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Abstract. We study the propagation of wavepackets along weakly curved interfaces between
topologically distinct media. Our Hamiltonian is an adiabatic modulation of Dirac operators om-
nipresent in the topological insulators literature. Using explicit formulas for straight edges, we
construct a family of solutions that propagates, for long times, unidirectionally and dispersion-free
along the curved edge. We illustrate our results through various numerical simulations.
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1. Introduction. Topological insulators are fascinating materials that are in-
sulating in their bulk but support robust currents along their boundary. From a
qualitative point of view, these properties are explained by the bulk-edge correspon-
dence, an index-like theorem that relates the net conductivity (an analytic index)
to the bulk topology (a topological index). For straight interfaces, the currents are
explicitly described in terms of edge states: steady waves with ballistic dynamics,
confined between regions of distinct topology.

In this work, we construct dynamical analogues of edge states for curved inter-
faces. Our model is a Dirac operator

(1.1) H =

\biggl[ 
\kappa (x) \varepsilon Dx1

 - i\varepsilon Dx2

\varepsilon Dx1
+ i\varepsilon Dx2

 - \kappa (x)

\biggr] 
,

where Dxj
= - i\partial xj

, \varepsilon > 0 is a small semiclassical parameter and \kappa is a varying mass
term. Such Hamiltonians emerge in the effective theory of honeycomb structures
[18, 36, 13]; more generally they model the generic dynamics of modes propagating
along interfaces between topologically distinct insulators [15]. We can interpret the
parameter \varepsilon as the Fermi velocity of a Dirac cone; therefore the regime \varepsilon \ll 1 corre-
sponds to nearly flat Dirac cones.
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4220 BAL ET AL.

Under a transversality condition, \nabla \kappa (x) \not = 0 when \kappa (x) = 0, the set

\Gamma = \{ x\in \BbbR 2 : \kappa (x) = 0\} 

partitions \BbbR 2 in regions of distinct local topology; see section 1.5 for details. A lo-
cal interpretation of the bulk-edge correspondence suggests that nontrivial currents
emerge along \Gamma . This paper develops the underlying quantitative theory; it provides
detailed information on the associated quantum states, such as their speed and profile.

Specifically, we exploit the explicit structure of edge states available when \kappa (x) =
a1x1 + a2x2 to construct an infinite-dimensional family of nearly steady solutions
to (\varepsilon Dt + H)\psi = 0, in the limit \varepsilon \rightarrow 0. These emerge as the natural channels of
conductivity: for long times, they propagate unidirectionally and coherently along \Gamma .
We show that the curvature of \Gamma plays a key role in limiting the lifetime of these
solutions. We illustrate our results via various numerical simulations.

1.1. Simplified main result. Throughout the paper, we assume that all de-
rivatives of \kappa (but not necessarily \kappa ) are uniformly bounded: \nabla \kappa \in C\infty 

b (\BbbR 2). In this
introduction, we require moreover that

(1.2) y \in \Gamma \Rightarrow 
\bigm| \bigm| \nabla \kappa (y)\bigm| \bigm| = 1.

This allows us to state a simplified version (Theorem 1) of our main result (Theo-
rem 2). In section 3, we replace (1.2) by the more general transversality condition
(3.1).

Fix y0 \in \Gamma = \kappa  - 1(0), and define yt by the ODE

\.yt =\nabla \kappa (yt)\bot ,

where \nabla \kappa (y)\bot is the tangent vector to \Gamma obtained by the \pi /2-counterclockwise ro-
tation of \nabla \kappa (y). Under (1.2), yt is a unit speed parametrization of \Gamma . We let \theta t be
the angle between the tangent to \Gamma at yt and the x-axis; see Figure 1. We use the
notation \langle t\rangle = (1+ | t| 2)1/2.

Fig. 1. Schematic plot of an interface \Gamma = \kappa  - 1(0) between topologically distinct regions, to-
gether with yt and \theta t.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4221

Theorem 1. Let \kappa \in C\infty (\BbbR 2) satisfy (1.2), with \nabla \kappa \in C\infty 
b (\BbbR 2), and yt, \theta t as

above. The solution to

(1.3) (\varepsilon Dt +H)\Psi t = 0, \Psi 0(x) =
1\surd 
\varepsilon 
\cdot exp

\biggl( 
 - (x - y0)

2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta 0/2

 - ei\theta 0/2
\biggr] 

satisfies, uniformly for \varepsilon \in (0,1] and t > 0,

(1.4) \Psi t(x) =
1\surd 
\varepsilon 
\cdot exp

\biggl( 
 - (x - yt)

2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
+\scrO L2

\Bigl( 
\varepsilon 1/2 \langle t\rangle 

\Bigr) 
.

The initial data (1.3) are Gaussian concentrated at y0. Theorem 1 shows that the
generated solution remains (at leading order for times t\ll \varepsilon  - 1/2) a Gaussian, concen-
trated now at yt. This identifies t \mapsto \rightarrow yt as an exotic quantum trajectory; it is not pre-
dicted by the standard results on propagation of semiclassical singularities that show
propagation along the Hamiltonian curves of the functions (x, \xi ) \mapsto \rightarrow \pm 

\sqrt{} 
\kappa (x)2 + | \xi | 2

(see [25, 24, 22]). Moreover, for fixed times and better-prepared initial data, the
concentration near yt is accurate up to O(\varepsilon \infty ); see Theorem 3. Besides, since the
classical Hamiltonian vanishes along the curve t \mapsto \rightarrow (yt,0), there is no time-dependent
oscillating phase, as one usually has when considering propagation of wavepackets by
Schr\"odinger equations as in [11].

If \Gamma is not asymptotically straight---for instance, if it is a loop---numerical compu-
tations confirm that the Gaussian state approximation becomes less and less accurate;
see Figure 2. In contrast, if \Gamma is asymptotically straight---as in, e.g., the tanh-like in-
terface of Figure 3---the Gaussian state approximation can work for longer times; see
Theorem 4.

We refer to Theorem 2 for a more general version of Theorem 1. It constructs an
infinite-dimensional family of solutions to (\varepsilon Dt+H)\Psi t = 0 with the same qualitative
features as (1.4): coherent states propagating unidirectionally, at unit speed and

Fig. 2. Left: numerical solution to (\varepsilon Dt + H)\Psi t = 0 with Gaussian initial state for a circu-
lar interface with \varepsilon = 10 - 2 and radius one. The trajectory yt undergoes curvature effects for all
times. This explains a dispersion stronger than for a tanh-type interface. See also Figure 7 and
Theorem 4. Right: evolution of the phase of the first coordinate of the numerical solution for each
snapshot, corresponding to  - \theta t/2, for different radii of the circle interface. After a full revolution,
the numerical phase difference is about  - \pi , matching the theoretical prediction  - 2\pi /2 = - \pi . This
phase shift interprets as a Berry phase arising from adiabatically varying the parameter \theta in the
effective leading-order operator H\theta ,r (2.1) from 0 to 2\pi ; see [46].
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4222 BAL ET AL.

Fig. 3. Snapshots of the numerically computed dynamical analogue of an edge state---the so-
lution to (1.3) below. The interface is y2 = tanh(y1) and \varepsilon = 10 - 1. The state propagates leftwards
and dispersion-free along the interface.

without dispersion, along \Gamma . Our motivation, explained in sections 1.4 and 1.5 below,
is twofold:

\bullet identify dynamical analogues of topological edge states along bent interfaces;
\bullet study a semiclassical system whose matrix-valued symbol has repeated eigen-

values.

1.2. Numerical simulations. We illustrate our results with numerical simula-
tions of the Dirac equation with Gaussian initial data for various types of interfaces.
The corresponding pictures are snapshots of the dynamics, with the interface marked
as a light blue curve.

\bullet Figure 3 and Figure 2 are numerical confirmations of Theorem 1 for tanh-
type and circle interfaces, respectively. Figure 2 also verifies that the phase
shift after one revolution equals 2\pi /2 = \pi .

\bullet Figure 4 shows the evolution of other Gaussian states for tanh-type interfaces.
The initial data are concentrated like (1.3) but carried by a different vector.
If this vector is orthogonal to that in (1.3), the coherence is immediately lost.
See Conjecture 1.

\bullet When the more general transversality condition (3.1) holds instead of (1.2),
the propagation is coherent in a relaxed sense. Figure 5---a straight interface
but a nonlinear domain wall---numerically validates Theorem 2.

\bullet Figure 6 illustrates the limits of the dynamical analogues of edge states; for
instance, they do not propagate around sharp corners.

We use a Crank--Nicolson scheme to approximate the unitary group e - itH , with
Fourier spectral spatial discretization. The MATLAB code containing the parameters
used to obtain our figures can be found on GitHub.1

1.3. Physical motivations. The Dirac equation appears in a wide variety of
physical applications. Beyond its original role in the description of relativistic par-
ticles, it has emerged as a dominant model in the analysis of topological phases of
matter [49, 50]. The relativistic Dirac operator (\kappa = 0 in our model) displays a generic
band crossing; in contrast, adding a mass term opens an energy gap. In our model,
the interface is the transition between the two insulating phases \kappa < 0 and \kappa > 0.

1https://github.com/slb2604/Semiclassical-edge-states.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4223

Fig. 4. Solution to (1.10) for a tanh-like interface with (top left) [\alpha 1, \alpha 2] = [e - i\theta 0/2, - ei\theta 0/2],
(top right) [\alpha 1, \alpha 2] = [e - i\theta 0/2, ei\theta 0/2], and (bottom) [\alpha 1, \alpha 2] = [0, e - i\theta 0/2]. The top right figure
corresponds to [\alpha 1, \alpha 2] orthogonal to the vector [e - i\theta 0/2, - ei\theta 0/2] from the initial data of Theorem 1
shown at the top left. This generates a purely dispersive wave along the interface. The bottom
figure corresponds to a linear combination of the two top cases: the solution splits into leftwards-
propagating and dispersive components. The color-coding is used to indicate snapshots after a time
that is defined by the color.

Fig. 5. A straight interface but a nonlinear domain wall: \kappa (x) = (1 - 0.9 sin(x1))x2. We have
yt = - te1, hence rt = 1+0.9 sin(t). This quantity nearly degenerates for t near  - \pi /2+\pi \BbbZ , inducing
lateral spreading of the wavepacket for such times, but reconstruction in between.

These two phases happen to have different topological signatures; this generates uni-
directional propagation along the interface.

This asymmetric transport is at the core of most physical applications in the
fields of topological insulators and topological superconductors [49]. It is the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4224 BAL ET AL.

Fig. 6. Left: Snapshots of the numerically computed solution to (\varepsilon Dt+H)\Psi t = 0, with \varepsilon = 0.1,
\Psi 0 the Gaussian (1.4) and a domain wall \kappa , illustrated in the figure with an appropriate offset,

satisfying (4.1), with \Gamma = \{ x2 =  - 
\sqrt{} 

x2
1 + \mu 2\} , \mu \in \{ 0,1/2,1\} . The amplitude/mass loss increase

as the corner gets sharper. Right: L2 mass of wavepacket in B(yt,
\surd 
\epsilon ) for \mu = 0 with visible drop

at corner. Past it, about 30\% of the mass appears to follow a dynamics different from that of the
wavepacket. Additional numerical experiments suggest that this mass disperses along \Gamma ; see also
Conjecture 2.

physical manifestation of the quantum Hall effect [6, 1] and its nonmagnetic analogues
[9, 30, 33, 29, 37, 47]. It also finds numerous applications in fields such as photonics,
acoustics, and fluid mechanics [40, 42, 44, 45, 26]. Broadly speaking, Dirac-type equa-
tions often offer the simplest continuum (macroscopic) description of transport in a
narrow energy band near the band crossing [23, 49].

By interpreting \varepsilon as the Fermi velocity near Dirac cones, the regime \varepsilon \ll 1 cor-
responds to nearly flat Dirac cones. This provides a physical reason to study the
equation. There is another motivation, which essentially consists in making inter-
mediate steps toward understanding edge transport along curved interfaces. Most of
the theoretical literature has focused on straight interfaces, which greatly simplifies
the mathematical framework. The problem of constructing edge states along general
curved interfaces has remained open. This provides a reason to study the intermedi-
ate regime of weakly curved interfaces, which is the focus of this work. Indeed, after
rescaling x to \varepsilon x, the interface becomes

\{ \varepsilon  - 1x : \kappa (x) = 0\} 

and hence has curvature of order \varepsilon . Such interfaces behave locally like straight lines;
this allows us to perform rigorous constructions of dynamical edge states. For related
results, and in particular an analysis when the interface is a large circle, see [32].

This work has focused on deriving accurately a traveling state, at least for times
t\ll \varepsilon  - 1/2. Another line of research---somewhat transverse to this work---consists of
going beyond the weakly curved regime and proving qualitative properties of currents,
such as localization near the edge and scattering by sizable perturbations.

1.4. Local topological indices and asymmetric transport. Strikingly,
transport at interfaces between distinct topological environments is both asymmetric
(a net overall flux propagates in a prescribed direction) and quantized. We discuss
here a theory of topological phases that interprets locally the state (1.4) in a topo-
logical way. We stress that this interpretation

\bullet is valid only in the semiclassical regime \varepsilon \ll 1;
\bullet is local: our construction works for all \kappa , even though in some scenarios H is

topologically trivial (for instance, when \Gamma is a closed curve).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4225

These considerations use the leading-order approximation Hy of H at a point
y \in \BbbR 2:

Hlo(y) =

\biggl[ 
\kappa (y) \varepsilon Dx1  - i\varepsilon Dx2

\varepsilon Dx1
+ i\varepsilon Dx2

 - \kappa (y)

\biggr] 
, y /\in \Gamma ;

Hlo(y) =

\biggl[ 
 - v\bot y \cdot (x - y) \varepsilon Dx1  - i\varepsilon Dx2

\varepsilon Dx1
+ i\varepsilon Dx2

v\bot y \cdot (x - y)

\biggr] 
, y \in \Gamma ,

where vy =\nabla \kappa (y)\bot is tangent to \Gamma at y. These emerge by replacing \kappa (x) in (1.1) by
its leading-order development at y: \kappa (x) \simeq \kappa (y) if y /\in \Gamma and \kappa (x) \simeq \nabla \kappa (y) \cdot (x - y)
if y \in \Gamma . These approximations are reasonable for | x  - y| = O(\varepsilon 1/2)---the scale of
localization of (1.4).

We observe that Hlo(y) has a spectral gap near energy 0 (i.e., it is an insulator)
if and only if y /\in \Gamma . This identifies \Gamma as the natural channel for conduction of energy.
Following [17, 34], we measure the local conductivity at y \in \Gamma via

(1.5) \scrI (H,y) =TrL2

\Bigl( 
i
\bigl[ 
Hlo(y), f(vy \cdot x)

\bigr] 
g\prime 
\bigl( 
Hlo(y)

\bigr) \Bigr) 
, y \in \Gamma ,

where f and g are smooth real functions increasing from 0 to 1 with f \prime and g\prime com-
pactly supported. Formally,

(1.6) \scrI (H,y) = d

dt
TrL2

\Bigl( 
eitH\mathrm{l}\mathrm{o}(y)f(vy \cdot x)g\prime 

\bigl( 
Hlo(y)

\bigr) 
e - itH\mathrm{l}\mathrm{o}(y)

\Bigr) 
.

Looking at g\prime as a density of probability, f(vy \cdot x)g\prime (Hlo(y)) measures the probability
of a quantum particle to lie in the half-plane \{ vy \cdot x> 0\} , per unit energy. Taking the
trace in (1.6) corresponds to summing over all states. Hence \scrI (H,y) describes the
overall flux moving in the direction of vy, per unit time and energy, at equilibrium.

It turns out that 2\pi \cdot \scrI (H,y) = 1; see [2] and Remark 1 below. This means that
the evolution according to Hlo(y) comes with a current propagating in the direction of
vy. Since vy is tangent to \Gamma at y, \Gamma emerges intuitively as a natural charge carrier for
H. Theorem 1 confirms these heuristics: in the regime \varepsilon \rightarrow 0, we construct a current
propagating along \Gamma , with explicit speed and profile.

The quantity (1.5) relates to bulk topological invariants via a universal princi-
ple: the bulk-edge correspondence [31, 27, 43, 5, 14]. Following the physics literature
[30, 29], we define a bulk index for Hlo(y):

(1.7) \scrB (H,y) =
sgn
\bigl( 
\kappa (y)

\bigr) 
2

, y /\in \Gamma .

When H emerges as an effective Hamiltonian (for instance, in graphene), \scrB (H,y)
corresponds to the integrated Berry curvature near one of the Dirac point momentum,
hence as part of the overall Chern integer [12]. Direct interpretations of (1.7) as a
Chern number include regularization of a Dirac operator [2] and a more general bulk-
difference invariant [5]. We refer to (1.7) as the local bulk index. It can also be
defined by spatially truncating physical space formulas for the global Chern number
[35, 7, 43] or via the spectral localizer [38, 39].

Since \nabla \kappa points from negative- to positive-index regions, we have, for y \in \Gamma and
\delta > 0 sufficiently small,

1 = 2\pi \cdot \scrI (H,y) =\scrB 
\bigl( 
H,y+ \delta \nabla \kappa (y)

\bigr) 
 - \scrB 

\bigl( 
H,y - \delta \nabla \kappa (y)

\bigr) 
.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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4226 BAL ET AL.

This is a local version of the bulk-edge correspondence: the local conductivity at y is
the difference between the local bulk indices across the interface.

The quantity 2\pi \cdot \scrI (H,y) counts currents algebraically according to their direction
of propagation. It is independent of y and stable against large perturbations of H;
see, e.g., [2, 5] and [43] for similar models. This explains its practical significance:
even in the presence of strong perturbations or Anderson localization, there is always
2\pi \cdot \scrI (H,y) = 1 more current propagating in the direction of vy rather than  - vy [3, 43].
This clarifies the local topological nature of the quantum state (1.4). Let us stress
again that our results hold locally in time: (1.5) is spectral in nature, describing an
equilibrium, while (1.4) is relevant for (long, but only transient) times t\ll \varepsilon  - 1/2.

1.5. Connection with semiclassical analysis. What makes the solution (1.4)
special? The answer lies in semiclassical territory. In summary (with details provided
below), if \scrC =\Gamma \times \{ 0\} \subset \BbbR 2 \times \BbbR 2, then for times t\ll \varepsilon  - 1/2:

(i) states initially microlocalized at (y0, \xi 0) /\in \scrC come in pairs propagating in
opposite directions;

(ii) states initially microlocalized at (y0, \xi 0)\in \scrC (i.e., like (1.3), with a potentially
different 2-vector) seem to either propagate nondispersively in the direction
of \nabla \kappa \bot , or to disperse; see Figure 4 and Conjecture 1.

This suggests that \Gamma ---more precisely, its phase-space lift \scrC ---is the relevant chan-
nel for asymmetric propagation.

We now provide a detailed account. We start by writing H = h(x, \varepsilon Dx), where

h(x, \xi ) =

\biggl[ 
\kappa (x) \xi 1  - i\xi 2

\xi 1 + i\xi 2  - \kappa (x)

\biggr] 
.

Theorem 1 constructs solutions to (\varepsilon Dt + h(x, \varepsilon Dx))\phi t = 0 for the data

\phi 0(x) =
1\surd 
\varepsilon 
e

i
\varepsilon x\cdot \xi 0 a

\biggl( 
x - x0\surd 

\varepsilon 

\biggr) 
,

where the profile a is a Gaussian (extended in Theorem 2 to any Schwartz profile)
and where (x0, \xi 0) belongs to the set \scrC defined by

\scrC =
\bigl\{ 
(x, \xi ) : \kappa (x) = 0, \xi = 0

\bigr\} 
\subset \BbbR 4.

The function \phi 0 is known in the literature as a semiclassical wavepacket [11] with
wavefront set WF\varepsilon (\phi 0) = \{ (x0, \xi 0)\} ; see [51, section 8.4] for definitions and properties
of wavefronts. The set \scrC corresponds to semiclassical eigenvalue crossings of h(x, \xi ):
when (x, \xi )\in \scrC , h(x, \xi ) has two degenerate eigenvalues. The systematic study of such
semiclassical systems is a delicate problem. Outside the crossing set \scrC , for example,
when \xi 0 \not = 0, the system is adiabatic and the solution with initial data \phi 0 is asymptotic
to the sum of two wavepackets concentrated, respectively, on the Hamiltonian curves of
the functions (x, \xi ) \mapsto \rightarrow 

\sqrt{} 
\kappa (x)2 + | \xi | 2 and (x, \xi ) \mapsto \rightarrow  - 

\sqrt{} 
\kappa (x)2 + | \xi | 2. These trajectories

never meet \scrC , and if \kappa (x0) = 0 and \xi 0 \not = 0, the wavepacket immediately leaves the
set of the zeros of \kappa ; see [25, 24] for microlocalization of wavepackets in 4 by 4 Dirac
systems and [8, 22] for a precise description of the solution in terms of wavepackets.
The picture is different if one adds a potential x \mapsto \rightarrow u(x) to the Hamiltonian h. In
that case, Hamiltonian trajectories of the functions (x, \xi ) \mapsto \rightarrow u(x)\pm 

\sqrt{} 
\kappa (x)2 + | \xi | 2 may

reach \scrC (see [10, 20]), which generates a Landau--Zener effect, i.e., energy transfer
between the modes. These transfers have been calculated for Gaussian wavepackets
and the Schr\"odinger equation in [28] and in terms of semiclassical measures for more
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4227

general initial data and Hamiltonians (including the case of the Dirac equation) in
[21, 20, 19].

This paper focuses on the dynamics of wavepackets localized along \scrC (note that
the crossing energy is constant, equal to 0). One could have likewise studied the
dynamics of wavepackets semiclassically concentrated at points (x0, \xi 0) /\in \scrC . This
is actually a much more standard problem because the eigenvalues of h(x0, \xi 0) are
distinct; they are \pm \lambda (x0, \xi 0), where

\lambda (x, \xi ) =
\sqrt{} 
\kappa (x)2 + \xi 21 + \xi 22 ;

we note that \lambda does not vanish away from \scrC . We diagonalize h(x, \xi ) for (x, \xi ) near
(x0, \xi 0):

h(x, \xi ) = U(x, \xi )

\biggl[ 
 - \lambda (x, \xi ) 0

0 \lambda (x, \xi )

\biggr] 
U(x, \xi ) - 1,

where U is a unitary 2 \times 2 matrix that depends smoothly on (x, \xi ). Thus, after
quantization, the system (\varepsilon Dt + h(x, \varepsilon Dx))\psi = 0 splits semiclassically near (x0, \xi 0) in
two nearly decoupled equations [48, 41]:\biggl( 

\varepsilon Dt +

\biggl[ 
 - \lambda (x, \varepsilon Dx) 0

0 \lambda (x, \varepsilon Dx)

\biggr] 
+\scrO (\varepsilon )

\biggr) \biggl[ 
\phi +
\phi  - 

\biggr] 
= 0.

According to the classical-to-quantum correspondence, the wavefront set of \phi t follows
the semiclassical trajectories of \pm \lambda (x, \xi ); see, e.g., [51, Theorem 12.5]. These form
two branches (x+t , \xi 

+
t ) and (x - t , \xi 

 - 
t ) that solve, respectively,

(1.8)
dx\pm t
dt

=\pm \partial \lambda 
\partial \xi 

\bigl( 
x\pm t , \xi 

\pm 
t

\bigr) 
,

d\xi \pm t
dt

=\mp \partial \lambda 
\partial x

\bigl( 
x\pm t , \xi 

\pm 
t

\bigr) 
.

The Hamiltonian trajectories (1.8) never reach \scrC because (a) the energy
\pm \lambda (x0, \xi 0) \not = 0 is conserved along them and (b) \scrC is the zero set of the function
\lambda . Hence, if (x0, \xi 0) /\in \scrC , then the semiclassical singularities of \phi t globally evolve
according to the classical-to-quantum correspondence: they follow the Hamiltonian
trajectories (1.8) and never reach \scrC .

Moreover, the two branches in (1.8) point (at t = 0) in opposite directions:
wavepackets concentrated away from \scrC have no preferred direction of propagation.
Their contribution to an overall quantum flux cancel out. Hence, \scrC is the only phase-
space channel that can support unidirectional waves.

This discussion connects various characterizations of the set \scrC :
(i) Semiclassical: \scrC is the set of eigenvalue crossings of h(x, \xi ).
(ii) Energetic: \scrC is the characteristic set of h(x, \xi ), i.e., the set of points (x, \xi )

such that deth(x, \xi ) = 0.
(iii) Topological: the local Chern number is not defined on \Gamma = \kappa  - 1(0) = \pi (\scrC )

(with \pi (x, \xi ) = x) because the eigenvalues of h(x, \xi ) are degenerate on \scrC .
(iv) Dynamical: Among phase-space subsets, \scrC is the only (maximal) candidate

that may support unidirectional wavepackets.
Because of (i), the classical-to-quantum correspondence fails. Because of con-

servation of energy, (ii) suggests that a state semiclassically concentrated along \scrC 
should remain this way: \scrC acts as a semiclassical waveguide. Theorem 1 provides the
corresponding profile and speed. Under global assumptions on \kappa , the bulk-edge corre-
spondence predicts a nonvanishing quantum flux between regions of different topology.
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4228 BAL ET AL.

From (iii), \scrC acts as the natural topological interface in phase-space. According to
(iv), it is also the only channel that can support waves contributing to a nontrivial
conductivity.

A legitimate criticism to Theorem 1 is that it does not study the dynamics
of all initial data localized along \scrC : it focuses on those parallel to the two-vector
[e - i\theta 0 , - ei\theta 0 ]\top . As demonstrated numerically in Figure 4 the data prepared along the
orthogonal two-vector [ - ei\theta 0 , e - i\theta 0 ]\top appear to purely disperse along the interface.
An investigation of case \kappa linear suggests that the rate of dispersion is \varepsilon  - 1/4t - 1/2:
wavepackets supported by such spinors and amplitude \varepsilon  - 1/2 experience a strong loss
of coherence. For positive times, their peak is divided by a factor of order \varepsilon  - 1/4.

Thus, we conjecture that general initial data semiclassically localized along \scrC 
transit to the state (1.4). To write a precise statement, we split vectors [\alpha 1, \alpha 2]

\top \in \BbbC 2

according to

(1.9)

\biggl[ 
\alpha 1

\alpha 2

\biggr] 
= \lambda 1

\biggl[ 
e - i\theta 0/2

 - ei\theta 0/2
\biggr] 
+ \lambda 2

\biggl[ 
e - i\theta 0/2

ei\theta 0/2

\biggr] 
.

We interpret the two terms in (1.9) as projections on the vector from (1.3) and its
orthogonal.

Conjecture 1. Fix y0 \in \Gamma , \alpha 1, \alpha 2 \in \BbbC , and \lambda 1, \lambda 2 defined according to (1.9).
Under (1.2), the solution \Psi t to

(1.10) (\varepsilon Dt +H)\Psi t = 0, \Psi 0(x) =
1\surd 
\varepsilon 
\cdot exp

\biggl( 
 - | x - y0| 2

2\varepsilon 

\biggr) \biggl[ 
\alpha 1

\alpha 2

\biggr] 
satisfies, uniformly in \varepsilon \in (0,1] and t > 0,

(1.11) \Psi t(x) =
\lambda 1\surd 
\varepsilon 
\cdot exp

\biggl( 
 - | x - yt| 2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
+\scrO L2

\bigl( 
\varepsilon 1/2 \langle t\rangle 

\bigr) 
+\scrO L\infty 

\bigl( 
\varepsilon  - 1/4t - 1/2

\bigr) 
.

When starting with the two-spinor [\alpha 1, \alpha 2]
\top = [e - i\theta 0/2, ei\theta 0/2]\top , that is, the or-

thogonal spinor to that in (1.3), we have \lambda 1 = 0. Hence (1.11) takes the form

(1.12) \Psi t(x) =\scrO L\infty 
\bigl( 
\varepsilon  - 1/4t - 1/2

\bigr) 
+\scrO L2

\bigl( 
\varepsilon 1/2

\bigr) 
.

According to this conjecture, while \Psi 0 has an \varepsilon  - 1/2-peaked profile, for any 1 \leq t \leq 
2 (say), the solution \Psi t is, up to a small remainder in L2, uniformly bounded as
\varepsilon \rightarrow 0. This means that \Psi t loses its initial wavepacket structure. Data carried by the
spinor orthogonal to (1.3) appear to disperse along the edge instead of propagating
in the opposite direction. This contrasts with the standard behavior of wavepackets
in semiclassical systems; see (1.8).

The general case \lambda 1 \not = 0 is the linear superposition of \lambda 1 = 0 with Theorem 1.
According to (1.12), the dynamical edge state emerges as the dominant component
of \Psi t in L\infty as t grows. We refer to Conjecture 2 for a more general version of
Conjecture 1. We mention that (1.11) has been proved for times t \in (0, t0], where
t0 is a small parameter depending on \kappa ; see [16, 4]. The proofs rely on microlocal
reductions and a WKB analysis. The associated eikonal equation is analyzed in small
time only, which explains the restriction t \in (0, t0]. The conjecture for large times
remains open.

1.6. Organization of the paper. We organize the paper as follows:
\bullet In section 2 we review edge state theory for Dirac operators with straight

domain walls, i.e., \kappa (x) = a \cdot x in (1.1).
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4229

\bullet In section 3 we derive the analogues of edge states for weakly curved interface.
Specifically, we construct a infinite-dimensional family of solutions to (\varepsilon Dt+
H)\Psi t = 0 that propagates along the topological interface \Gamma for times up to
\varepsilon  - 1/2. The key ingredient is a local approximation of H by Dirac operators
with straight interfaces.

\bullet In section 4 we investigate, under a geometric condition of \kappa , how the curva-
ture of \Gamma affects the propagation of wavepackets.

Notations.
\bullet We use \sigma 1, \sigma 2, \sigma 3 for the standard Pauli matrices

\sigma 1 =

\biggl[ 
0 1
1 0

\biggr] 
, \sigma 2 =

\biggl[ 
0  - i
i 0

\biggr] 
, \sigma 3 =

\biggl[ 
1 0
0  - 1

\biggr] 
.

\bullet A smooth function f on \BbbR 2 belongs to C\infty 
b (\BbbR 2) if it is uniformly bounded,

together with its derivatives at all order.
\bullet A function f \in C\infty 

b (\BbbR 2) belongs to \scrS (\BbbR 2) if x\alpha \partial \beta xf is uniformly bounded for
any \alpha ,\beta . We provide \scrS (\BbbR 2) with the family of seminorms | x\alpha \partial \beta xf | L\infty .

\bullet The operators Dxj
and Dt are defined by Dxj

= - i\partial xj
and Dt = - i\partial t.

\bullet We use the Japanese bracket notation \langle x\rangle =
\sqrt{} 
1 + | x| 2.

\bullet We denote by ker\scrV (A) the kernel of a linear operator A acting on a vector
space \scrV .

\bullet If v \in \BbbR 2, v\bot is the counterclockwise \pi /2-rotation of v.
\bullet \langle u, v\rangle L2 =

\int 
\BbbR 2 uv.

\bullet For f in a normed vector space \scrX , we write f =\scrO \scrX (\varepsilon ) if | f | \scrX \leq C\varepsilon for some
constant C > 0 independent of \varepsilon .

\bullet Given \alpha \in \BbbC 2, \alpha \bot = - i\sigma 2\alpha is the \pi /2-rotation of \alpha .
\bullet yt is the solution to the ODE (1.2) with initial data y0 \in \Gamma ; \theta t is the angle

between the y-axis and \nabla \kappa (yt); and rt = | \nabla \kappa (yt)| . See Figure 1.

2. Edge states and dynamics for straight interfaces. We review here the
simplest example of domain wall \kappa : we write

\kappa (x) = \kappa \theta ,r(x) = - r sin(\theta )x1 + r cos(\theta )x2 = r

\biggl[ 
 - sin(\theta )
cos(\theta )

\biggr] 
\cdot x

with \theta \in \BbbR , r > 0. We note that \nabla \kappa is constant; in particular, \nabla \kappa \in C\infty 
b (\BbbR 2). The

interface \kappa  - 1
\theta ,r(0) =\BbbR v\theta is a straight line, directed by the vector v\theta = - [cos(\theta ), sin(\theta )]\top ;

see Figure 7. The Hamiltonian is then

(2.1) H\theta ,r =

\biggl[ 
\kappa \theta ,r(x) \varepsilon Dx1

 - i\varepsilon Dx2

\varepsilon Dx1
+ i\varepsilon Dx2

 - \kappa \theta ,r(x)

\biggr] 
.

It admits edge states: there exist eigenfunctions of the operator H\theta ,r that are localized
and harmonic along \BbbR v\theta (see (2.5) below). Here we review their explicit expression
and their dynamical properties.

2.1. Conjugation properties. We first show that the Hamiltonians H\theta ,r and
H0,r are conjugated by a change of frame and gauge. For this purpose, we introduce
the operator

(2.2) \scrU \theta f(x) =U\theta f(R\theta x), R\theta =

\biggl[ 
cos(\theta ) sin(\theta )
 - sin(\theta ) cos(\theta )

\biggr] 
; U\theta =

\biggl[ 
e - i\theta /2 0

0 ei\theta /2

\biggr] 
.
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4230 BAL ET AL.

Fig. 7. Currents propagate along \Gamma at speed v\theta given by the counterclockwise rotation of \nabla \kappa .

Lemma 2.1. The Hamiltonian (2.1) is unitarily equivalent to the Hamiltonian
H0,r with

\scrU  - 1
\theta H\theta ,r \scrU \theta =H0,r.

Proof. Let \scrR \theta be the pullback operator by R\theta : \scrR \theta f(x) = f(R\theta x). We note that
\kappa \theta ,r(x) = r \cdot R\top 

\theta e2 \cdot x = r(R\theta x)2. Thus \scrR  - 1
\theta \kappa \theta ,r\scrR \theta = rx2. We now use \scrR  - 1

\theta Dx\scrR \theta =
R\top 

\theta Dx to compute partial derivatives involved in H\theta ,r:

\scrR  - 1
\theta (Dx1 + iDx2)\scrR \theta =

\biggl[ 
1
i

\biggr] 
\cdot R\top 

\theta Dx =R\theta 

\biggl[ 
1
i

\biggr] 
\cdot Dx =

\biggl[ 
ei\theta 

iei\theta 

\biggr] 
\cdot Dx = ei\theta (Dx1 + iDx2).

The adjoint identity is

\scrR  - 1
\theta (Dx1

 - iDx2
)\scrR \theta = e - i\theta (Dx1

 - iDx2
).

Grouping these identities, we obtain

\scrR  - 1
\theta H\theta ,r\scrR \theta =

\biggl[ 
rx2 e - i\theta \varepsilon (Dx1

 - iDx2
)

ei\theta \varepsilon (Dx1
+ iDx2

)  - rx2

\biggr] 
= s1\varepsilon Dx1

+ s2\varepsilon Dx2
+ s3rx2,

where, s1, s2, s3 are 2\times 2 Hermitian matrices given by

s1 =

\biggl[ 
0 e - i\theta 

ei\theta 0

\biggr] 
, s2 =

\biggl[ 
0  - ie - i\theta 

iei\theta 0

\biggr] 
, s3 =

\biggl[ 
1 0
0  - 1

\biggr] 
= \sigma 3.

An explicit calculation shows that U - 1
\theta sjU\theta = \sigma j . We conclude that

(2.3) \scrU  - 1
\theta H\theta ,r \scrU \theta = \sigma 1\varepsilon Dx1

+ \sigma 2\varepsilon Dx2
+ \sigma 3x2 =H0,r.

This completes the proof.

Remark 1. The relation (2.2) allows us to calculate the conductivity of H\theta ,r in the
direction of v\theta ; see (1.5): it is equal to 1. Indeed, the conductivity of H0,r (counted
positively in the direction of e\bot 2 = - e1) is equal to 1 [2]. We claim then that, for f, g
two scalar functions,

1 =TrL2

\Bigl( \bigl[ 
H0,r, f( - x1)

\bigr] 
g\prime (H0,r)

\Bigr) 
=TrL2

\Bigl( 
[H\theta ,r, f(v\theta \cdot x)]g\prime (H\theta ,r)

\Bigr) 
.(2.4)

Indeed, we have

[H0, f( - x1)] = \scrU  - 1
\theta 

\bigl[ 
H\theta ,r,\scrU \theta f( - x1)\scrU  - 1

\theta 

\bigr] 
\scrU \theta ,
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4231

and, since f is scalar,

\scrU \theta f( - x1)\scrU  - 1
\theta =\scrR \theta f( - x1)\scrR  - 1

\theta U - 1
\theta U\theta =\scrR \theta f( - x1)\scrR  - 1

\theta = f( - v\theta \cdot x).

As a consequence of these computations and in view of the relation g\prime (H\theta ,r) =
\scrU \theta g

\prime (H0,r)\scrU  - 1
\theta and of the invariance of the trace under conjugation, we obtain (2.4).

The Hamiltonian H0,r admits edge states: for any \xi \in \BbbR , if

F0,r(\xi ,x) = exp

\biggl( 
i\xi x1
\varepsilon 

 - rx22
2\varepsilon 

\biggr) \biggl[ 
1
 - 1

\biggr] 
,

then F0,r(\xi , \cdot ) is a plane wave in x1, i.e., along the interface; decays transversely
along the interface, i.e., in x2; and satisfies the stationary Dirac equation (H0,r  - \xi )
F0,r(\xi , \cdot ) = 0. From Lemma 2.1 we deduce that H\theta ,r also admits edge states: the
function

(2.5) F\theta ,r(\xi ,x) = \scrU \theta F0,r(\xi ,x) = exp

\biggl( 
i\xi (R\theta x)1

\varepsilon 
 - r(R\theta x)

2
2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 

satisfies (H\theta ,r  - \xi )F\theta ,r(\xi , \cdot ) = 0.

2.2. Dynamics of edge states. We review here how edge states give rise to an
infinite-dimensional family of ballistic waves for Dirac operators with linear domain
walls.

Proposition 2.2. For any f \in \scrS (\BbbR ), the function

(2.6) \psi t(x) = \varepsilon  - 1/2 \cdot f
\bigl( 
t+ (R\theta x)1

\bigr) 
\cdot exp

\biggl( 
 - r(R\theta x)

2
2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 

solves the equation (\varepsilon Dt +H\theta ,r)\psi t = 0.

The functions (2.6) are the ballistic waves generated by edge states; they propa-
gate along the interface \BbbR v\theta and decay rapidly along \BbbR v\bot \theta . Our scaling casts (2.6) as
wavepackets:
(2.7)

\psi t(x) = \varepsilon  - 1/2 \cdot a
\biggl( 
x - yt\surd 

\varepsilon 

\biggr) 
, a(y) = e - 

r
2 (R\theta y)

2
2f
\bigl( \surd 
\varepsilon (R\theta y)1

\bigr) \biggl[ e - i\theta /2

 - ei\theta /2
\biggr] 
, yt = tv\theta ,

with a having a full asymptotic expansion in powers of
\surd 
\varepsilon . This connection will be

the basis of our analysis in the context of curved interfaces.

Proof of Proposition 2.2. The \varepsilon -scaled Fourier transform in time allows us to take
advantage of the relation (H\theta ,r - \xi )F\theta ,r(\xi , \cdot ) = 0 (existence of edge states) to construct
a solution to the equation (\varepsilon Dt +H\theta ,r)\psi t = 0. Let g \in \scrS (\BbbR ) such that

g(\xi ) =
1

2\pi \varepsilon 

\int 
\BbbR 
e

i
\varepsilon t\xi f(t)dt.

We introduce

(2.8) \psi t(x) = \varepsilon  - 1/2

\int 
\BbbR 
e - 

i
\varepsilon t\xi g(\xi )F\theta ,r(\xi ,x)d\xi .
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4232 BAL ET AL.

Since (H\theta ,r  - \xi )F\theta ,r(\xi , \cdot ) = 0, we deduce that

\varepsilon Dt\psi t(x) = - \varepsilon  - 1/2

\int 
\BbbR 
\xi e - 

i
\varepsilon t\xi g(\xi )F\theta ,r(\xi ,x)d\xi 

= - \varepsilon  - 1/2

\int 
\BbbR 
e - 

i
\varepsilon t\xi g(\xi )H\theta ,rF\theta ,r(\xi ,x)d\xi = - H\theta ,r\psi t(x),

where we have used that H\theta ,r does not depend on \xi . This proves that (2.8) is a
solution to (\varepsilon Dt+H\theta ,r)\psi t = 0. Plugging the formula (2.5) for F\theta ,r in (2.8), we obtain

\psi t(x) = \varepsilon  - 1/2

\int 
\BbbR 
e - 

i
\varepsilon (t+(R\theta x)1)\xi g(\xi )d\xi \cdot exp

\biggl( 
 - r(R\theta x)

2
2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 

= \varepsilon  - 1/2f
\bigl( 
t+ (R\theta x)1

\bigr) 
exp

\biggl( 
 - r(R\theta x)

2
2

2\varepsilon 

\biggr) \biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 
,

by definition of g as the inverse (semiclassical) Fourier transform of f .

3. Dynamical analogues of edge states along curved interfaces. We now
consider nonlinear domain walls, opening the possibility for curved topological inter-
faces. We relax (1.2) to a global transversality condition

(3.1) inf
\bigl\{ \bigm| \bigm| \nabla \kappa (y)\bigm| \bigm| : \kappa (y) = 0\} > 0.

We recall that all derivatives of \kappa are uniformly bounded: \nabla \kappa \in C\infty 
b (\BbbR 2). We plan to

produce a dynamical analogue of edge states, a solution to

(\varepsilon Dt +H)\psi = 0, H =

\biggl[ 
\kappa (x) \varepsilon Dx1

 - i\varepsilon Dx2

\varepsilon Dx1
+ i\varepsilon Dx2

 - \kappa (x)

\biggr] 
,

that propagates for long time along the topological interface \Gamma = \kappa  - 1(0).
The equation (2.7) motivates the ansatz

\psi (t, x) = \varepsilon  - 1/2a

\biggl( 
t,
x - yt\surd 

\varepsilon 

\biggr) 
, where

\bullet a\in \scrS (\BbbR 2,\BbbC 2) has a full expansion in powers of \varepsilon 1/2;
\bullet y0 \in \Gamma and yt \in \Gamma is the solution of the ODE

\.yt = v(yt), v(y) =
\nabla \kappa (y)\bot 

| \nabla \kappa (y)| 
, w\bot =

\biggl[ 
0  - 1
1 0

\biggr] 
w.

The vector v(y) is the local analogue to v\theta : at each point y \in \Gamma , it is the unit tangent
vector to \Gamma obtained by rotating counterclockwise \nabla \kappa (y). Since \kappa (y0) = 0, yt \in \Gamma for
any t,

d\kappa (yt)

dt
= \.yt \cdot \nabla \kappa (yt) = v(yt) \cdot \nabla \kappa (yt) = 0.

Let \theta t and rt be such that

(3.2) \nabla \kappa (yt) = rt

\biggl[ 
 - sin(\theta t)
cos(\theta t)

\biggr] 
so that v(yt) = - 

\biggl[ 
cos(\theta t)
sin(\theta t)

\biggr] 
;

see Figure 1. With these notations in place, we define \scrK t : \scrS (\BbbR )\rightarrow \scrS (\BbbR 2,\BbbC 2) by

(3.3) \scrK tf(x) = r
1/4
t f

\bigl( 
(R\theta tx)1

\bigr) 
e - 

rt
2 (R\theta tx)

2
2

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
, f \in \scrS (\BbbR ).
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4233

Theorem 2. Let \kappa \in C\infty (\BbbR 2) satisfy (3.1) with \nabla \kappa \in C\infty 
b (\BbbR 2) and yt, \theta t as

above. Let f0 \in \scrS (\BbbR ) and \psi t be the solution to (\varepsilon Dt +H)\psi t = 0 with

(3.4) \psi 0(x) =
1\surd 
\varepsilon 
\cdot \scrK 0f0

\biggl( 
x - y0\surd 

\varepsilon 

\biggr) 
.

Then, uniformly for \varepsilon \in (0,1] and t > 0,

(3.5) \psi t(x) =
1\surd 
\varepsilon 
\cdot \scrK tf

\biggl( 
x - yt\surd 

\varepsilon 

\biggr) 
+\scrO L2

\bigl( 
\varepsilon 1/2 \langle t\rangle 

\bigr) 
.

Theorem 2 constructs a solution to (\varepsilon Dt +H)\psi t = 0, propagating dispersion-free
along yt, for times t\ll \varepsilon  - 1/2. Under geometric conditions on \kappa , we can extend this
time of validity; see Theorem 4. These two results focus on maximizing the lifespan
of approximate solutions. We can instead focus on improving their accuracy: see
Theorem 3 for solutions up to O(\varepsilon n) for every n but fixed lifetime.

When rt is not constant---corresponding to (3.1) holding instead of (1.2)---the
state in (3.5) is coherent in a relaxed sense: there may be lateral spreading at scale
rt (which remains bounded above and below by our assumptions on \kappa ). See the
expression (3.3) for \scrK tf and Figure 5 for a numerical illustration.

The initial data (3.4) are quite specific: the rescaled amplitude \scrK 0f is in the
range of \scrK 0. To obtain a full picture of evolution of states initially microlocalized
along \scrC , we need to understand how orthogonal initial data propagate:

\psi 0(x) =
1\surd 
\varepsilon 
\cdot \scrK 0f

\biggl( 
x - y0\surd 

\varepsilon 

\biggr) \bot 

.

This suggests a refinement of Conjecture 1. Let \Pi : \scrS (\BbbR 2,\BbbC 2) \rightarrow \scrS (\BbbR 2,\BbbC 2) be the
orthogonal projection on the range of \scrK 0. We observe that \scrK 0 is an isomorphism to
its range; therefore, for any a \in \scrS (\BbbR 2,\BbbC 2), there exists a unique f \in \scrS (\BbbR ) such that
\Pi a=\scrK 0f .

Conjecture 2. Let a \in \scrS (\BbbR 2,\BbbC 2), f \in \scrS (\BbbR ) such that \Pi a=\scrK 0f , and let \phi t be
the solution to (\varepsilon Dt +H)\phi t = 0 with initial data

\phi 0(x) =
1\surd 
\varepsilon 
\cdot a
\biggl( 
x - y0\surd 

\varepsilon 

\biggr) 
.

Then, uniformly in \varepsilon \in (0,1], t > 0,

\phi t(x) =
1\surd 
\varepsilon 
\cdot \scrK tf

\biggl( 
x - yt\surd 

\varepsilon 

\biggr) 
+\scrO L2

\Bigl( 
\varepsilon 1/2 \langle t\rangle 

\Bigr) 
+\scrO L\infty 

\Bigl( 
\varepsilon  - 1/4t - 1/2

\Bigr) 
.

According to Conjecture 2, any function localized (in a semiclassical sense) near
(y0,0) splits in propagating and dispersive parts, with an edge state analogue emerging
dynamically. See Figure 4 for a numerical confirmation.

3.1. Structure of proof of Theorem 2. We will prove Theorem 2 by estab-
lishing the following statements:

1. Approximate solutions of the Dirac equation solve a hierarchy of transport
equations; see Lemma 3.1.

2. The leading-order transport operator has explicit kernel and a spectral gap
away from its kernel; see section 3.3.

3. Solutions to the hierarchy of transport equations exist; see sections 3.4--3.5.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

06
/3

0/
24

 to
 1

28
.9

5.
10

4.
10

9 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



4234 BAL ET AL.

4. Approximate and exact solutions to the Dirac equation are nearly equal; see
section 3.6.

We will use the notation

W [a]yt
(x) =

1\surd 
\varepsilon 
\cdot a
\biggl( 
x - yt\surd 

\varepsilon 

\biggr) 

for a\in \scrS (\BbbR 2,\BbbC 2) possibly depending on t and \varepsilon .
We also introduce the operators Tj acting on \scrS (\BbbR 2,\BbbC 2), defined by

T0 = - \.yt \cdot Dx +

\biggl[ 
\nabla \kappa (yt) \cdot x Dx1

 - iDx2

Dx1
+ iDx2

 - \nabla \kappa (yt) \cdot x

\biggr] 
,(3.6)

T1 =Dt +

\left(  \sum 
| \alpha | =2

1

\alpha !
\partial \alpha \kappa (yt)x

\alpha 

\right)  \sigma 3,(3.7)

Tj =

\left(  \sum 
| \alpha | =j+1

1

\alpha !
\partial \alpha \kappa (yt)x

\alpha 

\right)  \sigma 3, j \geq 2.(3.8)

3.2. Formal approximate solutions via transport equations. We start
with the following lemma: solving the hierarchy of transport equations

T0a0 = 0, T0a1 + T1a0 = 0, . . . ,

j\sum 
\ell =0

Tj - \ell a\ell = 0, j \in [0,m](3.9)

produces approximate solutions to the Dirac equation.

Lemma 3.1. For any m \in \BbbN there exists C > 0 such that if a0, a1, . . ., am \in 
\scrS (\BbbR 2,\BbbC 2) are solutions of (3.9) and a(m) =

\sum m
\ell =0 \varepsilon 

\ell /2a\ell , then, for all \varepsilon \in (0,1],\bigm\| \bigm\| \bigm\| (\varepsilon Dt +H)W
\bigl[ 
a(m)

\bigr] 
yt

\bigm\| \bigm\| \bigm\| 
L2

\leq C\varepsilon 
m+2

2

\Biggl( 
\| Dtam\| L2 +

m\sum 
k=0

\bigm\| \bigm\| \langle x\rangle m+2
ak
\bigm\| \bigm\| 
L2

\Biggr) 
.

Proof of Lemma 3.1. 1. Fix m\in \BbbN . We observe that, for a\in \scrS (\BbbR 2,\BbbC 2),

(3.10) \varepsilon \partial xj
W [a]yt

=W [
\surd 
\varepsilon \partial xj

a]yt
, \varepsilon DtW [a]yt

=W [ - 
\surd 
\varepsilon \.yt \cdot Dxa+ \varepsilon Dta]yt

.

We now write the Taylor--Lagrange identity with the following integral remainder
(note that \kappa (yt) = 0):

\kappa (x) =

\left(  m+1\sum 
| \alpha | =1

1

\alpha !
\partial \alpha \kappa (yt)(x - yt)

\alpha 

\right)  + rm(x - yt), with

rm(x) =
1

(m+ 1)!

\sum 
| \alpha | =m+2

x\alpha 
\int 1

0

(1 - s)m+1\partial \alpha \kappa 
\bigl( 
yt + sx

\bigr) 
ds.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4235

We observe (x - yt)
\alpha W [a]yt

(x) = \varepsilon 
| \alpha | 
2 W [x\alpha a]. Therefore, we deduce

\kappa (x)W [a]yt
(x) =W

\left[  \left(  m+1\sum 
| \alpha | =1

\varepsilon | \alpha | /2

\alpha !
\partial \alpha \kappa (yt)x

\alpha + \varepsilon 
m+2

2 Rm(x)

\right)  a

\right]  
yt

(x), with

(3.11)

Rm(x) = \varepsilon  - 
m+2

2 rm(\varepsilon 1/2x)

=
1

(m+ 1)!

\sum 
| \alpha | =m+2

x\alpha 
\int 1

0

(1 - s)m+1\partial \alpha \kappa 
\bigl( 
yt + s\varepsilon 1/2x

\bigr) 
ds.

Since \nabla \kappa \in C\infty 
b (\BbbR 2,\BbbR 2), we have | rm(x)| \leq C| x| m+2; therefore Rm(x)\leq C| x| m+2 for

all \varepsilon \in (0,1]. From the relations (3.10)--(3.11) and the definition (3.8) of the operators
Tj ,

(\varepsilon Dt +H)W [a]yt
=W

\left[  \left(  m\sum 
j=0

\varepsilon 
j+1
2 Tj + \varepsilon 

m+2
2 Rm

\right)  a

\right]  
yt

.

In particular, using that W [a]yt and a have the same L2-norm,

(3.12)
\bigm\| \bigm\| (\varepsilon Dt +H)W [a]yt

\bigm\| \bigm\| 
L2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\left(  m\sum 

j=0

\varepsilon 
j+1
2 Tj + \varepsilon 

m+2
2 Rm

\right)  a

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

.

2. Assume now that aj solves (3.9), and plug a(m) =
\sum m

k=0 \varepsilon 
k/2ak for the ampli-

tude in (3.12). Then we obtain

\bigm\| \bigm\| (\varepsilon Dt +H)W [a(m)]yt

\bigm\| \bigm\| 
L2 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
m\sum 

j,k=0
j+k\geq m+1

\varepsilon 
j+k+1

2 Tjak +

m\sum 
k=0

\varepsilon 
m+2+k

2 Rmak

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

.

Note that the conditions j, k\leq m and j+k\geq m+1 yield j, k \not = 0. Therefore, we have

\bigm\| \bigm\| (\varepsilon Dt +H)W [a(m)]yt

\bigm\| \bigm\| 
L2 \leq 

m\sum 
j,k=1

j+k\geq m+1

\varepsilon 
j+k+1

2

\bigm\| \bigm\| Tjak\bigm\| \bigm\| L2 +

m\sum 
k=0

\varepsilon 
m+2+k

2

\bigm\| \bigm\| Rmak
\bigm\| \bigm\| 
L2 .

In the second line we used the first sum starts at j, k = 1, since j + k \geq m+ 1 and
j, k\leq m.

In view of (3.7) and (3.8), we obtain the existence of C > 0 such that, for all
a\in \scrS (\BbbR 2,\BbbC 2),

\| T1a\| L2 \leq \| Dta\| L2 +
\sum 
| \alpha | =2

1

\alpha !
| \partial \alpha \kappa (yt)| \| x\alpha a\| L2 \leq \| Dta\| L2 +C\| \langle x\rangle 2a\| L2 ,

and for j \in \BbbN ,

\| Tja\| L2 \leq 
\sum 

| \alpha | =j+1

1

\alpha !
| \partial \alpha \kappa (yt)| \| x\alpha a\| L2 \leq C\| \langle x\rangle j+1a\| L2 .
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4236 BAL ET AL.

Similarly, by modifying C if necessary,

\| Rma\| L2 \leq C\| \langle x\rangle m+2a\| L2 .

In these estimates, we have used the boundedness of the derivatives of \kappa . We deduce
that \| (\varepsilon Dt +H)W [a(m)]yt\| L2 is bounded, up to a multiplicative constant, by

\varepsilon 
m+2

2 \| Dtam\| L2 + \varepsilon 
m+2

2 \| \langle x\rangle 2am\| L2 +

m\sum 
j,k=1

j+k\geq m+1; j\geq 2

\varepsilon 
j+k+1

2 \| \langle x\rangle j+1ak\| L2

+

m\sum 
k=0

\varepsilon 
m+2+k

2 \| \langle x\rangle m+2ak\| L2 ,

whence by

\varepsilon 
m+2

2 \| Dtam\| L2 +

m\sum 
j,k=1

j+k\geq m+1

\varepsilon 
j+k+1

2

\bigm\| \bigm\| \langle x\rangle m+2
ak
\bigm\| \bigm\| 
L2 +

m\sum 
k=0

\varepsilon 
m+2+k

2

\bigm\| \bigm\| \langle x\rangle m+2
ak
\bigm\| \bigm\| 
L2 .

Noting that j + k+ 1\geq m+ 2 in the first sum, we conclude that, for any t,

\bigm\| \bigm\| (\varepsilon Dt +H)W [a(m)]yt

\bigm\| \bigm\| 
L2 \leq C\varepsilon 

m+2
2

\Biggl( 
\| Dtam\| L2 +

m\sum 
k=0

\bigm\| \bigm\| \langle x\rangle m+2
ak
\bigm\| \bigm\| 
L2

\Biggr) 
.

This completes the proof.

We will show in the following how to construct solutions aj to the hierarchy (3.9)
and then bound their derivatives and moments. Together with Lemma 3.1 this will
give a rigorous construction of approximate solutions to the Dirac equation.

3.3. Spectral analysis of leading-order transport operator. The dominant
equation of the hierarchy (3.9) is T0a0 = 0, where T0 is defined in (3.6); the other
equations are

T0aj = - 
j - 1\sum 
\ell =0

Tj - \ell a\ell , 1\leq j \leq m.

Solving these equations amounts to (i) find ker(T0) and (ii) establish a stability
estimate (here, a spectral gap) for T - 1

0 away from ker(T0). Below we write T0 =L\theta t,rt ,
where

(3.13) L\theta ,r =

\biggl[ 
cos(\theta )
sin(\theta )

\biggr] 
Dx +

\biggl[ 
r\kappa \theta ,r(x) Dx1  - iDx2

Dx1
+ iDx2

 - r\kappa \theta ,r(x)

\biggr] 
=

\biggl[ 
cos(\theta )
sin(\theta )

\biggr] 
Dx +Hr,\theta .

We now focus on the analysis of L\theta ,r on \scrS (\BbbR 2,\BbbC 2). We first compute its kernel
(Lemma 3.2) and prove it is one to one on the orthogonal complement (Lemma 3.3).

Lemma 3.2. For every r > 0 and \theta \in \BbbR , the nullspace of L\theta ,r : \scrS (\BbbR 2,\BbbC 2) \rightarrow 
\scrS (\BbbR 2,\BbbC 2) is

(3.14) ker\scrS (\BbbR 2)(L\theta ,r) =

\biggl\{ 
f
\bigl( 
(R\theta x)1

\bigr) 
e - 

r(R\theta x)22
2

\biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 
, f \in \scrS (\BbbR )

\biggr\} 
.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4237

Proof. As in (2.3), \scrU  - 1
\theta L\theta ,r\scrU \theta = L0,r, with \scrU \theta = \scrR \theta U\theta . Indeed,

U - 1
\theta \scrR  - 1

\theta H\theta \scrR \theta U\theta =H0 and

\scrU  - 1
\theta 

\biggl[ 
cos(\theta )
sin(\theta )

\biggr] 
\cdot Dx\scrU \theta =R\top 

\theta e1 \cdot R\top 
\theta Dx =Dx1

.

Moreover, if Srf(x) = f(
\surd 
rx), then we have

S - 1
r H0,rSr =

\surd 
rH0,1.

Hence, H\theta ,r and H0,1 are conjugated (up to multiplication by
\surd 
r). The identity (3.13)

implies that the same holds for L\theta ,r and L0,1:

(3.15) S - 1
r \scrU  - 1

\theta L\theta ,r\scrU \theta Sr =
\surd 
rL0,1.

Thus, to find the kernel of L\theta ,r, it suffices to find that of L0,1. We have

L0,1 =

\biggl[ 
Dx1

+ x2 Dx1
 - iDx2

Dx1
+ iDx2

Dx1
 - x2

\biggr] 
=

\biggl[ 
1 1
1 1

\biggr] 
Dx1

+

\biggl[ 
x2  - iDx2

iDx2
 - x2

\biggr] 
.

We claim that

(3.16) ker\scrS (\BbbR 2)(L0,1) =

\biggl\{ 
f(x1)e

 - x2
2
2

\biggl[ 
1
 - 1

\biggr] 
: f \in \scrS (\BbbR )

\biggr\} 
.

The right inclusion follows from a computation. To prove the left inclusion, we pick
u such that L0,1u = 0. We take the Fourier transform in x1: this gives L0,1(\xi )\widehat u = 0,
where

L0,1(\xi ) = \xi 

\biggl[ 
1 1
1 1

\biggr] 
+

\biggl[ 
x2  - iDx2

iDx2
 - x2

\biggr] 
.

We fix \xi . The operator L0,1(\xi ) is a linear differential operator; hence the space of
decaying solutions to L0,1(\xi )v= 0 is at most one-dimensional. Indeed, if v1, v2 are such
functions, then their Wronskian is constant, and they decay. Thus their Wronskian
vanishes; this implies that v1, v2 are linearly dependent. We then observe that

L0,1(\xi )e
 - x2

2
2

\biggl[ 
1
 - 1

\biggr] 
= 0.

This shows that the kernel of L0,1(\xi ) is one-dimensional. Superposing over \xi yields
(3.16). Applying the equivalence between L0,1 and L\theta ,r, we conclude that the kernel
of L\theta ,r is precisely made of functions

Sr\scrR \theta U\theta 

\biggl( 
f(x1)e

 - x2
2
2

\biggl[ 
1
 - 1

\biggr] \biggr) 
= f
\bigl( \surd 
r(R\theta x)1

\bigr) 
e - 

r(R\theta x2)2

2

\biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 
, f \in \scrS (\BbbR ).

This corresponds to (3.14), where we rescaled f by
\surd 
r (this preserves the Schwartz

class).

We define the space

\scrS \theta ,r(\BbbR 2) =
\bigl\{ 
u\in \scrS (\BbbR 2,\BbbC 2) : u\in ker\scrS (\BbbR 2,\BbbC 2)(L\theta ,r)

\bot \bigr\} ,
with orthogonality computed with respect to the L2-scalar product. We provide
\scrS \theta ,r(\BbbR 2) with the seminorms inherited from \scrS (\BbbR 2,\BbbC 2).
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4238 BAL ET AL.

Lemma 3.3. For every \theta \in \BbbR and r > 0, the operator L\theta ,r acting on \scrS \theta ,r(\BbbR 2) is
one to one, with inverse L - 1

\theta ,r bounded on \scrS \theta ,r(\BbbR 2).

Proof. 1. We recall that L\theta ,r and
\surd 
rL0,1 are conjugated by operators bounded

on \scrS (\BbbR 2,\BbbC 2); see (3.15). Thus, it suffices to prove the lemma for L0,1 only.
We introduce the annihilation and creation operators a and a\ast , as well as the

associated quantum harmonic oscillator h= a\ast a and quantum states \varphi n:

a= x2 + \partial x2
, a\ast = x2  - \partial x2

, h= - \partial 2x2
+ x22  - 1,

\varphi 0(x2) =
1

\pi 1/4
e - 

x2
2
2 , \varphi n(x2) =

(a\ast )n

2n/2
\surd 
n!
\varphi 0(x2).

The quantum states \varphi n form a complete orthonormal basis of eigenvectors of h: for
every n, \| \varphi n\| L2 = 1 and h\varphi n = 2n\varphi n. Moreover they satisfy the creation and annihi-
lation relations: a\varphi 0 = 0 and for n\in \BbbN ,

(3.17) a\ast \varphi n =
\surd 
2n+ 2\varphi n+1, a\varphi n+1 =

\surd 
2n+ 2\varphi n.

Introduce

(3.18) \~L0,1 =

\biggl[ 
1  - 1
1 1

\biggr] 
L0,1

\biggl[ 
1  - 1
1 1

\biggr]  - 1

=
\bigl[ 
0 a\ast a 2Dx1

\bigr] 
and the associated space \~\scrS 0,1(\BbbR 2), defined similarly as \scrS 0,1(\BbbR 2),

\~\scrS 0,1(\BbbR 2) =
\Bigl\{ 
u\in \scrS (\BbbR 2,\BbbC 2) : u\in ker\scrS (\BbbR 2,\BbbC 2)(\~L0,1)

\bot 
\Bigr\} 
.

We observe that v= (v1, v2)\in ker(\~L0,1) if and only if

a\ast v2 = 0 and av1 + 2Dx1v2 = 0.

This implies v2 = 0 and v1(x) = \lambda (x1)v(x2) for some Schwartz function x1 \mapsto \rightarrow \lambda (x1).
As a consequence, u\in ker\scrS (\BbbR 2,\BbbC 2)(\~L0,1)

\bot if and only if, for all \lambda \in \scrS (\BbbR ),\int 
\BbbR 2

\lambda (x1)\varphi 0(x2)u1(x1, x2)dx1dx2 = 0.

We obtain

\~\scrS 0,1(\BbbR 2) =

\biggl\{ 
u\in \scrS (\BbbR 2,\BbbC 2) : \forall x1 \in \BbbR ,

\int 
\BbbR 2

u1(x)\varphi 0(x2)dx2 = 0

\biggr\} 
.(3.19)

As a consequence, the lemma boils down to prove that \~L0,1 is invertible on \~\scrS 0,1(\BbbR 2).
2. Let \scrW be the Fr\'echet space of functions w \in C\infty (\BbbR \times \BbbN ,\BbbC 2) such that w1(\cdot ,0)

= 0, equipped with the seminorms

N\alpha ,\beta ,\gamma (w) = sup
n,\xi 

\bigm| \bigm| \bigm| \langle n\rangle 2\alpha \langle \xi \rangle \beta \partial \gamma \xi w(\xi ,n)\bigm| \bigm| \bigm| , \alpha ,\beta , \gamma \in \BbbN .

We define S : \~\scrS 0,1(\BbbR 2)\rightarrow \scrW by

Su(\xi ,n) =

\int 
\BbbR 2

e - i\xi x1

\biggl[ 
u1(x)\varphi n+1(x2)
u2(x)\varphi n(x2)

\biggr] 
dx, u\in \~\scrS 0,1

\bigl( 
\BbbR 2
\bigr) 
, n\in \BbbN , \xi \in \BbbR .
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4239

We first observe that S : \~\scrS 0,1(\BbbR 2)\rightarrow \scrW is continuous. Indeed, if u\in \~\scrS 0,1(\BbbR 2) and
\alpha ,\beta , \gamma \in \BbbN , we have

\langle 2n\rangle 2\alpha \langle \xi \rangle \beta D\gamma 
\xi Su(\xi ,n) = Sv(\xi ,n), v(x) = \langle h\rangle 2\alpha \langle Dx1

\rangle \beta ( - x1)\gamma u(x).

Moreover, v \in \scrS (\BbbR 2) when u\in \scrS (\BbbR 2). The Cauchy--Schwarz inequality yields

N\alpha ,\beta ,\gamma (Su) = sup
n,\xi 

\bigm| \bigm| Sv(\xi ,n)\bigm| \bigm| \leq sup
n

\int 
\BbbR 2

\bigm| \bigm| \bigm| \bigm| \biggl[ v1(x)\varphi n+1(x2)
v2(x)\varphi n(x2)

\biggr] \bigm| \bigm| \bigm| \bigm| dx
\leq 2

\int 
\BbbR 

\biggl( \int 
\BbbR 

\bigm| \bigm| v(x)\bigm| \bigm| 2dx2\biggr) 1/2

dx1,

where we used \| \varphi n\| L2 = 1. The right-hand side (RHS) is controlled by Schwartz
seminorms of v= \langle h\rangle 2\alpha \langle x1\rangle \beta D\gamma 

x1
u, thus of u. Hence S is continuous.

Moreover, S is invertible. The range of S is \scrW : if w \in \scrW , then we have Su=w,
with

u(x) =
1

2\pi 

\int 
\BbbR 
ei\xi x1

\infty \sum 
n=0

\bigl[ 
\varphi n+1(x2)w1(\xi ,n)\varphi n(x2)w2(\xi ,n)

\bigr] 
d\xi ,

using the Fourier inversion formula and orthogonality relations for the \varphi n. We now
show that S is one to one. If u\in \~\scrS 0,1(\BbbR 2) is such that Su\equiv 0, then

(3.20) for all x1 \in \BbbR , n\in \BbbN ,
\int 
\BbbR 

\biggl[ 
u1(x)\varphi n+1(x2)
u2(x)\varphi n(x2)

\biggr] 
dx2 = 0

from the Fourier inversion formula. Since \varphi n forms an orthonormal basis of L2(\BbbR ),
(3.20) implies that u2 \equiv 0 and u1(x) = c(x1)\varphi 0(x2). From u \in \~\scrS 0,1(\BbbR 2) and (3.19),
u1 \equiv 0. Hence u\equiv 0, and S is invertible.

2. We define an operator S by

Su(\xi ,n) =

\int 
\BbbR 2

e - i\xi x1

\biggl[ 
u1(x)\varphi n+1(x2)
u2(x)\varphi n(x2)

\biggr] 
dx, u\in \~\scrS 0,1(\BbbR 2), n\in \BbbN , \xi \in \BbbR .

We claim that S is (continuously) invertible from \~\scrS 0,1(\BbbR 2) to the Fr\'echet space \scrV of
functions v \in C\infty (\BbbR \times \BbbN ,\BbbC 2) such that

for all \alpha ,\beta , \gamma \in \BbbN , N\alpha ,\beta ,\gamma (v) = sup
n,\xi 

\bigm| \bigm| \bigm| \langle n\rangle 2\alpha \langle \xi \rangle \beta \partial \gamma \xi v(\xi ,n)\bigm| \bigm| \bigm| <\infty .

This boils down to proving that if u \in \~\scrS 0,1(\BbbR 2), then, for every \alpha ,\beta , \gamma \in \BbbN , the
quantity N\alpha ,\beta ,\gamma (Su) is controlled by finitely many seminorms of u in \scrS (\BbbR 2,\BbbC 2), and
conversely.

We first observe that, for u\in \scrS 0,1(\BbbR 2) and \alpha ,\beta , \gamma \in \BbbN ,

\langle n\rangle 2\alpha \langle \xi \rangle \beta \partial \gamma \xi Su(\xi ,n) = Sv(\xi ,n), v(x) = \langle h\rangle 2\alpha \langle Dx1
\rangle \beta x1\gamma u(x).

Moreover, v \in \scrS (\BbbR 2,\BbbC 2) whenever u\in \scrS (\BbbR 2,\BbbC 2). Therefore,

N\alpha ,\beta ,\gamma (Su) = sup
n,\xi 

\bigm| \bigm| Sv(\xi ,n)\bigm| \bigm| \leq sup
n

\int 
\BbbR 2

\bigm| \bigm| \bigm| \bigm| \biggl[ v1(x)\varphi n+1(x2)
v2(x)\varphi n(x2)

\biggr] \bigm| \bigm| \bigm| \bigm| dx
\leq 2

\int 
\BbbR 

\biggl( \int 
\BbbR 

\bigm| \bigm| v(x)\bigm| \bigm| 2dx2\biggr) 1/2

dx1,
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4240 BAL ET AL.

where we applied the Cauchy--Schwarz inequality and the fact that \| \varphi n\| L2 = 1. The
RHS is controlled by seminorms in \scrS (\BbbR 2,\BbbC 2) of v= \langle h\rangle 2\alpha \langle x1\rangle \beta D\gamma 

x1
u and thus of u.

We now prove the backward implication. Assume that u\in \~\scrS 0,1(\BbbR 2) satisfies

for all \alpha ,\beta , \gamma \in \BbbN , N\alpha ,\beta ,\gamma (Su)<\infty .

We use the Fourier inversion formula and the fact that the \varphi n form an orthonormal
basis to deduce that

u(x) =
1

2\pi 

\int 
\BbbR 
ei\xi x1

\infty \sum 
n=0

\bigl[ 
\varphi n+1(x2)(Su)1(\xi ,n)\varphi n(x2)(Su)2(\xi ,n)

\bigr] 
d\xi .

Let us prove that, for all \alpha ,\beta \in \BbbN 2, the function x\alpha \partial \beta xu is in L2 (which will yields
that u is Schwartz class). For this, we consider the term of the series that constitutes
its coordinates. For j \in \{ 1,2\} and n\in \BbbN , we have

x\alpha \partial \beta x

\biggl( \int 
\BbbR 
ei\xi x1\varphi n+1(x2)(Su)j(\xi ,n)d\xi 

\biggr) 
=

\int 
\BbbR 
x\alpha 1
1 (i\xi )\beta ei\xi x1x\alpha 2

2 \partial \beta 2
x2
\varphi n+1(x2)(Su)j(\xi ,n)d\xi .

An integration by parts gives

x\alpha \partial \beta x

\biggl( \int 
\BbbR 
ei\xi x1\varphi n+1(x2)(Su)j(\xi ,n)d\xi 

\biggr) 
= i\alpha 1+\beta 1

\int 
\BbbR 
ei\xi x1x\alpha 2

2 \partial \beta 2
x2
\varphi n+1(x2)\partial 

\alpha 1

\xi (\xi \beta 1(Su)j(\xi ,n))d\xi .

Besides, using x2 = a+ a\ast and \partial x2 = a - a\ast , we deduce from (3.17) the existence of a
constant C\alpha 2,\beta 2

> 0 such that

\| x\alpha 2
2 \partial \beta 2

x2
\varphi n+1(x2)\| L2 \leq C\alpha 2,\beta 2

n
\alpha 2+\beta 2

2 .

As a consequence, for j \in \{ 1,2\} and n\in \BbbN , we have\bigm\| \bigm\| \bigm\| \bigm\| x\alpha \partial \beta x \biggl( \int 
\BbbR 
ei\xi x1\varphi n+1(x2)(Su)j(\xi ,n)d\xi 

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| 
L2

\leq n - 2C\alpha 2,\beta 2

\biggl( \int 
\BbbR 
\langle \xi \rangle  - 2d\xi 

\biggr) 
sup
n,\xi 

\bigm| \bigm| \bigm| n\alpha 2+\beta 2
2 +2\langle \xi \rangle \beta 1+2\partial \alpha 1

\xi (Su)j(\xi ,n)
\bigm| \bigm| \bigm| ,

whence the convergence of the series in L2 and a control of the L2 norm of x\alpha \partial \beta xu by
the seminorms of Su(\xi ,n). From x\alpha \partial \beta xf \in L2 for all \alpha ,\beta , we conclude that f \in \scrS (\BbbR 2).

Besides, because of the closed graph theorem, invertible continuous operators
between Fr\'echet spaces have continuous inverses. Hence the inverse of S is continuous
from \scrW to \~\scrS 0,1(\BbbR 2).

3. Let us now conclude the proof. As we have seen in step 1, to prove the lemma it
suffices to show that \~L0,1 is invertible on \~\scrS 0,1(\BbbR 2). By step 2, S is continuous invertible
from \~\scrS 0,1(\BbbR 2) to \scrW . Thus, we only have to prove that S \~L0,1S

 - 1 :\scrW \rightarrow \scrW is invertible
with bounded inverse. But S \~L0,1S

 - 1 is actually a simple multiplication operator:
using that Dx1 corresponds to \xi in Fourier space and a,a\ast are shift operators---see
(3.17)---in Hermite space, we have

(3.21) S \~L0,1S
 - 1w(\xi ,n) =

\biggl[ 
0

\surd 
2n+ 2\surd 

2n+ 2 2\xi 

\biggr] 
w(\xi ,n).
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4241

This is a continuous operator on \scrW , and (3.21) yields a formula for \~L - 1
0,1:

\~L - 1
0,1 = S - 1 1

2n+ 2

\biggl[ 
2\xi  - 

\surd 
2n+ 2

 - 
\surd 
2n+ 2 0

\biggr] 
S.

This completes the proof.

3.4. Solving the dominant equation. We now focus on solving the hierarchy
of equations (3.9), starting with the first two:

T0a0 = 0, T0a1 + T1a0 = 0.

Below we abuse notation: we allow functions in \scrS (\BbbR ) or \scrS (\BbbR 2,\BbbC 2) to also depend
smoothly on time, and we consider the operator \scrK t from (3.3) on functions depending
on t. For instance, we write (3.22) as

(3.22) a0(t, x) =\scrK tf0(t, x) = r
1/4
t f0

\bigl( 
t, (R\theta tx)1

\bigr) 
e - 

rt(R\theta t
x)22

2

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
.

Since T0 =L\theta t,rt , Lemma 3.2 implies that, for any f0 \in \scrS (\BbbR ) (potentially depend-
ing on t), (3.22) solves the equation T0a0 = 0.

3.5. Solving the subleading equation. The subleading equation in the hier-
archy (3.9) is T0a1 + T1a0 = 0, where T0 =L\theta t,rt and

(3.23) T1 =Dt +
\sum 
| \alpha | =2

\partial \alpha \kappa (yt)

\alpha !
x\alpha \sigma 3.

Given a0 satisfying (3.22), we regard T0a1 + T1a0 = 0 as an equation with unknown
a1 \in \scrS (\BbbR 2,\BbbC 2). According to Lemma 3.3, a solution exists if, for any t\in \BbbR , T1a0(t, \cdot )\in 
\scrS \theta t,rt(\BbbR 2). We now look for f0 such that this holds.

We note that T1a0 \in \scrS \theta t,rt(\BbbR 2) if and only if, for every t\in \BbbR and g \in \scrS (\BbbR ),

(3.24)

\int 
\BbbR 2

g
\bigl( 
(R\theta tx)1

\bigr) 
e - 

rt(R\theta t
x)22

2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot T1a0(t, x)dx= 0.

We make the substitution x \mapsto \rightarrow R\top 
\theta t
x and pick functions g approaching delta distribu-

tions to obtain that (3.24) is equivalent to

(3.25) for all t, x1 \in \BbbR ,
\int 
\BbbR 
e - 

rtx
2
2

2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot (T1a0)

\bigl( 
t,R\top 

\theta tx
\bigr) 
dx2 = 0.

Lemma 3.4. If f(t, \cdot )\in \scrS (\BbbR ) depends smoothly on t, then

(3.26)

\int 
\BbbR 
e - 

rtx
2
2

2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot (T1\scrK tf)

\bigl( 
t,R\top 

\theta x
\bigr) 
dx2 = 2

\sqrt{} 
\pi 

rt
Dtf(t, x1).

Proof. We note the identities

(3.27)

\biggl\langle \biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
, \sigma 3

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] \biggr\rangle 

= 0,

\biggl\langle \biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
,

\biggl[ 
 - \.\theta te

 - i\theta t/2

 - \.\theta te
i\theta t/2

\biggr] \biggr\rangle 
= 0.
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4242 BAL ET AL.

Therefore, using the expressions (3.23) for T1 and (3.3) for \scrK t, we have\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot T1\scrK tf(t, x) = 2Dt

\biggl( 
r
1/4
t f

\bigl( 
t, (R\theta tx)1

\bigr) 
e - 

rt(R\theta t
x)22

2

\biggr) 
(3.28)

=
2

i
e - 

rt(R\theta t
x)22

2

\Biggl( 
\partial 

\partial t
+ ( \.R\theta tx)1

\partial 

\partial x1
 - \.rt(R\theta tx)

2
2

2

 - rt(R\theta tx)2(
\.R\theta tx)2

\Biggr) 
r
1/4
t f

\bigl( 
t, (R\theta tx)1

\bigr) 
.

We deduce that

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot T1\scrK tf(t,R

\top 
\theta tx)

(3.29)

= - 2ie - 
rtx

2
2

2

\biggl( 
\partial 

\partial t
+ ( \.R\theta tR

\top 
\theta tx)1

\partial 

\partial x1
 - \.rtx

2
2

2
 - rtx2( \.R\theta tR

\top 
\theta tx)2

\biggr) 
r
1/4
t f

\bigl( 
t, x1

\bigr) 
.

We remark that

(3.30) \.R\theta t \cdot R\top 
\theta x=

\.\theta t

\biggl[ 
0 1
 - 1 0

\biggr] 
x= \.\theta t

\biggl[ 
x2
 - x1

\biggr] 
.

We deduce that (3.29) becomes\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
T1\scrK tf(t,R

\top 
\theta tx)= - 2ie - 

rtx
2
2

2

\biggl( 
\partial 

\partial t
+ \.\theta tx2

\partial 

\partial x1
 - \.rtx

2
2

2
+ rt \.\theta tx2x1

\biggr) 
r
1/4
t f

\bigl( 
t, x1

\bigr) 
.

We plug this identity in (3.26) to obtain

(3.31)  - 2i

\int 
\BbbR 
e - rtx

2
2

\biggl( 
\partial 

\partial t
+ \.\theta tx2

\partial 

\partial x1
 - \.rtx

2
2

2
+ rt \.\theta tx2x1

\biggr) 
dx2 \cdot r1/4t f

\bigl( 
t, x1

\bigr) 
.

We now perform the integrals over x2. The function x2e
 - rtx

2
2 has vanishing integral;

moreover an integration by parts shows that\sqrt{} 
\pi 

rt
=

\int 
\BbbR 
e - rtx

2
2dx2 = 2rt \cdot 

\int 
\BbbR 
x22e

 - rtx
2
2dx2.

Hence (3.31) reduces to

(3.32)  - 2i

\sqrt{} 
\pi 

rt

\biggl( 
\partial 

\partial t
 - \.rt

4rt

\biggr) 
r
1/4
t f

\bigl( 
t, x1

\bigr) 
.

We finally observe that in the sense of differential operators,\biggl( 
\partial 

\partial t
 - \.rt

4rt

\biggr) 
r
1/4
t =

\partial 

\partial t
.

Using this identity in (3.32) completes the proof.

From (3.25) and Lemma 3.4, we obtain the transport equation for f0: Dtf0 = 0.
Hence, f0 depends on x1 only, and we write f0(t, x1) = f0(x1). Therefore, if

(3.33) a0(t, x) = r
1/4
t f0

\bigl( 
(R\theta tx)1

\bigr) 
e - 

rt(R\theta t
x)22

2

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
=\scrK tf0(x)
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4243

for some f0 \in \scrS (\BbbR ), then T1a0(t, \cdot ) \in \scrS \theta t,rt(\BbbR 2) for every t \in \BbbR ; hence the equation
T0b1+T1a0 = 0 has a unique solution b1 such that b1(t, \cdot )\in \scrS \theta t,rt(\BbbR 2) for every t\in \BbbR .
We obtain the general solution to T0a1+T1a0 = 0 by adding an element of ker(L\theta t,rt):
a1 = b1 +\scrK tf1:

(3.34) a1(t, x) = b1(t, x) + r
1/4
t f1

\bigl( 
t, (R\theta tx)1

\bigr) 
e - 

rt(R\theta t
x)22

2

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
, f1(t, \cdot )\in \scrS (\BbbR ).

3.6. Proof of Theorem 2. We are now in a position to prove Theorem 2. We
start with a classical result based on Duhamel's formula.

Lemma 3.5. Let \psi t \in \scrS (\BbbR 2) be a solution to (\varepsilon Dt +H)\psi t = 0. Then, for any
vt \in \scrS (\BbbR 2),

\bigm\| \bigm\| vt  - \psi t

\bigm\| \bigm\| 
L2 \leq \| v0  - \psi 0\| L2 +

1

\varepsilon 

\int t

0

\bigm\| \bigm\| (\varepsilon Ds +H)vs
\bigm\| \bigm\| 
L2ds.

Proof. Let wt = vt  - \psi t and rt = (\varepsilon Dt + H)vt. Then, (\varepsilon Dt + H)wt = rt. By
Duhamel's formula,

vt - \psi t =wt = e - itH/\varepsilon w0+
1

\varepsilon 

\int t

0

e - i(t - s)H/\varepsilon rsds= e - itH/\varepsilon (v0 - \psi 0)+
1

\varepsilon 

\int t

0

e - i(t - s)H/\varepsilon rsds.

We bound both sides in L2, using that e - itH is unitary:

\| vt  - \psi t\| L2 \leq \| v0  - \psi 0\| L2 +
1

\varepsilon 

\int t

0

\bigm\| \bigm\| (\varepsilon Ds +H)vs
\bigm\| \bigm\| 
L2ds.

This completes the proof.

Proof of Theorem 2. 1. Let f0 \in \scrS (\BbbR ). Let a0 as in (3.22), b1 is as in (3.34), and
a(1) = a0 + \varepsilon 1/2a1. We apply Lemma 3.1 with m= 1:

(3.35)
\bigm\| \bigm\| (\varepsilon Dt +H)W [a(1)]yt

\bigm\| \bigm\| 
L2 \leq C\varepsilon 3/2

\Bigl( 
\| Dtb1\| L2 +

\bigm\| \bigm\| \langle x\rangle 3 a0\bigm\| \bigm\| L2 +
\bigm\| \bigm\| \langle x\rangle 3 b1\bigm\| \bigm\| L2

\Bigr) 
.

2. We now bound the RHS of (3.35), starting with \langle x\rangle 3a0 in L2. We write
a0 =\scrK \theta t,rtf0, where

\scrK \theta ,rf(x) = r1/4f
\bigl( 
(R\theta x)1

\bigr) 
e - 

r(R\theta x)22
2

\biggl[ 
e - i\theta /2

 - ei\theta /2
\biggr] 
, f \in \scrS (\BbbR ).

We note that we have the identity \scrK \theta ,r =\scrD r \scrU \theta \scrK 0,1, where \scrU \theta was introduced in
(2.2) and \scrD r is a partial dilation operator:

(3.36) \scrD r\psi (x) = r1/4\psi 
\bigl( 
x1,

\surd 
rx2
\bigr) 
, \scrU \theta \psi (x) =

\biggl[ 
e - i\theta /2 0

0 ei\theta /2

\biggr] 
\psi (R\theta x), \psi \in \scrS (\BbbR 2).

The operator \scrK 0,1 is bounded from \scrS (\BbbR ) to \scrS (\BbbR 2,\BbbC 2); \scrU \theta is uniformly bounded
from \scrS (\BbbR 2) to \scrS (\BbbR 2,\BbbC 2) for \theta \in \BbbR ; and \scrD r is bounded uniformly on \scrS (\BbbR 2) for r in
compact subsets of (0,\infty ). Moreover, rt = | \nabla \kappa (yt)| lives in a compact subset of (0,\infty )
because of \nabla \kappa \in C\infty 

b (\BbbR 2) and (3.1). We deduce that a0 \in \scrS (\BbbR 2), with uniform-in-time
bounds on its seminorms. In particular, \| \langle x\rangle 3a0\| L2 is uniformly bounded.

For later use, we observe that \partial ta0 is also uniformly bounded in \scrS (\BbbR 2). Indeed,
from (3.36), we have

(3.37) \partial ta0 = \.rt\partial r\scrD rt \scrU \theta t \scrK 0,1f0 + \.\theta t\scrD rt \partial \theta \scrU \theta t \scrK 0,1f0.
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4244 BAL ET AL.

The operators \partial \theta \scrU \theta t and \partial r\scrD rt are uniformly bounded on \scrS (\BbbR 2)---the latter because
rt lives in a compact subset of (0,\infty ). The quantities \.rt and \.\theta t are uniformly bounded;
indeed, by (3.2),

| \.rt| =
| 
\bigl\langle 
\nabla \kappa (yt),\nabla 2\kappa (yt) \.yt

\bigr\rangle 
| \bigm| \bigm| \nabla \kappa (yt)v(yt)\bigm| \bigm| \leq 
\bigm| \bigm| \nabla 2\kappa (yt) \.yt

\bigm| \bigm| \leq C,

and likewise, \bigm| \bigm| \.\theta t\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| ddt\nabla \kappa (yt)rt

\bigm| \bigm| \bigm| \bigm| \leq | \.rt| 
rt

+
| \nabla 2\kappa (yt)v(yt)| 

rt
\leq C,

where we have used | v(yt)| = 1 and the fact that rt is bounded below and the deriva-
tives of \kappa are bounded (here\nabla 2\kappa denotes the matrix of second order partial derivatives
of \kappa ).

Therefore, we deduce from (3.37) that \partial ta0 is uniformly bounded in \scrS (\BbbR 2).
3. We now control in L2 the terms Dtb1 and \langle x\rangle 3b1 that appear in (3.35). We

use (3.15) to write b1 as

(3.38) b1(t, \cdot ) = - L - 1
\theta t,rt

a0 = - 
\surd 
rtS

 - 1
rt \scrU  - 1

\theta t
L - 1
0,1\scrU \theta tSrta0.

As in step 2, all operators involved in (3.38) are uniformly bounded in \scrS (\BbbR 2), and
we deduce that b1 \in \scrS (\BbbR 2) uniformly in time. Also similarly to (3.37), taking time

derivatives produces quantities such as \.rt, r
 - 1/2
t , \.\theta t (all uniformly bounded); opera-

tors such as \partial r\scrD rt , \partial r\scrD r - 1
t

, \partial \theta \scrU \theta t , and \partial \theta \scrU  - \theta t , all uniformly bounded on \scrS (\BbbR 2); and

the function \partial ta0---also bounded uniformly in \scrS (\BbbR 2). We deduce that b1, \partial tb1 are
uniformly in \scrS (\BbbR 2). Hence, \| \langle x\rangle 3b1\| L2 and \| \partial tb1\| L2 are uniformly bounded.

4. Going back to (3.35), we have, for any t

(3.39)
\bigm\| \bigm\| \bigm\| (\varepsilon Dt +H)W [a(1)]yt

\bigm\| \bigm\| \bigm\| 
L2

\leq C\varepsilon 3/2.

Let \psi t be the solution to (\varepsilon Dt +H)\psi t = 0 with initial data \psi 0 = a0(0, \cdot ), and vt =
W [a(1)]yt

. We note that v0  - \psi 0 = \varepsilon 1/2b1(0, \cdot ) and that vt satisfies the bound (3.39).
Thanks to Lemma 3.5, we get

\| vt  - \psi t\| L2 \leq \varepsilon 1/2
\bigm\| \bigm\| b1(0, \cdot )\bigm\| \bigm\| L2 +C\varepsilon 1/2t.

Therefore,

\psi t =W [a(1)]yt +\scrO L2

\bigl( 
\varepsilon 1/2 \langle t\rangle 

\bigr) 
=W [a0]yt +\scrO L2

\bigl( 
\varepsilon 1/2 \langle t\rangle 

\bigr) 
.

This completes the proof.

3.7. Subsequent equations. We now focus on deriving a version of Theorem 2
that favors accuracy over lifetime. This requires to solve higher-order transport equa-
tions.

The base case is the result of section 3.4--3.5, summarized as follows:
(H1) For any f0 \in \scrS (\BbbR ), there exists b1 such that, for any f1(t, \cdot ) \in \scrS (\BbbR ), if
a0 =\scrK tf0 and a1 = b1 +\scrK tf1, then a0 and a1 solve (3.9) with m= 1, i.e.,

j\sum 
\ell =0

Tj - \ell aj = 0, 0\leq j \leq 1.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4245

To construct a0 and a1, we had to enforce a condition on f0. Likewise, to construct
am we will enforce a condition on fm - 1.

Our inductive assumption is, for m\geq 1, as follows:
(H\bfitm ) For any f0 \in \scrS (\BbbR ), there exist b1, f1, . . . , bm - 1, fm - 1, bm \in \scrS (\BbbR ) de-
pending smoothly on t such that, for any fm \in \scrS (\BbbR ), if a0 = \scrK tf0 and
a\ell = b\ell +\scrK tf\ell , then

j\sum 
\ell =0

Tj - \ell aj = 0, 0\leq j \leq m.

We proved (H1) in section 3.5. We now assume that (H\bfitm  - 1) holds, and we
prove (H\bfitm ) for m \geq 2. Because of Lemma 3.1, this boils down to constructing
am = bm +\scrK tfm such that

(3.40) T0(bm +\scrK tfm) + T1am - 1 + \cdot \cdot \cdot + Tma0 = 0, where

\bullet the operators Tk are defined in (3.8);
\bullet he amplitudes a0, . . . , am - 2 are fully specified by (H\bfitm  - 1);
\bullet the amplitude am - 1 = bm - 1 + \scrK tfm - 1, with bm - 1 given by (H\bfitm  - 1) and
fm - 1 \in \scrS (\BbbR ), remains to be selected.

Since the operator \scrK t parametrizes the kernel of T0, (3.40) is equivalent to

(3.41) T0bm = \beta m - 1  - T1\scrK tfm - 1, \beta m - 1 = - T1bm - 1  - T2am - 2  - \cdot \cdot \cdot  - Tma0.

Note that (H\bfitm  - 1) fully prescribes \beta m - 1.
As in section 3.5, to solve (3.41), it suffices that, for any t, (\beta m - 1 - T1\scrK tfm - 1)(t, \cdot )

is in the kernel of T0. This is equivalent to,

for all t, x1 \in \BbbR ,
\int 
\BbbR 
e - 

rtx
2
2

2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot 
\bigl( 
\beta m - 1  - T1\scrK tfm - 1

\bigr) \bigl( 
t,R\top 

\theta tx
\bigr) 
dx2 = 0.

Thanks to Lemma 3.4, this is equivalent to

(3.42) Dtfm - 1(t, x1) =
1

2

\sqrt{} 
rt
\pi 

\int 
\BbbR 
e - 

rtx
2
2

2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot \beta m - 1

\bigl( 
t,R\top 

\theta tx
\bigr) 
dx2,

and hence, setting fm - 1(0, x1) = 0,

(3.43) fm - 1(t, x1) =

\int t

0

\int 
\BbbR 

1

2

\sqrt{} 
rs
\pi 
e - 

rsx2
2

2

\biggl[ 
ei\theta s/2

 - e - i\theta s/2

\biggr] 
\cdot \beta m - 1

\bigl( 
s,R\top 

\theta sx
\bigr) 
dx2ds.

When fm - 1 is given by this formula, (3.41) admits a solution bm(t, \cdot ) \in \scrS (\BbbR 2,\BbbC 2).
This completes the proof of (H\bfitm ). The following result summarizes our findings.

Theorem 3. Fix T > 0 and n \in \BbbN . If aj \in \scrS (\BbbR 2) are constructed as above, then
(\varepsilon Dt +H)\phi t = 0 has a solution of the form

(3.44) \phi t(x) =
1\surd 
\varepsilon 
\cdot \scrK tf

\biggl( 
x - yt\surd 

\varepsilon 

\biggr) 
+

n\sum 
j=1

\varepsilon 
j - 1
2 aj

\biggl( 
t,
x - yt\surd 

\varepsilon 

\biggr) 
+\scrO L2

\bigl( 
\varepsilon 

n+1
2

\bigr) 
,

uniformly for \varepsilon \in (0,1] and t in [0, T ].

According to Theorem 3, after adequately correcting the initial data (3.4) we
obtain approximate solutions concentrated near yt at arbitrary accuracy in \varepsilon . In
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4246 BAL ET AL.

particular, this indicates that the mass that dissipates in the bulk (i.e., away from \kappa )
is at most O(\varepsilon N ) for any N . For this result, it is necessary to prepare the initial data
suitably, otherwise the subleading amplitude (which is of order \varepsilon 1/2) likely contains a
dispersive part; according to Conjecture 2 part of its mass should disperse along \Gamma .

Remark 2 (timescale of validity of error estimates). Including higher-order correc-
tors as in (3.44) does not extend the timescale of validity \varepsilon  - 1/2 of the approximation

solution. Indeed, the nth corrector is of order \varepsilon 
n+1
2 tn---the term tn corresponds to

n recursive integrations in (3.43). After applying Lemma 3.5, this yields that the

constant implicitly involved in the remainder \scrO L2

\bigl( 
\varepsilon 

n+1
2

\bigr) 
of (3.44) grows like Tn+1: it

is small only for T \ll \varepsilon  - 1/2.

Proof of Theorem 3. Fix n \in \BbbN , T > 0, and f0 \in \scrS (\BbbR ). We pick aj solving (3.9)
for 0\leq j \leq n+ 1 (constructed above) with fn+1 = 0, and we define

(3.45) a(n) =

n+1\sum 
j=0

\varepsilon j/2aj , vt(x) =W
\bigl[ 
a(n)

\bigr] 
yt
(x) =

1\surd 
\varepsilon 

n+1\sum 
j=0

\varepsilon j/2aj

\biggl( 
t,
x - yt\surd 

\varepsilon 

\biggr) 
.

By construction, the functions aj are smooth in t and Schwartz in x. In particular,
they satisfy uniform Schwartz-class bounds for t in compact intervals. Hence, thanks
to Lemma 3.1, we have uniformly in t\in [0, T ]

\| (\varepsilon Dt +H)vt\| L2 \leq C\varepsilon 
n+1
2 .

Let \phi t be the solution to (\varepsilon Dt+H)\phi t = 0 with \phi 0 = v0; see (3.45) with t= 0. Thanks
to Lemma 3.5,

\| vt  - \phi t\| L2 \leq C\varepsilon 
n+1
2 .

In other words, vt = \phi t +\scrO L2

\bigl( 
\varepsilon 

n+1
2

\bigr) 
.

4. The effect of curvature. It is natural to wonder which quantities affect the
lifetime of our quantum state. For instance, when \kappa is linear, the interface is straight
and the edge states have infinite lifetime. If \kappa is asymptotically linear, the interface
is asymptotically straight and we expect an extended time of validity. In contrast,
numerical simulations indicate that circular interfaces come with gradual dispersion;
see Figure 2.

This suggests that an integrated curvature limits the lifespan. Curvature, how-
ever, cannot be the only limiting factor: as Figure 5 shows, even straight interfaces
can generate dispersion. To isolate the effects of curvature, we consider in this section
domain walls \kappa that satisfy a geometric condition

(4.1) y \in \kappa  - 1(0) \Rightarrow 
\bigm| \bigm| \nabla \kappa (y)\bigm| \bigm| = 1, \nabla 2\kappa (y) \cdot \nabla \kappa (y) = 0.

Examples of \kappa satisfying (4.1) include
\bullet \kappa (x) = \omega \cdot x with | \omega | = 1 for a straight interface;
\bullet \kappa (x) =

\sqrt{} 
x21 + x22  - 1 for a circle.

The condition (4.1) is not geometrically restrictive: given \Gamma , we can always find
\kappa with \Gamma = \kappa  - 1(0), satisfying (4.1); see section 4.2. This condition excludes scenarios
such as those giving rise to Figure 5. Under (4.1), \.\theta t is the curvature of \Gamma at yt, and
in a suitable frame, the Hessian of \kappa along \Gamma depends only on \.\theta t:

(4.2)
\bigl\langle 
R\top 

\theta tx,\nabla 
2\kappa (yt)R

\top 
\theta tx
\bigr\rangle 
= \.\theta tx

2
1.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4247

Theorem 4. Under (4.1), the solution (1.4) to (\varepsilon Dt +H)\Psi t = 0 of Theorem 1
satisfies, uniformly in t > 0 and \varepsilon \in (0,1],
(4.3)

\Psi t(x) =
1\surd 
\varepsilon 
\cdot exp

\biggl( 
 - (x - yt)

2

2\varepsilon 

\biggr) \biggl[ 
 - ei\theta t/2
e - i\theta t/2

\biggr] 
+\scrO L2

\bigl( 
\varepsilon 1/2 + \varepsilon t(1+\Theta t)

\bigr) 
, \Theta t =

\int t

0

\.\theta 2sds.

When \Gamma is asymptotically straight (i.e., it has L2-curvature), the remainder in
(4.3) remains small for t\ll \varepsilon  - 1: our quantum state is longer-lived. In contrast, if \Gamma is
a closed loop, then \Theta t grows linearly and our state is only close to the exact solution
for \varepsilon t2 \ll 1; that is, t\ll \varepsilon  - 1/2: there is no improvement over Theorem 1. Thus, such
states---which are not globally topological---have a shorter lifetime.

Theorem 4 highlights effective limitations of dynamical edge states: they do not
survive in strongly curved environments; see Figure 6. This means that our results
rely on \kappa being sufficiently regular. Other limitations include cross-type or knot-type
interfaces, for which \kappa degenerates quadratically; see Figure 8. In both cases, the
wavepackets seems to spread along \Gamma . This corresponds to a scattering process to
other edge modes, that decay along \Gamma but have varying dispersion relations. Such
scenarios form interesting open problems.

4.1. Proof of Theorem 4. The proof of Theorem 4 relies on the precise calcu-
lation of the corrector a1 = b1 +\scrK tf1 involved in sections 3.4--3.5.

Fig. 8. Top left: interface \kappa (x) = x1x2; top right: an interface consisting of two rings; \kappa (x) =
(| x + e1|  - 1)(| x  - e1|  - 1), both with \varepsilon = 2 \cdot 10 - 2. In both cases, edge states propagate in the
direction obtained by rotating \nabla \kappa (orange arrow) by \pi /2 (teal arrow). Starting in direction A,
the wavepacket reaches the crossroad. Directions B and C are then allowed, while direction D is
forbidden. Theorem 2 does not address this scenario, because \nabla \kappa (0) = 0.
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4248 BAL ET AL.

Lemma 4.1. In the setup of Theorem 4, the subleading amplitude a1 = b1 +\scrK tf1
satisfies

(4.4) b1(t, x) =
1 - x21

2
x2e

 - x2

2

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
\.\theta t, f1(t, x1) =

2x1  - x31
2

e - 
x2
1
2 \Theta t.

Proof of Lemma 4.1. The proof relies on the hierarchy of transport equations
studied in section 3.4. We use the notations introduced there, keeping in mind that
rt = 1 here.

We first compute b1. From the initial condition (1.3),

a0(0, x) = e - 
x2

2

\biggl[ 
e - i\theta 0/2

 - ei\theta 0/2
\biggr] 
.

Hence f0(x1) = e - x2
1/2. Moreover b1 is the unique solution in ker(T0)

\bot to T0b1+T1a0 =
0. With qt(x) = \langle x,\nabla 2\kappa (yt)x\rangle , this equation reads

(4.5) T0b1 = - e - x2

2

\biggl( 
Dt +

qt(x)

2
\sigma 3

\biggr) \biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
=

1

2
e - 

x2

2

\Bigl( 
\.\theta t  - qt(x)

\Bigr) \biggl[ e - i\theta t/2

ei\theta t/2

\biggr] 
,

where we used the identities (3.27). To find b1, we use the operators U\theta t and \scrR \theta t

introduced in (2.2), and we look for b1 of the form

b1 =\scrR \theta tU\theta t

\biggl[ 
c1
c2

\biggr] 
.

We take advantage of the relation T0 = L\theta t,1 = \scrR \theta tU\theta tL0,1U
 - 1
\theta t

\scrR  - 1
\theta t

(see (3.13) and

the beginning of the proof of Lemma 3.2) and apply the operator U - 1
\theta t

\scrR  - 1
\theta t

to (4.5).
We deduce that c1 and c2 must solve

L0,1

\biggl[ 
c1
c2

\biggr] 
=

1

2
e - 

x2

2

\Bigl( 
\.\theta t  - qt

\bigl( 
R\top 

\theta tx
\bigr) \Bigr) 
U - 1
\theta t

\biggl[ 
e - i\theta t/2

ei\theta t/2

\biggr] 
=

1

2
e - 

x2

2

\Bigl( 
\.\theta t  - qt

\bigl( 
R\top 

\theta tx
\bigr) \Bigr) \biggl[ 1

1

\biggr] 
.

We now use the operator \~L0,1 of (3.18) and get\bigl[ 
0 a\ast a 2Dx1

\bigr] \biggl[ c1  - c2
c1 + c2

\biggr] 
= e - 

x2

2

\Bigl( 
\.\theta t  - qt

\bigl( 
R\top 

\theta tx
\bigr) \Bigr) \biggl[ 0

1

\biggr] 
.

From a\ast (c1 + c2) = 0, we obtain c1 = - c2 because a\ast has trivial kernel. Thus,

b1(t, x) = c1(t,R\theta tx)U\theta t

\biggl[ 
1
 - 1

\biggr] 
= c1(t,R\theta tx)

\biggl[ 
e - i\theta t/2

 - ei\theta t/2
\biggr] 
,

ac1(t, x) =
1

2
e - 

x2

2

\Bigl( 
\.\theta t  - qt

\bigl( 
R\top 

\theta tx
\bigr) \Bigr) 
.

We now use (4.2): qt(R
\top 
\theta t
x) = \.\theta tx

2
1. Hence c1 satisfies the equation

ac1(t, x) =
1 - x21

2
e - 

x2

2 \.\theta t.

From the condition b1 \in ker(T0)
\bot we deduce that c1(t, x1, \cdot )\bot e - x2

2/2 for every (t, x1).
Therefore, c1 is explicitly given by

(4.6) c1(t, x) =
1 - x21

2
x2 e

 - x2

2 \.\theta t.

This yields the identity (4.4) for b1.
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EDGE STATE DYNAMICS ALONG CURVED INTERFACES 4249

We now focus on f1. It solves the transport equation (3.42)

Dtf1(t, x1) =
1

2
\surd 
\pi 

\int 
\BbbR 
e - 

x2
2
2

\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot \beta 1

\bigl( 
t,R\top 

\theta tx
\bigr) 
dx2,

where by (3.41) \beta 1 =  - T1b1  - T2a0. In view of (3.8), T2 is carried by \sigma 3, and we
deduce from (3.27) that

 - 
\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot \beta 1(t, x) = 2Dt

\bigl( 
c1(t,R\theta tx)

\bigr) 
= 2

\Bigl( 
Dt + \.R\theta tx \cdot Dx

\Bigr) 
c1(t,R\theta tx).

Using (3.30), we obtain

 - 
\biggl[ 
ei\theta t/2

 - e - i\theta t/2

\biggr] 
\cdot \beta 1(t,R\top 

\theta tx) = 2
\Bigl( 
Dt + \.R\theta tR

\top 
\theta tx \cdot Dx

\Bigr) 
c1(t, x)

= 2

\biggl( 
Dt + \.\theta t

\biggl[ 
x2
 - x1

\biggr] 
\cdot Dx

\biggr) 
c1(t, x),

hence the transport equation for f1:

(4.7) Dtf1(t, x1) = - 1\surd 
\pi 

\int 
\BbbR 
e - 

x2
2
2

\Bigl( 
Dtc1(t, x) + \.\theta t(x2Dx1

 - x1Dx2
)c1(t, x)

\Bigr) 
dx2.

Thanks to the explicit formula (4.6) for c1, we have\int 
\BbbR 
e - 

x2
2
2 Dtc1(t, x)dx2 =

1 - x21
2

e - 
x2
1
2

\int 
\BbbR 
x2e

 - x2
2
2 dx2 \cdot Dt

\.\theta t = 0.

We deduce from integrating (4.7) and using the condition f1(0, x1) = 0 that

f1(t, x1) = - 1\surd 
\pi 

\int t

0

\.\theta s

\int 
\BbbR 
e - 

x2
2
2 (x2\partial x1

 - x1\partial x2
)c1(s,x) dx2 ds

= - 1\surd 
\pi 

\int t

0

\.\theta s

\int 
\BbbR 
x2e

 - x2
2
2 (\partial x1

 - x1)c1(s,x) dx2 ds,(4.8)

where we have performed an integration by parts in x2. We now compute the integrals
that appear in (4.8) using (4.6). The integral on the left-hand side corresponds to
integrating an odd function and hence produces 0. Regarding the one on the RHS,
we observe

(\partial x1  - x1)c1(t, x) = x2(x
3
1  - 2x1)e

 - x2

2 \.\theta t.

Therefore, the RHS of (4.8) becomes

1\surd 
\pi 

\int t

0

\.\theta s

\int 
\BbbR 
x2e

 - x2
2
2 (\partial x1

 - x1)c1(s,x)dx2ds(4.9)

= (x31  - 2x1)e
 - x2

1
2

\int t

0

\.\theta 2sds \cdot 
1\surd 
\pi 

\int 
\BbbR 
x22e

 - x2
2dx2

=
2x1  - x31

2
e - 

x2
1
2

\int t

0

\.\theta 2sds.

Plugging (4.9) in (4.8), we conclude that

f1(t, x1) =
x31  - 2x1

2
e - 

x2
1
2 \Theta t, where \Theta t =

\int t

0

\.\theta 2sds.

This completes the proof of Lemma 4.1.
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Proof of Theorem 4. We set a(2) = a0 + \varepsilon 1/2a1 + \varepsilon b2, with a0, a1, b2 solutions of

T0a0 = 0, T0a1 + T1a0 = 0, T0b2 + T1a1 + T2a0 = 0;

see sections 3.4--3.7 for their construction. Thanks to Lemma 3.1, we have\bigm\| \bigm\| \bigm\| (\varepsilon Dt +H)W
\bigl[ 
a(2)

\bigr] 
yt

\bigm\| \bigm\| \bigm\| 
L2

\leq C\varepsilon 2
\Bigl( \bigm\| \bigm\| Dtb2

\bigm\| \bigm\| 
L2 +

\bigm\| \bigm\| \langle x\rangle 4 a0\bigm\| \bigm\| L2 +
\bigm\| \bigm\| \langle x\rangle 4 a1\bigm\| \bigm\| L2 +

\bigm\| \bigm\| \langle x\rangle 4 b2\bigm\| \bigm\| L2

\Bigr) 
.

From the explicit expression (3.33) for a0, \| \langle x\rangle 4a0\| L2 is uniformly bounded. From
the explicit expression (4.4) for a1, \| \langle x\rangle 4a1\| L2 is bounded by 1 + \Theta t. It remains to
bound \| \langle x\rangle 4b2\| L2 and \| Dtb2\| L2 . By construction, recalling that rt = 1,

b2(t, \cdot ) = - L - 1
\theta t,1

\bigl( 
T1a1 + T2a0

\bigr) 
.

The explicit expressions for a0 and a1 allow us to bound Schwartz-class seminorms of
T1a1 +T2a0 by 1+\Theta t (the term \partial t\Theta t = (\partial t\theta t)

2 is uniformly bounded). Arguing as in
(3.38), we deduce that Schwartz-class seminorms of b2(t, \cdot ) and Dtb2(t, \cdot ) are bounded
by 1 +\Theta t. In particular,\bigm\| \bigm\| Dtb2

\bigm\| \bigm\| 
L2 +

\bigm\| \bigm\| \langle x\rangle 4 b2\bigm\| \bigm\| L2 \leq C(1 +\Theta t).

We deduce that \bigm\| \bigm\| \bigm\| (\varepsilon Dt +H)W
\bigl[ 
a(2)

\bigr] 
yt

\bigm\| \bigm\| \bigm\| 
L2

\leq C\varepsilon 2 (1 +\Theta t) .

We note that at t= 0, \Psi t and W [a(2)]yt coincide up to \scrO L2(\varepsilon 1/2). Thus, applying
Lemma 3.5, we conclude that\bigm\| \bigm\| \bigm\| \Psi t  - W

\bigl[ 
a(2)

\bigr] 
yt

\bigm\| \bigm\| \bigm\| 
L2

\leq C\varepsilon 1/2 +C\varepsilon t (1 +\Theta t) .

This completes the proof of Theorem 4.

4.2. Geometric setup. We prove here the geometric facts stated above. First,
if \Gamma is a nodal set, then we can find a function \kappa satisfying (4.1) with \kappa  - 1(0) = \Gamma .

Lemma 4.2. If \Gamma = \~\kappa  - 1(0) for a function \~\kappa \in C\infty (\BbbR 2) satisfying \nabla \~\kappa \in C\infty 
b (\BbbR 2)

and the transversality condition (3.1), then we can find \kappa \in C\infty (\BbbR 2) satisfying \nabla \kappa \in 
C\infty 

b (\BbbR 2) and (4.1), such that moreover \Gamma = \kappa  - 1(0).

Proof of Lemma 4.2. Without loss of generalities, we may replace \~\kappa by

\~\kappa 

| \nabla \~\kappa | (1 + \~\kappa 2)
.

This means that we can assume that \~\kappa \in C\infty 
b (\BbbR 2) and | \nabla \~\kappa (y)| = 1 along \Gamma . We now

aim to construct \rho \in C\infty 
b (\BbbR 2) with | \~\kappa \rho | \infty < 1 such that if

(4.10) \kappa = \~\kappa  - \rho 
\~\kappa 2

2
= \~\kappa 

\biggl( 
1 - \~\kappa \rho 

2

\biggr) 
,

then \kappa satisfies (4.1). Under the condition | \kappa \rho | \infty < 1, \kappa  - 1(0) = \~\kappa  - 1(0) = \Gamma . Moreover,

\nabla \kappa =\nabla \~\kappa (1 - \rho \~\kappa ) - \~\kappa 2

2
\nabla \rho ;
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hence if y \in \Gamma , then \nabla \kappa (y) =\nabla \~\kappa (y). Also

\nabla 2\kappa =\nabla 2\~\kappa (1 - \rho \~\kappa ) - \rho \nabla \~\kappa \nabla \~\kappa \top  - \~\kappa \nabla \rho \nabla \kappa \top  - \~\kappa \nabla \~\kappa \nabla \rho \top  - \~\kappa 2

2
\nabla 2\rho .

So, if y \in \Gamma , then \nabla 2\kappa (y) =\nabla 2\~\kappa (y) - \rho (y)\nabla \~\kappa (y)\nabla \~\kappa (y)\top . We deduce that, for y \in \Gamma ,\bigl\langle 
\nabla \kappa (y),\nabla 2\kappa (y)\nabla \kappa (y)

\bigr\rangle 
=
\bigl\langle 
\nabla \~\kappa (y),\nabla 2\~\kappa (y)\nabla \~\kappa (y)

\bigr\rangle 
 - \rho (y)

\bigl\langle 
\nabla \~\kappa (y),\nabla \~\kappa (y)\nabla \~\kappa (y)\top \nabla \~\kappa (y)

\bigr\rangle 
=
\bigl\langle 
\nabla \~\kappa (y),\nabla 2\~\kappa (y)\nabla \~\kappa (y)

\bigr\rangle 
 - \rho (y).

We now pick \~\rho \in C\infty (\BbbR 2) such that \~\rho (y) = \langle \nabla \~\kappa (y),\nabla 2\~\kappa (y)\nabla \~\kappa (y)\rangle for y \in \Gamma . Then,
with

\rho (y) =
\~\rho (y)

1 + \~\rho (y)2\~\kappa (y)2
,

we still have \rho (y) = \langle \nabla \~\kappa (y),\nabla 2\~\kappa (y)\nabla \~\kappa (y)\rangle for y \in \Gamma ; \rho \in C\infty 
b (\BbbR 2), and finally,

| \rho \~\kappa | = | \~\rho \~\kappa | 
1 + \~\rho 2\~\kappa 2

\leq 1

2
.

The function \kappa given by (4.10) now satisfies the requirements of the lemma. Indeed,
by construction we have for y \in \Gamma 

(4.11)
\bigm| \bigm| \nabla \kappa (y)\bigm| \bigm| = \bigm| \bigm| \nabla \~\kappa (y)

\bigm| \bigm| = 1,
\bigl\langle 
\nabla \kappa (y),\nabla 2\kappa (y)\nabla \kappa (y)

\bigr\rangle 
= 0.

We can then write | \nabla \kappa | 2 = 1+ \alpha \kappa for some smooth function \alpha . Taking the gradient
on both sides produces the identity

2\nabla 2\kappa \cdot \nabla \kappa = \alpha \nabla \kappa + \kappa \nabla \alpha .

In particular, pairing with \nabla \kappa \bot gives

2
\bigl\langle 
\nabla \kappa \bot ,\nabla 2\kappa \cdot \nabla \kappa 

\bigr\rangle 
= \kappa 

\bigl\langle 
\nabla \kappa \bot ,\nabla \alpha 

\bigr\rangle 
.

Specializing at y \in \Gamma produces\bigl\langle 
\nabla \kappa (y)\bot ,\nabla 2\kappa (y) \cdot \nabla \kappa (y)

\bigr\rangle 
= 0,

which together with the second identity of (4.11) yields \nabla 2\kappa (y)\nabla \kappa (y) = 0 when
y \in \Gamma .

We now prove the useful relation (4.2).

Proof of (4.2). We recall that R\top 
\theta t
e1 =  - \.yt =  - \nabla \kappa (yt)\bot and R\top 

\theta t
e2 =  - \.yt

\bot =
\nabla \kappa (yt). Therefore, proving (4.2) boils down to showing

(4.12)
\bigl\langle 
\.yt,\nabla 2\kappa (yt) \.yt

\bigr\rangle 
= \.\theta t,

\bigl\langle 
\.yt,\nabla 2\kappa (yt) \.yt

\bot \bigr\rangle = 0,
\bigl\langle 
\.yt
\bot ,\nabla 2\kappa (yt) \.yt

\bot \bigr\rangle = 0.

The last two identities are direct consequences of \nabla 2\kappa (y)\nabla \kappa (y) = 0 for y \in \kappa  - 1(0).
For the first identity in (4.12), we note that\biggl\{ 

cos(\theta t) = - \langle \.yt, e1\rangle = \langle \nabla \kappa (yt), e2\rangle ,
sin(\theta t) = - \langle \.yt, e2\rangle = - \langle \nabla \kappa (yt), e1\rangle .
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Taking time derivatives, and the identity sin(\theta t)e2 + cos(\theta t)e1 = - \.yt, we deduce that\biggl\{ 
\.\theta t sin(\theta t) = - 

\bigl\langle 
\nabla 2\kappa (yt) \.yt, e2

\bigr\rangle 
\.\theta t cos(\theta t) = - 

\bigl\langle 
\nabla 2\kappa (yt) \.yt, e1

\bigr\rangle \Rightarrow \.\theta t =
\bigl\langle 
\nabla 2\kappa (yt) \.yt, \.yt

\bigr\rangle 
.

This completes the proof of (4.2).
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