this IBC in (23),
CPM can experience Runge’s phenomenon due to the polynomial
interpolation used for the CP extension. Therefore, we approximate
the Heaviside step function with a smooth approximation as

f𝑖 =
1
2 tanh

(−𝑘 ∥cpS−C (x𝑖)∥
) + 1

2 , with 𝑘 =
atanh(1 − 𝜖)

𝑒
.

The parameters 𝑒 and 𝜖 correspond to the “extent” [−𝑒, 𝑒] and the
maximum error of the approximation outside of the extent, respec-
tively. That is, when ∥cpS−C (x𝑖)∥ = 𝑒 , the error in approximating
the Heaviside function is 𝜖 and the error becomes smaller further
outside of [−𝑒, 𝑒]. We choose 𝑒 = 𝑟Ω (S) and 𝜖 = Δ𝑥 for our results.

Step (3) of the heat method also involves a Dirichlet IBC, 𝜙 = 0
on C, since the geodesic distance is zero for points on C. No special
treatment is required for this IBC. To improve accuracy, steps (2)
and (3) are applied iteratively as discussed by Belyaev and Fayolle
[2015]. Two extra iterations of steps (2) and (3) are applied in all our
examples of the CPM-based heat method.

We use Eigen’s SparseLU to solve (only) the linear systems arising
from step (1) of the heat method. Using BiCGSTAB (either Eigen’s
or our custom solver) results in an incorrect solution despite the iter-
ative solver successfully converging, even under a relative residual

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:19

Exact Polyhedral CPM Heat Method (Ours) Mesh Heat Method

Fig. 14. CPM vs. mesh-based methods for geodesic distances to a point on a triangulation of the Dziuk surface. Consistent results are observed.

tolerance of 10−15. We observed that the small time-step of the heat
method, Δ𝑡 = Δ𝑥2, causes difficulties for BiCGSTAB. The reason is
that values far from the heat sources are often extremely close to
zero. Tiny errors in these values are tolerated by BiCGSTAB, but lead
to disastrously inaccurate gradients in step (2), and thus incorrect
distances in step (3). Another option is to calculate smoothed dis-
tances (see Section 3.3 of [Crane et al. 2013]) using larger time-steps
Δ𝑡 = 𝑚Δ𝑥2 with 𝑚 ≥ 100; in this scenario BiCGSTAB encoun-
ters no problems. Our partially matrix-free BiCGSTAB solver is
nevertheless successfully used for step (3) of the heat method.

Figure 14 shows the geodesic distance to a single source point
on the Dziuk surface, where our CPM-based approach (with Δ𝑥 =
0.0125) is compared to exact polyhedral geodesics [Mitchell et al.
1987] and the mesh-based heat method. Implementations of the
latter two methods are drawn from geometry-central [Sharp et al.
2019a]. All three approaches yield similar results.

For the example in Figure 14, closest points are computed from
the same triangulation used in the exact polyhedral and mesh-based
heat method. However, closest points can also be directly computed
from the level-set Dziuk surface (as in Section 6.3). To our knowledge,
the heat method has not been applied on level-set surfaces before.

We showcase the ability of our CPM to compute geodesic distance
on general manifold representations. Figure 15 visualizes the geo-
desic distance to an open curve on the “DecoTetrahedron” [Palais
et al. 2023] level-set surface,

S =

{
x ∈ R3

���� 3∑︁
𝑖=1

(
(𝑥𝑖 − 2)2 (𝑥𝑖 + 2)2 − 10𝑥2

𝑖

)
+ 3

(
𝑥2

1𝑥
2
2 + 𝑥2

1𝑥
2
3 + 𝑥2

2𝑥
2
3

)
+ 6𝑥1𝑥2𝑥3 = −22

}
.

S and C can also have mixed representations. For example, Figure 1
(b) shows the geodesic distance (using Δ𝑥 = 0.00625) to the trefoil
knot (a.k.a. torus knot with 𝑎 = 2 and 𝑏 = 3, see (21)) on a torus
with minor and major radii 1 and 2, respectively. The trefoil knot
uses a parametric representation while the torus uses an analytical
closest point representation.

7.3 Vector Field Design
Designing tangent vector fields on surfaces is useful in many appli-
cations including texture synthesis, non-photorealistic rendering,
quad mesh generation, and fluid animation [De Goes et al. 2016a;
Zhang et al. 2006]. One approach for vector field design involves

Fig. 15. Geodesic distance to a polyline curve (black) visualized on the
“DecoTetrahedron” level-set surface computed using CPM with Δ𝑥 = 0.025.
The closest points themselves are directly rendered.

the user specifying desired directions at a sparse set of surface lo-
cations, which are then used to construct the field over the entire
surface. Adapting ideas from Turk [2001] and Wei and Levoy [2001],
we interpret the user-specified directions as Dirichlet IBCs and use
diffusion to obtain the vector field over the whole surface.

We iterate between heat flow of the vector field and projections
onto the tangent space to obtain the tangent vector field over all of
S. Specifically, each iteration involves the following steps:

(1) Perform heat flow independently for each component of u =
[𝑢1, 𝑢2, 𝑢3]𝑇 according to

𝜕𝑢𝑖

𝜕𝑡
= ΔS𝑢𝑖 , with

{
𝑢𝑖 = 𝑔𝑖 , or
∇S𝑢𝑖 · bC = 0,

on C,

starting from the vector field after the previous iteration.
(2) Project u(x𝑗) onto the tangent space ofS using nS at cpS (x𝑗)

u(x𝑗) =
(
I − nSn𝑇S

)
u(x𝑗).

One time-step of heat flow is performed on each iteration using
implicit Euler with Δ𝑡 = 0.1Δ𝑥 . A total of 10 iterations are used for
all examples. The vector field for the first iteration consists of zero
vectors unless the direction is specified by an IBC.

Dirichlet IBCs g = [𝑔1, 𝑔2, 𝑔3]𝑇 can be specified at points or
curves. For point Dirichlet IBCs the direction of g is any direction in
the tangent space of S. Dirichlet IBCs on curves could also specify
any direction in the tangent space of S, but designing vector fields

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

Fig. 16. Vector field design on a parametric surface of revolution, with
Dirichlet IBCs on a parametric curve and points shown in white.

is more intuitive when g is the unit tangent direction tC along C.
Zero-Neumann IBCs are also used within our framework to block
the vector field from diffusing across C.

Figure 1 (c) shows an example of a vector field designed on the
Möbius strip using Δ𝑥 = 0.0064. The Möbius strip is actually a
triangulated surface in this example, although its parametric form
could be used instead (see [Macdonald et al. 2011]). Zero-Neumann
exterior BCs are imposed automatically by CPM with first-order
accuracy on the geometric boundary. This example shows the ability
of our approach to handle open and nonorientable surfaces. There
are four points and two curves specifying the IBCs in Figure 1 (c). A
circular closed curve demonstrates that vortices can be created. The
other curve on the Möbius strip enforces a zero-Neumann IBC that
blocks direction changes in the vector field (see Figure 1 (c) zoom).

Figure 16 shows another example on a parametric surface of
revolution (with Δ𝑥 = 0.025), which is constructed by revolving the
planar parametric curve (22) with 𝑐 = 1

2 around the 𝑧-axis. All IBCs
in this example are Dirichlet IBCs. Sinks and sources in the vector
field are created with four Dirichlet point IBCs. The curve IBC is a
two-sided Dirichlet IBC that flips the direction of the vector field
across C (see Figure 16 zoom).

A final vector field design example, on the Lucy surface, is given
in Figure 17. A point cloud representation of the Lucy surface (ver-
tices of a mesh [The Stanford 3D Scanning Repository 2024] with
~1 million vertices) is used and the closest point function is defined
to return the nearest neighbour; for dense enough point clouds this
suffices. For less dense point clouds a smoother closest point func-
tion is required, for example using a moving-least-squares based
projection method [Liu et al. 2006; Yingjie and Liling 2011]. Nev-
ertheless, the variable point density (i.e., higher density on head,
wings, hands, and feet) of the Lucy point cloud in Figure 17 (left)
does not present any issue in this example.

7.4 Harmonic Maps
A map between two manifolds, S1 and S2, matches locations on S1
with locations on S2. The map can be used to analyze differences
betweenS1 andS2 or to transfer data from one manifold to the other.

Fig. 17. Vector field design on a point cloud surface (left), with Dirichlet
IBCs on polyline curves and points shown in white. The resulting vector field
is visualized with flow lines on a triangulation of the point cloud (right).

Harmonic maps are a specific type of map that appears in numerous
domains, e.g., mathematical physics [Bartels 2005] and medical
imaging [Shi et al. 2009, 2007]. In computer graphics, harmonic
maps can be used for many applications such as texture transfer,
quad mesh transfer, and interpolating intermediate poses from key-
frames of a character [Ezuz et al. 2019].

King and Ruuth [2017] considered applying CPM to compute
harmonic maps u(y) : S1 → S2. Adapting their approach, we
compute the harmonic map using the gradient descent flow

𝜕u
𝜕𝑡

= Π𝑇uS2 (ΔS1 u),
u(y, 0) = f (y),
u(y, 𝑡) = g(y), for y ∈ C1,

(24)

where Π𝑇uS2 is the projection operator at the point u onto the
tangent space of S2. The vector ΔS1 u is defined componentwise,
i.e., ΔS1 u = [ΔS1𝑢

1,ΔS1𝑢
2,ΔS1𝑢

3]𝑇 . The f (y) and g(y) are the
initial map (from S1 to S2) and the landmark map (from C1 ⊂ S1
to C2 ⊂ S2), respectively. The subsets C1 and C2 can be landmark
points or curves on S1 and S2 that are enforced to match using
our new Dirichlet IBC treatment; such IBCs were not considered by
King and Ruuth [2017].

An operator splitting approach was used by King and Ruuth
[2017], which allows (24) to be solved with a PDE on S1 alone.
Specifically, one time-step consists of the following:

(1) Solve (24) without the Π𝑇uS2 term using CPM on Ω(S1) with
Ω(C1) to enforce the IBC.

(2) Project the solution from (1) onto S2.
Denote the solution from step (1) at x𝑖 ∈ Ω(S1) and time-step 𝑘 by
v𝑘𝑖 . The projection in step (2) simply moves v𝑘𝑖 to its closest point

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:21

(a) S1 with Texture (b) Initial Map onto S2

(c) Harmonic Map onto S2 w/o IBCs (d) Harmonic Map onto S2 w/ IBCs

Fig. 18. Maps from S1 to S2 with a texture for visualizing the mapping.
Landmark curves (Dirichlet IBCs) C1 and C2 are shown in white. (a) S1 with
texture. (b) S2 with texture from a noisy initial map. (c) S2 with a CPM
harmonic mapped texture without IBCs. (d) S2 with a harmonic mapped
texture using our CPM approach satisfying the IBCs. The surfaces are dis-
played as point clouds. The cpS1 and cpS2 are computed from triangulations,
while cpC1 and cpC2 are computed from polylines.

on S2 by setting u𝑘𝑖 = cpS2 (v𝑘𝑖). One time-step of explicit Euler is
used for step (1) with Δ𝑡 = 0.1Δ𝑥2 starting from u𝑘−1.

To perform the above gradient descent flow a valid initial map u0

is needed to start from. Generating such initial maps in the general
case has not yet been addressed for CPM [King and Ruuth 2017].
Approaches based on geodesic distance to landmark curves/points
C1, C2 could potentially be adapted [Ezuz et al. 2019; Shi et al. 2007].
However, for our illustrative example of incorporating IBCs while
computing harmonic maps, we opt for a simple (but restrictive)
initial map construction. The surface S1 is given by a triangulation
and deformed to create S2 while maintaining the same vertex con-
nectivity. Therefore, the barycentric coordinates of each triangle
can be used to initially map any point on S1 to a point on S2.

Figure 18 shows an example of computing harmonic maps from
the Bob [Crane 2024] surface S1 to its deformed version S2. Grid
spacing Δ𝑥 = 0.00663 is used for Ω(S1). The surfaces are visualized
as point clouds. S1 is visualized with the set of closest points of
grid points in Ω(S1). Each point in the point cloud for S1 has a
corresponding point location on S2 given through the mapping u. A

Fig. 19. Reaction-diffusion texture on a fish surface with zero Dirichlet
IBCs around the eye and on the tail. A two-sided zero Dirichlet-Neumann
IBC is imposed on the dorsal fin. The surface is coloured yellow for high
concentrations of reactant𝑢 and purple for low concentrations. The cpS are
computed from a triangulation, while the cpC are computed from polylines.

texture is added to the surface of S1 and transferred to S2 through
the mapping u.

To emphasize the effect of computing the harmonic map, noise
is added to the initial map (see Figure 18 (b)) before performing
the gradient descent flow. The gradient descent flow is evolved to
steady state using 1500 and 200 time steps with and without the
IBC in Figure 18 (d) and (c), respectively. The harmonic map with
a Dirichlet IBC stretches on one side of C2 and compresses on the
other side to satisfy both the PDE and IBC. Comparing the zoom of
Figure 18 (c) and (d), the point cloud density in (d) is more sparse on
one side of C2 than in (c) due to the stretching of the map, leaving
visual gaps between points in the cloud. The distortion is expected
unless the IBC map g is a harmonic map itself.

7.5 Reaction-Diffusion Textures
Much research in geometry processing has focused on Poisson and
diffusion problems. There are however applications that require
solving more general PDEs, e.g., reaction-diffusion textures [Turk
1991]. Reaction-diffusion textures involve solving coupled equa-
tions on surfaces. These PDEs can form patterns from random ini-
tial conditions and have been solved on meshes [Turk 1991], level
sets [Bertalmıo et al. 2001], and closest point surfaces [Macdonald
et al. 2013]. Here we impose IBCs to control regions of the tex-
ture, emphasizing the generality of CPM, and our novel boundary
condition treatment, with respect to PDE type.

The Gray-Scott model [Pearson 1993]{
𝜕𝑢
𝜕𝑡 = 𝜇𝑢ΔS𝑢 − 𝑢𝑣2 + 𝐹 (1 − 𝑢),
𝜕𝑣
𝜕𝑡 = 𝜇𝑣ΔS𝑣 + 𝑢𝑣2 − (𝐹 + 𝑘)𝑣, (25)

with {
𝑢 = 𝑔 or ∇S𝑢 · bC = 0,
𝑣 = ℎ or ∇S𝑣 · bC = 0,

on C, (26)

is solved with CPM. Figure 19 shows 𝑢 on a fish [Crane 2019] for a
set of IBCs. The constants 𝜇𝑢 = 1.11 × 10−5, 𝜇𝑣 = 𝜇𝑢/3, 𝐹 = 0.054,
𝑘 = 0.063 are used with forward Euler time-stepping until 𝑡 = 10, 000
with Δ𝑡 = 0.9 and Δ𝑥 = 0.01. The initial condition is taken as

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

𝑢 = 1 − 𝑝 , 𝑣 = 𝑝/2 where 𝑝 is given by small random perturbations
around

1
2𝑒

100(𝑧−0.1)2 + 1
2 .

Zero Dirichlet IBCs allow stripes to be placed around the dorsal fin
and tail. The upper side of the dorsal fin IBC is a zero Neumann
IBC, which causes the pattern to intersect perpendicular to the IBC
curve. A closed (zero Dirichlet) IBC curve allows for control of
concentrations of the reactants 𝑢 and 𝑣 in the eye.

8 LIMITATIONS AND FUTURE WORK
As we have discussed and demonstrated, CPM is a powerful tool
for solving manifold PDEs since it provides a unified framework for
general manifold characteristics, general manifold representations,
and general PDEs. Our work extends CPM to solve manifold PDEs
with interior boundary conditions (Dirichlet and zero-Neumann)
while obtaining up to second-order accuracy. The ability to enforce
IBCs enables CPM to be applied to many PDE-based geometry pro-
cessing tasks and applications which were not previously possible.
Additionally, we have developed a runtime and memory-efficient
implementation allowing for the treatment of higher-detail sur-
faces without specialized hardware. To encourage wider adoption of
CPM, we have made the code for our framework publicly available
at https://github.com/nathandking/cpm-ibc. Below, we outline some
of CPM’s existing limitations and describe a few exciting directions
for future work.

Grid Resolution in Practice. Existing CPM theory assumes a unique
closest point function cpS in the computational tube Ω(S). For
general S, the closest point cpS (x) is rarely unique for all x ∈ R𝑑 .
For smooth, compact manifolds, however, cpS (x) is unique for x in a
tubular neighbourhoodN(S) ⊆ R𝑑 surroundingS with sufficiently
small tube radius 𝑟N(S) [Marz and Macdonald 2012].

Uniqueness of cpS is equivalent to requiringN(S)∩med(S) = ∅,
since by definition the medial axis of S, denoted med(S), is the
subset of R𝑑 that has at least two closest points on S. The reach(S)
is the minimum distance from S to med(S). Thus, for a uniform
radius tube, to ensure uniqueness of cpS the tube radius must satisfy
𝑟N(S) < reach(S). Hence, N(S) depends on the geometry of S
since reach(S) depends on curvatures and bottlenecks (thin regions)
of S (see Section 3 of [Aamari et al. 2019]).

In the discrete setting, the computational tube-radius 𝑟Ω (S) must
be less than reach(S). Rearranging (4) means Δ𝑥 must satisfy

Δ𝑥 <
reach(S)√︂

(𝑑 − 1)
(
𝑝+1

2

)2
+
(
𝑞 + 𝑝+1

2

)2

to ensure a unique cpS on Ω(S). However, in practice CPM can
often be used successfully with larger Δ𝑥 , depending on the PDE to
be solved and the accuracy requirements of the application.

In many graphics applications the visual appearance is paramount.
Consider a diffusion curves example on a dragon [The Stanford 3D
Scanning Repository 2024]. Figure 20 shows the resultant surface
colouring at different grid resolutions. Artifacts can be observed for
Δ𝑥 = 0.0125: unintended blending of blue and red on the head yields
purple, while the zoomed-in dragon scale incorrectly shows hints

�G = 0.0125

�G = 0.00625

�G = 0.003125

Fig. 20. Results for three grid resolutions used to solve a diffusion curves
problem to colour the surface of a dragon. The resolution is illustrated by a
small block of grid cells (best viewed by zooming). The cpS are computed
from a triangulation, while the cpC are from polylines.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/nathandking/cpm-ibc

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:23

of blue appearing in a red region. For Δ𝑥 = 0.003125 (and arguably
Δ𝑥 = 0.00625) the result has converged to a visually acceptable,
artifact-free result. However, the Δ𝑥 required to give a unique cpS
for the dragon is Δ𝑥 < 1.28×10−6. This assumes no thin bottlenecks
exist, i.e., reach(S) is computed based on only principal curvatures
(computed directly on the mesh using geometry-central [Sharp
et al. 2019a]). Therefore, Δ𝑥 has always been determined empirically
for practical applications of CPM.

The need to choose Δ𝑥 experimentally is a limitation that costs
the user time. A priori determination of a “correct” grid spacing Δ𝑥
is an open challenge: it will require knowledge about the specific
PDE to be solved, the manifold it is to be solved on, and the accuracy
requirements (perceptual, numerical, etc.) of the user. In general, a
priori error estimation has been rare in computer graphics appli-
cations. A notable exception is the p-refinement FEM scheme of
Schneider et al. [2018], which uses an a priori error estimate based
on the geometry of the (volumetric) domain.

BC Types, Higher-Order Accuracy, and Other PDEs. CPM work to
date has only addressed Dirichlet and zero-Neumann (exterior) BCs.
Macdonald et al. [2013] solved a surface-to-bulk coupled PDE with
Robin BCs on the boundary of the bulk (but S was closed, i.e.,
𝜕S = ∅). Extending CPM to impose inhomogeneous-Neumann,
Robin, and other types of BCs is an important area of future work.
Fortunately, the interior BC framework developed here directly
generalizes existing CPM approaches for exterior BCs; therefore,
our work likely makes any future extensions of CPM for other
exterior BC types immediately applicable as interior BCs as well.

Third-order and higher (exterior and interior) BCs are also im-
portant for higher-order PDE discretizations. CPM itself extends
naturally to higher order, but CPM with higher-order exterior BCs
has not yet been explored. Macdonald et al. [2011] pointed out that
a replacement for cpS is required to incorporate the curvature of
S near 𝜕S. For higher-order interior BCs an improved S⊥ crossing
test (12), involving curvatures of S near C, is likely also needed.

We primarily focused on Poisson and diffusion problems, but
CPM has been applied to numerous other PDEs (see Section 2).
In principle, our approach to IBC enforcement should also readily
extend to those settings. This was confirmed for reaction-diffusion
equations in Section 7.5. Extending CPM to approximate previously
unexplored operators, such as the relative Dirac operator [Liu et al.
2017] or the connection Laplacian [Sharp et al. 2019c], would allow
other geometry processing applications to benefit from CPM.

Efficiency. The discrete setup using a uniform grid near S was cho-
sen for its simplicity and use of well-studied Cartesian numerical
methods (i.e., Lagrange interpolation and finite differences). How-
ever, the ideal radius of CPM’s computational tube is dictated by the
curvature and/or bottlenecks of S and C (see Section 3.1). Higher
curvatures or narrow bottlenecks force the uniform grid spacing to
be small, leading to inefficiency due to a large number of DOFs.

One way to improve the runtime and memory efficiency of CPM
on uniform grids is to use parallelization on specialized hardware,
e.g., GPU [Auer et al. 2012] or distributed memory [May et al. 2022].
However, the number of DOFs with a uniform grid can be higher

than necessary, since the grid is allowed to be coarser in low cur-
vature regions and away from tight bottlenecks of S and C. Near
bottlenecks with low curvature, duplicate DOFs on either side of the
medial axis could be introduced to avoid refining while ensuring
data is extended from the correct part of S (similar to how the cur-
rent work distinguishes different sides of an IBC). This would result
in a nonmanifold grid similar to the work of Mitchell et al. [2015]
and Chuang [2013]. Conversely, near high curvature regions, spatial
adaptivity (e.g., octrees) could be used to provide locally higher
resolution. Combining duplicate DOFs and adaptivity is, therefore,
a promising direction to make CPM more efficient (both in runtime
and memory) for complex surfaces, without recourse to specialized
hardware.

Exploring other approximations of the CP extension and differen-
tial operators in the Cartesian embedding space could also improve
efficiency. For example, combining Monte Carlo methods [Rioux-
Lavoie et al. 2022; Sawhney and Crane 2020; Sawhney et al. 2022;
Sugimoto et al. 2023] with CPM is one interesting avenue. Monte
Carlo methods can avoid computing the global solution, so they
may be more efficient when the solution is only desired on a local
portion of S.

Smoothness of S and C. Most CPM work and theory is based on
smooth manifolds. However, WENO interpolation has been used
to improve the grid-based CPM (i.e., the form used in this paper)
for nonsmooth surfaces (e.g., surfaces with sharp features) [Auer
et al. 2012; Macdonald and Ruuth 2008]. Cheung et al. [2015] used
duplicated DOFs (similar to the current work) near the sharp fea-
ture with a radial-basis function discretization of CPM. However,
such discretizations can suffer from ill-conditioned linear systems.
Therefore, it would be interesting to instead explore altering stencils
(similar to our IBC approach) for the grid-based CPM near sharp
features to use data from the “best side” of the sharp feature. In this
context, the BC curve C would instead be the sharp feature and the
PDE is still imposed on C instead of a BC.

The theoretical restriction of smoothness also applies to the curve
C. Therefore, our IBC approach is theoretically restricted to curves
without kinks or intersections. In practice, we are still able to ob-
tain the expected result when C has sharp features or intersections,
e.g., Figure 1 (a) involves many intersecting curves (in the band
of the headdress) that also create sharp corners. Similarly CPM
gives expected results in practice for mixed-codimensional objects
as seen in Figure 12 where sharp features are present when differing
codimensional pieces meet (one does however observe a decrease
in the empirical convergence order). The development of a sound
theoretical understanding of CPM’s behaviour near sharp features
and intersections is interesting future work.

CPM offers an exciting, unified framework for manifold PDEs on
“black box” closest point representations, which we have extended
with accurate interior BCs. Above, we have outlined a partial roadmap
of CPM’s significant untapped potential; we hope that others in the
computer graphics community will join us in exploring it.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

ACKNOWLEDGMENTS
Nathan King was supported in part by the QEII-GSST and Ontario
Graduate Scholarships. Mridul Aanjaneya was supported in part
by the National Science Foundation under awards CCF-2110861,
IIS-2132972, IIS-2238955 and CCF-2312220 as well as a research gift
from Red Hat, Inc. and Houdini licenses from SideFX Software. Any
opinions, findings and conclusions, or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation. Steven Ruuth was
supported in part by the NSERC Discovery grant program (RGPIN
2022-03302). Christopher Batty was supported in part by the NSERC
Discovery grant program (RGPIN-2021-02524) and the CFI-JELF
program (Grant 40132).

REFERENCES
Eddie Aamari, Jisu Kim, Frédéric Chazal, Bertrand Michel, Alessandro Rinaldo, and

Larry Wasserman. 2019. Estimating the reach of a manifold. Electronic Journal of
Statistics 13, 1 (2019), 1359–1399.

David Adalsteinsson and James A Sethian. 1995. A fast level set method for propagating
interfaces. J. Comput. Phys. 118, 2 (1995), 269–277.

Nora Al-Badri and Jan Nikolai Nelles. 2024. Nefertiti. Downloaded from https://cs.
cmu.edu/~kmcrane/Projects/ModelRepository, original source https://nefertitihack.
alloversky.com/.

Reynaldo J. Arteaga and Steven J. Ruuth. 2015. Laplace-Beltrami spectra for shape com-
parison of surfaces in 3D using the closest point method. In 2015 IEEE International
Conference on Image Processing (ICIP). IEEE, 4511–4515.

Stefan Auer, Colin B. Macdonald, Marc Treib, Jens Schneider, and Rüdiger Westermann.
2012. Real-time fluid effects on surfaces using the closest point method. In Computer
Graphics Forum, Vol. 31. Wiley Online Library, 1909–1923.

Stefan Auer and Rüdiger Westermann. 2013. A semi-Lagrangian closest point method
for deforming surfaces. In Computer Graphics Forum, Vol. 32. Wiley Online Library,
207–214.

Vinicius C. Azevedo, Christopher Batty, and Manuel M. Oliveira. 2016. Preserving
geometry and topology for fluid flows with thin obstacles and narrow gaps. ACM
Trans. Graph. 35, 4 (2016), 1–12.

Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. Levin, and Alec Jacobson. 2018.
Fast winding numbers for soups and clouds. ACM Trans. Graph. 37, 4 (2018), 1–12.

Sören Bartels. 2005. Stability and convergence of finite-element approximation schemes
for harmonic maps. SIAM J. Numer. Anal. 43, 1 (2005), 220–238.

Jacob Bedrossian, James H. Von Brecht, Siwei Zhu, Eftychios Sifakis, and Joseph M.
Teran. 2010. A second order virtual node method for elliptic problems with interfaces
and irregular domains. J. Comput. Phys. 229, 18 (2010), 6405–6426.

Alexander G. Belyaev and Pierre-Alain Fayolle. 2015. On variational and PDE-based
distance function approximations. In Computer Graphics Forum, Vol. 34. Wiley
Online Library, 104–118.

Jean-Paul Berrut and Lloyd N. Trefethen. 2004. Barycentric Lagrange interpolation.
SIAM Rev. 46, 3 (2004), 501–517.

Marcelo Bertalmıo, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. 2001. Varia-
tional problems and partial differential equations on implicit surfaces. J. Comput.
Phys. 174, 2 (2001), 759–780.

Erik Burman, Susanne Claus, Peter Hansbo, Mats G. Larson, and André Massing. 2015a.
CutFEM: discretizing geometry and partial differential equations. Internat. J. Numer.
Methods Engrg. 104, 7 (2015), 472–501.

Erik Burman, Peter Hansbo, and Mats G. Larson. 2015b. A stabilized cut finite element
method for partial differential equations on surfaces: the Laplace–Beltrami operator.
Computer Methods in Applied Mechanics and Engineering 285 (2015), 188–207.

Erik Burman, Peter Hansbo, Mats G. Larson, and Sara Zahedi. 2019. Stabilized CutFEM
for the convection problem on surfaces. Numer. Math. 141 (2019), 103–139.

Chieh Chen and Richard Tsai. 2017. Implicit boundary integral methods for the
Helmholtz equation in exterior domains. Research in the Mathematical Sciences
4, 1 (2017), 19.

Yujia Chen and Colin B. Macdonald. 2015. The closest point method and multigrid
solvers for elliptic equations on surfaces. SIAM Journal on Scientific Computing 37,
1 (2015), A134–A155.

Ka C. Cheung, Leevan Ling, and Steven J. Ruuth. 2015. A localized meshless method
for diffusion on folded surfaces. J. Comput. Phys. 297 (2015), 194–206.

Jay Chu and Richard Tsai. 2018. Volumetric variational principles for a class of partial
differential equations defined on surfaces and curves. Research in the Mathematical
Sciences 5, 2 (2018), 19.

Ming Chuang. 2013. Grid-based finite elements system for solving Laplace-Beltrami
equations on 2-manifolds. Ph. D. Dissertation. Johns Hopkins University.

Ming Chuang, Linjie Luo, Benedict J. Brown, Szymon Rusinkiewicz, and Michael
Kazhdan. 2009. Estimating the Laplace-Beltrami operator by restricting 3D functions.
In Computer Graphics Forum, Vol. 28. Wiley Online Library, 1475–1484.

Keenan Crane. 2019. Fish. Downloaded modified version from odedstein-meshes
https://github.com/odedstein/meshes/tree/master/objects/fish, originally from https:
//cs.cmu.edu/~kmcrane/Projects/ModelRepository.

Keenan Crane. 2024. Bob. Downloaded from https://cs.cmu.edu/~kmcrane/Projects/
ModelRepository.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Trans. Graph. 32, 5
(2013), 1–11.

Fernando De Goes, Mathieu Desbrun, Mark Meyer, and Tony DeRose. 2016b. Subdivision
exterior calculus for geometry processing. ACM Trans. Graph. 35, 4 (2016), 1–11.

Fernando De Goes, Mathieu Desbrun, and Yiying Tong. 2016a. Vector field processing
on triangle meshes. In ACM SIGGRAPH 2016 Courses. 1–49.

Ismail Demir and Rüdiger Westermann. 2015. Vector-to-closest-point octree for surface
ray-casting. In Vision, Modeling & Visualization, David Bommes, Tobias Ritschel,
and Thomas Schultz (Eds.). The Eurographics Association. https://doi.org/10.2312/
vmv.20151259

Gerhard Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces.
Springer.

Gerhard Dziuk and Charles M. Elliott. 2007. Surface finite elements for parabolic
equations. Journal of Computational Mathematics (2007), 385–407.

Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible harmonic maps
between discrete surfaces. ACM Trans. Graph. 38, 2 (2019), 1–12.

Prerna Gera and David Salac. 2017. Cahn–Hilliard on surfaces: A numerical study.
Applied Mathematics Letters 73 (2017), 56–61.

Frederic Gibou, Ronald P. Fedkiw, Li-Tien Cheng, and Myungjoo Kang. 2002. A second-
order-accurate symmetric discretization of the Poisson equation on irregular do-
mains. J. Comput. Phys. 176, 1 (2002), 205–227.

John B. Greer. 2006. An improvement of a recent Eulerian method for solving PDEs on
general geometries. Journal of Scientific Computing 29, 3 (2006), 321–352.

Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
Jeffrey L. Hellrung Jr., Luming Wang, Eftychios Sifakis, and Joseph M. Teran. 2012. A

second order virtual node method for elliptic problems with interfaces and irregular
domains in three dimensions. J. Comput. Phys. 231, 4 (2012), 2015–2048.

Yi Hong, Dengming Zhu, Xianjie Qiu, and Zhaoqi Wang. 2010. Geometry-based control
of fire simulation. The Visual Computer 26, 9 (2010), 1217–1228.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60:1–60:14.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

Stefan Jeschke, David Cline, and Peter Wonka. 2009. Rendering surface details with
diffusion curves. In ACM SIGGRAPH Asia 2009 papers. 1–8.

Peter Kaufmann, Sebastian Martin, Mario Botsch, Eitan Grinspun, and Markus Gross.
2009. Enrichment textures for detailed cutting of shells. In ACM SIGGRAPH 2009
papers. 1–10.

Theodore Kim, Jerry Tessendorf, and Nils Thuerey. 2013. Closest point turbulence for
liquid surfaces. ACM Trans. Graph. 32, 2 (2013), 1–13.

Nathan D. King and Steven J. Ruuth. 2017. Solving variational problems and partial
differential equations that map between manifolds via the closest point method. J.
Comput. Phys. 336 (2017), 330–346.

Catherine Kublik, Nicolay M. Tanushev, and Richard Tsai. 2013. An implicit interface
boundary integral method for Poisson’s equation on arbitrary domains. J. Comput.
Phys. 247 (2013), 279–311.

Catherine Kublik and Richard Tsai. 2016. Integration over curves and surfaces defined
by the closest point mapping. Research in the Mathematical Sciences 3, 1 (2016), 3.

Randall J. LeVeque. 2007. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. SIAM.

Jian Liang and Hongkai Zhao. 2013. Solving partial differential equations on point
clouds. SIAM Journal on Scientific Computing 35, 3 (2013), A1461–A1486.

Hsueh-Ti D. Liu, Alec Jacobson, and Keenan Crane. 2017. A Dirac operator for extrinsic
shape analysis. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 139–149.

Yu-Shen Liu, Jean-Claude Paul, Jun-Hai Yong, Pi-Qiang Yu, Hui Zhang, Jia-Guang Sun,
and Karthik Ramani. 2006. Automatic least-squares projection of points onto point
clouds with applications in reverse engineering. Computer-Aided Design 38, 12
(2006), 1251–1263.

Colin B. Macdonald, Jeremy Brandman, and Steven J. Ruuth. 2011. Solving eigenvalue
problems on curved surfaces using the closest point method. J. Comput. Phys. 230,
22 (2011), 7944–7956.

Colin B. Macdonald, Barry Merriman, and Steven J. Ruuth. 2013. Simple computation of
reaction–diffusion processes on point clouds. Proceedings of the National Academy
of Sciences 110, 23 (2013), 9209–9214. pmid:23690616.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://nefertitihack.alloversky.com/
https://nefertitihack.alloversky.com/
https://github.com/odedstein/meshes/tree/master/objects/fish
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://cs.cmu.edu/~kmcrane/Projects/ModelRepository
https://doi.org/10.2312/vmv.20151259
https://doi.org/10.2312/vmv.20151259
http://eigen.tuxfamily.org
https://libigl.github.io/

A Closest Point Method for PDEs on Manifolds with Interior Boundary Conditions for Geometry Processing • 1:25

Colin B. Macdonald and Steven J. Ruuth. 2008. Level set equations on surfaces via the
closest point method. Journal of Scientific Computing 35, 2-3 (2008), 219–240.

Colin B. Macdonald and Steven J. Ruuth. 2010. The implicit closest point method for
the numerical solution of partial differential equations on surfaces. SIAM Journal
on Scientific Computing 31, 6 (2010), 4330–4350.

Zoë Marschner, Paul Zhang, David Palmer, and Justin Solomon. 2021. Sum-of-squares
geometry processing. ACM Trans. Graph. 40, 6 (2021), 1–13.

Lindsay Martin and Yen-Hsi R. Tsai. 2020. Equivalent extensions of Hamil-
ton–Jacobi–Bellman equations on hypersurfaces. Journal of Scientific Computing
84, 3 (2020), 1–29.

Thomas Marz and Colin B. Macdonald. 2012. Calculus on surfaces with general closest
point functions. SIAM J. Numer. Anal. 50, 6 (2012), 3303–3328.

Sean P. Mauch. 2003. Efficient algorithms for solving static Hamilton-Jacobi equations.
Ph. D. Dissertation. California Institute of Technology. Pasadena, California.

Ian C. May, Ronald D. Haynes, and Steven J. Ruuth. 2020. Schwarz solvers and precon-
ditioners for the closest point method. SIAM Journal on Scientific Computing 42, 6
(2020), A3584–A3609.

Ian C.T. May, Ronald D. Haynes, and Steven J. Ruuth. 2022. A closest point method
library for PDEs on surfaces with parallel domain decomposition solvers and pre-
conditioners. Numerical Algorithms (2022), 1–23.

Joseph S.B. Mitchell, David M. Mount, and Christos H. Papadimitriou. 1987. The discrete
geodesic problem. SIAM J. Comput. 16, 4 (1987), 647–668.

Nathan Mitchell, Mridul Aanjaneya, Rajsekhar Setaluri, and Eftychios Sifakis. 2015. Non-
manifold level sets: A multivalued implicit surface representation with applications
to self-collision processing. ACM Transactions on Graphics 34, 6 (2015), 1–9.

Nicolas Moës, John Dolbow, and Ted Belytschko. 1999. A finite element method for
crack growth without remeshing. Internat. J. Numer. Methods Engrg. 46, 1 (1999),
131–150.

Neil Molino, Zhaosheng Bao, and Ron Fedkiw. 2004. A virtual node algorithm for
changing mesh topology during simulation. ACM Trans. Graph. 23, 3 (2004), 385–
392.

Dieter Morgenroth, Stefan Reinhardt, Daniel Weiskopf, and Bernhard Eberhardt. 2020.
Efficient 2D simulation on moving 3D surfaces. In Computer Graphics Forum, Vol. 39.
Wiley Online Library, 27–38.

Yen Ting Ng, Chohong Min, and Frédéric Gibou. 2009. An efficient fluid–solid coupling
algorithm for single-phase flows. J. Comput. Phys. 228, 23 (2009), 8807–8829.

Thien Nguyen, Kȩstutis Karčiauskas, and Jörg Peters. 2016. 𝐶1 finite elements on
non-tensor-product 2D and 3D manifolds. Appl. Math. Comput. 272 (2016), 148–158.

Alexandrina Orzan, Adrien Bousseau, Holger Winnemöller, Pascal Barla, Joëlle Thollot,
and David Salesin. 2008. Diffusion curves: A vector representation for smooth-
shaded images. ACM Trans. Graph. 27, 3 (2008), 1–8.

Richard Palais, Hermann Karcher, et al. 2023. 3DXM Virtual Math Museum.
https://virtualmathmuseum.org.

John E Pearson. 1993. Complex patterns in a simple system. Science 261, 5118 (1993),
189–192.

Argyrios Petras, Leevan Ling, Cécile Piret, and Steven J. Ruuth. 2019. A least-squares
implicit RBF-FD closest point method and applications to PDEs on moving surfaces.
J. Comput. Phys. 381 (2019), 146–161.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2018. An RBF-FD closest point
method for solving PDEs on surfaces. J. Comput. Phys. 370 (2018), 43–57.

Argyrios Petras, Leevan Ling, and Steven J. Ruuth. 2022. Meshfree semi-Lagrangian
methods for solving surface advection PDEs. Journal of Scientific Computing 93, 1
(2022), 1–22.

Argyrios Petras and Steven J. Ruuth. 2016. PDEs on moving surfaces via the closest
point method and a modified grid based particle method. J. Comput. Phys. 312 (2016),
139–156.

Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and
their conjugates. Experimental Mathematics 2, 1 (1993), 15–36.

Cécile Piret. 2012. The orthogonal gradients method: A radial basis functions method
for solving partial differential equations on arbitrary surfaces. J. Comput. Phys. 231,
14 (2012), 4662–4675.

Yixuan Qiu. 2023. LBFGS++. https://lbfgspp.statr.me/.
Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. 2006. Laplace–Beltrami spectra

as ‘Shape-DNA’of surfaces and solids. Computer-Aided Design 38, 4 (2006), 342–366.
Damien Rioux-Lavoie, Ryusuke Sugimoto, Tümay Özdemir, Naoharu H. Shimada,

Christopher Batty, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2022. A Monte
Carlo method for fluid simulation. ACM Trans. Graph. 41, 6 (2022), 1–16.

Steven J. Ruuth and Barry Merriman. 2008. A simple embedding method for solving
partial differential equations on surfaces. J. Comput. Phys. 227, 3 (2008), 1943–1961.

Rohan Sawhney. 2022. fcpw: Fastest Closest Points in the West.
https://github.com/rohan-sawhney/fcpw.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: a grid-free
approach to PDE-based methods on volumetric domains. ACM Trans. Graph. 39, 4
(2020), 123: 1–123: 18.

Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-free Monte
Carlo for PDEs with spatially varying coefficients. ACM Trans. Graph. 41, 4 (2022),

1–17.
Robert Saye. 2014. High-order methods for computing distances to implicitly defined

surfaces. Communications in Applied Mathematics and Computational Science 9, 1
(2014), 107–141.

Teseo Schneider, Yixin Hu, Jérémie Dumas, Xifeng Gao, Daniele Panozzo, and Denis
Zorin. 2018. Decoupling simulation accuracy from mesh quality. ACM Transactions
on Graphics (2018).

Peter Schwartz, Michael Barad, Phillip Colella, and Terry Ligocki. 2006. A Cartesian
grid embedded boundary method for the heat equation and Poisson’s equation in
three dimensions. J. Comput. Phys. 211, 2 (2006), 531–550.

Nicholas Sharp et al. 2019b. Polyscope. www.polyscope.run.
Nicholas Sharp and Keenan Crane. 2020. You can find geodesic paths in triangle meshes

by just flipping edges. ACM Trans. Graph. 39, 6 (2020), 1–15.
Nicholas Sharp, Keenan Crane, et al. 2019a. Geometry Central. www.geometry-

central.net.
Nicholas Sharp and Alec Jacobson. 2022. Spelunking the deep: guaranteed queries on

general neural implicit surfaces via range analysis. ACM Trans. Graph. 41, 4, Article
107 (July 2022), 16 pages. https://doi.org/10.1145/3528223.3530155

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019c. The vector heat method.
ACM Trans. Graph. 38, 3 (2019), 1–19.

Yonggang Shi, Jonathan H. Morra, Paul M. Thompson, and Arthur W. Toga. 2009.
Inverse-consistent surface mapping with Laplace-Beltrami eigen-features. In Inter-
national Conference on Information Processing in Medical Imaging. Springer, 467–478.

Yonggang Shi, Paul M. Thompson, Ivo Dinov, Stanley Osher, and Arthur W. Toga. 2007.
Direct cortical mapping via solving partial differential equations on implicit surfaces.
Medical Image Analysis 11, 3 (2007), 207–223.

John Strain. 1999. Fast tree-based redistancing for level set computations. J. Comput.
Phys. 152, 2 (1999), 664–686.

Ryusuke Sugimoto, Terry Chen, Yiti Jiang, Christopher Batty, and Toshiya Hachisuka.
2023. A practical walk-on-boundary method for boundary value problems. ACM
Trans. Graph. 42, 4 (July 2023). https://doi.org/10.1145/3592109

The Stanford 3D Scanning Repository. 2024. Lucy and XYZ RGB Dragon. Downloaded
modified version of Lucy from https://animium.com/2013/11/lucy-angel-3d-model.
Original Lucy and XYZ RGB Dragon meshes at https://graphics.stanford.edu/data/
3Dscanrep.

Li Tian, Colin B. Macdonald, and Steven J. Ruuth. 2009. Segmentation on surfaces
with the closest point method. In 2009 16th IEEE International Conference on Image
Processing (ICIP). IEEE, 3009–3012.

Greg Turk. 1991. Generating textures on arbitrary surfaces using reaction-diffusion.
ACM SIGGRAPH Computer Graphics 25, 4 (1991), 289–298.

Greg Turk. 2001. Texture synthesis on surfaces. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques. 347–354.

Hui Wang, Yongxu Jin, Anqi Luo, Xubo Yang, and Bo Zhu. 2020. Codimensional surface
tension flow using moving-least-squares particles. ACM Trans. Graph. 39, 4 (2020),
42–1.

Li-Yi Wei and Marc Levoy. 2001. Texture synthesis over arbitrary manifold surfaces.
In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques. 355–360.

Junxiang Yang, Yibao Li, and Junseok Kim. 2020. A practical finite difference scheme
for the Navier–Stokes equation on curved surfaces in R3 . J. Comput. Phys. (2020),
109403.

Zhang Yingjie and Ge Liling. 2011. Improved moving least squares algorithm for
directed projecting onto point clouds. Measurement 44, 10 (2011), 2008–2019.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2006. Vector field design on
surfaces. ACM Trans. Graph. 25, 4 (2006), 1294–1326.

A CLOSEST POINT COMPUTATION
Some manifolds allow closest points to be computed analytically,
e.g., lines, circles, planes, spheres, cylinders, and tori. We use the
analytical expressions for exact closest points in all examples for
which they exist. For parameterized manifolds, closest points can
be computed using standard numerical optimization techniques,
e.g., Ruuth and Merriman [2008] used Newton’s method for various
manifolds, such as a helix. For examples in this paper, we solve

arg min
t

1
2 ∥p(t) − x𝑖 ∥2,

for the parameters t (e.g., t = 𝑡 for a 1D curves and t = [𝑢, 𝑣]𝑇
for a 2D surface), where p(t) ∈ S and x𝑖 ∈ Ω(S). LBFGS++ [Qiu
2023] is used to solve the optimization problem. An initial guess for

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://virtualmathmuseum.org
https://lbfgspp.statr.me/
https://github.com/rohan-sawhney/fcpw
www.polyscope.run
www.geometry-central.net
www.geometry-central.net
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/3592109
https://animium.com/2013/11/lucy-angel-3d-model
https://graphics.stanford.edu/data/3Dscanrep
https://graphics.stanford.edu/data/3Dscanrep

1:26 • Nathan King, Haozhe Su, Mridul Aanjaneya, Steven Ruuth, and Christopher Batty

cpS (x𝑖) is taken as the nearest neighbour in a point cloud PS of
the parametric manifold. The point cloud PS is constructed using
𝑁 equispaced points of the parameter t.

Computing closest points to triangulated surfaces is also well-
studied [Auer et al. 2012; Mauch 2003; Strain 1999]. Notably, the
work of Auer et al. [2012] implements the closest point evaluation on
a GPU. There also exist open source libraries that support computing
closest points to triangle meshes, e.g., libigl [Jacobson et al. 2018].
Here we use the library fcpw [Sawhney 2022] to compute closest
points to triangulated surfaces and polyline curves.

The simplest way to compute closest points to a point cloud is
to take the nearest neighbour as the closest point. As discussed by
Macdonald et al. [2013] this choice can be inaccurate if the point
cloud is not dense enough. Wang et al. [2020] (Figure 17) showed
the inaccuracy of using nearest neighbours as closest points with
CPM on a diffusion problem. Several more accurate approaches for
closest points to point clouds have been developed [Liu et al. 2006;
Martin and Tsai 2020; Petras et al. 2022; Yingjie and Liling 2011].

Closest points can also be computed from analytical signed-
distance functions 𝑑 (x) as

cpS (x) = x − 𝑑 (x)∇𝑑 (x). (27)
Equation (27), however, is not valid for more general level-set func-
tions 𝜙 . High-order accuracy of closest points from level-set func-
tions (sampled on a grid) can be obtained using the method of Saye
[2014]. For the examples in this paper, we use the ideas of Saye
[2014] but with analytical expressions for 𝜙 . Specifically, an initial
guess cp★ of the closest point is obtained using a Newton-style

procedure, starting with cp0 = x𝑖 , and iterating

cp𝑘+1 = cp𝑘 −
𝜙 (cp𝑘)∇𝜙 (cp𝑘)
∥∇𝜙 (cp𝑘)∥2

,

with stopping criterion ∥cp𝑘+1 − cp𝑘 ∥ < 10−10 . Then Newton’s
method

y𝑘+1 = y𝑘 − (𝐷2 𝑓 (y𝑘))−1∇𝑓 (y𝑘),
is used to optimize

𝑓 (cp, 𝜆) = 1
2 ∥cp − x𝑖 ∥2 + 𝜆𝜙 (cp),

where y = [cp, 𝜆]𝑇 and ∥y𝑘+1 − y𝑘 ∥ < 10−10 is used as the stop-
ping criterion. The initial Lagrange multiplier is 𝜆0 = (x𝑖 − cp★) ·
∇𝜙 (cp★)/∥∇𝜙 (cp★)∥2. Analytical expressions for∇𝑓 (y) and𝐷2 𝑓 (y)
are computed using analytical expressions of ∇𝜙 and 𝐷2𝜙 .

Closest points for objects composed of multiple parts can be com-
puted by obtaining the closest point to each independent manifold
first. Then the closest point to the combined object is taken as the
closest of the independent manifold closest points (e.g., the torus
and sphere joined by line segments in Figure 12).

Closest points can be computed for many other representations.
For example, closest points to neural implicit surfaces can be com-
puted using the work of Sharp and Jacobson [2022]. Further ref-
erences for closest point computation are given in Section 5.1 of
[Sawhney and Crane 2020].

Received 4 May 2023; revised 19 March 2024; revised 31 May 2024; accepted
3 June 2024

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 CPM in Applied Mathematics
	2.2 CPM in Computer Graphics
	2.3 Interior Boundary Conditions on Manifolds
	2.4 Efficiency of CPM

	3 Closest Point Method and Exterior Boundary Conditions
	3.1 Continuous Setting
	3.2 Discrete Setting
	3.3 Exterior Boundary Conditions for Open Manifolds

	4 Interior Boundary Conditions
	4.1 Adding Interior Boundary DOFs
	4.2 S Crossing Test
	4.3 Stencil Modifications
	4.4 Open Curves C in R3
	4.5 Points C in R3
	4.6 Localizing Computation Near C
	4.7 Improving Robustness of S Crossing Test
	4.8 A Nearest Point Approach for Dirichlet IBCs

	5 Implementation Aspects
	5.1 Closest Points and Computational Domain Setup
	5.2 Specifying Initial and Boundary Data
	5.3 Operator Discretization
	5.4 Linear Solver
	5.5 Visualization

	6 Convergence Studies
	6.1 Poisson Equation with Discontinuous Solution
	6.2 Heat Equation
	6.3 Screened-Poisson Equation
	6.4 Different CPM approaches vs. a Mesh-Based Method
	6.5 Linear System Solvers

	7 Applications
	7.1 Diffusion Curves
	7.2 Geodesic Distance
	7.3 Vector Field Design
	7.4 Harmonic Maps
	7.5 Reaction-Diffusion Textures

	8 Limitations and Future Work
	Acknowledgments
	References
	A Closest Point Computation

