

Journal Pre-proof

Numerical Investigation of Turbulence Effect on Flight Trajectory of Spherical Windborne Debris: A Multi-Layered Approach

Shaopeng Li, Kurtis Gurley, Yanlin Guo, John van de Lindt

PII: S0266-8920(24)00083-3

DOI: <https://doi.org/10.1016/j.probengmech.2024.103661>

Reference: PREM 103661

To appear in: *Probabilistic Engineering Mechanics*

Received Date: 28 March 2024

Revised Date: 14 June 2024

Accepted Date: 25 June 2024

Please cite this article as: S. Li, K. Gurley, Y. Guo, J. van de Lindt, Numerical Investigation of Turbulence Effect on Flight Trajectory of Spherical Windborne Debris: A Multi-Layered Approach, *Probabilistic Engineering Mechanics*, <https://doi.org/10.1016/j.probengmech.2024.103661>.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier Ltd.

Numerical Investigation of Turbulence Effect on Flight Trajectory of Spherical Windborne Debris: A Multi-Layered Approach

Shaopeng Li^{1*}, Kurtis Gurley², Yanlin Guo³, and John van de Lindt⁴

¹Postdoctoral Associate, Department of Civil and Coastal Engineering, University of Florida, Gainesville, United States

²Professor, Department of Civil and Coastal Engineering, University of Florida, Gainesville, United States

³Assistant Professor, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, United States

⁴ Professor, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, United States

*Corresponding author, shaopei@ufl.edu

ABSTRACT: Accurate modeling of the turbulent wind field is a crucial component of risk analysis for structures to windborne debris damage. Existing studies typically simplify the complexities of wind turbulence, and the potential influence on the accuracy of debris flight modeling has not been systematically demonstrated. This study takes a multi-layered approach to numerically simulate the flight trajectory of spherical debris in a turbulent wind field. Complexities are incrementally added to the simulated wind field to systematically investigate the influence of spatial correlation and non-Gaussian features of turbulence on debris flight behavior. The sensitivity of debris flight behavior to turbulent wind features will inform the design of debris flight tracking wind tunnel tests and building facade debris vulnerability modeling efforts.

27 **KEYWORDS:** wind turbulence; spatial correlation; non-Gaussian turbulence; windborne debris;
28 flight trajectory; numerical simulation

29 **1 INTRODUCTION**

30 Windborne debris poses a threat to building envelopes ranging from low-rise residential housing
31 to tall buildings in an urban setting with glass facades/cladding systems (Minor, 1994; Gurley and
32 Masters, 2011; Jain, 2015). Building envelope damage can lead to subsequent water intrusion,
33 extensive interior damage, and additional debris further damaging the structure and potentially
34 resulting in a risk to occupant safety (Pita et al., 2016; Johnson et al., 2018; Wei et al., 2024a). The
35 resulting loss of building functionality (occupant dislocation and business interruption/closures)
36 may last for extended periods, and hence compromise community resilience (Wei et al., 2024b),
37 underscoring the importance of reducing the vulnerability of infrastructure to windborne debris.

38 The damage risk for building envelopes due to windborne debris depends on the debris
39 type, flight initiation (e.g., Kordi and Kopp, 2011; Kakimpa et al., 2011), flight trajectory (e.g.,
40 Holmes, 2004; Baker, 2007), and impact mechanism (e.g., Fernandez et al., 2010; Masters et al.,
41 2010; Zhang et al., 2013). Among these factors that determine the risk of building envelopes,
42 debris flight initiation and trajectory are sensitive to turbulent wind field. Hence, accurate
43 modeling of debris impact risk depends on an accurate understanding of the turbulent wind field
44 around buildings. The local wind field in the rooftop region significantly affects initial conditions
45 of debris flight, while the turbulent wake wind field directly influences debris flight trajectory and
46 contributes to uncertainties in final debris impact/landing location and momentum. Existing
47 studies have taken the route of simplifying approaches to model this process. For example, initial
48 location and velocity are either arbitrarily assumed as random variables (Ai et al., 2023; Lyu et al.,
49 2023) or based on simple parametric models on roof top flows (Dong et al., 2023). For the wake
50 flow, only the temporally constant mean wind field based on Reynolds-averaged Navier–Stokes
51 equations (RANS) simulation (Ai et al., 2023; Lyu et al., 2023) and spatially fully correlated wind
52 fluctuations (Dong et al., 2023) are considered in the existing numerical studies of debris flight

53 simulation. The simplifications in existing studies may not fully capture complex debris flight
54 behavior in the spatiotemporally varying turbulent wake flow. Since these simplifications
55 encompass multiple aspects of the flow, the relative influence of individual simplifications on
56 simulation accuracy is not revealed.

57 A recent review of windborne debris simulation studies (Zhao et al., 2021) reveals the
58 common use of simple unobstructed open terrain flow conditions without considering the influence
59 of surrounding buildings on the wind field (i.e., open flow conditions). Several studies have
60 investigated flight behavior in the mean wind field without fluctuations (e.g., Lin et al., 2006;
61 Holmes et al., 2006), but fewer studies have incorporated the effects of turbulence. Holmes (2004)
62 and Baker (2007) briefly discussed the effects of turbulence on the flight trajectory of compact and
63 sheet debris. They found that turbulence can produce significant variability in individual
64 trajectories but may have little effect on average trajectories. Karimpour and Kaye (2012) studied
65 the stochastic nature of windborne debris, where the effects of vertical and along-wind wind
66 fluctuations on flight distance and impact kinetic energy were investigated with a uniform two-
67 dimensional background flow. With the authors noting the high computational cost of simulating
68 wind fluctuations along the trajectories, the abovementioned studies assumed that all the spatial
69 points undergo an identical fluctuation following a Gaussian distribution with a target spectrum.

70 Moghim and Caracoglia (2012a and 2012b) simulated a uniform (spatially identical)
71 upward vertical gust with short duration and investigated its influence on the trajectory of compact
72 debris as well as the impact risk for a proximate tall building. Moghim and Caracoglia (2014)
73 extended this to a more complex turbulent wind field, where the Gaussian turbulence at discrete
74 points on the “inlet boundary” are first simulated with prescribed cross-spectrum and then
75 propagated through the field using Taylor’s frozen turbulence hypothesis to determine wind speed

76 at the time stepping instantaneous location of debris in flight. Some of these numerical simulations
77 have been validated in the wind tunnel tests (Karimpour and Kaye, 2012; Moghim et al., 2015).

78 In addition to straight-line wind fields, existing studies have considered vortex wind fields
79 such as tornadoes. Noting the simplifications from neglected turbulence in many existing studies
80 (e.g., Baker and Sterling, 2017; Abdelhady et al., 2021), computational fluid dynamics (CFD)
81 based on large eddy simulation (LES) has been used to include the tornado turbulence in debris
82 flight computation (e.g., Maruyama, 2011; Huo et al., 2020; Liu et al., 2021a; Liu et al., 2021b).
83 In addition, Liu et al. (2021c) compared four different modeling schemes of tornado turbulence
84 for debris flight analysis: (1) using mean wind velocity only, (2) using the turbulence intensity to
85 correct the aerodynamic load determined by the mean wind velocity, (3) assuming wind
86 fluctuations experienced by the debris follow a sinusoidal wave and (4) assuming wind fluctuations
87 experienced by the debris follow a Gaussian distribution.

88 The above literature review shows that existing studies simplify the complexities of wind
89 turbulence, such as spatial correlation and non-Gaussian features, even for open flow conditions
90 (unobstructed boundary layer flow). The potential effects of these simplifications on the accuracy
91 and uncertainty of debris flight modeling have not been systematically quantified. The current lack
92 of fundamental validation and uncertainty quantification of the existing simplified debris flight
93 modeling in less complex open flow environments hinders the confident application of debris flight
94 simulation to more realistic urban wind conditions.

95 To address the knowledge gap, this study numerically simulates the flight trajectory of
96 spherical debris traveling in an unobstructed open flow turbulent boundary layer wind field. The
97 influence of vertical and along-wind spatial correlations and non-Gaussian features in the wind
98 fluctuations are investigated in isolation and in combination. The sensitivity of debris flight

99 behavior to these wind features will inform the design of debris flight tracking wind tunnel tests
100 and building façade debris vulnerability modeling efforts that address more complex urban wind
101 fields around mid/high-rise buildings with the presence of local vortices and wake regions.

102 The simulation methodology of this study is schematically shown in Fig. 1. For statistical
103 analysis of debris flight characteristics requiring input of wind speed along the debris flight
104 trajectory, the premise is to simulate time histories of longitudinal wind speed over a fixed spatial
105 grid forming a vertical plane parallel to the horizontal mean wind direction. With the simulated
106 wind field, the two-dimensional debris flight trajectories are computed by releasing N_{DR} debris at
107 random time steps. This debris releasing process is repeated N_{WG} times, resulting in a total of
108 $N_{DR} \times N_{WG}$ simulated debris flight trajectories for a reliable statistical estimate of the debris flight
109 characteristics. The selection of proper values of N_{DR} and N_{WG} is discussed later in this paper.

110 The next two sections describe the debris flight model employed in this study and the
111 stochastic wind field simulation approach to incorporate increasingly realistic spatial correlation
112 features concurrent with Gaussian and then non-Gaussian probability content. The result analysis
113 and implications for wind tunnel testing are subsequent, followed by the concluding remarks and
114 future directions.

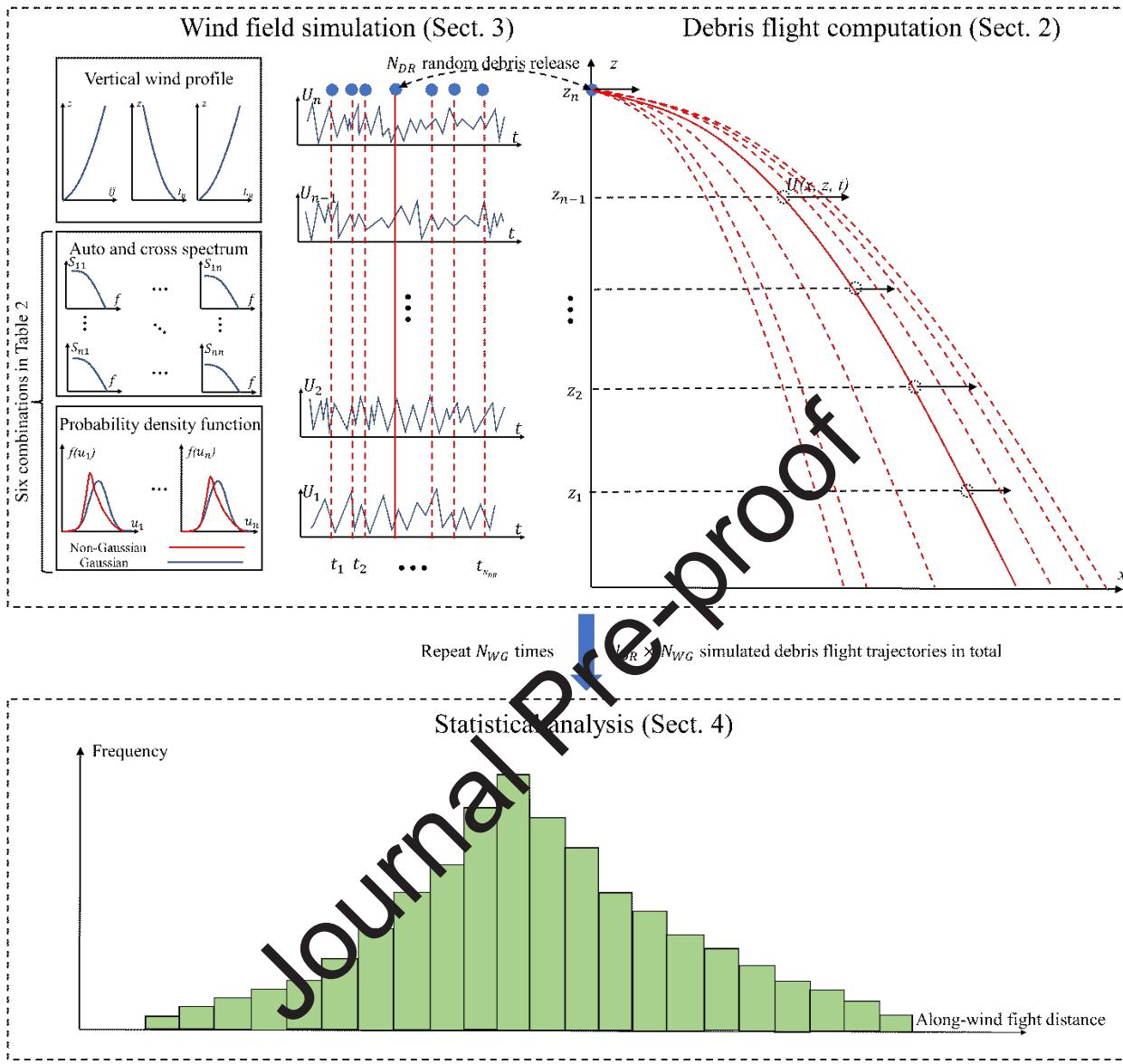


Figure 1. Schematic of the simulation methodology

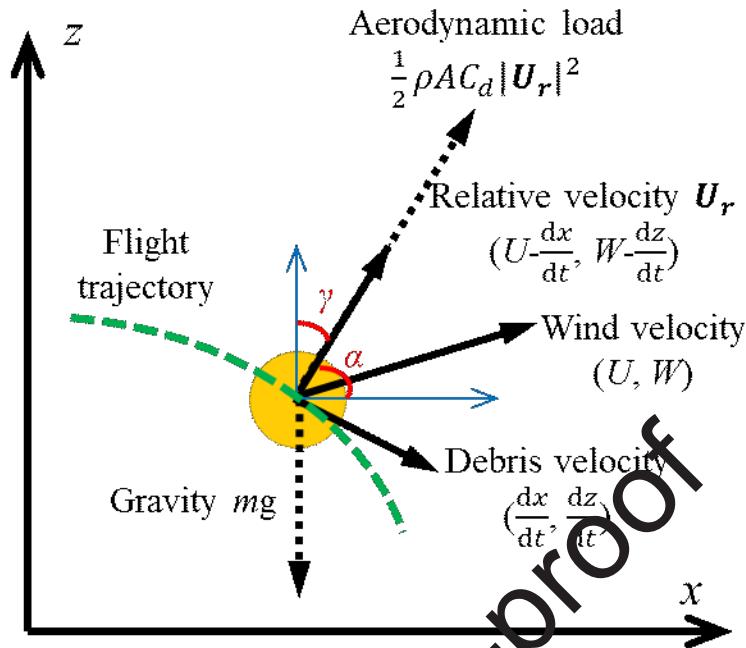
115
116

117 2 DEBRIS FLIGHT MODEL

118 This study considers two-dimensional flight trajectory of spherical debris. The adoption of
 119 spherical debris allows for elimination of complex uncertainties from the time-varying
 120 aerodynamic lift/drag as in debris of irregular shapes. The two-dimensional simplification of the
 121 debris flight is justified by the open flow environment investigated in this study. The governing

122 equation of the debris flight (see Fig. 2), based on the quasi-steady aerodynamic load, can be
 123 expressed as (Holmes, 2004):

$$124 \quad m \frac{d^2x}{dt^2} = \frac{1}{2} \rho_a A C_d \cos \alpha \left[(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2 \right] \quad (1a)$$


$$125 \quad m \frac{d^2z}{dt^2} = \frac{1}{2} \rho_a A C_d \cos \gamma \left[(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2 \right] - mg \quad (1b)$$

126 where x and z are the displacements in along-wind and vertical directions; t is the time; m is the
 127 mass of the debris calculated as $m = \frac{4}{3} \pi r^3 \rho$ (r is the debris radius and ρ is the debris density); g
 128 is the gravitational acceleration; ρ_a is the density of air; A is the projected frontal area for a
 129 spherical debris $A = \pi r^2$; C_d is the drag coefficient; the values of these parameters are listed in
 130 Table 1, and some of them are determined by the practical considerations for the planned wind
 131 tunnel tests where the flight trajectories of scaled debris will be tracked using high-speed cameras;
 132 U and W are the wind velocity along the debris flight trajectory, varying both spatially and
 133 temporally [i.e., $U = U(x, z, t)$ and $W = W(x, z, t)$]; The trigonometric functions of angles
 134 between the relative wind speed and the two axis, denoted as α and γ , can be calculated as $\cos \alpha =$

$$135 \quad \frac{U - \frac{dx}{dt}}{\sqrt{(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2}} \text{ and } \cos \gamma = \frac{W - \frac{dz}{dt}}{\sqrt{(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2}}, \text{ which can be substituted into Eq. (1) to derive:}$$

$$136 \quad m \frac{d^2x}{dt^2} = \frac{1}{2} \rho_a A C_d (U - \frac{dx}{dt}) \sqrt{(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2} \quad (2a)$$

$$137 \quad m \frac{d^2z}{dt^2} = \frac{1}{2} \rho_a A C_d (W - \frac{dz}{dt}) \sqrt{(U - \frac{dx}{dt})^2 + (W - \frac{dz}{dt})^2} - mg \quad (2b)$$

138
139 **Figure 2.** Schematic of simulating compact-type debris flight trajectory

140 **Table 1.** Parameters for simulating debris flight trajectories

Parameters	Values
Debris radius r	1.5 cm
Debris density ρ	2.5 g/cm ³
Debris mass m	35.3 g
Debris release height	20 m
Wind speed at release height	32.2 m/s
Drag coefficient C_d	0.5
Gravitational acceleration g	9.8 m/s ²
Air density ρ_a	1.225 kg/m ³

141

142 **3 SIMULATION OF TURBULENT WIND FIELD**

143 This section discusses the simulation of the turbulent wind field as the input to the debris flight
144 model. Multiple schemes are employed to model the degree of correlation in the along-wind
145 turbulence component among the spatially separated grid points, as well as the probabilistic
146 turbulence properties. Table 2 describes the content and sequencing of six different combinations
147 of spatial correlation and probabilistic turbulence properties used in this study, together with their

148 implementation in debris flight model (more details in the subsections of each wind field model).
 149 To systematically analyze the influence of the spatial correlation of turbulence, Section 3.1 begins
 150 with the two extremes of no correlation and full spatial correlation to establish debris flight
 151 behavior boundaries (here the “full correlation” does not have a time delay). Considering that the
 152 key factor is the fluctuation correlation between the points along the debris flight trajectory (with
 153 coordinate variation in both vertical and along-wind direction), the cases of “no vertical and full
 154 along-wind correlation” and “full vertical and no along-wind correlation” are equivalent to the
 155 case of “no vertical and no along-wind correlation”, and hence are not included in Table 2. After
 156 the two extreme cases, more realistic scenarios of partial vertical correlation and frozen turbulence-
 157 based along-wind propagation (i.e., full correlation with time delay) are investigated. Wind
 158 fluctuations in Section 3.1 are assumed to follow the Gaussian distribution, while non-Gaussian
 159 wind turbulence will be introduced later in Section 3.2.

160 For all simulations considered, the mean wind speed $\bar{U}(z)$ along the elevation z follows the
 161 logarithmic law (ASCE/SEI 49-12):

$$162 \frac{\bar{U}(z)}{U_r} = \frac{\ln\left[\frac{z-d}{z_0}\right]}{\ln\left[\frac{z_r-d}{z_0}\right]} \quad (3)$$

163 U_r is the reference wind speed at reference height z_r ; $U_r = 32.2$ m/s is selected in this study with
 164 $z_r = 20$ m (selected based on debris releasing height for a typical mid-rise building); the debris
 165 release location is also at the reference height z_r ; $z_0 = 0.3$ m is the roughness length for suburban
 166 terrain; $d = 0.94$ m is the displacement height.

167 The vertical profile of turbulence intensity $I_u(z)$ is modeled following (ASCE/SEI 49-12):

$$168 I_u(z) = \frac{1}{\ln\left[\frac{z-d}{z_0}\right]} \quad (4)$$

169 The wind turbulence follows the von Karman spectrum:

170
$$\frac{\omega S(\omega)}{2\pi\sigma_s^2} = \frac{4\left[\frac{\omega L_u(z)}{2\pi\bar{U}(z)}\right]}{\left\{1+70.8\left[\frac{\omega L_u(z)}{2\pi\bar{U}(z)}\right]\right\}^6} \quad (5)$$

171 where $\sigma_s = \bar{U}(z)I_u(z)$ is the standard deviation of the wind fluctuation; $L_u(z)$ is the turbulence
172 integral length scale varying with elevation, which is calculated as (ASCE/SEI 7-16):

173
$$L_u(z) = 97.54\left(\frac{z}{10}\right)^{1/3} \quad (6)$$

174 This study models open flow conditions (no proximity buildings) and assumes zero mean
175 vertical wind speed, i.e., $\bar{W}=0$. Furthermore, it is expected that compared to along-wind turbulence
176 the influence of vertical turbulence on debris flight behavior is relatively weak due to: (1) vertical
177 turbulence intensity is usually smaller than along-wind turbulence in open flow (Hui et al., 2009;
178 He et al., 2020), and (2) vertical turbulence usually has fewer low-frequency components in the
179 spectrum (Dyrbye and Hansen, 1996; Moghim and Caracoglia, 2014) and hence smaller spatial
180 scales, indicating that its effect on debris motion can be more easily canceled out during the flight.
181 In addition, currently there is a lack a standard accepted model for the correlation between vertical
182 and along-wind fluctuation (Belovitz and Deodatis, 2015; Liu et al., 2023). Hence, vertical
183 turbulence is not considered in this study but will be considered in follow up work that use particle
184 image velocimetry (PIV) measurements as the baseline wind field.

185

186

187

188

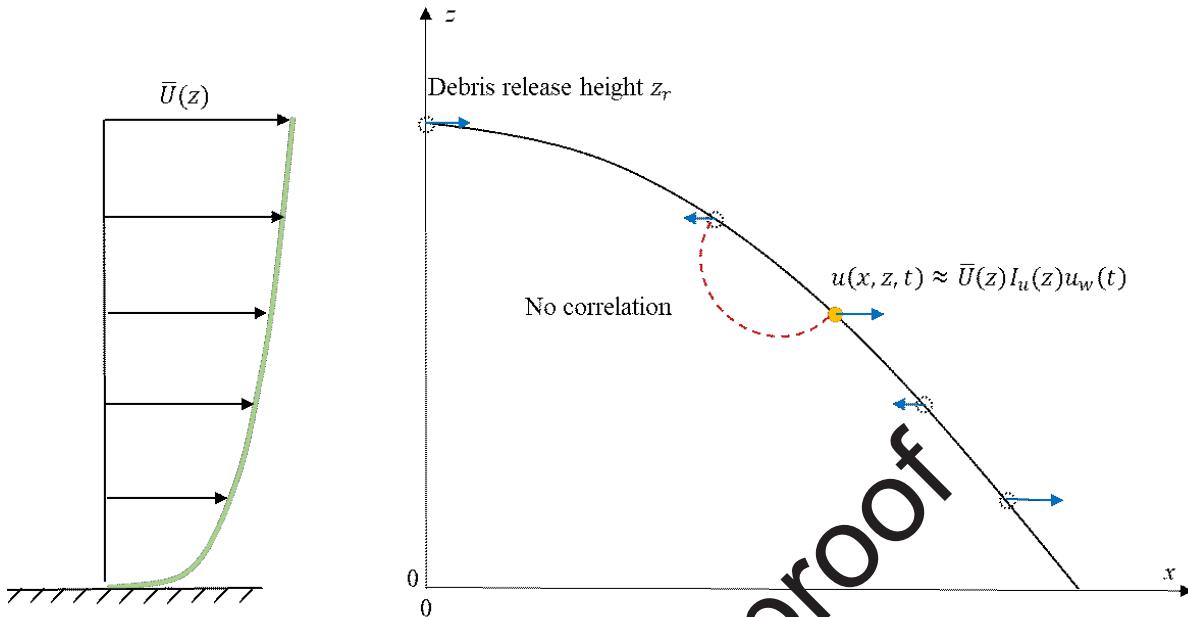
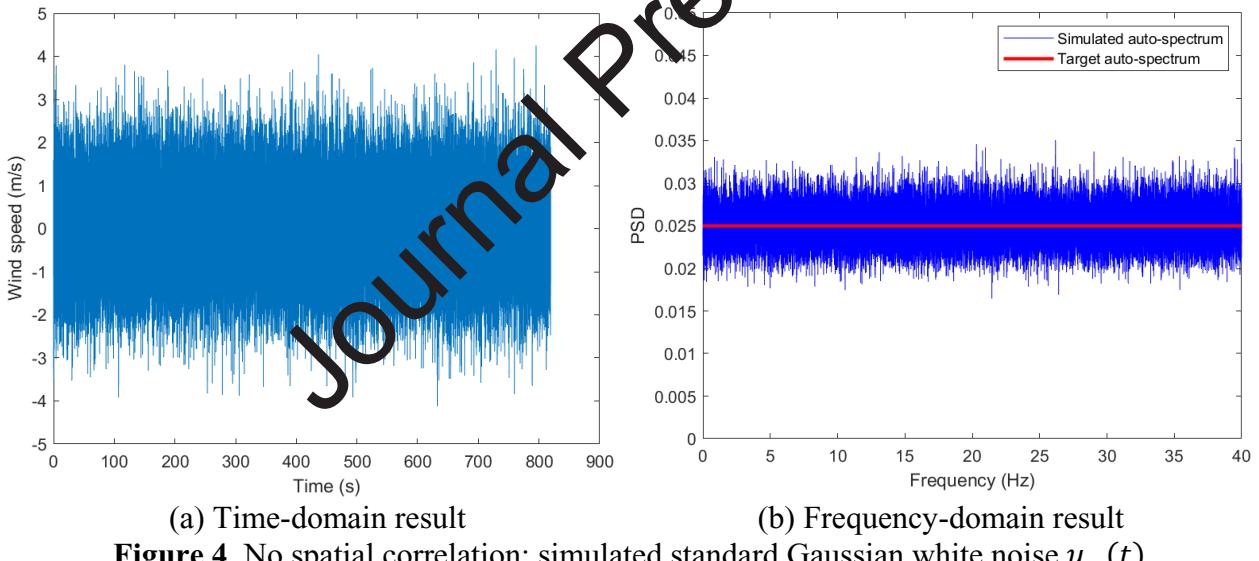
189

190

191

192 **Table 2.** The six combinations of spatial correlation and probabilistic turbulence properties along
 193 with their implementations in debris flight model

Section number	Correlation		Probability density function	Implementation in debris flight model
	Vertical	Along-wind		
3.1.1	None	None		Simulate a single Gaussian white noise-based wind fluctuation as input to debris flight model
3.1.2	Full without time delay	Full without time delay		Simulate a single Karman spectrum-based Gaussian wind fluctuation as input to debris flight model
3.1.3.1	Partial: distance-decaying	Full without time delay	Gaussian	Simulate multiple correlated Karman spectrum-based Gaussian wind fluctuations at different vertical locations along the inlet; use the same fluctuation for along-wind propagation; use the fluctuations at nearest locations for vertical interpolation
3.1.3.2	Partial: distance-decaying	Full with time delay: Frozen turbulence		Simulate multiple correlated Karman spectrum-based Gaussian wind fluctuations at different vertical locations along the inlet; use frozen turbulence-based time delay for along-wind propagation; use the fluctuations at nearest locations for vertical interpolation
3.2	Partial: distance-decaying	Full with time delay: Frozen turbulence	Non-Gaussian	Simulate multiple correlated Karman spectrum-based non-Gaussian wind fluctuations at different vertical locations along the inlet; use frozen turbulence-based time delay for along-wind propagation; use the fluctuations at nearest locations for vertical interpolation



195 **3.1 Gaussian wind fluctuation with varying schemes for spatial correlation of turbulence**196 *3.1.1 Fluctuation with no spatial correlation*

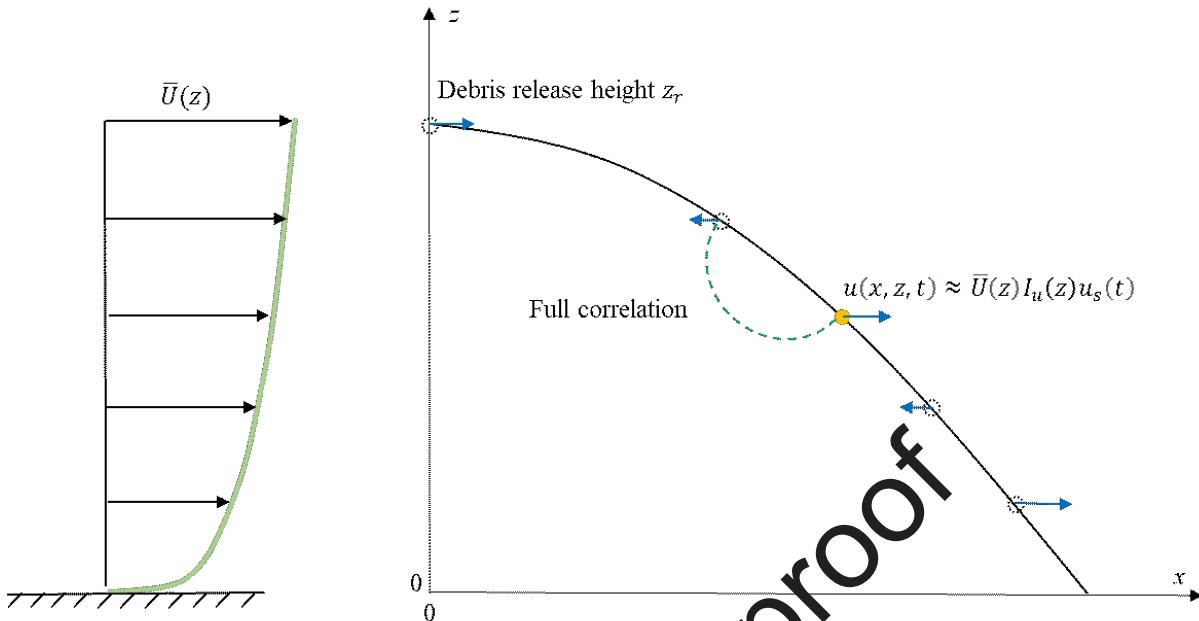
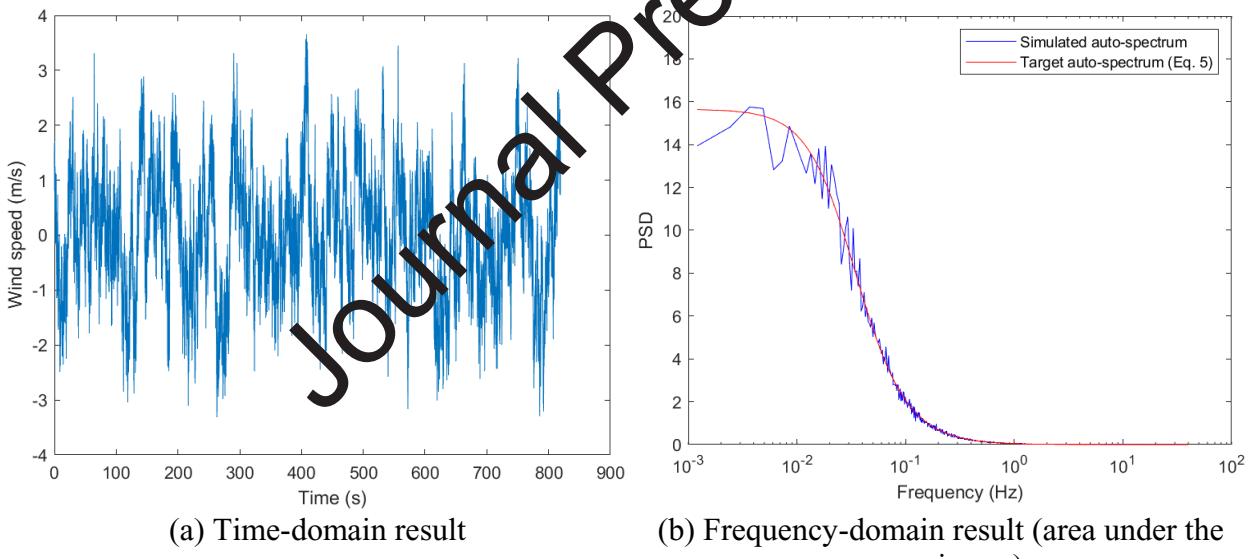
197 When wind fluctuations at all spatial points on the grid are uncorrelated, the wind speed
 198 experienced by the windborne debris at any location and time $U(x, z, t)$ is simply:

199 $U(x, z, t) = \bar{U}(z) + u(x, z, t) \approx \bar{U}(z) + \bar{U}(z)I_u(z)u_w(t)$ with $u_w(t) \sim N[0, 1]$ (7)

200 where $u_w(t)$ is randomly drawn from standard Gaussian white noise distribution $N[0, 1]$ at each
 201 time t . Figure 3 illustrates the concept, where the instantaneous debris location (dashed circles) is
 202 subjected to an instantaneous speed (Eq. 7) consisting of the mean $\bar{U}(z)$ and superimposed
 203 fluctuating component (blue arrows) described by scaled white noise.

204 The simulated standard Gaussian white noise $u_w(t)$ is shown in Fig. 4(a), where the length
 205 of the whole simulated time series is $N_u = 2^{16}$ and time interval is $\Delta t = 0.0125$ s. The duration T_u
 206 = 819.2 s (resulting frequency increment $\Delta f = 0.00122$ Hz) is selected to capture sufficient low-
 207 frequency turbulence, which is also larger than the 10 min wind duration used in the literature
 208 (Karimpour and Kaye, 2012; Moshim et al., 2015). T_u is discussed further in the next section in
 209 the context of the length scale of turbulence for spatially correlated flow. The ensemble of $N_{WG} =$
 210 128 realizations of wind fluctuations is used to obtain the spectrum in Fig. 4(b). The Δt and N_{WG} ,
 211 used throughout this study, are based on the sensitivity analysis presented in Appendix A.

212
213**Figure 3.** Wind fluctuation with no spatial correlation**Figure 4.** No spatial correlation: simulated standard Gaussian white noise $u_w(t)$ 214 3.1.2 *Fluctuation with full spatial correlation*



215 When wind fluctuations at all spatial points on the grid are fully correlated, a time history at a
 216 single grid point (say $z = z_r$ and $x = 0$) is generated. That time history is then translated and dilated
 217 to impart the appropriate mean and turbulence intensity at each height on the grid. For a given
 218 height z , the time history of wind speed at every horizontal grid point x is identical and without

219 time lag. Under this description, the wind speed experienced by the windborne debris at any
 220 location and time $U(x, z, t)$ can be calculated as (see Fig. 5):

221
$$U(x, z, t) = \bar{U}(z) + u(x, z, t) \approx \bar{U}(z) + \bar{U}(z)I_u(z)u_s(t) \text{ with } F_{PSD}[u_s(t)] = S(\omega) \quad (8)$$

222 where $u_s(t)$ is a unit-variance wind fluctuation with prescribed power spectrum density (PSD)
 223 $S(\omega)$ based on Eq. (5). For this case, $\bar{U}(z)$ in Eq. (5) is set to be U_r while the integral length scale
 224 is $L_u(z_r)$, essentially assuming all the spatial points in the wind field undergo scaled fluctuation
 225 at reference elevation z_r (this is also the debris release location). The spectral representation
 226 method (SRM) (Deodatis, 1996) is employed to simulate the wind fluctuation $u_s(t)$ with target
 227 spectrum $S(\omega)$. A sample of simulated unit-variance wind fluctuation $u_s(t)$ is shown in Fig. 6.
 228 The wind speed simulation duration of $T_u = 819.2$ s was chosen to capture sufficient low frequency
 229 contribution to the wind record interacting with the debris. From Eq. 6 it was determined that at
 230 the turbulence integral length scale at the debris release height of 20 m is 122.9 m. At the employed
 231 mean wind speed of 32.2 m/s, the simulated 819.2 s record permits the sequential passage of
 232 approximately 215 integral length scales.

233 Through comparing Eq. (7) and Fig. 4 with Eq. (8) and Fig. 6, it is straightforward that the
 234 only difference between the no-correlation and full-correlation scenarios is the PSD of the debris-
 235 experienced fluctuation. The unit-variance wind fluctuation $u_s(t)$ has more low-frequency energy
 236 and less high-frequency energy compared to that of the standard Gaussian white noise $u_w(t)$. The
 237 difference of spectral property of $u_s(t)$ and $u_w(t)$ allows revealing the influence of turbulence
 238 frequency distribution on the debris flight, which will be discussed in the beginning of Section 4.1.

239
240**Figure 5.** Wind fluctuation with full spatial correlation**Figure 6.** Full spatial correlation: simulated unit-variance wind fluctuations $u_s(t)$

241

242 3.1.3 *Fluctuation with partial spatial correlation*

243 The upcoming results section will reveal clear differences in debris flight behaviors between the
 244 two extreme scenarios of no and full spatial correlation of turbulence, illustrating the potential
 245 importance of partial correlation on debris flight. The vertical spatial correlation of longitudinal

246 fluctuations has been widely studied, and well-accepted models, such as Davenport's distance-
 247 decaying coherence (Davenport, 1961), are available. On the other hand, the along-wind spatial
 248 correlation of longitudinal fluctuations is less standardized. Taylor's frozen turbulence hypothesis
 249 (Taylor, 1938) is still widely presumed. In frozen turbulence-based correlation, the cross-
 250 correlation coefficient function of longitudinal turbulence between two along-wind separated
 251 locations peaks with a value of unity at the time lag determined by the distance between the two
 252 separated locations divided by the mean wind speed.

253 This study maintains a consistent distance-decaying partial correlation scheme in the
 254 vertical direction while considering two schemes for modeling along-wind correlation: (1) full
 255 correlation without time delay, (2) full correlation with time delay based on frozen turbulence.
 256 More realistic along-wind correlations will be considered in future work using PIV measurements
 257 as the baseline wind field.

258 *3.1.3.1 Distance-decaying correlation in vertical direction and full correlation in along-wind
 259 direction*

260 To generate wind fluctuations with partial correlation in the vertical direction and full correlation
 261 in the along-wind direction, this study first generates wind fluctuations at n discrete vertical
 262 locations along the inlet boundary from origin $(0, 0)$ to debris release location $(0, z_r)$ with equal
 263 spacing Δz (see Fig. 7). Then, the debris-experienced wind speed can be conveniently simulated
 264 based on the assumption of full correlation and the interpolation criteria ($z \approx k\Delta z$):

$$265 U(x, z, t) = \bar{U}(z) + u(x, z, t) \approx \bar{U}(z) + u(0, k\Delta z, t) = \bar{U}(z) + \bar{U}(z)I_u(z)u_k(t) \quad (9)$$

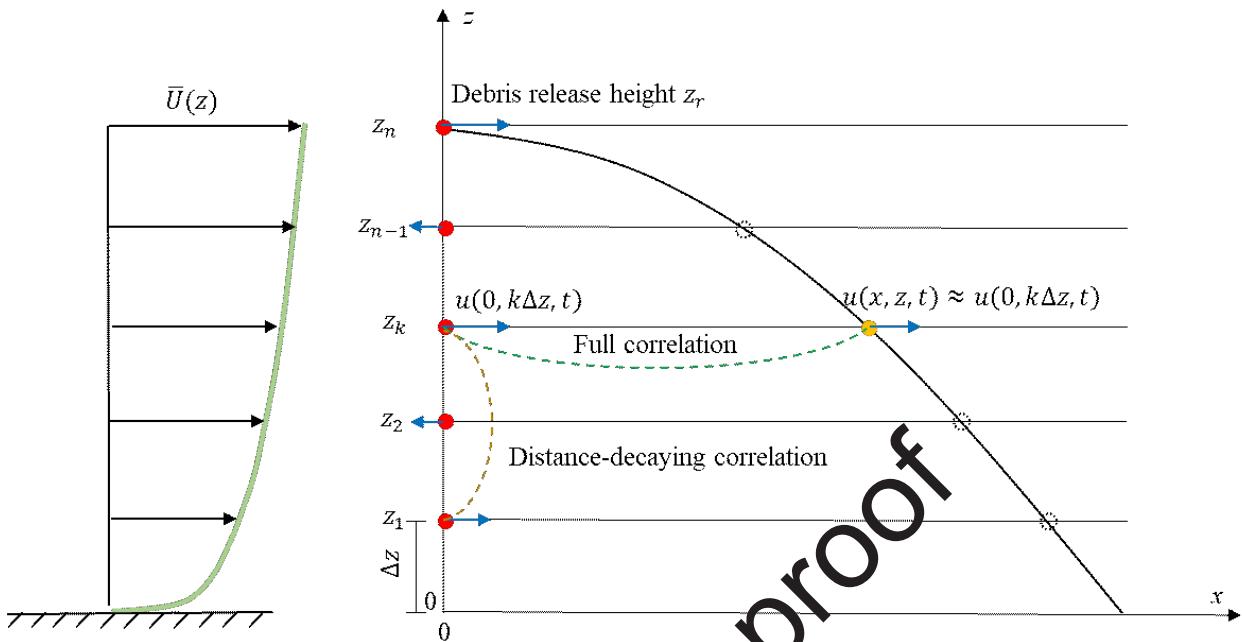
266 The unit-variance wind fluctuations for the n locations can be simulated by the SRM using the
 267 prescribed power spectrum density matrix (PSDM) $\mathbf{S}(\omega)$ (Deodatis, 1996):

268
$$\mathbf{S}(\omega) = \begin{bmatrix} S_{11}(\omega) & S_{12}(\omega) & \dots & S_{1n}(\omega) \\ S_{21}(\omega) & S_{22}(\omega) & \dots & \dots \\ \dots & \dots & \dots & \dots \\ S_{n1}(\omega) & \dots & \dots & S_{nn}(\omega) \end{bmatrix} \quad (10)$$

269 where the diagonal term is the auto-spectrum:

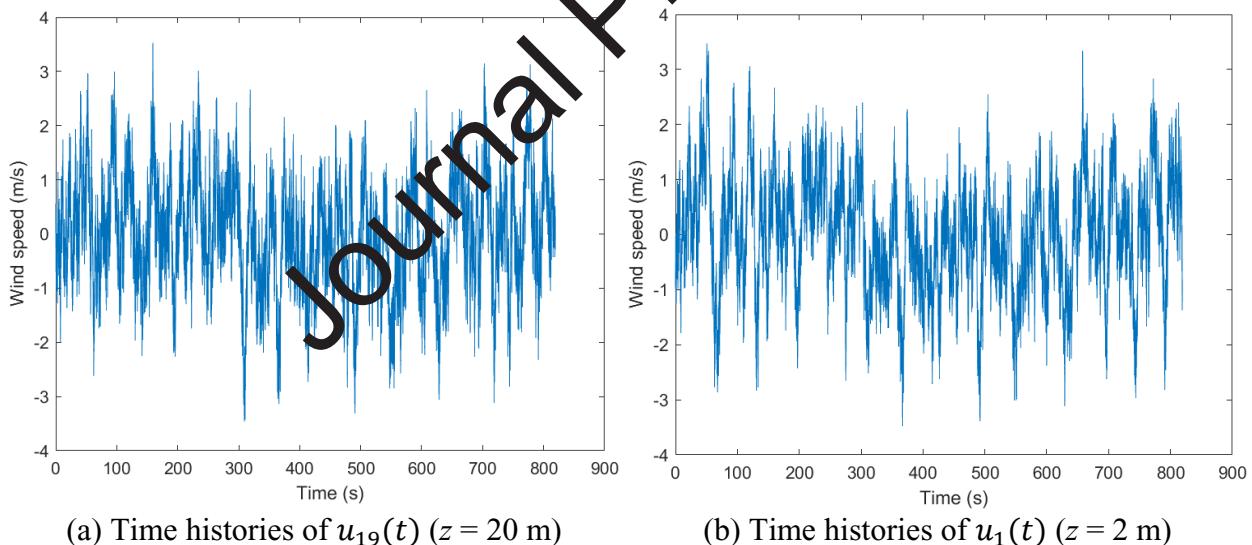
270 $S_{kk}(\omega) = S_k(\omega) \text{ with } k=1, 2, \dots, n \quad (11)$

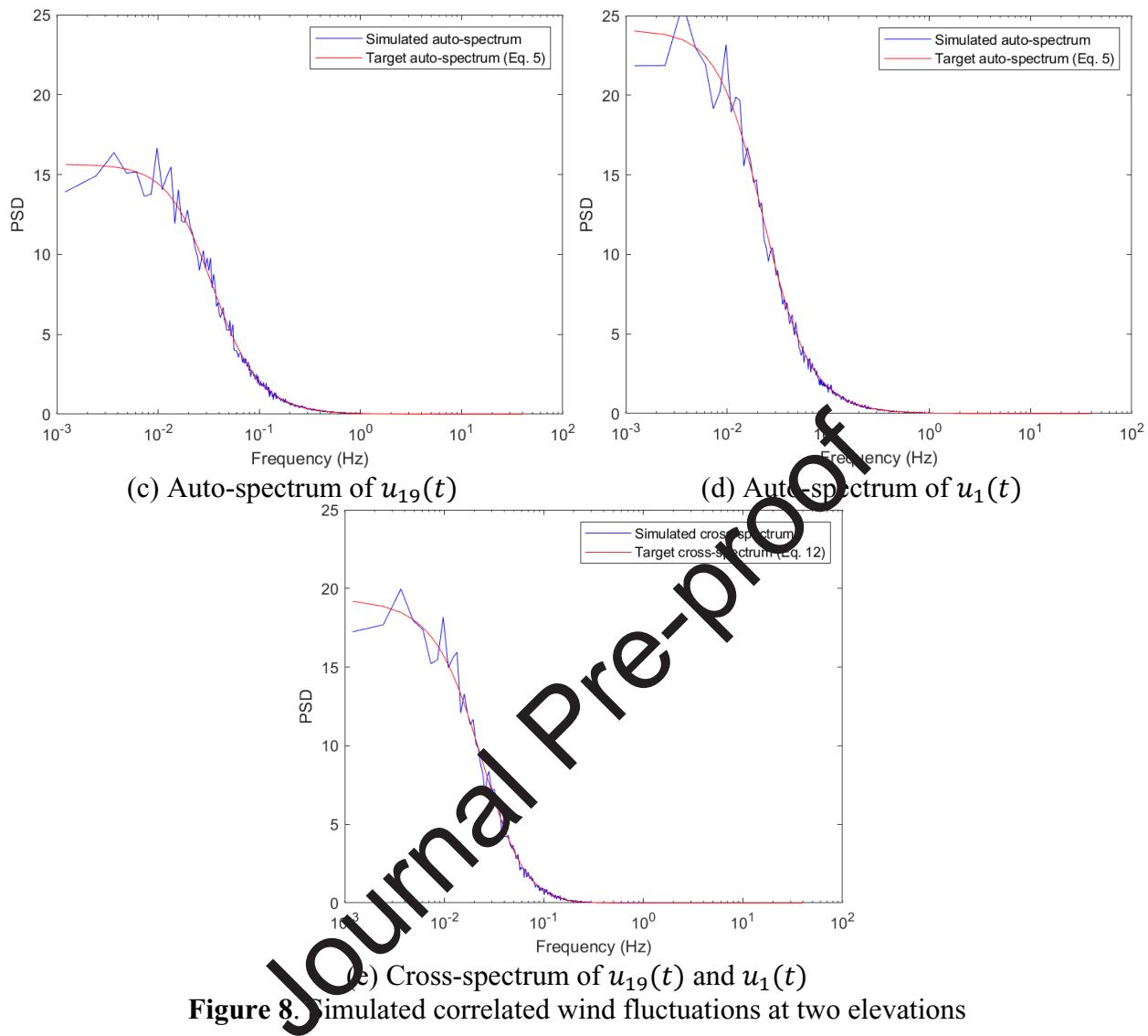
271 $S_k(\omega)$ is defined by von Karman spectrum in Eq. (5); the off-diagonal term is the cross-spectrum:


272 $S_{jk}(\omega) = \sqrt{S_j(\omega) S_k(\omega)} \gamma_{jk}(\omega) \text{ with } j, k=1, 2, \dots, n \text{ and } j \neq k \quad (12)$

273 where $\gamma_{jk}(\omega)$ is the Davenport coherence function (Davenport, 1961) with a constant decay factor

274 $C_z = 10$:


275
$$\gamma_{jk}(\omega) = \exp \left\{ -\frac{\omega}{2\pi} \frac{C_z |z_i - z_k|}{\frac{1}{2} [\bar{U}(z_i) + \bar{U}(z_k)]} \right\} \quad (13)$$

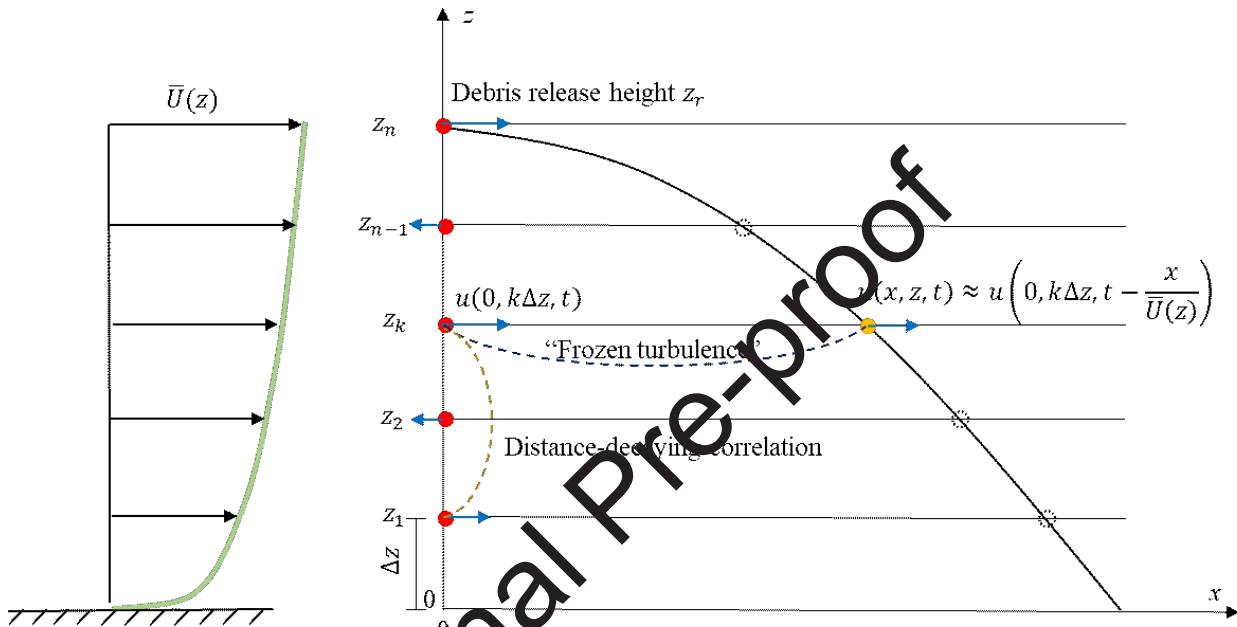

276 Wind fluctuations are simulated at 19 locations, from $z = 2$ m (below which log law in Eq. 3 may
 277 become invalid) to release height of 20 m, where Δz is 1 m (see the sensitivity analysis in
 278 Appendix A). A sample of the simulated partially correlated wind fluctuations at elevations 20 m
 279 and 2 m, i.e., $u_{19}(t)$ and $u_2(t)$, are shown in Fig. 8, together with their auto- and cross-spectrum.
 280

281
282
283
284

Figure 7. Wind fluctuation with partial correlation in vertical direction and full correlation in along-wind direction

Figure 8. Simulated correlated wind fluctuations at two elevations

285


286 3.1.3.2 *Distance-decaying correlation in vertical direction and frozen turbulence-based*
 287 *correlation in along-wind direction*

288 This section considers turbulence correlation in along-wind direction that is more realistic than full
 289 correlation. One simple approach to use Taylor's hypothesis of frozen turbulence (Taylor, 1938),
 290 which considers the downstream turbulence as the time-delayed version of upstream turbulence at
 291 the inlet boundary (see Fig. 9). Under frozen turbulence, the debris-experienced wind speed is
 292 calculated as:

293
$$U(x, z, t) = \bar{U}(z) + u(x, z, t) \approx \bar{U}(z) + u\left(0, k\Delta z, t - \frac{x}{\bar{U}(z)}\right)$$

294
$$= \bar{U}(z) + \bar{U}(z)I_u(z)u_k\left(t - \frac{x}{\bar{U}(z)}\right) \quad (14)$$

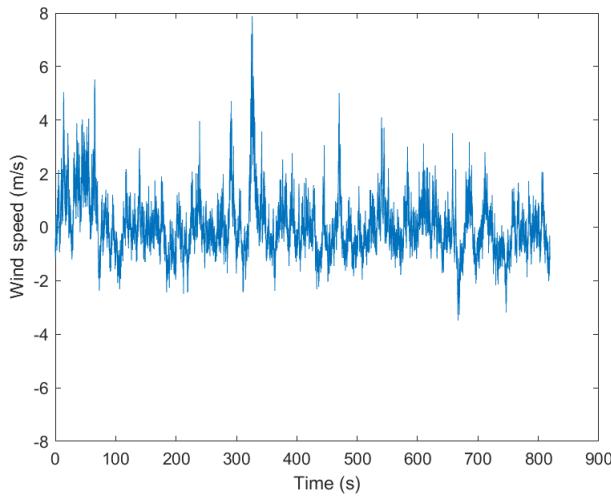
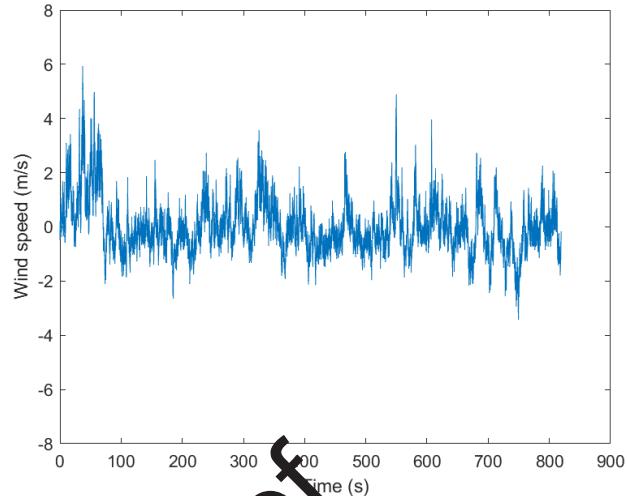
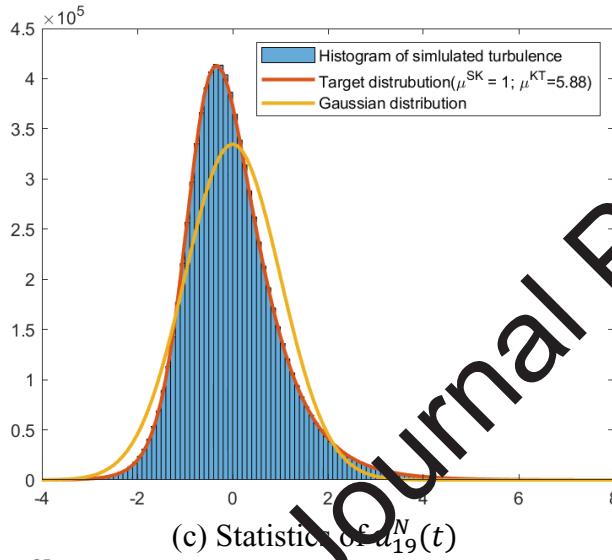
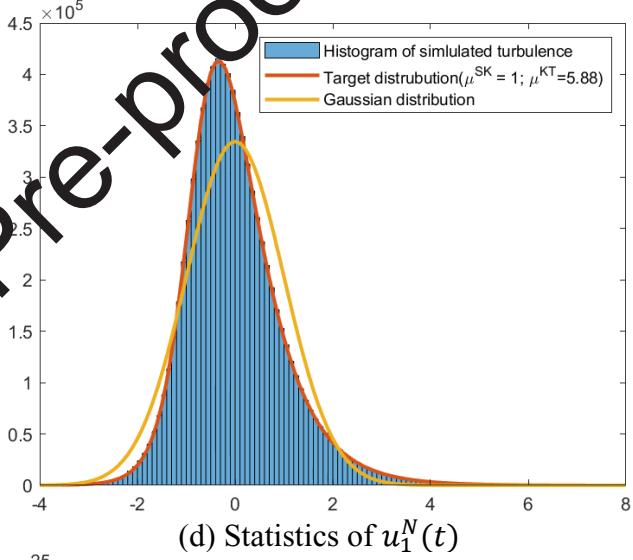
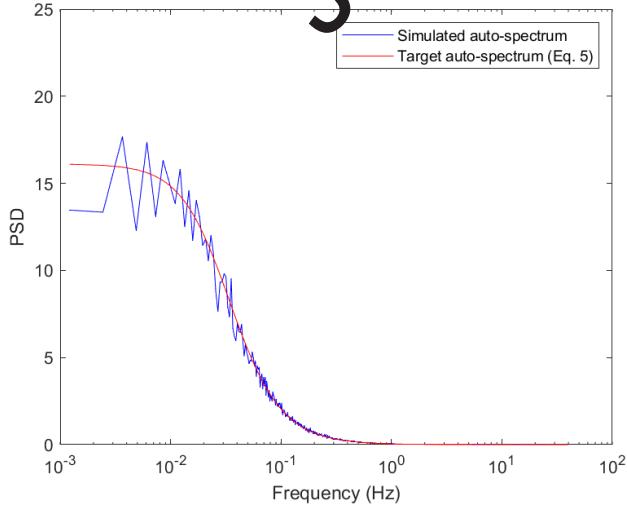
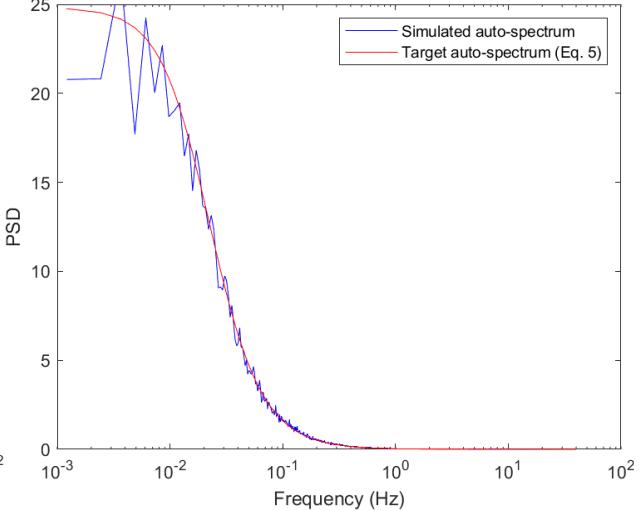
295 where $u_k(t)$ is the same as that defined in the previous section.

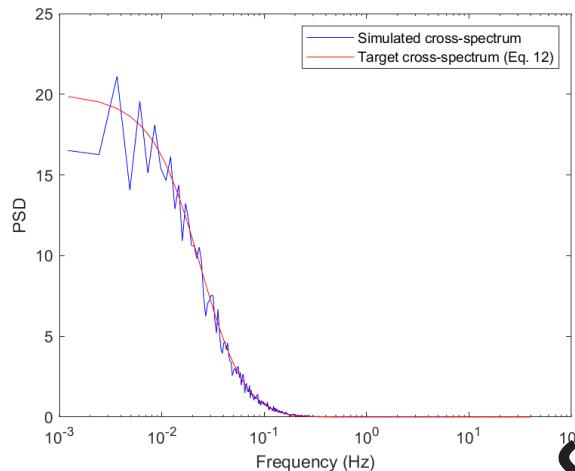
296
297 **Figure 9.** Wind fluctuation with partial correlation in vertical direction and frozen turbulence-
298 based propagation in along-wind direction
299

300 3.2 Non-Gaussian wind fluctuation

301 The SRM simulation method employed for all correlation variations (Section 3.1) result in
302 Gaussian wind fluctuations, which does not align with full-scale and wind tunnel observations,
303 including extreme winds (e.g., Balderrama et al., 2012; Fernández-Cabán and Masters, 2017; Zhao
304 et al., 2019; Gurley et al., 2021; Ojeda-Tuz et al., 2023). Non-Gaussian wind fluctuations may
305 change the debris flight trajectory and will be investigated in this section. As described in Table 2,
306 only the distance-decaying vertical correlation and frozen turbulence-based along-wind correlation
307 are considered, and maintained as:

308
$$U(x, z, t) = \bar{U}(z) + u^N(x, z, t) \approx \bar{U}(z) + u^N\left(0, k\Delta z, t - \frac{x}{\bar{U}(z)}\right)$$







309
$$= \bar{U}(z) + \bar{U}(z)I_u(z)u_k^N\left(t - \frac{x}{\bar{U}(z)}\right) \quad (15)$$


310 The approach to simulating $u_k^N(t)$ utilizes the translation method (Grigoriu, 1984; Grigoriu, 1998)
 311 to impart the desired marginal probability density function (MPDF) and adopts a third order
 312 Hermite polynomial probability model (Yang et al., 2013; Yang and Gurley, 2015) to describe the
 313 MPDF as a function of desired skewness and kurtosis in the turbulence. In summary, the method
 314 employs a static polynomial transform of a SRM simulated Gaussian process to simultaneously
 315 achieve the desired PSD and MPDF characteristics. The approach is non-iterative and
 316 computationally efficient. Although no new contributions to this method are developed in the
 317 current study, it is briefly described in Appendix K for the sake of completeness.

318 Since the purpose of this section is to determine whether debris flight is sensitive to non-
 319 Gaussian turbulence features, a simple approach is employed. A uniform skewness profile with a
 320 value of $\mu^{SK}(z) = 1$ is assumed, which is relatively extreme in the context of field measurements
 321 (e.g., Balderrama et al., 2012; Fernández-Cabán and Masters, 2017; Zhao et al., 2019). The
 322 kurtosis is obtained from the empirical relationship $\mu^{KT}(z) = 2.86|\mu^{SK}(z)|^2 + 3.02 = 5.88$
 323 from hurricane field measurement (Zhao et al., 2019). The second order characteristic follows the
 324 identical spectral and coherence models defined in the previous section. Samples of simulated non-
 325 Gaussian wind fluctuations are shown in Fig. 10, together with their skewness and kurtosis as well
 326 as the auto- and cross-spectrum.

327

328

(a) Time histories of $u_{19}^N(t)$ (b) Time histories of $u_1^N(t)$ (c) Statistics of $u_{19}^N(t)$ (d) Statistics of $u_1^N(t)$ (e) Auto-spectrum of $u_{19}^N(t)$ (f) Auto-spectrum of $u_1^N(t)$

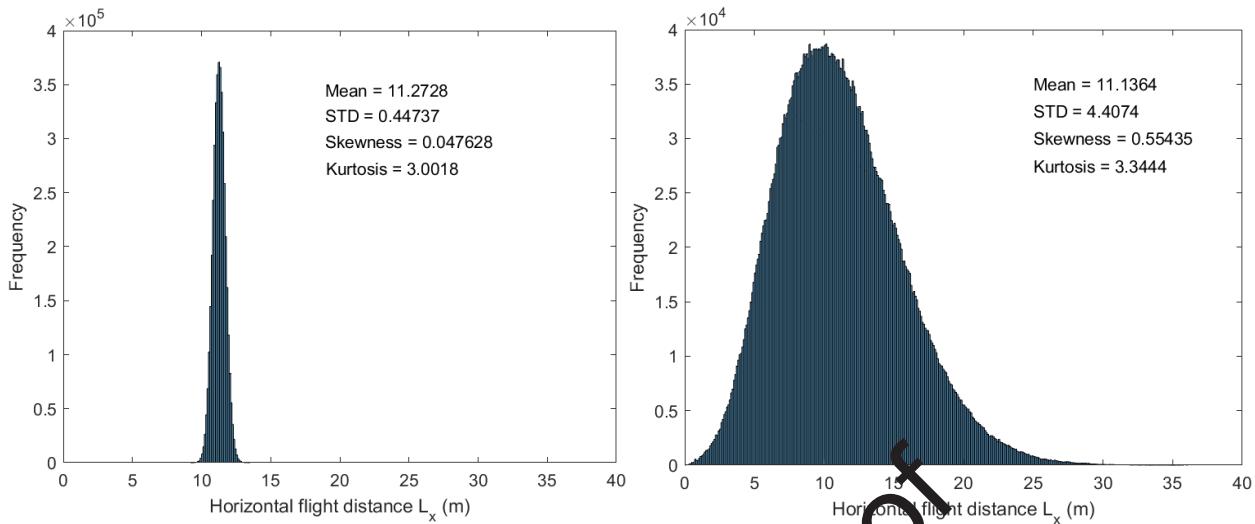
(g) Cross-spectrum of $u_{19}^N(t)$ and $u_1^N(t)$
Figure 10. Simulated non-Gaussian wind fluctuations

329

330 4 ANALYSIS OF RESULTS

331 The six combinations of spatial correlation and probability content (see Table 2) are employed
 332 individually to compute the flight trajectories of spherical debris using the model described in
 333 Section 2. This allows the systematic investigation of the influence of spatial correlation and the
 334 non-Gaussian probability on debris flight.

335 To obtain a reliable estimate on the statistical properties of simulated debris flight, the
 336 following parameters need to be properly selected for the balance of computational accuracy and
 337 efficiency: (1) the temporal discretization size, Δt , for wind field simulation and debris flight
 338 computation, (2) the spatial discretization size, Δz , for wind field simulation, (3) the number of
 339 realizations, N_{WG} , for wind field simulation, and (4) the number of debris releases, N_{DR} , for
 340 uncertainty quantification of debris flight. Sensitivity analysis is presented in Appendix A to
 341 determine appropriate values for these parameters. As a result, the values $\Delta t = 0.0125$ s, $\Delta z = 1$ m,
 342 $N_{WG} = 128$, and $N_{DR} = 2^{15}$ are adopted for this study. Zero initial velocity of debris is assumed
 343 for all scenarios. This study focuses on the statistical properties, i.e., mean, standard deviation
 344 (STD), skewness, and kurtosis, of the along-wind flight distances L_x that are important for debris


345 risk analysis. In the following presentations, histograms of debris flight distance are presented and
346 compared among the different experiments in Table 2. The probabilistic distribution of debris
347 flight distance is not normalized to an empirical probability density function but kept as a
348 histogram format to allow easier comparisons among figures.

349 **4.1 Influence of turbulence spatial correlation on debris flight**

350 The simulation results of the two extreme scenarios for no and full spatial correlations are shown
351 in Fig. 11(a) and 11(b), respectively. While the mean value of flight distance is very similar, the
352 standard deviation of the debris flight distance for the full-correlation case is almost 10 times larger
353 than that of the no-correlation case. In addition, the distribution of along-wind flight distance is
354 approximately Gaussian for no spatial correlation of turbulence. When full spatial correlation is
355 introduced, the debris flight distribution becomes slightly non-Gaussian with positive skewness
356 and kurtosis larger than 3. These results also demonstrate the influence of low-frequency
357 fluctuations on computing debris flight, considering the differences between the flat white noise
358 spectrum (Fig. 4b) and frequency-decaying von Karman spectrum (Fig. 6b).

359 It is known that an actual wind field is neither uncorrelated nor fully correlated, and so this
360 comparison is intended to set the boundaries of correlation influence on debris flight behavior
361 within the context of the selected conditions (release height, open flow, spherical debris, etc.). It
362 can be concluded that the presence of correlation is a significant contributor to simulated debris
363 flight behavior. It remains to be determined how sensitive simulated debris flight is to the layered
364 complexities of correlation that span no-correlation through full correlation, as well as the
365 influence of non-Gaussian turbulence.

366

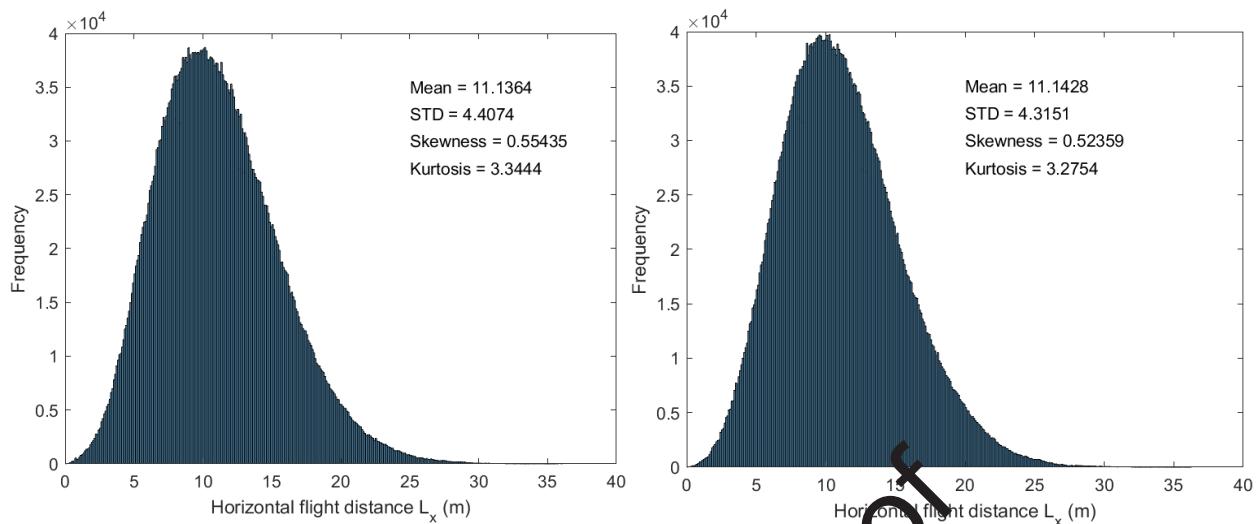
(a) Gaussian turbulence; No spatial correlation (b) Gaussian turbulence; Full spatial correlation
Figure 11. Influence of turbulence spatial correlation on debris flight

367

368 4.1.1.1 *Influence of vertical correlation*

369 The influence of vertical correlation is investigated through comparing the result of (1) full spatial
 370 correlation (Section 3.1.2) and (2) distance-decaying vertical correlation and full along-wind
 371 correlation (Section 3.1.3.1). The results in Fig. 12 show that the difference between the two
 372 scenarios is very small. To further investigate the underlying mechanism, two hypotheses are
 373 proposed here.

374 Hypothesis A: Spatial correlation is large over the relatively short distance between debris
 375 release elevation and the ground (as per the Davenport coherence function). That is, this example
 376 contrasts full vertical correlation with very large but not full vertical correlation, and little
 377 difference is observed.

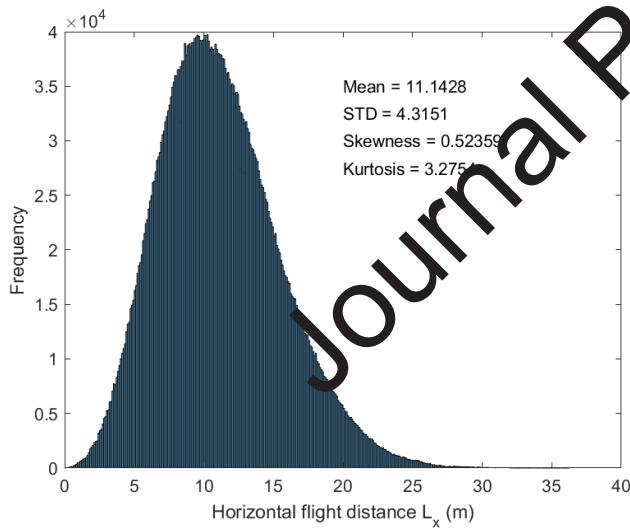

378 Hypothesis B: Debris flight trajectories are mostly sensitive to the turbulence at the early
 379 stage of flight, and the local wind field covering the initial portion of the debris flight is highly
 380 correlated to the wind fluctuation at the debris release location.

381 Hypothesis A is tested by conducting simulations of debris released at 100 m elevation,
382 where the turbulence correlation between debris release elevation and the ground is much smaller
383 than the case of a 20 m release elevation. The simulation results (not shown) yield insignificant
384 differences between (1) full spatial correlation and (2) distance-decaying vertical correlation and
385 full along-wind correlation, which disproves Hypothesis A.

386 To test Hypothesis B, two additional cases, deviating from baseline of distance-decaying
387 vertical correlation and full along-wind correlation, are considered: (1) no turbulence for debris
388 traveling between $z = 0$ m and $z = 10$ m, (2) no turbulence for debris traveling between $z = 10$ m
389 and $z = 20$ m. The simulation results are shown in Fig. 13. For the case of no turbulence for lower
390 portion of debris flight, the debris flight characteristics (Fig. 13c and 13d) are very close to the
391 baseline (Fig. 13a and 13b). The debris has proved the importance of turbulence in the initial flight,
392 which supports Hypothesis B. In contrast, the case of no turbulence for upper portion of debris
393 flight (Fig. 13e and 13f) has significantly smaller variation in debris flight distance, which
394 reconfirms the higher importance of turbulence in the initial stage of debris flight. This finding of
395 higher importance of turbulence in the initial stage is also consistent with that reported in the
396 literature (Dong et al., 2023). Additional simulations using the “temporal” half to partition the
397 initial and later flight stage have also been conducted in Appendix C to complement the result in
398 Fig. 13 using “spatial” half.

399

400



(a) Gaussian turbulence; Full spatial correlation

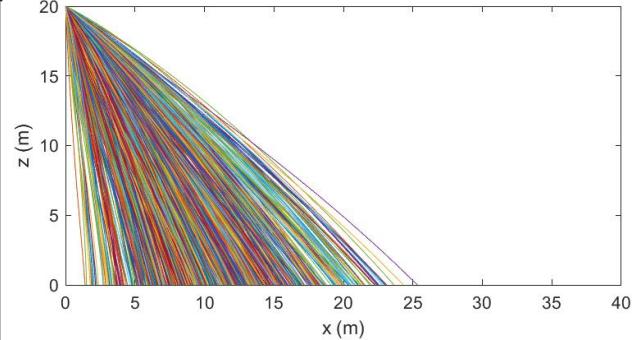
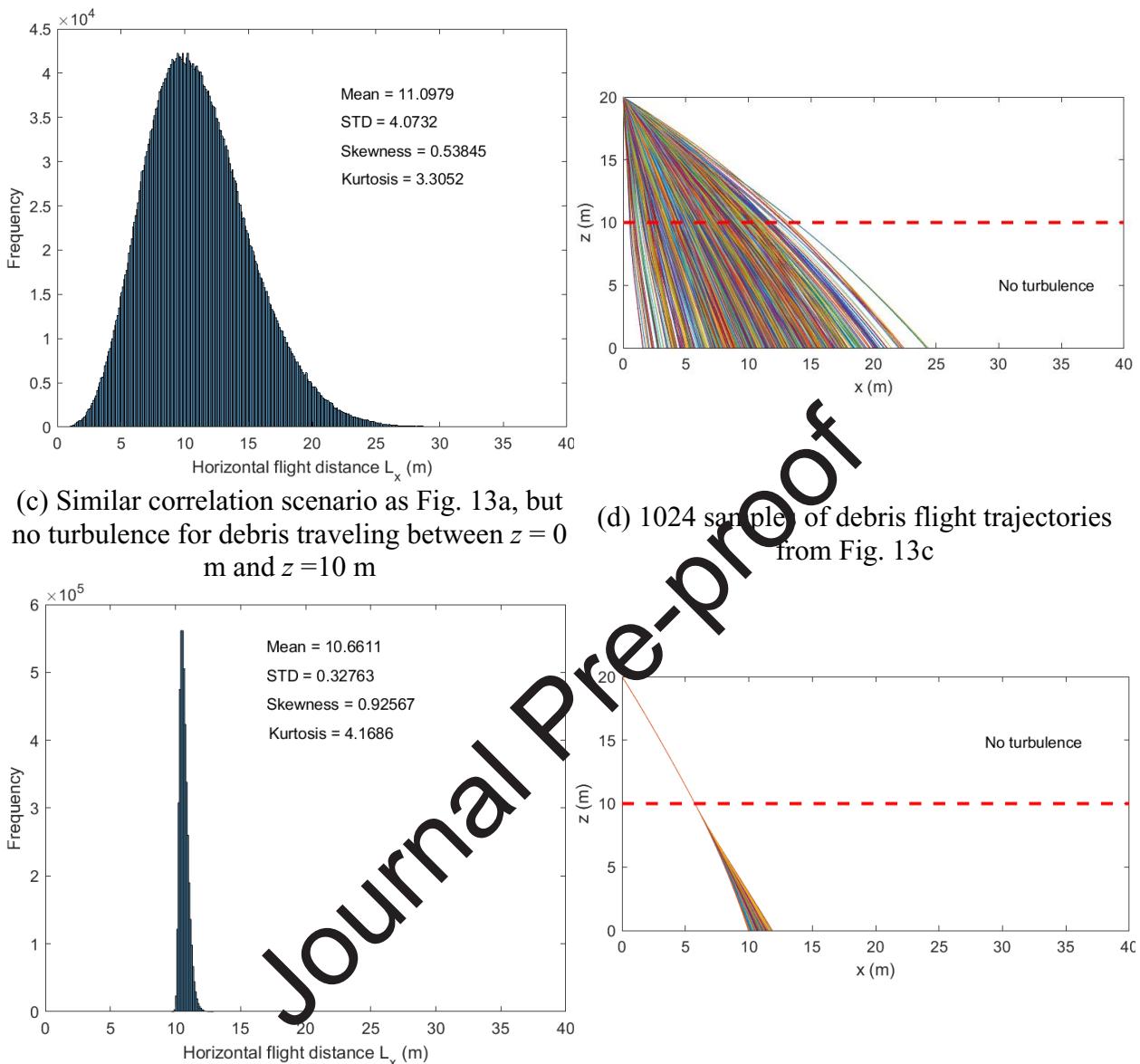
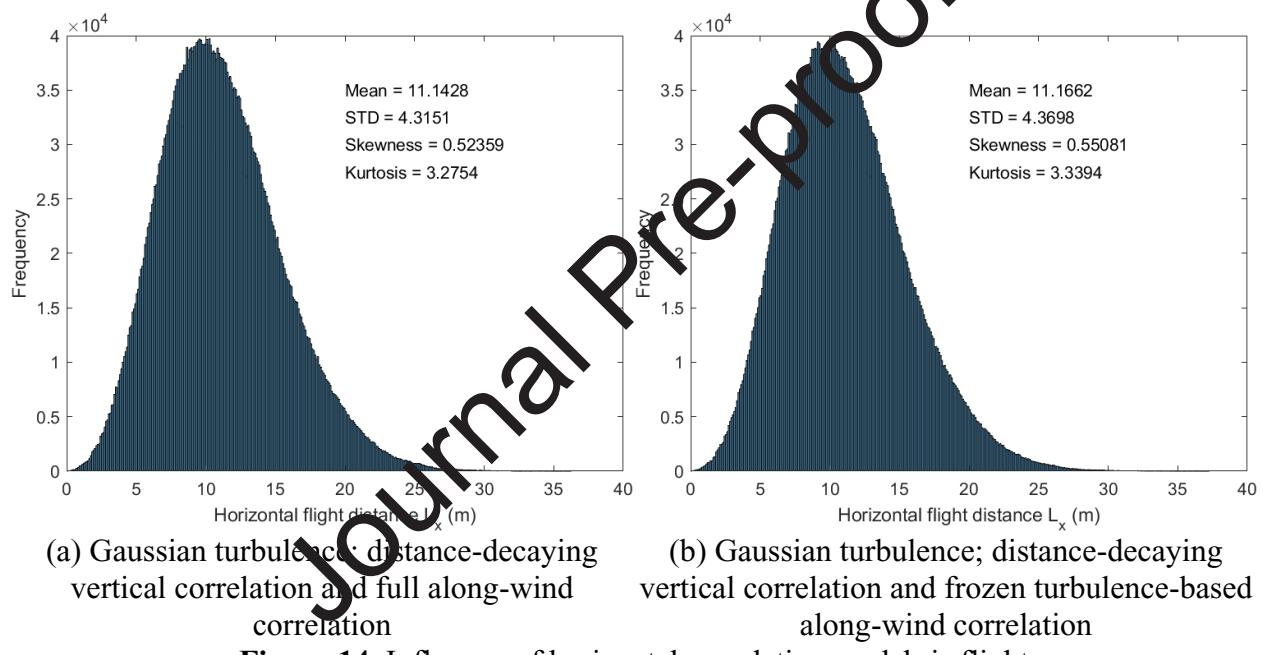

(b) Gaussian turbulence; Distance-decaying vertical correlation and full along-wind correlation

Figure 12. Influence of vertical correlation on debris flight


401

(a) Baseline: repeat of Figure 12b

(b) 1024 samples of debris flight trajectories from Fig. 13a / 12b


Figure 13. Dissection of vertical correlation's influence on debris flight

402

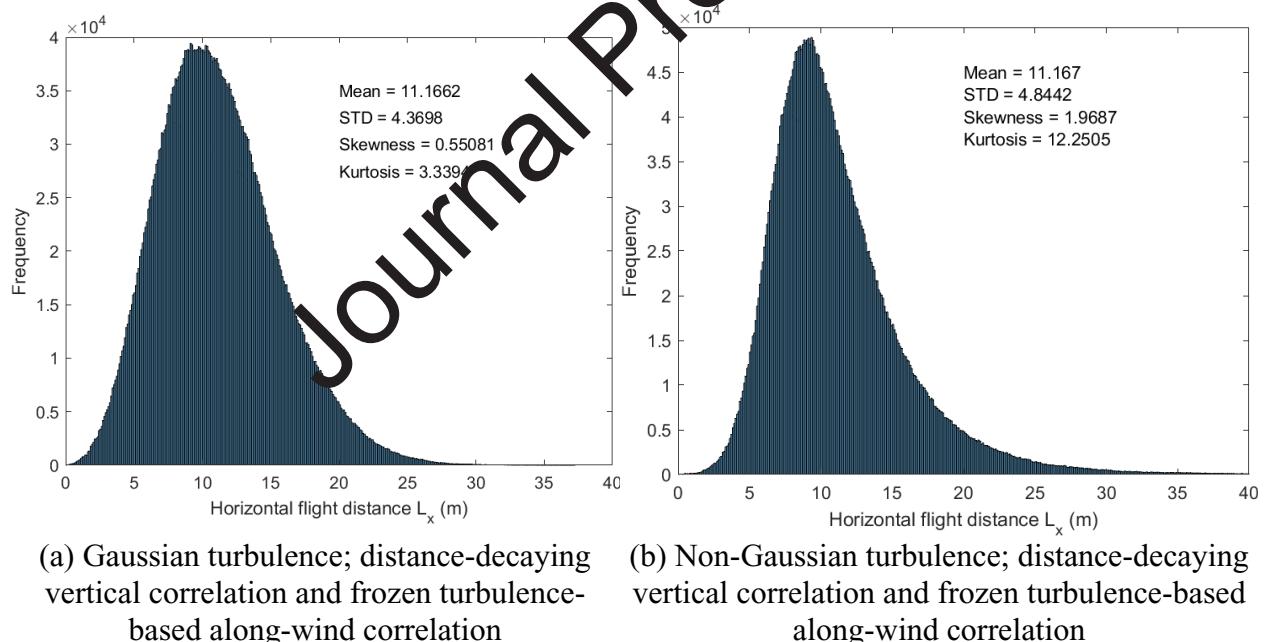
403 4.1.1.2 *Influence of along-wind correlation*

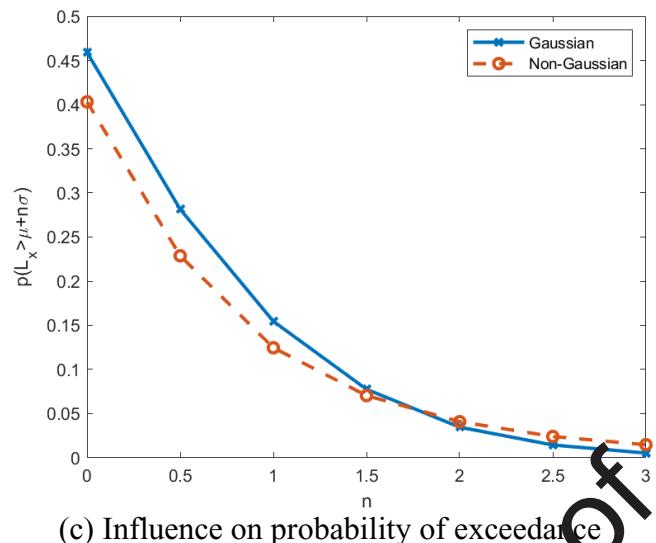
404 The influence of along-wind correlation is investigated by comparing the result of (1) distance-
 405 decaying vertical correlation and full along-wind correlation (Section 3.1.3.1) and (2) distance-
 406 decaying vertical correlation and frozen turbulence-based along-wind correlation (Section

407 3.1.3.2). The results in Fig. 14 suggest very small differences between the two scenarios. This
 408 negligible difference can be attributed to the short time delay calculated in the frozen turbulence-
 409 based assumption (Eq. 14) due to the small flight distance and high wind speed. This short time
 410 delay (e.g., in the order of 0.25s for the flying debris at $x = 6\text{m}$ and $z = 10\text{m}$) is smaller than the
 411 large period of low-frequency turbulence (e.g., the passage time of an integral length scale for the
 412 wind turbulence at $z = 10\text{m}$ is in the order of 4s), and the resulting variation in wind speed is not
 413 significant for debris flight.

Figure 14. Influence of horizontal correlation on debris flight

414


415 **4.2 Influence of turbulence high-order statistics on debris flight**


416 This section investigates influence of high-order turbulence behavior on debris flight by comparing
 417 the result of Gaussian (Section 3.1.3.2) and non-Gaussian turbulence (Section 3.2) while
 418 maintaining the same spatial correlation and power spectral characteristics in both cases (distance-
 419 decaying vertical correlation and frozen turbulence-based along-wind correlation). Fig. 15a and
 420 15b shows that the mean value of the horizontal flight distance remains unchanged, while the

421 standard deviation slightly increases due to the non-Gaussian turbulence. The most pronounced
 422 difference is that the skewness and kurtosis of debris flight distance are much larger compared to
 423 the Gaussian counterparts. The probability of exceedance $p(L_x > \mu^{MN} + n\mu^{SD})$ for debris flying
 424 beyond n times the standard deviation, μ^{SD} , from the mean value, μ^{MN} , is shown in Fig. 15c, which
 425 shows that a Gaussian simulation underestimates the debris flight distance for the extreme cases
 426 (the tail region beyond two standard deviation away from mean). These results demonstrate the
 427 potential importance of considering non-Gaussian wind fields in debris risk analysis.

428 For the sake of clarity, the simulation results of all the investigated scenarios are
 429 summarized in Fig. 16.

430

(c) Influence on probability of exceedance

Figure 15. Influence of turbulence high-order statistics on debris flight

431

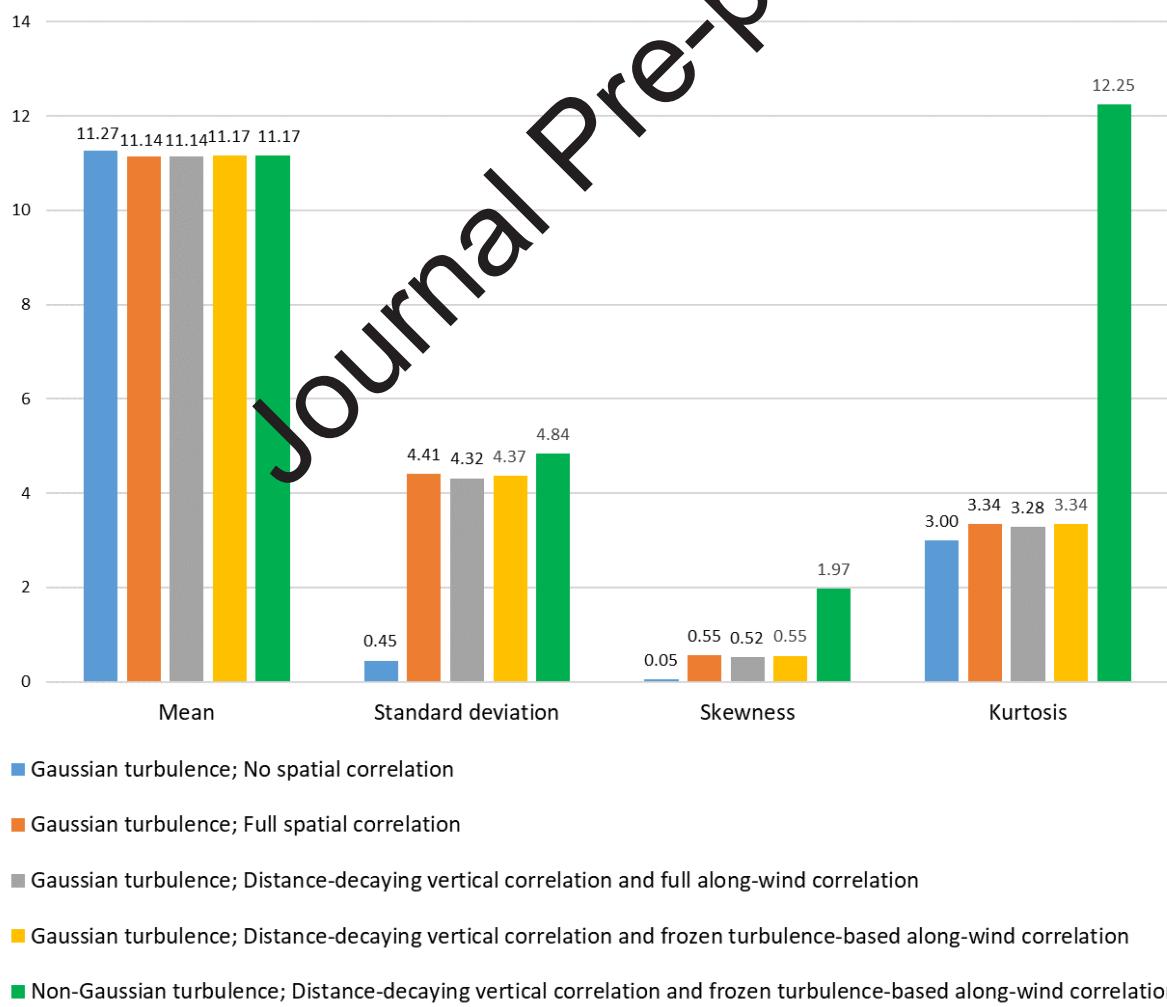

432
433

Figure 16. Summary of simulation results

434 **5 IMPLICATIONS FOR WIND TUNEL TESTING**

435 Noting that the debris shape, size and density, release height, wind speed and spectral model used
436 in this study are selected to emulate the conditions feasible in a boundary layer wind tunnel, the
437 obtained results can effectively inform decisions regarding experimental studies of tracking
438 spherical debris flight. The main implications for wind tunnel testing are summarized in the
439 following.

440 (1) The significant influence of low-frequency turbulence on debris flight demonstrates the
441 value of introducing active turbulence generation such as active controlled fans (e.g., Catarelli et
442 al., 2020; Li et al., 2021) to address the low-frequency turbulence deficit in conventional wind
443 tunnels that employ only passive turbulence generation mechanisms.

444 (2) Considering the limited number of debris flight tracking tests in the wind tunnel, debris
445 should be sequentially released to the turbulent flow with a relatively large interval so that enough
446 number of low-frequency turbulence can be covered (i.e., avoid the case that all debris are trapped
447 in one single gust).

448 (3) Based on the statistics of the debris horizontal flight distance, L_x , the view window of
449 the debris tracking system (e.g., high-speed cameras) under the wind speed considered in this study
450 should cover twice the distance of the debris release elevation in the along-wind direction so that
451 the extreme values of debris landing locations can be captured.

452 (4) Noting the higher importance of turbulence in the initial region of debris flight, it is
453 critical to deploy more velocity probes and/or PIV measurements near the debris release location
454 for the future validation of numerical debris flight model against experimental results.

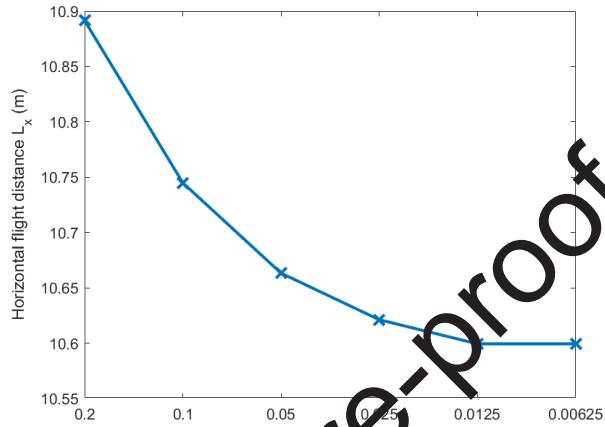
455

456 **6 CONCLUDING REMARKS AND FUTURE DIRECTIONS**

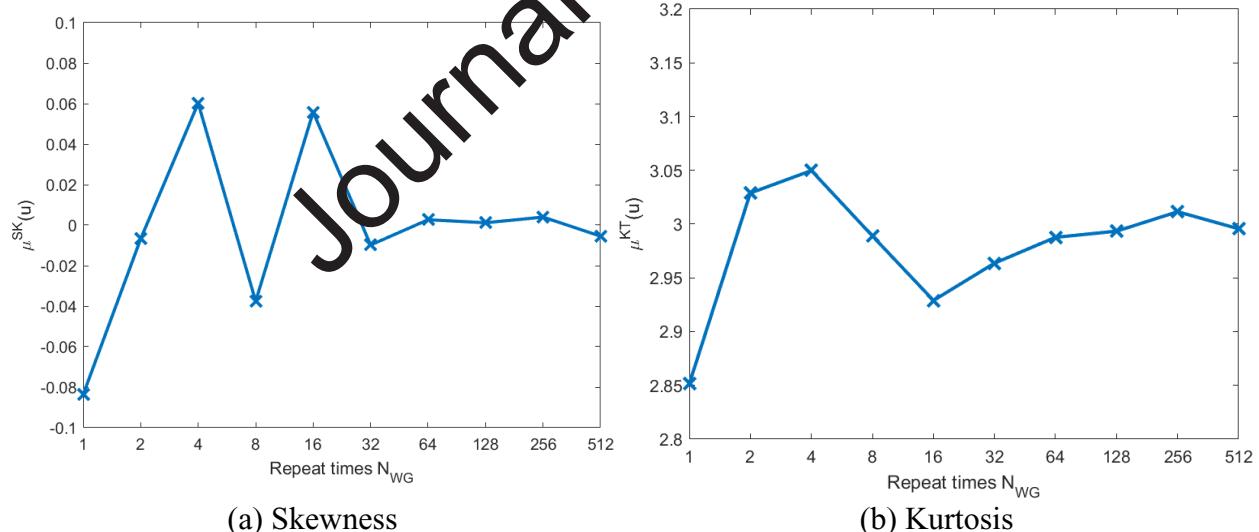
457 This study systematically investigates the influence of spatial correlation and high-order statistics
458 of wind field turbulence on the flight of spherical windborne debris via numerical stochastic
459 simulations of the wind field and debris flight. The results show that capturing partial vertical
460 correlation and the application of Taylor's frozen turbulence in the horizontal produce results
461 similar but not identical to the simplifying assumption of full correlation. Proper modeling of
462 spatial correlation during the initial stages of the flight was far more critical than the modeling of
463 turbulence after sufficient debris momentum was achieved. When spatial correlation is non-zero,
464 Gaussian wind fluctuations produced slightly non-Gaussian distribution of debris flight distance
465 with positive skewness and kurtosis larger than 3. The non-Gaussian features of debris flight
466 distance are amplified when using non-Gaussian turbulence statistics (skewness and kurtosis) with
467 values informed by field measurements of extreme winds, and the extreme values of flight distance
468 have larger occurrence probabilities compared to the Gaussian counterpart.

469 Future directions may include consideration of different debris type (e.g., rod or plate) and
470 properties (e.g., size, density, and release height) in the sensitivity analysis. The uncertainties in
471 aerodynamic drag on the debris needs to be addressed. Experimental studies involving PIV-based
472 wind field measurement and high-speed camera-based debris tracking will be useful to validate
473 the model of wind field and debris flight. Moving beyond the simple open flow condition to
474 consider the interfering effects of buildings is also a critical step to conduct debris risk analysis for
475 realistic urban wind environment. Potential challenges that need to overcome include (1) efficient
476 and accurate simulations of urban wind environments, (2) clear understanding of debris generation
477 mechanism, and (3) faithful characterization of aerodynamic load on debris with irregular shapes.

478 **7 ACKNOWLEDGEMENTS**

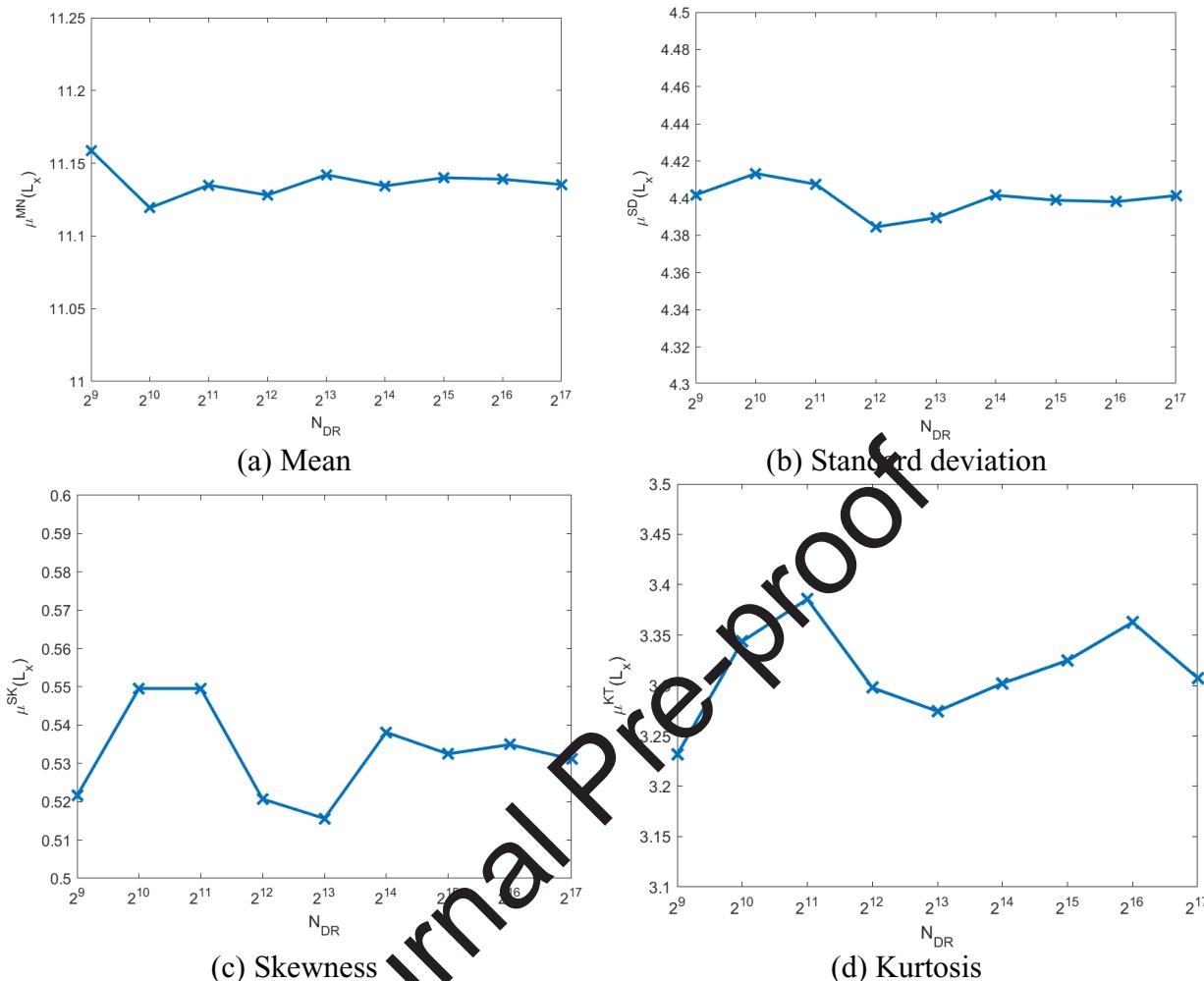
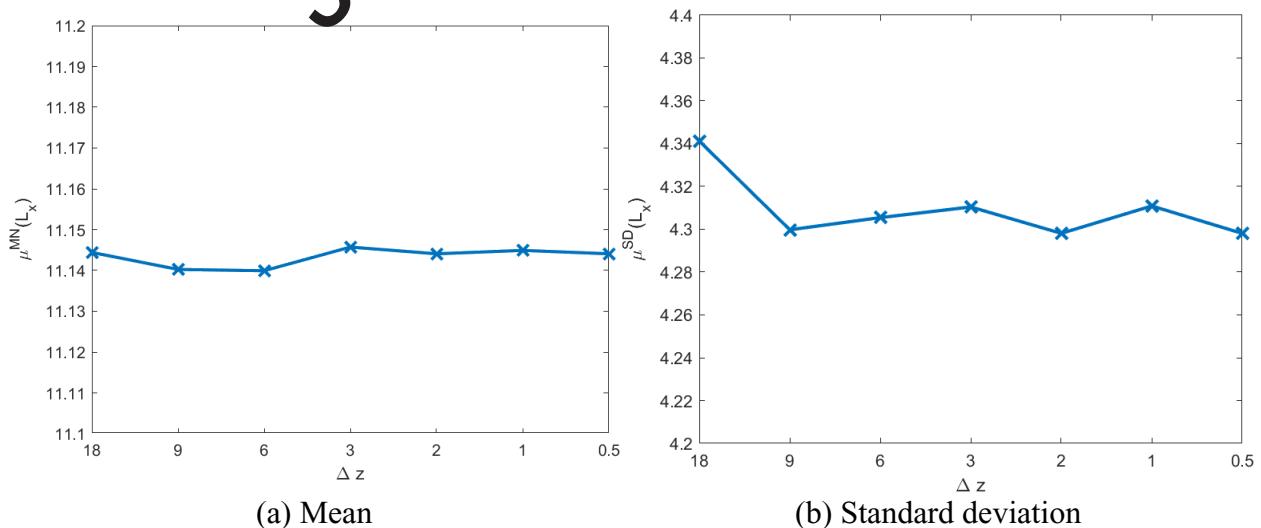

479 The support from NSF grant nos. 2153751 and 2153762, as well as the NSF NHERI shared use
 480 facility award no. 2037725 is gratefully acknowledged. Any opinions, findings, and conclusions
 481 or recommendations expressed in this material are those of the authors and do not necessarily
 482 reflect the views of NSF.

483 **APPENDIX A: SENSITIVITY ANALYSIS FOR NUMERICAL ACCURACY**


484 This Appendix conducts the sensitivity analysis regarding the effect of spatial (Δz) and temporal
 485 discretization (Δt) as well as the number of repeating wind fluctuation generation (N_{WG}) and debris
 486 release (N_{DR}) on the computed flight trajectories based on Monte Carlo simulations. The proper
 487 values of these four parameters are sequentially determined in the following fashion. First,
 488 sensitivity analysis regarding Δt is conducted based on the debris flight distance in along-wind
 489 direction L_x under only mean wind speed without turbulence. Then, the proper value of N_{WG} is
 490 determined when the ensemble of N_{WG} realizations of wind fluctuations u (using the SRM in
 491 Section 3.1.2) achieves target Gaussian statistics (i.e., skewness $\mu^{SK}(u)$ and kurtosis $\mu^{KT}(u)$ are
 492 0 and 3 respectively). After that, N_{DR} debris is randomly released at different time steps of the
 493 simulated winds with full spatial correlation (as in Section 3.1.1 with no need for spatial
 494 discretization), where the results of interest are selected as mean μ^{MN} , standard deviation μ^{SD} ,
 495 skewness μ^{SK} , and kurtosis μ^{KT} of L_x . With the selected Δt , N_{WG} and N_{DR} , the proper size of Δz
 496 is obtained using the wind fluctuations with distance-decaying vertical correlation and full along-
 497 wind correlation (Section 3.1.3.1).

498 The results of the sensitivity analysis are shown in Fig. A1 to A 4. Fig. A1 shows that the
 499 temporal discretization can be selected as $\Delta t = 0.0125$ s, beyond which the value of L_x stabilizes.

500 Fig. A2 reveals that the repeat times of wind generation can determined as $N_{WG} = 128$. Similarly,
 501 Fig. A3 indicate that number of debris release can be determined as $N_{DR} = 2^{15}$, while Fig. A4
 502 suggests that the spatial discretization of $\Delta z = 1$ m to sufficient to obtain a reliable estimate of the
 503 statistics.

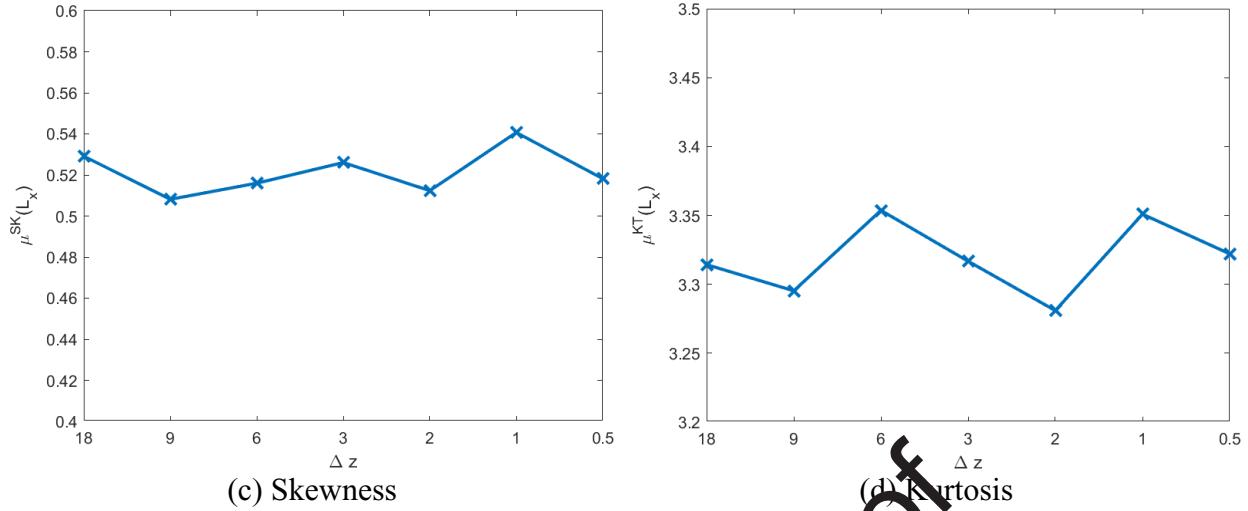

Figure A1. Sensitivity analysis on Δt

Figure A2. Sensitivity analysis on N_{WG}

508
 509

Figure A3. Sensitivity analysis on N_{DR} 510
511

Figure A4. Sensitivity analysis on Δz

512

513 APPENDIX B: NON-GAUSSIAN WIND SIMULATION BASED ON HERMITE MODEL

514 The target high-order statistics of skewness and kurtosis are specified respectively as μ_k^{SK} and μ_k^{KT}
 515 for different spatial locations k (with $k = 1, 2, \dots, n$). The corresponding Hermite parameters c_k and
 516 d_k can be determined by solving a set of nonlinear equations so that these high-order moments
 517 will be matched after translation (Gurley et al., 1997):

$$518 \quad \mu_k^{SK} = E_k^3 (8c_k^3 + 108c_k d_k^2 + 36c_k d_k + 6c_k) \quad (B-1a)$$

$$519 \quad \mu_k^{KT} = E_k^4 (60c_k^4 + 3348d_k^4 + 2232c_k^2d_k^2 + 60c_k^2 + 252d_k^2 + 1296d_k^3 + 576c_k^2d_k + \\ 520 \quad 24d_k + 3) \quad (B-1b)$$

521 with $E_k = \frac{1}{\sqrt{1+2c_k^2+6d_k^2}}$. Eq. (B-1) can be solved numerically or via close form approximations

522 (Yang et al., 2013). On the other hand, the target PSDM of the non-Gaussian wind fluctuation is
 523 prescribed as $\mathbf{S}^N(\omega)$, where each element $S_{jk}^N(\omega)$ (with j and $k = 1, 2, \dots, n$) is obtained using the
 524 same method as in Eq. (11)-(13) for effective comparison with the Gaussian counterpart (i.e., vary
 525 skewness and kurtosis, while keeping PSDM unchanged). Without loss of generality, each term is
 526 normalized as:

527 $S_{jk}^N(\omega) = \frac{S_{jk}^N(\omega)}{\sqrt{\int_{-\infty}^{\infty} S_{jj}^N(\omega) d\omega \int_{-\infty}^{\infty} S_{kk}^N(\omega) d\omega}}$ (B-2)

528 Based on the target PSDM $\mathbf{S}^N(\omega)$, each element $\rho_{jk}^N(\tau)$ in the equivalent correlation coefficient
529 function matrix (CCFM) $\boldsymbol{\rho}^N(\tau)$ can be obtained by the inverse Winener-Khintchine relationship:

530 $\rho_{jk}^N(\tau) = \int_{-\infty}^{\infty} S_{jk}^N(\omega) e^{I\omega\tau} d\omega$ (B-3)

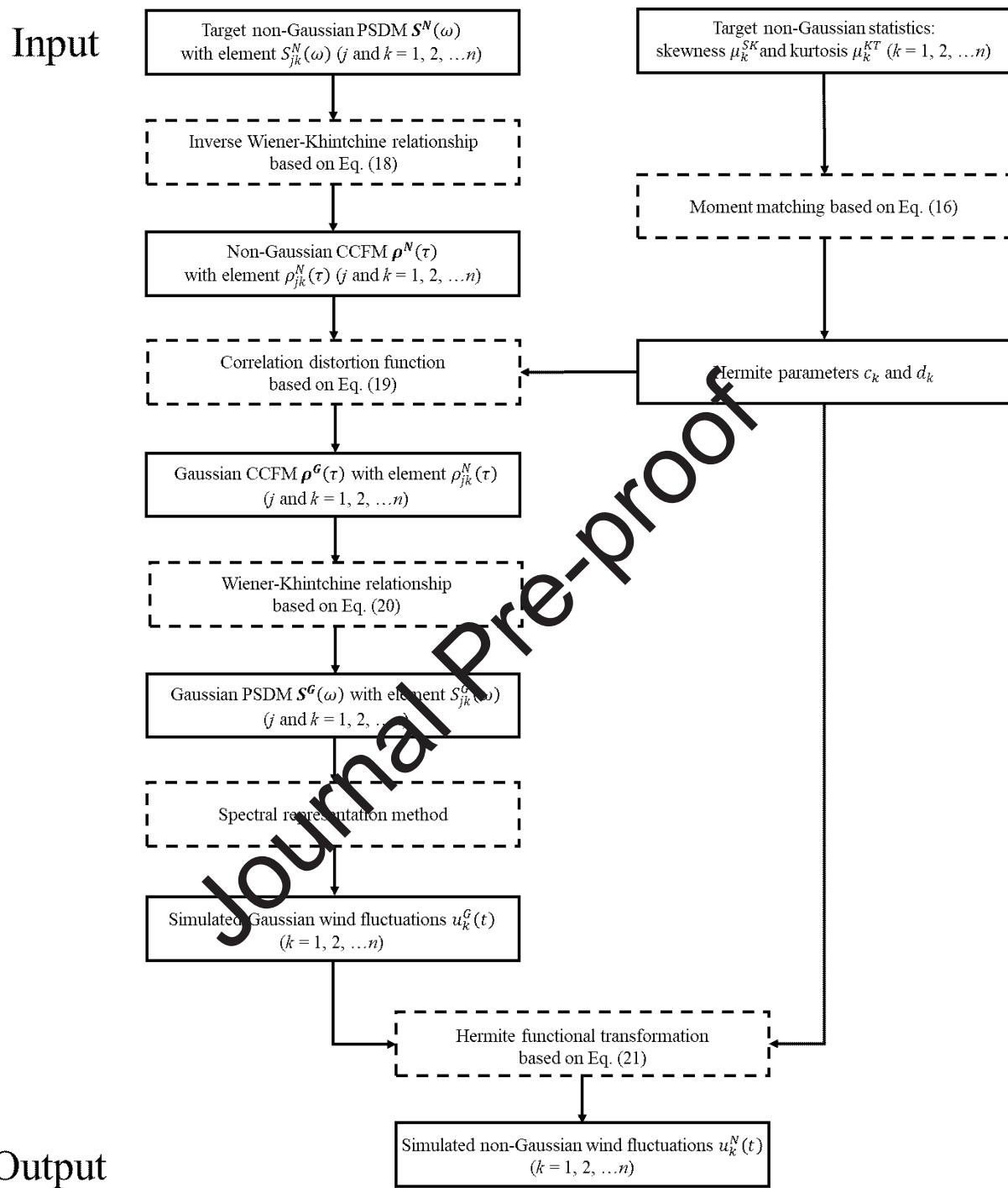
531 where I is the imaginary unit. The corresponding correlation coefficient function for the underlying
532 Gaussian process can be obtained via the explicit correlation distortion function (Yang and Gurley,
533 2015):

534 $\rho_{jk}^G(\tau) = B - \frac{A}{B} - \frac{c_j c_k}{9d_j d_k}$ (B-4a)

535 with

536 $A = \frac{1}{18d_j d_k} - \frac{c_j^2 c_k^2}{81d_j^2 d_k^2}$ (B-4b)

537 $B =$

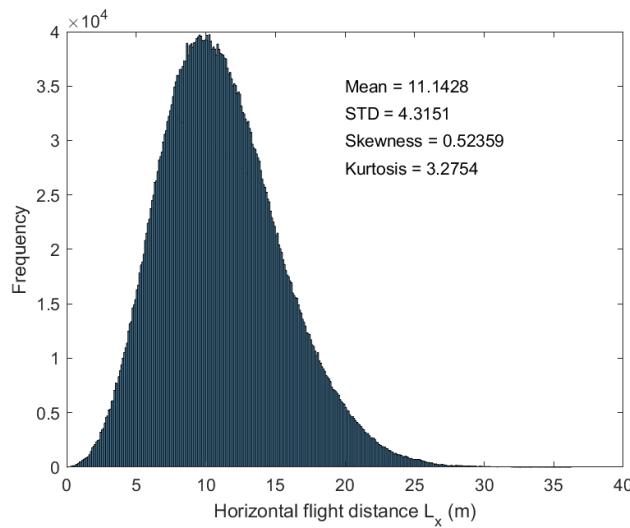

538 $\left[\frac{\rho_{jk}^G(\tau)}{12d_j d_k E_j E_k} + \frac{c_j c_k}{108d_j^2 d_k^2} - \frac{c_j^3 c_k^3}{729d_j^3 d_k^3} + \sqrt{\left(\frac{\rho_{jk}^G(\tau)}{12d_j d_k E_j E_k} + \frac{c_j c_k}{108d_j^2 d_k^2} - \frac{c_j^3 c_k^3}{729d_j^3 d_k^3} \right)^2 + A^3} \right]^{1/3}$ (B-4c)

539 The corresponding spectral term $S_{jk}^G(\omega)$ in the PSDM for the underlying Gaussian process $\mathbf{S}^G(\omega)$
540 can be then obtained by the Winener-Khintchine relationship:

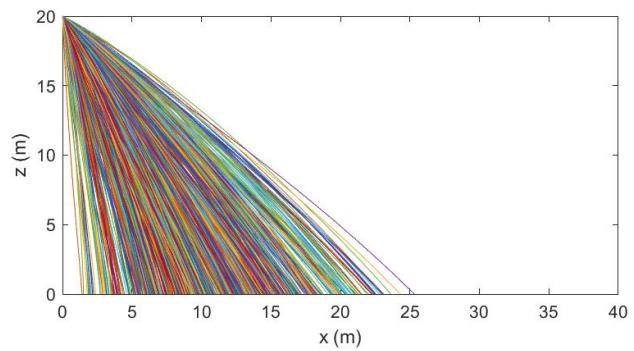
541 $S_{jk}^G(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_{jk}^G(\tau) e^{-I\omega\tau} d\tau$ (B-5)

542 With the obtained $\mathbf{S}^G(\omega)$, the spatially correlated Gaussian wind fluctuations $u_k^G(t)$ can be
543 conveniently simulated for different locations using the SRM (e.g., Deodatis, 1996). The non-
544 Gaussian wind fluctuations can then be obtained by the third order Hermite functional
545 transformation with previously calculated parameters:

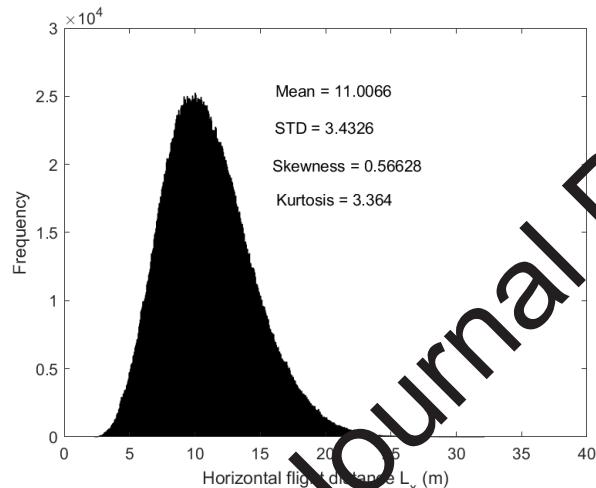
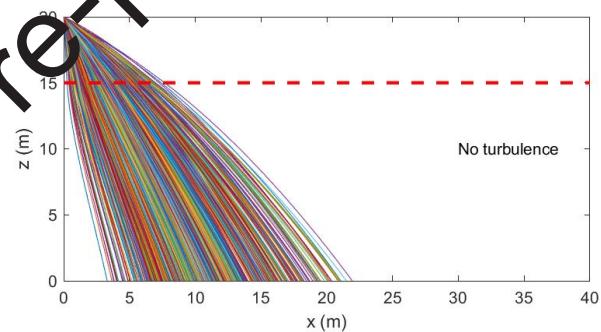
546 $u_k^N(t) = E_k \left\{ u_k^G(t) + c_k [u_k^{G^2}(t) - 1] + d_k [u_k^{G^3}(t) - 3u_k^G(t)] \right\}$ (B-6)

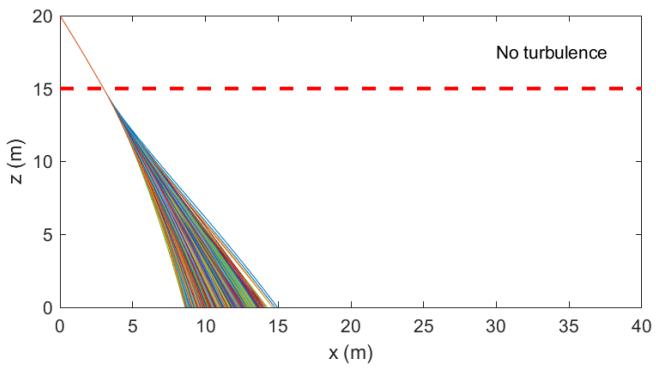
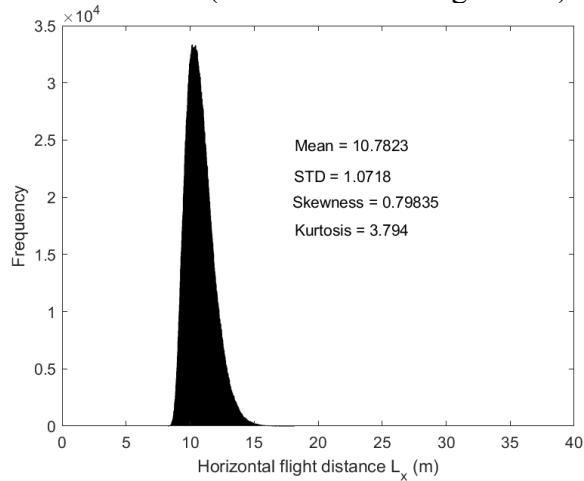

Figure B1. Schematic description of simulating non-Gaussian wind fluctuations based on Hermite model

550 **APPENDIX C: FURTHER INVESTIGATION ON INITIAL-STAGE AND LATER-**
551 **STAGE TURBULENCE**


552 It is straightforward in Fig. 13 to select the “spatial” half to partition the initial and later stage of
553 debris flight, considering the focus of this study is the effect of “spatial” correlation on debris
554 flight. Noting that debris tend to spend less time on the latter “spatial” half of the flight due to the
555 higher vertical travel speed, it is worthwhile to conduct additional analysis using the “temporal”
556 half with equal travel time for the two stages. The results are shown in Fig. C1. Approximately,
557 the first “temporal” half covers $z = 20\text{m}$ to $z = 15\text{m}$, while the second “temporal” half covers $z =$
558 15m to $z = 0\text{m}$. The results are similar to that using the “spatial” half in Fig 13, which proves that
559 turbulence at the initial stage of the flight is more critical!

560 For effective comparison, Fig. C2 depicts 1024 samples of debris flight for the two cases
561 of considering only the initial-stage turbulence and only the later-stage turbulence. As shown in
562 Fig. C2, given the same flight time, the variations in the debris location immediately after the
563 action of turbulence are close for the two cases (the two red boxes). However, even without the
564 action of turbulence in the later stage, the variation in the debris location caused by the turbulence
565 at the initial stage (the red box in the bottom figure) can continue to develop. In this sense, the
566 turbulence effect at the initial stage has twice the “developing” time compared to that of the later-
567 stage turbulence.

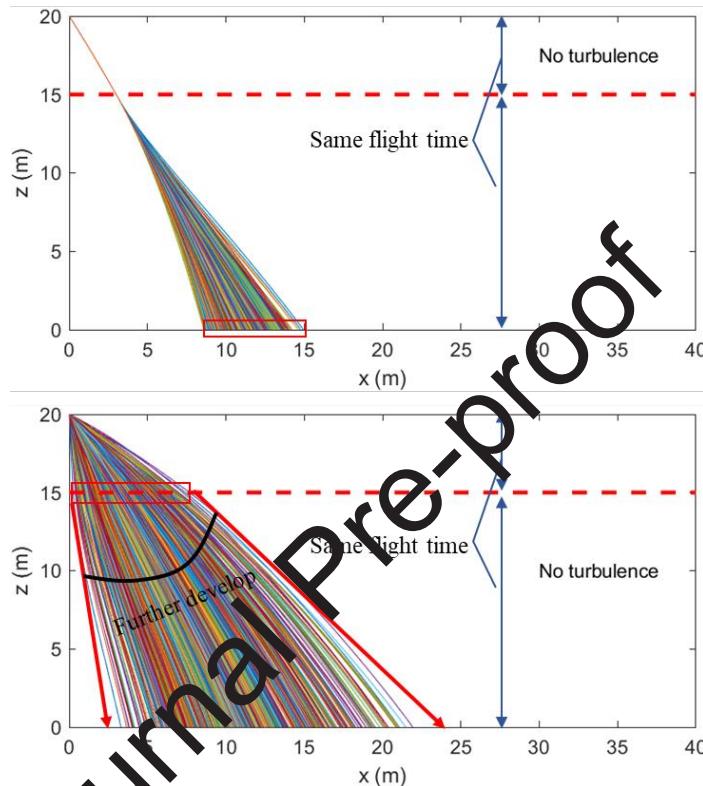


568



(a) Baseline: repeat of Figure 12(b)

(b) 1024 samples of debris flight trajectories from Fig. C1(a)

(c) Similar correlation scenario as Fig. C1(a), but no turbulence for debris traveling between $z = 15$ m and $z = 0$ m (half of the total flight time)

(d) 1024 samples of debris flight trajectories from Fig. C1(c)



(e) Similar correlation scenario as Fig. C1(a), but no turbulence for debris traveling between $z = 20$ m to $z = 15$ m (half of the total flight time)

(f) 1024 samples of debris flight trajectories from Fig. C1(e)

Figure C1. Dissection of vertical correlation's influence on debris flight using "temporal" half

569
570

571
572
573
574

Figure C2. Effect of initial and later-stage turbulence on debris flight

575 REFERENCES

576 Abdelhady, A.U., Spence, S.M. and McCormick, J., 2021. A three-dimensional six-degree-of-freedom windborne
577 debris trajectory model for tornadoes. *Journal of Wind Engineering and Industrial Aerodynamics*, 214, 104622.

578 Ai, X.Q., Lyu, M.Z. and Chen, J.B., 2023. Three-dimensional flight trajectories and impact damage prediction model
579 for wind-borne debris. *Natural Hazards Review*, 24(2), 04023005.

580 ASCE, 2012, Wind tunnel testing for buildings and other structures, ASCE/SEI 49-12.

581 ASCE, 2016, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, ASCE/SEI 7-16.

582 Baker, C.J., 2007. The debris flight equations. *Journal of Wind Engineering and Industrial Aerodynamics*, 95(5), 329-
583 353.

584 Baker, C.J. and Sterling, M., 2017. Modelling wind fields and debris flight in tornadoes. *Journal of Wind Engineering*
 585 and *Industrial Aerodynamics*, 168, 312-321.

586 Balderrama, J.A., Masters, F.J. and Gurley, K.R., 2012. Peak factor estimation in hurricane surface winds. *Journal of*
 587 *wind engineering and industrial aerodynamics*, 102, 1-13.

588 Benowitz, B.A. and Deodatis, G., 2015. Simulation of wind velocities on long span structures: A novel stochastic
 589 wave based model. *Journal of Wind Engineering and Industrial Aerodynamics*, 147, 154-163.

590 Catarelli, R.A., Fernández-Cabán, P.L., Phillips, B.M., Bridge, J.A., Masters, F.J., Gurley, K.R. and Prevatt, D.O.,
 591 2020. Automation and new capabilities in the university of Florida MHERI Boundary Layer Wind
 592 Tunnel. *Frontiers in Built Environment*, 6, 558151.

593 Davenport, A.G., 1961. The spectrum of horizontal gustiness near the ground in high winds. *Quarterly Journal of the*
 594 *Royal Meteorological Society*, 87(372), 194-211.

595 Deodatis, G., 1996. Simulation of ergodic multivariate stochastic processes. *Journal of engineering mechanics*,
 596 122(8), 778-787.

597 Dong, Y., Guo, Y. and van de Lindt, J.W., 2023. Fragility Modeling of Urban Building Envelopes Subjected to
 598 Windborne Debris Hazards. *Journal of Structural Engineering*, 149(5), 04023041.

599 Dyrbye, C. and Hansen, S.O., 1996. Wind loads on structures.

600 Fernández-Cabán, P.L. and Masters, F.J., 2017. Near surface wind longitudinal velocity positively skews with
 601 increasing aerodynamic roughness length. *Journal of Wind Engineering and Industrial Aerodynamics*, 169, 94-
 602 105.

603 Fernandez, G., Masters, F. and Gurley, K., 2010. Performance of Hurricane Shutters Under Impact by Roof Tiles.
 604 *Engineering Structures*, 32(10), 3384-3393.

605 Grigoriu, M., 1984. Crossings of non-Gaussian translation processes. *Journal of Engineering Mechanics*, 110(4), 610-
 606 620.

607 Grigoriu, M., 1998. Simulation of stationary non-Gaussian translation processes. *Journal of Engineering Mechanics*,
 608 124(2), 121-126.

609 Gurley, K. and Masters, F., 2011. Post 2004 hurricane field survey of residential building performance. *Natural*
 610 *Hazards Review*, 12(4), 177-183.

611 Gurley, K., Masters F., Reinhold T., and Ojeda-Tuz, M., 2021. Florida Coastal Monitoring Program Hurricanes Report
 612 (1999-2008) in *FCMP Ground Level Hurricane Wind Data (1999-2008)*. DesignSafe-CI.
 613 <https://doi.org/10.17603/ds2-j82e-nc21>

614 Gurley, K.R., Tognarelli, M.A. and Kareem, A., 1997. Analysis and simulation tools for wind
 615 engineering. *Probabilistic Engineering Mechanics*, 12(1), 9-31.

616 Jain, A., 2015. Hurricane wind-generated debris impact damage to the glazing of a high-rise building. *Forensic
 617 Engineering*, 2015, 361-370.

618 Kakimpa, B., Hargreaves, D.M. and Owen, J.S., 2011, July. A numerical investigation of the influence of launch
 619 conditions on windborne debris flight. In *13th international conference on wind engineering (ICWE13)*.
 620 Amsterdam, Netherlands.

621 Karimpour, A. and Kaye, N.B., 2012. On the stochastic nature of compact debris flight. *Journal of wind engineering
 622 and industrial aerodynamics*, 100(1), 77-90.

623 Kordi, B. and Kopp, G.A., 2011. Effects of initial conditions on the flight of windborne plate debris. *Journal of Wind
 624 Engineering and Industrial Aerodynamics*, 99(5), 601-614.

625 He, J.Y., He, Y.C., Li, Q.S., Chan, P.W., Zhang, L., Yang, H.L. and Li, L., 2020. Observational study of wind
 626 characteristics, wind speed and turbulence profiles during Super Typhoon Mangkhut. *Journal of Wind Engineering
 627 and Industrial Aerodynamics*, 206, 104362.

628 Holmes, J.D., 2004. Trajectories of spheres in strong winds with application to wind-borne debris. *Journal of Wind
 629 Engineering and Industrial Aerodynamics*, 92(1), 9-22.

630 Hui, M.C.H., Larsen, A.X.H.F. and Xiang, H.F., 2009. Wind turbulence characteristics study at the Stonecutters
 631 Bridge site: Part I—Mean wind and turbulence intensities. *Journal of Wind Engineering and Industrial
 632 Aerodynamics*, 97(1), 22-36.

633 Huo, S., Hemida, H. and Sterling, M., 2020. Numerical study of debris flight in a tornado-like vortex. *Journal of
 634 Fluids and Structures*, 99, 103134.

635 Johnson, T., Pinelli, J.P., Baheru, T., Chowdhury, A., Weekes, J., and Gurley, K. 2018. Simulation of rain penetration
 636 in buildings and associated damage within a hurricane vulnerability model. *Natural Hazards Review*, 19(2),
 637 04018004.

638 Li, S., Snaiki, R. and Wu, T., 2021. Active simulation of transient wind field in a multiple-fan wind tunnel via deep
 639 reinforcement learning. *Journal of Engineering Mechanics*, 147(9), 04021056.

640 Lin, N., Letchford, C. and Holmes, J., 2006. Investigation of plate-type windborne debris. Part I. Experiments in wind
 641 tunnel and full scale. *Journal of Wind Engineering and Industrial Aerodynamics*, 94(2), 51-76.

642 Liu, Z., Cao, Y., Wang, Y., Cao, J., Hua, X. and Cao, S., 2021a. Characteristics of compact debris induced by a tornado
 643 studied using large eddy simulations. *Journal of Wind Engineering and Industrial Aerodynamics*, 208, 104422.

644 Liu, Z., Cao, Y., Yan, B., Hua, X., Zhu, Z. and Cao, S., 2021b. Numerical study of compact debris in tornadoes at
 645 different stages using large eddy simulations. *Journal of Wind Engineering and Industrial Aerodynamics*, 210,
 646 104530.

647 Liu, Z., Cao, Y., Wang, Y., Cao, S. and Yang, Q., 2021c. Study of turbulence effects on flying compact debris in
 648 tornadoes at different stages. *Journal of Wind Engineering and Industrial Aerodynamics*, 218, 104777.

649 Liu, Y., Wang, H., Xu, Z., Li, J., Wu, T. and Mao, J., 2023. Modeling Multidimensional Multivariate Turbulent Wind
 650 Fields Using a Correlated Turbulence Wave Number-Frequency Spectral Representation Method. *Journal of
 651 Engineering Mechanics*, 149(4), 04023010.

652 Lyu, M.Z., Ai, X.Q., Sun, T.T. and Chen, J.B., 2023. Fragility analysis of curtain walls based on wind-borne debris
 653 considering wind environment. *Probabilistic Engineering Mechanics*, 71, 103397.

654 Maruyama, T., 2011. Simulation of flying debris using a numerically generated tornado-like vortex. *Journal of Wind
 655 Engineering and Industrial Aerodynamics*, 99(4), 249-256.

656 Masters, F.J., Gurley, K.R., Shah, N. and Fernandez, G., 2010. The vulnerability of residential window glass to
 657 lightweight windborne debris. *Engineering Structures*, 32(4), 911-921.

658 Minor, J.E., 1994. Windborne debris and the building envelope. *Journal of Wind Engineering and Industrial
 659 Aerodynamics*, 53(1-2), 207-227.

660 Moghim, F. and Caracoglia, L., 2012a. A numerical model for wind-borne compact debris trajectory estimation: Part
 661 1—Probabilistic analysis of trajectory in the proximity of tall buildings. *Engineering Structures*, 38, 153-162.

662 Moghim, F. and Caracoglia, L., 2012b. A numerical model for wind-borne compact debris trajectory estimation: Part
 663 2—Simulated vertical gust effects on trajectory and mass momentum. *Engineering Structures*, 38, 163-170.

664 Moghim, F. and Caracoglia, L., 2014. Effect of computer-generated turbulent wind field on trajectory of compact
 665 debris: A probabilistic analysis approach. *Engineering structures*, 59, 195-209.

666 Moghim, F., Xia, F.T. and Caracoglia, L., 2015. Experimental analysis of a stochastic model for estimating wind-
 667 borne compact debris trajectory in turbulent winds. *Journal of Fluids and Structures*, 54, 900-924.

668 Ojeda-Tuz, M., Gurley K., Shields M., Chauhan M., Catarelli R. and Masters F., 2023, Wind Profiles in a Boundary
 669 Layer Wind Tunnel based on Different Approach Terrain Configurations in *Modeling of Higher-Order Turbulence*
 670 *from Randomize Terrain in a Boundary Layer Wind Tunnel*. DesignSafe-CI. https://doi.org/10.17603/ds2-h4pt-d221_v1

672 Pita, G., Pinelli, J.P., Gurley, K., Weekes, J., Cocke, S., and Hamid, S., 2016. Hurricane vulnerability model for
 673 mid/high-rise residential buildings. *Wind and Structures*, 23(5), 449-464.

674 Taylor, G.I., 1938. The spectrum of turbulence. *Proceedings of the Royal Society of London. Series A-Mathematical*
 675 *and Physical Sciences*, 164(919), 476-490.

676 Wei, Z., Pinelli, J.P. and Gurley, K., 2024a. Component-Based Hurricane Vulnerability Model for Mid/High-Rise
 677 Commercial Residential Buildings. *International Journal of Disaster Risk Reduction*, 100, 104222.

678 Wei, Z., Pinelli, J.P., Gurley, K., Hamid, S. and Flannery, G., 2024b. Component-Based Estimation of Recovery Time
 679 and Time-Related Expenses after Hurricane Events. *Frontiers in Built Environment*, 9, 1295619.

680 Yang, L., Gurley, K.R. and Prevatt, D.O., 2013. Probabilistic modeling of wind pressure on low-rise buildings. *Journal*
 681 *of Wind Engineering and Industrial Aerodynamics*, 114, 18-26.

682 Yang, L. and Gurley, K.R., 2015. Efficient stationary multivariate non-Gaussian simulation based on a Hermite PDF
 683 model. *Probabilistic Engineering Mechanics*, 42, 31-41.

684 Zhang, X., Hao, H. and Ma, G., 2013. Laboratory test and numerical simulation of laminated glass window
 685 vulnerability to debris impact. *International Journal of Impact Engineering*, 55, 49-62.

686 Zhao, L., Cui, W. and Ge, Y., 2019. Measurement, modeling and simulation of wind turbulence in typhoon outer
 687 region. *Journal of Wind Engineering and Industrial Aerodynamics*, 195, 104021.

688 Zhao, J., Yan, G. and Han, D., 2021. A review of approaches to simulate windborne debris dynamics in wind
 689 fields. *Journal of Wind Engineering and Industrial Aerodynamics*, 212, 104597.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Journal Pre-proof