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Abstract. We study the propagation of wavepackets along weakly curved interfaces between
topologically distinct media. Our Hamiltonian is an adiabatic modulation of Dirac operators om-
nipresent in the topological insulators literature. Using explicit formulas for straight edges, we
construct a family of solutions that propagates, for long times, unidirectionally and dispersion-free
along the curved edge. We illustrate our results through various numerical simulations.
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1. Introduction. Topological insulators are fascinating materials that are in-
sulating in their bulk but support robust currents along their boundary. From a
qualitative point of view, these properties are explained by the bulk-edge correspon-
dence, an index-like theorem that relates the net conductivity (an analytic index)
to the bulk topology (a topological index). For straight interfaces, the currents are
explicitly described in terms of edge states: steady waves with ballistic dynamics,
confined between regions of distinct topology.

In this work, we construct dynamical analogues of edge states for curved inter-
faces. Our model is a Dirac operator

k(z) eD,, —ieD,

1.1 H= K ! 2

(L.1) eD,, +ieD,, —k(x) ’

where D, = —i0,,, € > 0 is a small semiclassical parameter and & is a varying mass

term. Such Hamiltonians emerge in the effective theory of honeycomb structures
[18, 36, 13]; more generally they model the generic dynamics of modes propagating
along interfaces between topologically distinct insulators [15]. We can interpret the
parameter ¢ as the Fermi velocity of a Dirac cone; therefore the regime ¢ < 1 corre-
sponds to nearly flat Dirac cones.
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Under a transversality condition, Vk(x) # 0 when x(x) =0, the set
I ={zcR?:k(z) =0}

partitions R? in regions of distinct local topology; see section 1.5 for details. A lo-
cal interpretation of the bulk-edge correspondence suggests that nontrivial currents
emerge along I'. This paper develops the underlying quantitative theory; it provides
detailed information on the associated quantum states, such as their speed and profile.

Specifically, we exploit the explicit structure of edge states available when k(z) =
a1x1 + asx2 to construct an infinite-dimensional family of nearly steady solutions
to (eDy + H)y = 0, in the limit ¢ — 0. These emerge as the natural channels of
conductivity: for long times, they propagate unidirectionally and coherently along T'.
We show that the curvature of I" plays a key role in limiting the lifetime of these
solutions. We illustrate our results via various numerical simulations.

1.1. Simplified main result. Throughout the paper, we assume that all de-
rivatives of x (but not necessarily ) are uniformly bounded: Vx € Cp°(R?). In this
introduction, we require moreover that

(1.2) yel' = |Vk(y)|=1.

This allows us to state a simplified version (Theorem 1) of our main result (Theo-
rem 2). In section 3, we replace (1.2) by the more general transversality condition
(3.1).
Fix yo € I' = x~1(0), and define y; by the ODE

ye = Vr(y)*,
where Vr(y)!t is the tangent vector to I' obtained by the 7/2-counterclockwise ro-
tation of Vk(y). Under (1.2), y; is a unit speed parametrization of I'. We let 6; be
the angle between the tangent to I' at y; and the z-axis; see Figure 1. We use the
notation (t) = (1 + [t|?)'/2.

X

FiG. 1. Schematic plot of an interface T' = k= 1(0) between topologically distinct regions, to-
gether with y¢ and 0.
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THEOREM 1. Let k € C*(R?) satisfy (1.2), with Vk € C{°(R?), and yi, 0; as
above. The solution to

R G

satisfies, uniformly for e € (0,1] and t >0,

(1.4) Uy(z) = % exp (-W) [663//22] +052 (£2(1).

The initial data (1.3) are Gaussian concentrated at yo. Theorem 1 shows that the
generated solution remains (at leading order for times t < e~1/2) a Gaussian, concen-
trated now at y;. This identifies ¢ — y; as an exotic quantum trajectory; it is not pre-
dicted by the standard results on propagation of semiclassical singularities that show
propagation along the Hamiltonian curves of the functions (z,&) — +v/k(z)2 + [£|?
(see [25, 24, 22]). Moreover, for fixed times and better-prepared initial data, the
concentration near y; is accurate up to O(e*); see Theorem 3. Besides, since the
classical Hamiltonian vanishes along the curve ¢ — (y;,0), there is no time-dependent
oscillating phase, as one usually has when considering propagation of wavepackets by
Schrodinger equations as in [11].

If T is not asymptotically straight—for instance, if it is a loop—numerical compu-
tations confirm that the Gaussian state approximation becomes less and less accurate;
see Figure 2. In contrast, if I is asymptotically straight—as in, e.g., the tanh-like in-
terface of Figure 3—the Gaussian state approximation can work for longer times; see
Theorem 4.

We refer to Theorem 2 for a more general version of Theorem 1. It constructs an
infinite-dimensional family of solutions to (eD; + H)W¥; = 0 with the same qualitative
features as (1.4): coherent states propagating unidirectionally, at unit speed and

-0.3
05~ > - by
/ T \ 1025
initial
0.25- / state \ o5
[ \ '
vz 09% | 0.5
\ / 0.1
-0.25 -
\ /
N / 0.05
-05 e

-05 -0.25 0 0.25 0.5

1

FI1G. 2. Left: numerical solution to (eDy + H)¥¢ = 0 with Gaussian initial state for a circu-
lar interface with € = 1072 and radius one. The trajectory y: undergoes curvature effects for all
times. This explains a dispersion stronger than for a tanh-type interface. See also Figure 7 and
Theorem 4. Right: evolution of the phase of the first coordinate of the numerical solution for each
snapshot, corresponding to —6;/2, for different radii of the circle interface. After a full revolution,
the numerical phase difference is about —m, matching the theoretical prediction —2mw/2 = —x. This
phase shift interprets as a Berry phase arising from adiabatically varying the parameter 6 in the
effective leading-order operator Hg ,. (2.1) from 0 to 27; see [46].
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Fic. 3. Snapshots of the numerically computed dynamical analogue of an edge state—the so-
lution to (1.3) below. The interface is yo = tanh(y1) and € = 10~1. The state propagates leftwards
and dispersion-free along the interface.

without dispersion, along I'. Our motivation, explained in sections 1.4 and 1.5 below,
is twofold:
e identify dynamical analogues of topological edge states along bent interfaces;
e study a semiclassical system whose matrix-valued symbol has repeated eigen-
values.

1.2. Numerical simulations. We illustrate our results with numerical simula-
tions of the Dirac equation with Gaussian initial data for various types of interfaces.
The corresponding pictures are snapshots of the dynamics, with the interface marked
as a light blue curve.

e Figure 3 and Figure 2 are numerical confirmations of Theorem 1 for tanh-
type and circle interfaces, respectively. Figure 2 also verifies that the phase
shift after one revolution equals 27/2 = .

e Figure 4 shows the evolution of other Gaussian states for tanh-type interfaces.
The initial data are concentrated like (1.3) but carried by a different vector.
If this vector is orthogonal to that in (1.3), the coherence is immediately lost.
See Conjecture 1.

e When the more general transversality condition (3.1) holds instead of (1.2),
the propagation is coherent in a relaxed sense. Figure 5—a straight interface
but a nonlinear domain wall—numerically validates Theorem 2.

e Figure 6 illustrates the limits of the dynamical analogues of edge states; for
instance, they do not propagate around sharp corners.

We use a Crank-Nicolson scheme to approximate the unitary group e™*#, with
Fourier spectral spatial discretization. The MATLAB code containing the parameters
used to obtain our figures can be found on GitHub.!

1.3. Physical motivations. The Dirac equation appears in a wide variety of
physical applications. Beyond its original role in the description of relativistic par-
ticles, it has emerged as a dominant model in the analysis of topological phases of
matter [49, 50]. The relativistic Dirac operator (x = 0 in our model) displays a generic
band crossing; in contrast, adding a mass term opens an energy gap. In our model,
the interface is the transition between the two insulating phases £ < 0 and k > 0.

Thttps://github.com/s1b2604/Semiclassical-edge-states.
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FiG. 4. Solution to (1.10) for a tanh-like interface with (top left) [a1, as] = [e~%00/2 —¢if0/2]
(top Tight) [an, an] = [e~00/2 €100/2] and (bottom) [a1,az] = [0,e7"00/2]. The top right figure
corresponds to [a1,az] orthogonal to the vector [e=100/2 —¢i0/2] from the initial data of Theorem 1
shown at the top left. This generates a purely dispersive wave along the interface. The bottom
figure corresponds to a linear combination of the two top cases: the solution splits into leftwards-
propagating and dispersive components. The color-coding is used to indicate snapshots after a time
that is defined by the color.
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Fi1G. 5. A straight interface but a nonlinear domain wall: k(x) = (1 —0.9sin(z1))z2. We have
yt = —te1, hence r¢ =1+0.9sin(t). This quantity nearly degenerates for t near —m/2+nZ, inducing
lateral spreading of the wavepacket for such times, but reconstruction in between.

These two phases happen to have different topological signatures; this generates uni-
directional propagation along the interface.

This asymmetric transport is at the core of most physical applications in the
fields of topological insulators and topological superconductors [49]. It is the
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F1G. 6. Left: Snapshots of the numerically computed solution to (eDy+ H)W¢ =0, withe =0.1,
Yo the Gaussian (1.4) and a domain wall k, illustrated in the figure with an appropriate offset,

satisfying (4.1), with T = {&2 = —y/22 + p2}, p € {0,1/2,1}. The amplitude/mass loss increase

as the corner gets sharper. Right: L? mass of wavepacket in B(yt,~/€) for p =0 with visible drop
at corner. Past it, about 30% of the mass appears to follow a dynamics different from that of the
wavepacket. Additional numerical erperiments suggest that this mass disperses along T'; see also
Conjecture 2.

physical manifestation of the quantum Hall effect [6, 1] and its nonmagnetic analogues
[9, 30, 33, 29, 37, 47]. It also finds numerous applications in fields such as photonics,
acoustics, and fluid mechanics [40, 42, 44, 45, 26]. Broadly speaking, Dirac-type equa-
tions often offer the simplest continuum (macroscopic) description of transport in a
narrow energy band near the band crossing [23, 49].

By interpreting € as the Fermi velocity near Dirac cones, the regime ¢ < 1 cor-
responds to nearly flat Dirac cones. This provides a physical reason to study the
equation. There is another motivation, which essentially consists in making inter-
mediate steps toward understanding edge transport along curved interfaces. Most of
the theoretical literature has focused on straight interfaces, which greatly simplifies
the mathematical framework. The problem of constructing edge states along general
curved interfaces has remained open. This provides a reason to study the intermedi-
ate regime of weakly curved interfaces, which is the focus of this work. Indeed, after
rescaling x to ez, the interface becomes

{e7'w: k(x) =0}

and hence has curvature of order . Such interfaces behave locally like straight lines;
this allows us to perform rigorous constructions of dynamical edge states. For related
results, and in particular an analysis when the interface is a large circle, see [32].

This work has focused on deriving accurately a traveling state, at least for times
t < e~/2. Another line of research—somewhat transverse to this work—consists of
going beyond the weakly curved regime and proving qualitative properties of currents,
such as localization near the edge and scattering by sizable perturbations.

1.4. Local topological indices and asymmetric transport. Strikingly,
transport at interfaces between distinct topological environments is both asymmetric
(a net overall flux propagates in a prescribed direction) and quantized. We discuss
here a theory of topological phases that interprets locally the state (1.4) in a topo-
logical way. We stress that this interpretation

e is valid only in the semiclassical regime ¢ < 1;
e is local: our construction works for all k, even though in some scenarios H is
topologically trivial (for instance, when I' is a closed curve).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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These considerations use the leading-order approximation H, of H at a point
y € R%:

_ K(Y) €Dy, —ieDy, .
Hlo(y) - |:€D:81 +i6Dg;2 —H(y) ’ y¢rv

—vl-(z—y) €Dy —ieDy,

Hlo(y): |:€Dzyl+i€Dm2 ’U;"(ZL'*y) :| 5 yEFa

where v, = Vi (y)* is tangent to I' at y. These emerge by replacing () in (1.1) by
its leading-order development at y: k(z) = k(y) if y ¢ T and k(z) = Va(y) - (x — y)
if y € T. These approximations are reasonable for |z — y| = O(¢'/?)—the scale of
localization of (1.4).

We observe that H),(y) has a spectral gap near energy 0 (i.e., it is an insulator)
if and only if y ¢ T". This identifies T" as the natural channel for conduction of energy.
Following [17, 34], we measure the local conductivity at y € T" via

(L) I(H,y) = Trpz (i[Hio(w), fv, - 0)]g (Hio(w)) ). ye,

where [ and g are smooth real functions increasing from 0 to 1 with f/ and ¢’ com-
pactly supported. Formally,

(1.6) I(H,y) = %Trm (e f (v, - 2)g’ (o (y)) ™o
Looking at ¢’ as a density of probability, f(v, - )¢’ (Hio(y)) measures the probability
of a quantum particle to lie in the half-plane {v, -z > 0}, per unit energy. Taking the
trace in (1.6) corresponds to summing over all states. Hence Z(H,y) describes the
overall flux moving in the direction of v,, per unit time and energy, at equilibrium.

It turns out that 27 - Z(H,y) = 1; see [2] and Remark 1 below. This means that
the evolution according to Hj,(y) comes with a current propagating in the direction of
vy. Since vy is tangent to I' at y, I emerges intuitively as a natural charge carrier for
H. Theorem 1 confirms these heuristics: in the regime € — 0, we construct a current
propagating along I', with explicit speed and profile.

The quantity (1.5) relates to bulk topological invariants via a universal princi-
ple: the bulk-edge correspondence [31, 27, 43, 5, 14]. Following the physics literature
[30, 29], we define a bulk index for Hy,(y):

1) By =2 gy,
When H emerges as an effective Hamiltonian (for instance, in graphene), B(H,y)
corresponds to the integrated Berry curvature near one of the Dirac point momentum,
hence as part of the overall Chern integer [12]. Direct interpretations of (1.7) as a
Chern number include regularization of a Dirac operator [2] and a more general bulk-
difference invariant [5]. We refer to (1.7) as the local bulk index. It can also be
defined by spatially truncating physical space formulas for the global Chern number
[35, 7, 43] or via the spectral localizer [38, 39].

Since V& points from negative- to positive-index regions, we have, for y € I' and
4 > 0 sufficiently small,

=2n-Z(H,y) :B(H,y—kéVﬁ(y)) — B(H,y — 5Vﬁ(y)).

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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This is a local version of the bulk-edge correspondence: the local conductivity at y is
the difference between the local bulk indices across the interface.

The quantity 27-Z(H,y) counts currents algebraically according to their direction
of propagation. It is independent of y and stable against large perturbations of H;
see, e.g., [2, 5] and [43] for similar models. This explains its practical significance:
even in the presence of strong perturbations or Anderson localization, there is always
27-Z(H,y) =1 more current propagating in the direction of v, rather than —uv, [3, 43].
This clarifies the local topological nature of the quantum state (1.4). Let us stress
again that our results hold locally in time: (1.5) is spectral in nature, describing an
equilibrium, while (1.4) is relevant for (long, but only transient) times ¢t < e~ 1/2.

1.5. Connection with semiclassical analysis. What makes the solution (1.4)
special? The answer lies in semiclassical territory. In summary (with details provided
below), if C =T x {0} C R? x R?, then for times t < ¢~ /2

(i) states initially microlocalized at (yo,&0) ¢ C come in pairs propagating in

opposite directions;

(ii) states initially microlocalized at (yo,&o) € C (i.e., like (1.3), with a potentially

different 2-vector) seem to either propagate nondispersively in the direction
of Vi1, or to disperse; see Figure 4 and Conjecture 1.

This suggests that '—more precisely, its phase-space lift C—is the relevant chan-
nel for asymmetric propagation.

We now provide a detailed account. We start by writing H = h(x,eD,,), where

_ | Kl@) & il
hie,8) = {fl +iy  —k(x) ] '
Theorem 1 constructs solutions to (eD; + h(z,eD,))p: =0 for the data
1 —

where the profile a is a Gaussian (extended in Theorem 2 to any Schwartz profile)
and where (20, &p) belongs to the set C defined by

C={(x,8): r(z)=0, £=0} C R

The function ¢q is known in the literature as a semiclassical wavepacket [11] with
wavefront set W F,(¢o) = {(20,&0)}; see [51, section 8.4] for definitions and properties
of wavefronts. The set C corresponds to semiclassical eigenvalue crossings of h(z,&):
when (z,£) €C, h(z,£) has two degenerate eigenvalues. The systematic study of such
semiclassical systems is a delicate problem. Outside the crossing set C, for example,
when &y # 0, the system is adiabatic and the solution with initial data ¢q is asymptotic
to the sum of two wavepackets concentrated, respectively, on the Hamiltonian curves of
the functions (z,&) — /k(2)? + |£]? and (z,€) — —\/k(2)? + |£]|?. These trajectories
never meet C, and if k(zg) = 0 and & # 0, the wavepacket immediately leaves the
set of the zeros of k; see [25, 24] for microlocalization of wavepackets in 4 by 4 Dirac
systems and [8, 22] for a precise description of the solution in terms of wavepackets.
The picture is different if one adds a potential  — u(z) to the Hamiltonian h. In
that case, Hamiltonian trajectories of the functions (z,€) — u(z) £ +/k(2)? + |£]? may
reach C (see [10, 20]), which generates a Landau—Zener effect, i.e., energy transfer
between the modes. These transfers have been calculated for Gaussian wavepackets
and the Schrodinger equation in [28] and in terms of semiclassical measures for more
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general initial data and Hamiltonians (including the case of the Dirac equation) in
[21, 20, 19].

This paper focuses on the dynamics of wavepackets localized along C (note that
the crossing energy is constant, equal to 0). One could have likewise studied the
dynamics of wavepackets semiclassically concentrated at points (xg,&p) ¢ C. This
is actually a much more standard problem because the eigenvalues of h(zg,&y) are
distinct; they are £A(xg,&y), where

Az, §) =/ r(2)? + & + &3

we note that A does not vanish away from C. We diagonalize h(z,§) for (x,£) near

(w0,&0):

b(z,€) = $U(x, €) {A%“) )\(:?,5)] U6,

where il is a unitary 2 X 2 matrix that depends smoothly on (x,£). Thus, after
quantization, the system (eD; + h(z,eD,))1 = 0 splits semiclassically near (zg,&p) in
two nearly decoupled equations [48, 41]:

<5Dt + [_)‘(x(’)EDm) /\(x’(iDm)} +O(£)> {2*] —0.

According to the classical-to-quantum correspondence, the wavefront set of ¢, follows
the semiclassical trajectories of £A(z,£); see, e.g., [51, Theorem 12.5]. These form
two branches (z;7,&") and (z;,£;) that solve, respectively,

(zF,65), (zf,€5).

The Hamiltonian trajectories (1.8) never reach C because (a) the energy
+A(20,&0) # 0 is conserved along them and (b) C is the zero set of the function
A. Hence, if (zo,&) ¢ C, then the semiclassical singularities of ¢; globally evolve
according to the classical-to-quantum correspondence: they follow the Hamiltonian
trajectories (1.8) and never reach C.

Moreover, the two branches in (1.8) point (at ¢ = 0) in opposite directions:
wavepackets concentrated away from C have no preferred direction of propagation.
Their contribution to an overall quantum flux cancel out. Hence, C is the only phase-
space channel that can support unidirectional waves.

This discussion connects various characterizations of the set C:

(i) Semiclassical: C is the set of eigenvalue crossings of h(z,§).

(ii) Energetic: C is the characteristic set of h(x,£), i.e., the set of points (z,£)

such that deth(z,€) =0.

(iii) Topological: the local Chern number is not defined on I' = k~1(0) = 7(C)

(with 7(z,£) = x) because the eigenvalues of h(z,§) are degenerate on C.

(iv) Dynamical: Among phase-space subsets, C is the only (maximal) candidate

that may support unidirectional wavepackets.

Because of (i), the classical-to-quantum correspondence fails. Because of con-
servation of energy, (ii) suggests that a state semiclassically concentrated along C
should remain this way: C acts as a semiclassical waveguide. Theorem 1 provides the
corresponding profile and speed. Under global assumptions on «, the bulk-edge corre-
spondence predicts a nonvanishing quantum flux between regions of different topology.

dait A
doy _ 0

o it __o
dt — ~ 0¢

(1.8) at oz
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From (iii), C acts as the natural topological interface in phase-space. According to
(iv), it is also the only channel that can support waves contributing to a nontrivial
conductivity.

A legitimate criticism to Theorem 1 is that it does not study the dynamics
of all initial data localized along C: it focuses on those parallel to the two-vector
[e=%0 —¢i%]T  As demonstrated numerically in Figure 4 the data prepared along the
orthogonal two-vector [—e'? e~%%]T appear to purely disperse along the interface.
An investigation of case k linear suggests that the rate of dispersion is e~ 1/4¢=1/2:
wavepackets supported by such spinors and amplitude e~1/2 experience a strong loss
of coherence. For positive times, their peak is divided by a factor of order e~1/4.

Thus, we conjecture that general initial data semiclassically localized along C
transit to the state (1.4). To write a precise statement, we split vectors [, ] " € C?
according to

—i6o/2 —i6o/2
(1.9) l:z;:| =M l:ieigo/2:| +A2 l:eeigo/2 ] ’
We interpret the two terms in (1.9) as projections on the vector from (1.3) and its
orthogonal.

CONJECTURE 1. Fiz yo € T, a1,a9 € C, and A1, A2 defined according to (1.9).
Under (1.2), the solution ¥, to

(1.10) (eDy + H)W, =0,  Wo(x) = % exp (_|3€—2§Jo|2> Bj

satisfies, uniformly in € € (0,1] and ¢t > 0,

A1 |z —ye* [e70/2 1/2 —1/4,-1/2

(111) \I/t(x):%-exp <_2E _eiet/Q +OL2(€ / <t>)+OLoo (E / t / )
When starting with the two-spinor [ay, ]’ = [e7%0/2 ¢%/2]T  that is, the or-

thogonal spinor to that in (1.3), we have Ay =0. Hence (1.11) takes the form

(1.12) Uy (x) = Opee (e7/4712) + Op2(1/?).

According to this conjecture, while ¥ has an ¢~'/2-peaked profile, for any 1 < t <

2 (say), the solution ¥, is, up to a small remainder in L?, uniformly bounded as
€ — 0. This means that U, loses its initial wavepacket structure. Data carried by the
spinor orthogonal to (1.3) appear to disperse along the edge instead of propagating
in the opposite direction. This contrasts with the standard behavior of wavepackets
in semiclassical systems; see (1.8).

The general case A1 # 0 is the linear superposition of A\; = 0 with Theorem 1.
According to (1.12), the dynamical edge state emerges as the dominant component
of W, in L™ as t grows. We refer to Conjecture 2 for a more general version of
Conjecture 1. 'We mention that (1.11) has been proved for times ¢ € (0,¢o], where
to is a small parameter depending on «; see [16, 4]. The proofs rely on microlocal
reductions and a WKB analysis. The associated eikonal equation is analyzed in small
time only, which explains the restriction ¢ € (0,%p]. The conjecture for large times
remains open.

1.6. Organization of the paper. We organize the paper as follows:
e In section 2 we review edge state theory for Dirac operators with straight
domain walls, i.e., k(z) =a-z in (1.1).
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e In section 3 we derive the analogues of edge states for weakly curved interface.
Specifically, we construct a infinite-dimensional family of solutions to (e Dy +
H)¥, =0 that propagates along the topological interface I' for times up to
£=1/2. The key ingredient is a local approximation of H by Dirac operators
with straight interfaces.

e In section 4 we investigate, under a geometric condition of k, how the curva-
ture of I' affects the propagation of wavepackets.

Notations.
e We use 01,09, 03 for the standard Pauli matrices

0 1 0 —i 10
ol I e O B

e A smooth function f on R? belongs to C§°(R?) if it is uniformly bounded,
together with its derivatives at all order.

e A function f € C§°(R?) belongs to S(R?) if 2202 f is uniformly bounded for
any «, 3. We provide S(R?) with the family of seminorms |#%9% f| .

e The operators D, and D; are defined by D, = —i0,, and D; = —i0;.

e We use the Japanese bracket notation (z) =+/1+ |z|2.

e We denote by kery(A) the kernel of a linear operator A acting on a vector
space V.

e If v € R2, vt is the counterclockwise 7 /2-rotation of v.

o (u,v)p2 = [p, Tv.

e For f in a normed vector space X, we write f=Ox(e) if | f|x < Ce for some
constant C' > 0 independent of ¢.

e Given a € C?, at = —iosa is the m/2-rotation of a.

e y; is the solution to the ODE (1.2) with initial data yo € T'; 6, is the angle
between the y-axis and Vr(y:); and r; = [Vk(ye)|. See Figure 1.

2. Edge states and dynamics for straight interfaces. We review here the
simplest example of domain wall k: we write

k(x) =Ko r(x) = —rsin(f)z1 + rcos(f)xze =r [

P

with 6§ € R, r > 0. We note that Vx is constant; in particular, Vx € Cg°(R?). The
interface r; -(0) = Ruy is a straight line, directed by the vector vy = —[cos(6),sin(8)] " ;

see Figure 7. The Hamiltonian is then

_ Ko, (T) €Dy, —ieDy,
(2.1) Hep, = €Dy, +ieD,, 7%9,T($) '

It admits edge states: there exist eigenfunctions of the operator Hy , that are localized
and harmonic along Rug (see (2.5) below). Here we review their explicit expression
and their dynamical properties.

2.1. Conjugation properties. We first show that the Hamiltonians Hp , and
Hy , are conjugated by a change of frame and gauge. For this purpose, we introduce
the operator

cos sin e i0/2
(2.2) U(;f(x) = Uef(Rgl'), Ry = [_ Slr(l?g) COSEZ))} ) Up = |: 0 612/2] .
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k>0

Ug,

k<0

x1

Fic. 7. Currents propagate along I' at speed vy given by the counterclockwise rotation of VK.

LEMMA 2.1. The Hamiltonian (2.1) is unitarily equivalent to the Hamiltonian
Ho,r with
Uy 'Hy Up = H,,.

Proof. Let Ry be the pullback operator by Rg: Rof(z) = f(Rpx). We note that
Kor(x)=1" R(;reg -z =r(Rgx)e. Thus Re_lﬁnge =rxos. We now use Re_leRg =
R;— D, to compute partial derivatives involved in Hy ,:

i }
Rgl(Dxl +iD12)R9: |:1:| R;—DI:R@ |:1:| D, = |:26610:| 'DI:ele(Dzl +iDz2)‘

The adjoint identity is
Ry (Dyy —iDyy)Re =€ "(Dy, —iDy,).
Grouping these identities, we obtain

_ X e We(D,, —iD,
Ry 'Ho Ry = |:ei0€ : (D=, 2)}

(le =+ Z'Dg@) —TrZo
=516D4, + 526Dy, + 53772,

where, s1, S2,53 are 2 X 2 Hermitian matrices given by

[0 e [0 —ie ool
LT e g |t 2T et o |0 BT o —1] %

An explicit calculation shows that U, 15j Up = 0;. We conclude that
(23) U51H07r Uy = UIEDxl + 025Dz2 + o332 = HO,T'

This completes the proof. 0

Remark 1. The relation (2.2) allows us to calculate the conductivity of Hy , in the
direction of vg; see (1.5): it is equal to 1. Indeed, the conductivity of Ho, (counted
positively in the direction of e5 = —e1) is equal to 1 [2]. We claim then that, for f,g
two scalar functions,

(24)  1=Tups ([Ho, S (~21)]g (Ho,)) = Trps ([Hor f(vo - @)y (Ha,r) ).

Indeed, we have

[Ho, f(—x1)] =Uy " [Ho ., U f(—21)Uy ] Us,
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and, since f is scalar,
Up f(—z)Uy ' =Rof(—21)Ry " Uy 'Ug=Rof(—x1)R, " = f(—vp - 2).
As a consequence of these computations and in view of the relation ¢'(Hp,) =
Upg'(Ho - )U, " and of the invariance of the trace under conjugation, we obtain (2.4).
The Hamiltonian Hj , admits edge states: for any £ € R, if

Fy(€,7) = exp (Zf@“l - m%) [_11] |

15 2e

then Fp,(£,-) is a plane wave in x4, i.e., along the interface; decays transversely
along the interface, i.e., in z9; and satisfies the stationary Dirac equation (Hy, — &)
Fy(€,-) = 0. From Lemma 2.1 we deduce that Hy, also admits edge states: the
function

(2.5) Fp.r(&,x) =UpFy (€, x) =exp

i&(Rox)1 1(Rex)3\ [e—i0/2
( € B 2¢e > {—ewﬂ]

satisfies (Hyg, — &) Fpr(&,-) =0.

2.2. Dynamics of edge states. We review here how edge states give rise to an
infinite-dimensional family of ballistic waves for Dirac operators with linear domain
walls.

PROPOSITION 2.2. For any f € S(R), the function

r(Rex)3\ [e10/2
o) e

(2.6) Y(x) =12, f(t+ (Roz)1) - exp (—

solves the equation (€Dy+ Hp )y =0.

The functions (2.6) are the ballistic waves generated by edge states; they propa-
gate along the interface Rvy and decay rapidly along Rvg-. Our scaling casts (2.6) as
wavepackets:

2.7
27) —i6/2

o) =20 (T aly) =5 (VERa) | e =t

with @ having a full asymptotic expansion in powers of y/¢. This connection will be
the basis of our analysis in the context of curved interfaces.

Proof of Proposition 2.2. The e-scaled Fourier transform in time allows us to take
advantage of the relation (Hg,, —&)Fy (£, ) =0 (existence of edge states) to construct
a solution to the equation (eDy + Hy )y =0. Let g € S(R) such that

96) = 3= [ sty
We introduce
(2.8) i(w) =2 / e 2 g() Fy (6, 2)de.
R

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/30/24 to 128.95.104.109 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

4232 BAL ET AL.
Since (Hp, — &) Fy »(&,-) =0, we deduce that
eDyy() = —~1/? /Rge_étfg(ﬁ)Fe,r(fax)dﬁ

=_—1/2 / e~ g(&)Hy , Fy (€, 2)dE = —Hy by (),
R

where we have used that Hp, does not depend on {. This proves that (2.8) is a
solution to (¢D;+ Hp )Yy = 0. Plugging the formula (2.5) for Fy , in (2.8), we obtain

_ i I r(Rox)2\ [e—10/2
nte) = [ s ey ). exp (- TIRIR ) [ T

2e
B T(RQCU)2 e—10/2
=€ 1/2f(t + (Reff)l) exp <—282 _eif/2|
by definition of g as the inverse (semiclassical) Fourier transform of f. 0

3. Dynamical analogues of edge states along curved interfaces. We now
consider nonlinear domain walls, opening the possibility for curved topological inter-
faces. We relax (1.2) to a global transversality condition

(3.1) inf {|Vk(y)|: k(y)=0}>0.

We recall that all derivatives of £ are uniformly bounded: V€ C¢°(R?). We plan to
produce a dynamical analogue of edge states, a solution to

_ _ K(x) eD,, —ieDy,
(eDy + H)p=0, H= LDQC1 +ieD,, —k(x) ’
that propagates for long time along the topological interface I' = x~1(0).
The equation (2.7) motivates the ansatz

- T =Yt
P(t,x)=¢ 1724 (t, ,  where
NG

e a € S(R?,C?) has a full expansion in powers of &
o yo €I and y; €I is the solution of the ODE

. Vi(y)* L (o -1

= v =T - w.
The vector v(y) is the local analogue to vg: at each point y € ', it is the unit tangent
vector to I' obtained by rotating counterclockwise Vk(y). Since k(yo) =0, y; €T for

any t,

1/2.
b

dk .
(%fl/t) =14 - Vi(ye) = v(ye) - V(ye) = 0.

Let 6; and r; be such that

| —sin(6;) _ |cos(8y)] .
(3.2) Ve(y) =1 [ cos(6,) } so that v(y;) = Lin(@t) ;
see Figure 1. With these notations in place, we define K; : S(R) — S(R?,C?) by

e 5 [o—04/2

B3 Kt =il f(Raon)e H @t [0 fesR)
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THEOREM 2. Let k € C™(R?) satisfy (3.1) with Vk € C°(R?) and i, 0; as
above. Let fo € S(R) and 1y be the solution to (eDy + H)y =0 with

(3.4) nle) =z Kafo (22
Then, uniformly for e € (0,1] and t >0,
(35) i) = o kif (T2 ) 4 0 (22 )

Theorem 2 constructs a solution to (eD; + H )y = 0, propagating dispersion-free
along 1, for times t < e~ /2. Under geometric conditions on &, we can extend this
time of validity; see Theorem 4. These two results focus on maximizing the lifespan
of approximate solutions. We can instead focus on improving their accuracy: see
Theorem 3 for solutions up to O(e™) for every n but fixed lifetime.

When r; is not constant—corresponding to (3.1) holding instead of (1.2)—the
state in (3.5) is coherent in a relaxed sense: there may be lateral spreading at scale
r¢ (which remains bounded above and below by our assumptions on ). See the
expression (3.3) for K;f and Figure 5 for a numerical illustration.

The initial data (3.4) are quite specific: the rescaled amplitude /o f is in the
range of Ky. To obtain a full picture of evolution of states initially microlocalized
along C, we need to understand how orthogonal initial data propagate:

This suggests a refinement of Conjecture 1. Let II : S(R?,C?) — S(R?,C?) be the
orthogonal projection on the range of Ky. We observe that Ky is an isomorphism to
its range; therefore, for any a € S(R?,C?), there exists a unique f € S(R) such that
Ila= ]Cof

CONJECTURE 2. Let a € S(R?,C?), f € S(R) such that lla = Ko f, and let ¢; be
the solution to (eDy + H)¢r =0 with initial data

Then, uniformly in € € (0,1], t > 0,

pr(z) = - Ko f (x - yt) + Oz (51/2 <t)> + O (571/4t71/2) .

Ve Ve

According to Conjecture 2, any function localized (in a semiclassical sense) near
(yo,0) splits in propagating and dispersive parts, with an edge state analogue emerging
dynamically. See Figure 4 for a numerical confirmation.

3.1. Structure of proof of Theorem 2. We will prove Theorem 2 by estab-
lishing the following statements:
1. Approximate solutions of the Dirac equation solve a hierarchy of transport
equations; see Lemma 3.1.
2. The leading-order transport operator has explicit kernel and a spectral gap
away from its kernel; see section 3.3.
3. Solutions to the hierarchy of transport equations exist; see sections 3.4-3.5.
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4. Approximate and exact solutions to the Dirac equation are nearly equal; see
section 3.6.
We will use the notation

Wldl,, () = % ' <fvyt)

for a € S(R?,C?) possibly depending on ¢ and .
We also introduce the operators 7} acting on S(R?,C?), defined by

o VE(Y) & Dy —iDa,
(3.6) To=—4:- Dx+ {DeriDm —Vk(y) -z’
1
(37) Ti=Dit | 2 0 (w)s” | os
|| =2
1 .
(3.8) Tj= Z Eaa“(yt)xa 03, J = 2.
laj=j+1

3.2. Formal approximate solutions via transport equations. We start
with the following lemma: solving the hierarchy of transport equations

J
(3.9) Thag=0, Toas+Tiag=0, ..., Y Tj 4ar=0, j€[0,m]
£=0

produces approximate solutions to the Dirac equation.

LEMMA 3.1. For any m € N there exists C' > 0 such that if ag, a1, ..., Gy €
S(R2,C?) are solutions of (3.9) and a(™ ="} £*/%ay, then, for all e € (0,1],

m
LSO <||Dtam|m +>_ @ akHLQ> :
k=0

H(eDt + H)W[a(m)]

Yt

Proof of Lemma 3.1. 1. Fix m € N. We observe that, for a € S(R?,C?),
(3.10) €0y, Wlaly, = W[\Vedy,aly,, eD:Waly, = W[—V/ey; - Dya+ eDyaly, .

We now write the Taylor-Lagrange identity with the following integral remainder
(note that x(y:) =0):

m—+1
K@) ={ > 1978 (@ = 4)® | +rm(z —ye),  with
|a]=1
1 ! m+1 qa
rm(x):m Z x"‘/o (1—5)""10%(y; + sz)ds.

" a)=m42
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lo]

We observe (z —y,)*Wlal,, (z) =¢ = Wz“a]. Therefore, we deduce

(3.11)
ml |al/2 i
k() Wlaly, (x) =W || > —0%h(y)2® +7F Rp(2) | a| (), with
laj=1

Yt
Ro(z) =e "2 rp (/%)

1 1
o X [ A=+ s ) s
" al=m42

Since Vi € C§°(R?,R?), we have |r,,(z)| < Clz|™"2; therefore R,,(z) < Clz|™*2 for
all € € (0,1]. From the relations (3.10)—(3.11) and the definition (3.8) of the operators
T;
(eDy+ H)Wla]y, =W ZS%TJ- +e" Ry | a
=0
Yt

In particular, using that Wla],, and a have the same L?-norm,

t

m—+2

(3.12) H(sDt—i—H)W[a]ytHLQ: Za#Tj +e 2 Ry |a
=0

L2

2. Assume now that a; solves (3.9), and plug alm = ZZLO ek/2q,, for the ampli-
tude in (3.12). Then we obtain

m m
j+k41 m+2+k
H(‘?DthH)W[a(m)]ytHB: § : et Tjak+§ e 2 Rpay
j, k=0 k=0
j+jk32m+1

L2

Note that the conditions j,k <m and j+ k >m+1 yield j, k # 0. Therefore, we have

m . m m
[EREIN PR SRS E N S SFe S
j+]ké?11+1 k=0

In the second line we used the first sum starts at j,k =1, since j +k > m + 1 and
7k <m.

In view of (3.7) and (3.8), we obtain the existence of C' > 0 such that, for all
a € S(R?,C?),
L

10 w(g)lla*allzz < || Duallz + Clw)al e,

|Tvall e < | Deall e + )

|a]=2

and for j € N,

1 .
ITyalle < > —10%k(yo)lll2allz < Cll(a) e
lal=j+1
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Similarly, by modifying C' if necessary,
[Rmall 2 < Cll{x)™ a2

In these estimates, we have used the boundedness of the derivatives of k. We deduce
that ||(eD; + H)W[a(™),, ||z is bounded, up to a multiplicative constant, by

m

m42 mE2 j+k+1 .

e | Diamllz +e7% @) amle+ Y €T F @) agre
Jik=1

JrkSmA1;>2

m
.
+ 30 () 2ag | e,
k=0

whence by

m L m
Dt 3 @ e+ S0 e

J,k=1 k=0
J+k>m+1

Noting that j + k 4+ 1>m + 2 in the first sum, we conclude that, for any ¢,

|(eDy + H)W[a™],,|| . < Ce*F <|Dtam|Lz 37| )™ ak||L2> .
k=0

This completes the proof. 0

We will show in the following how to construct solutions a; to the hierarchy (3.9)
and then bound their derivatives and moments. Together with Lemma 3.1 this will
give a rigorous construction of approximate solutions to the Dirac equation.

3.3. Spectral analysis of leading-order transport operator. The dominant
equation of the hierarchy (3.9) is Typag = 0, where Ty is defined in (3.6); the other
equations are

j—1

Toaj:—ZTj_ga[, 1§j§m
£=0

Solving these equations amounts to (i) find ker(7p) and (ii) establish a stability
estimate (here, a spectral gap) for T, ! away from ker(7}). Below we write Ty = Ly, .,
where

_ |cos(0) rkg () Dz —iDg,|  |cos(6)
(3.13) Loy = [sin(@)} Da [Dml +iDy, —rres(z) | |sin(9) Do+ Hrp-

We now focus on the analysis of Ly, on S(R? C?). We first compute its kernel
(Lemma 3.2) and prove it is one to one on the orthogonal complement (Lemma 3.3).

LEMMA 3.2. For every r > 0 and 6 € R, the nullspace of Ly, : S(R*,C?) —
S(R?,C?) is

Ry [—i0/2
(3.14) kerS(R2)(Lgyr)—{ F(Roz)y)e™ 572 {iew/z]’ feS(R)}.
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Proof. As in (23), U, 'Le,Uy = Lo, with Uy = ReUp. Indeed,
U, 'Ry HyReUg = Hy and

_1 |cos(0)
u," [sin(&)} -D,Uy=Rje1-Ryg D, =D,,.

Moreover, if S, f(z) = f(y/rz), then we have

SrilHO,rSr = \/;.HO,L

Hence, Hy , and Hp ;1 are conjugated (up to multiplication by 4/r). The identity (3.13)
implies that the same holds for Ly, and Lg :

(3.15) S Uy Lo Up S, = /T Lo 1.

Thus, to find the kernel of Lg ., it suffices to find that of Ly ;. We have
Lot = D,, <|>.£L'2 D, — iDm} _ [1 1] D, {xg iDm} .
’ D, +iD,, D, —x2 1 1 1 1Dy, —X9
We claim that

=3

(3.16) kersieey (o) = { foe 2 | 1] resm}.

The right inclusion follows from a computation. To prove the left inclusion, we pick
u such that Loju = 0. We take the Fourier transform in x;: this gives Lo 1(§)u =0,

where
1 1 T —iD
Lovl(f)zf{l 1] * L‘DQ xﬂ
T2

We fix {. The operator Lo 1(§) is a linear differential operator; hence the space of
decaying solutions to Lo 1(£)v =0 is at most one-dimensional. Indeed, if vy, vo are such
functions, then their Wronskian is constant, and they decay. Thus their Wronskian
vanishes; this implies that v, vy are linearly dependent. We then observe that

2
T2

Lo (€)™ 7 [ 11] —0.

This shows that the kernel of Lg 1(£) is one-dimensional. Superposing over £ yields
(3.16). Applying the equivalence between Lo and Ly ., we conclude that the kernel
of Ly, is precisely made of functions

—i0/2

S, RoUp (f(g;l)e—“”zg {—HD = F(Vr(Rpx))e "5 {feim] . feSR).

This corresponds to (3.14), where we rescaled f by +/r (this preserves the Schwartz
class). |

We define the space

SQ,T(RQ) = {u S S(RQ,CQ) ue kers(Rz’Cz)(Lg)T)l} s

with orthogonality computed with respect to the L2-scalar product. We provide
Sp,-(R?) with the seminorms inherited from S(R?, C?).
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LEMMA 3.3. For every 0 € R and r > 0, the operator Ly, acting on Sp(R?) is
one to one, with inverse L;i bounded on Sy, (R?).

Proof. 1. We recall that Ly, and \/rLg are conjugated by operators bounded
on S(R?,C?); see (3.15). Thus, it suffices to prove the lemma for Lo 1 only.

We introduce the annihilation and creation operators a and a*, as well as the
associated quantum harmonic oscillator h = a*a and quantum states ¢,,:

=23+ 0, " =x3—0,, bh=-0,+a5-1,

1
o(r2) = We 2, p(w2) = m@o(ﬂﬁz)-

The quantum states ,, form a complete orthonormal basis of eigenvectors of h: for
every n, ||¢nllzz =1 and by, = 2ny,. Moreover they satisfy the creation and annihi-
lation relations: apo =0 and for n € N,

(3.17) Con=V2n 420511, OPnr1=V2n+20,.

Introduce

-1
(3.18) Loy = E 11} Lo, E 11} =[0 a*a 2D, ]
and the associated space Sy 1(R?), defined similarly as So 1 (R?),

So1(R?) = {u e S(R%,C?): ue kerS(Rzycz)(]ioJ)l} .
We observe that v = (vy,vs) € ker(Lg ) if and only if

a*ve =0 and avy + 2D, v, =0.

This implies vy = 0 and vy (x) = A(x1)v(z2) for some Schwartz function 1 — A(xq).

As a consequence, u € kerggz c2)(Lo,1)" if and only if, for all A € S(R),
/ X(Il)@()(l’g)ul (1‘1, Ig)dl‘ldIQ = 0
R2
We obtain

(3.19) So.1(R?) = {u € S(R?,C?): Vz; €R, /R? up(x)po(xs)drs = O} .

As a consequence, the lemma boils down to prove that ﬂoJ is invertible on 5’0,1(]1%2).
2. Let W be the Fréchet space of functions w € C*°(R x N, C?) such that w(-,0)
=0, equipped with the seminorms

Nago () =sup (1) (€)° 0Fw(é,n)

9 a?ﬁ?’YEN'

We define S: Sy 1(R?) — W by

Su(§,n) = /]R2 e [u;ifl);‘)o;:éx(f;)} dr, ué€ 5'0,1 (RQ), neN, £€R.
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We first observe that S': 30,1(}1%2) — W is continuous. Indeed, if u € So,l(RQ) and
a, 8,7 €N, we have

(2n)** (&) D{Su(&n) = Sv(,n), (@) = (0)* (Day)” (~21) u(a).
Moreover, v € S(R?) when u € S(R?). The Cauchy—Schwarz inequality yields

Nag.(Su) =sup [Su(&, n)] < sup /]R [U;if:)cf;:égﬂ

§2/R(/R|v(x)‘2dx2>l/2dxh

where we used ||¢n|rz = 1. The right-hand side (RHS) is controlled by Schwartz
seminorms of v = (h)?*(z1)? D] u, thus of u. Hence S is continuous.

Moreover, S is invertible. The range of S is W: if w € W, then we have Su =w
with

dx

ur)= g [ ¢ 3 [onna(aatun(€n) ealoapua(eon] de

using the Fourier inversion formula and orthogonality relations for the ¢;,,. We now
show that S is one to one. If u € Sy 1(R?) is such that Su =0, then

ur (2)pntr(z2)| o
(3.20) for all z; € R, n €N, /]R { s () om (209) dxa=0

from the Fourier inversion formula. Since ¢, forms an orthonormal basis of L?(R),
(3.20) implies that ug = 0 and uy(z) = c¢(z1)@o(x2). From u € Sy ;1 (R?) and (3.19),
u; =0. Hence u=0, and S is invertible.

2. We define an operator S by

_ —igzq, | U (l’)(pn (‘T ) q
Su(f,n)f/RQe ¢ [ ;2(x)<p:éx2)2 } dr, u€Sp1(R?), n€N, (€R.

We claim that S is (continuously) invertible from Sp 1 (R?) to the Fréchet space V of
functions v € C*°(R x N, C?) such that

for all a, 8,7 EN, Nag~(v) =sup |(n)** (£)” 07 v(¢,n)| < 00
n,§

This boils down to proving that if u € 50,1(R2), then, for every «, 3,7 € N, the
quantity N, 5 (Su) is controlled by finitely many seminorms of u in S(R?,C?), and
conversely.

We first observe that, for u € Sp 1 (R?) and «, 8,7 €N,

(m)* (€) O Su(§,n) = Su(&,n),  v(x) =(0)** (Dx,)” 21 u(x).
Moreover, v € S(R?,C?) whenever u € S(R?,C?). Therefore,

e e

1/2
<2/ (/ |v ‘ dxg) dxy,
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where we applied the Cauchy—Schwarz inequality and the fact that ||, | .2 =1. The
RHS is controlled by seminorms in S(R?,C?) of v = (h)**(21)” D}, u and thus of u.
We now prove the backward implication. Assume that u € Sp 1 (R?) satisfies

for all a, 8,7 €N, Ny p~(Su)<oo.

We use the Fourier inversion formula and the fact that the ¢, form an orthonormal
basis to deduce that

D)= [ 3 [onsa(aa)(S06m) aaz) (501 m)] .

Let us prove that, for all o, 3 € N2, the function :170‘85 w is in L? (which will yields
that u is Schwartz class). For this, we consider the term of the series that constitutes
its coordinates. For j € {1,2} and n € N, we have

2202 ([ € puafan) (500 6
= [ af e e ag ol ) (S 6 .
An integration by parts gives
2202 ([ ¥ puia(a (S5

=it [ a0 (22)05 (€5 (Su)y € m))
Besides, using o = a+ a* and 0,, = a — a*, we deduce from (3.17) the existence of a
constant C, g, > 0 such that

ag+8
252022 041 (22) || 12 < Cangn” =

As a consequence, for j € {1,2} and n € N, we have

) —2
Lo <n Cozz,Bz (A<€> d£>

ag+f2 ay
sup 5 #2(6) 202 (Sw) (€,

w202 ([ e pnfan) (S0 € me

whence the convergence of the series in L? and a control of the L? norm of 2%0%u by
the seminorms of Su(¢,n). From 2292 f € L? for all , 3, we conclude that f € S(R?).

Besides, because of the closed graph theorem, invertible continuous operators
between Fréchet spaces have continuous inverses. Hence the inverse of S is continuous
from W to So1(R?).

3. Let us now conclude the proof. As we have seen in step 1, to prove the lemma it
suffices to show that Eo,1 is invertible on 5’071 (]RQ). By step 2, S is continuous invertible
from 5’071 (R?) to W. Thus, we only have to prove that Sio,ls_l : W — W is invertible
with bounded inverse. But Sio,lS_l is actually a simple multiplication operator:
using that D,, corresponds to ¢ in Fourier space and a,a* are shift operators—see
(3.17)—in Hermite space, we have

0 2n + 2

(3.21) SLo1S tw(E,n) = L/m 2 w(&,n).
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This is a continuous operator on W, and (3.21) yields a formula for ia} 1

R 2 —v/2n+2
1 _ 1
Lor=5"513 [\/2n+2 0 5.

This completes the proof. 0

3.4. Solving the dominant equation. We now focus on solving the hierarchy
of equations (3.9), starting with the first two:

Toao :O, TQCL1 +T1a0 =0.

Below we abuse notation: we allow functions in S(R) or S(R%,C?) to also depend
smoothly on time, and we consider the operator K; from (3.3) on functions depending
on t. For instance, we write (3.22) as

r¢(Rg, ®)3 —i6¢/2
(3.22) ao(t,z) = K fo(t,x) =1 fo(t, (Re,0)1)e™— = [iewt/z} :

Since Tp = Ly, r,, Lemma 3.2 implies that, for any fo € S(R) (potentially depend-
ing on t), (3.22) solves the equation Tpag = 0.

3.5. Solving the subleading equation. The subleading equation in the hier-
archy (3.9) is Toas + Thag =0, where Ty = Ly, », and

0%k
(3.23) Ty=Di+ ) #maag,
|a]=2

Given ag satisfying (3.22), we regard Tpa; + Thap = 0 as an equation with unknown
a; € S(R%,C?). According to Lemma 3.3, a solution exists if, for any t € R, Thag(t,-) €
Sp, .-, (R?). We now look for fy such that this holds.

We note that Tiag € S, », (R?) if and only if, for every t € R and g € S(R),

_Tt(Rgtz)g et0t/2
(3.24) / 9((Rg,x)1)e 2 o—i00/2 -Tyao(t,x)dz =0.
R2 -
We make the substitution x +— R;',—tx and pick functions g approaching delta distribu-
tions to obtain that (3.24) is equivalent to
0i0:/2

rexd
(3.25) for all t,z1 € R, / e~ |:_e_7;0t/2:| (Thao) (t, Ry, x)dws = 0.
R

LEMMA 3.4. If f(t,-) € S(R) depends smoothly on t, then

_ a3 [ gi0e/2 T I
(3.26) / e { e—wt/z] (MK f)(t, Ry w)dzs =2, / 7th(tvm1)'
R - t

Proof. We note the identities

o—i00/2 o—i0:/2 e—i00/2] [_g,e—i0:/2
(3.27) <|:_ei0,,/2:| ,03 [_emt/z} > =0, <|:_ei0,,/2:| ; { i/ >:0~
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Therefore, using the expressions (3.23) for T} and (3.3) for K¢, we have
(i /2

w(ng)%
(3.28) {_e—ietm} Tk f(t,x) =2D; <7‘t1/4f(t7 (Rg,z)1)e” 2 )

L2 e 9 : 0 r(Rg,x)3
i (at +(Rozhg 2

- Tt(Rgt$)2(R9t$)2> rt1/4f(t7 (Rgtif)l) :

We deduce that

(3.29)
i0t/2 -
{_e—iétﬂ} Tk f(t, Ry, )
C_mes (0 . 0 rra’ .
= —2ie” "2 <(‘3t + (RgtR(;Zx)la—xl - t2 2 — Ttl'g(RgtR;tl')2> rtl/4f(t,x1).
We remark that
Y L R
(330) Ret . R9 xr = 0t |:_1 O:| xr = 9t |:—.T1:| .

We deduce that (3.29) becomes

0:/2 C_ome3 (0 0 rras .
{Zi‘)tﬁ} Tllth(t,Rthx):—Qze 7 (31? + Qtﬂcga—ml — % + rtthgxl) rt1/4f(t,x1).

We plug this identity in (3.26) to obtain

o 0 L .
(3.31) —22’/ e Teeh (8t + thga—xl — rt;CQ + rtﬁtxgxl) dxo -rtl/4f(t7x1).
R

We now perform the integrals over zo. The function Toe 172 has vanishing integral;
moreover an integration by parts shows that

[ 2 2
—:/e “‘”2d:v2:2rt~/x§e %2 d .
Tt R R

Hence (3.31) reduces to

[T [0 r
(3.32) —2i, /E <8t - 4;) retF (@),

We finally observe that in the sense of differential operators,

o r1/4:g
ot 4r )t ot’

Using this identity in (3.32) completes the proof. O

From (3.25) and Lemma 3.4, we obtain the transport equation for fo: D;fy = 0.
Hence, fo depends on z7 only, and we write fo(¢,21) = fo(x1). Therefore, if

re(Rg,2)3 [o—10t/2
B3 )= (e ] < Kie)
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for some fy € S(R), then Thag(t,) € Sp, r, (R?) for every t € R; hence the equation
Tob1 +Tiap =0 has a unique solution by such that by (t,-) € Sp, -, (R?) for every t € R.
We obtain the general solution to Tpa; +T1a9 =0 by adding an element of ker(Lyg, ,, ):
ar = by + Iy fi:

re(R t"”>2 —1i0;/2
3.34) aq(t,x)=0b1(t,x +T1/4f1 t, Rgxle_f 2 |€
t t

_eiet/z] » i) €SR).

3.6. Proof of Theorem 2. We are now in a position to prove Theorem 2. We
start with a classical result based on Duhamel’s formula.

LEMMA 3.5. Let 1y € S(R?) be a solution to (eD; + H)y = 0. Then, for any
Ut € S(RQ),

1 t
||Ut 77/)25”[/2 < ”vO - ¢0||L2 + g[} H(5D5 +H)USHL2d5'

Proof. Let wy = vy — ¢y and ry = (eDy + H)vy. Then, (eDy + H)wy = ;. By
Duhamel’s formula,

) 1 [/t . ) 1 [/t .
vt_q,bt —wy = efth/a,wO_’_g / efz(tfs)H/a,r,SdS _ efth/s(,Uo_,l/}O)_’_g / efz(tfs)H/e,rSds.
0 0

We bound both sides in L2, using that e~## is unitary:

1 t
o= w2 < oo = vollzo+ = [ D+ Hyuu] uds
0

This completes the proof. ]

Proof of Theorem 2. 1. Let fo € S(R). Let ag as in (3.22), by is as in (3.34), and

1) 1/24,. We apply Lemma 3.1 with m = 1:

a‘’=ag+e¢€
(3.35) ||(eDs + HYW[a®],, |, < C*/> (HDtblHLz + | @) aol . + || <x>3b1}|L2) .

2. We now bound the RHS of (3.35), starting with (z)3ag in L?. We write
ap = Ko, r, fo, where

r(Rge)3 [o—i0/2
Ko f(z)=r"*f((Roz)1)e” = [5610/2} , feS(R).

We note that we have the identity KCgp . =D, Uy Ko 1, where Up was introduced in
(2.2) and D, is a partial dilation operator:
e—i9/2 0

(3:30) Do) =r/4u (o Vi) toote) = | D wlen), we SR,

The operator Ko is bounded from S(R) to S(R?,C?); Uy is uniformly bounded
from S(R?) to S(R?,C?) for § € R; and D, is bounded uniformly on S(R?) for r in
compact subsets of (0,00). Moreover, 1 = |V&(y:)| lives in a compact subset of (0, c0)
because of Vi € Cp°(R?) and (3.1). We deduce that ag € S(R?), with uniform-in-time
bounds on its seminorms. In particular, |[{(x)3agl/z2 is uniformly bounded.

For later use, we observe that d;ag is also uniformly bounded in S(R?). Indeed,
from (3.36), we have

(3.37) dyao =140, Dy, Up, Ko 1 fo + 0: Dy, Doy, Ko 1 fo.
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The operators Oyplly, and 0, D,, are uniformly bounded on S.(RZ)—the latter because
4 lives in a compact subset of (0,00). The quantities 7; and 6; are uniformly bounded;
indeed, by (3.2),

|<V“(yt)7v2’€(yt)yt>

; | o2\
el = < |Vo6(y)ge| < C,
" ‘V“(yt)v(yt” | (3] t|
and likewise,
=4 T50)| VIRl
dt Tt T Tt

where we have used |v(y:)| =1 and the fact that r; is bounded below and the deriva-
tives of x are bounded (here V2k denotes the matrix of second order partial derivatives
of k).

Therefore, we deduce from (3.37) that d;ag is uniformly bounded in S(R?).

3. We now control in L? the terms D;b; and (z)3b; that appear in (3.35). We
use (3.15) to write by as
(3.38) bi(t,-) =—Ly ", ao=—\/reS;, Uy ' Ly 1Us, Sy, ao.

01,7t

As in step 2, all operators involved in (3.38) are uniformly bounded in S(R?), and
we deduce that b; € S(R?) uniformly in time. Also similarly to (3.37), taking time
derivatives produces quantities such as 7, r, 1/ 2, 6, (all uniformly bounded); opera-
tors such as 0, D,,, 8rDrt_1, gy, , and OpU_g,, all uniformly bounded on S(R?); and
the function d;ap—also bounded uniformly in S(R?). We deduce that by,d;b; are
uniformly in S(R?). Hence, ||(x)3b1|/z2 and ||0;b1]|z> are uniformly bounded.

4. Going back to (3.35), we have, for any ¢

(3.39) H(eDt +HYWa®),, HL <32,

Let v, be the solution to (eD; + H)vy = 0 with initial data ¥y = ao(0,-), and v, =
W(aM],,. We note that vy — o = '/2b1(0,-) and that v; satisfies the bound (3.39).
Thanks to Lemma 3.5, we get

lve = ¥ell e < /2 ||b1(0,)]|| ., + C'/%t.

Therefore,

P =WlaW]y, + Oz (V2 (1)) = Wlag)y, + Oz (/2 (t)).
This completes the proof. 0

3.7. Subsequent equations. We now focus on deriving a version of Theorem 2
that favors accuracy over lifetime. This requires to solve higher-order transport equa-
tions.

The base case is the result of section 3.4-3.5, summarized as follows:

(H;) For any fy € S(R), there exists b; such that, for any fi(¢,-) € S(R), if
ag =K fo and ay = by + Ky f1, then ag and aq solve (3.9) with m =1, i.e.,

J
ZTj_gajZO, 0<5<1.
=0
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To construct ag and a;, we had to enforce a condition on fy. Likewise, to construct
a., we will enforce a condition on f,_1.
Our inductive assumption is, for m > 1, as follows:
(H,,) For any fo € S(R), there exist by, f1,...,bm-1, fm—1,bm € S(R) de-
pending smoothly on ¢ such that, for any f, € S(R), if ag = K;fo and
ag =by + K fe, then

J
> Tj_a;=0, 0<j<m.

We proved (Hp) in section 3.5. We now assume that (H,,—_1) holds, and we
prove (H,,) for m > 2. Because of Lemma 3.1, this boils down to constructing
G, = by + Kt fin, such that

(3.40) To(bm + Kt frm) + Tram—1+ -+ Tmao =0,  where

e the operators T}, are defined in (3.8);
e he amplitudes ag, ..., a,—o are fully specified by (Hy,—1);
e the amplitude a,,—1 = by—1 + Kifin—1, with b,,—1 given by (H,,—1) and
fm—1 € S(R), remains to be selected.
Since the operator K; parametrizes the kernel of Ty, (3.40) is equivalent to

(341) TObm = Bmfl - TlK:tfmfh ﬁmfl = _lemfl - T2am72 — TmaO'

Note that (H,,—1) fully prescribes S8, _1.
As in section 3.5, to solve (3.41), it suffices that, for any ¢, (Bm—1—T1K¢t frn—1)(t,")
is in the kernel of Ty. This is equivalent to,

rta:2 'Let/2
for all t,z; € R, /Ref z {_Z—iet/z} (Bm-1— 1Kt frn—1) (t, R4, x)dx2 =0.

Thanks to Lemma 3.4, this is equivalent to

r ree i6;/2
(3.42) Dy frm_1(t, 1) ,/ t/ - [_Z_wm]  Brn—1(t, Ry, ) daa,

and hence, setting f,,—1(0,21) =0,

ré,zz 205/2
(343) fm 1 t .’131 / / ’/ [—Z_i05/2:| .lﬁm_l(s,Rgsx)d.IQdS.

When f,,_1 is given by this formula, (3.41) admits a solution b,,(t,-) € S(R? C?).
This completes the proof of (H,;,). The following result summarizes our findings.

THEOREM 3. Fiz T >0 and n € N. If a; € S(R?) are constructed as above, then
(eDy 4+ H)pr =0 has a solution of the form

B4 )=z K (x;;”)+j§ijle’?aj(,fyt>+om( ),

uniformly for e € (0,1] and t in [0,T).

According to Theorem 3, after adequately correcting the initial data (3.4) we
obtain approximate solutions concentrated near y; at arbitrary accuracy in . In
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particular, this indicates that the mass that dissipates in the bulk (i.e., away from x)
is at most O(e™V) for any N. For this result, it is necessary to prepare the initial data
suitably, otherwise the subleading amplitude (which is of order £'/2) likely contains a
dispersive part; according to Conjecture 2 part of its mass should disperse along T'.

Remark 2 (timescale of validity of error estimates). Including higher-order correc-
tors as in (3.44) does not extend the timescale of validity e~/2 of the approximation
solution. Indeed, the nth corrector is of order €3 t"—the term " corresponds to
n recursive integrations in (3.43). After applying Lemma 3.5, this yields that the
constant implicitly involved in the remainder Op- (EnTH) of (3.44) grows like T"1: it
is small only for T < e~1/2,

Proof of Theorem 3. Fix n € N, T'> 0, and f, € S(R). We pick a; solving (3.9)
for 0<j<n+1 (constructed above) with f,+1 =0, and we define

n+l n+1
j 1 j T =Yt
3.45 (n) — E il2q,; =Wa™ - = i2q. (¢ _
(3.45) a e %a;,  v(x) [a ]yt (x) VG jE:O e’'aj | t, VS

=0

By construction, the functions a; are smooth in ¢ and Schwartz in z. In particular,
they satisfy uniform Schwartz-class bounds for ¢ in compact intervals. Hence, thanks
to Lemma 3.1, we have uniformly in ¢ € [0, 7]

|(eDy + H)vy|| o < Ce™ .

Let ¢; be the solution to (eD;+ H)¢: =0 with ¢g = vp; see (3.45) with ¢ =0. Thanks
to Lemma 3.5,

n+1
lve — ¢l < Cez

In other words, vy = ¢y + Op2 (5"7“) 0

4. The effect of curvature. It is natural to wonder which quantities affect the
lifetime of our quantum state. For instance, when & is linear, the interface is straight
and the edge states have infinite lifetime. If k is asymptotically linear, the interface
is asymptotically straight and we expect an extended time of validity. In contrast,
numerical simulations indicate that circular interfaces come with gradual dispersion;
see Figure 2.

This suggests that an integrated curvature limits the lifespan. Curvature, how-
ever, cannot be the only limiting factor: as Figure 5 shows, even straight interfaces
can generate dispersion. To isolate the effects of curvature, we consider in this section
domain walls k that satisfy a geometric condition

(4.1) yerH0) = |Vk(y)|=1, V?k(y) Vk(y)=0.

Examples of k satisfying (4.1) include
e x(x)=w-x with |w| =1 for a straight interface;
o k(z)=+/2? + 23 —1 for a circle.
The condition (4.1) is not geometrically restrictive: given I', we can always find
r with T'=k~"(0), satisfying (4.1); see section 4.2. This condition excludes scenarios
such as those giving rise to Figure 5. Under (4.1), 6, is the curvature of T at y;, and
in a suitable frame, the Hessian of x along I' depends only on O;:

(4.2) <R(;';x, VQ/i(yt)R(;rt@ =Gy
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THEOREM 4. Under (4.1), the solution (1.4) to (eDy + H)¥: =0 of Theorem 1
satisfies, uniformly in t >0 and € € (0,1],
(4.3)

1 (x—yt)2 —¢t0t/2 b
\Ilt(aj):%-exp <_2€ e*iat/Q +OL2 (81/2+€t(1+@t)), @t:A Ofds

When T is asymptotically straight (i.e., it has L?-curvature), the remainder in
(4.3) remains small for t < ¢~!: our quantum state is longer-lived. In contrast, if " is
a closed loop, then ©; grows linearly and our state is only close to the exact solution
for et? < 1; that is, t < e~ /2: there is no improvement over Theorem 1. Thus, such
states—which are not globally topological—have a shorter lifetime.

Theorem 4 highlights effective limitations of dynamical edge states: they do not
survive in strongly curved environments; see Figure 6. This means that our results
rely on k being sufficiently regular. Other limitations include cross-type or knot-type
interfaces, for which x degenerates quadratically; see Figure 8. In both cases, the
wavepackets seems to spread along I'. This corresponds to a scattering process to
other edge modes, that decay along I" but have varying dispersion relations. Such
scenarios form interesting open problems.

4.1. Proof of Theorem 4. The proof of Theorem 4 relies on the precise calcu-
lation of the corrector a; = by + Ky f1 involved in sections 3.4-3.5.

04 0.35
10
0.3
02
5 T3 » 0.25
0 | ! Incoming wave
1 % 0.2
To O S —
2 A\ 0.5 0.15
Incoming wave T
-5 0 01
4
-0.5 "
No mass propagating 0.05
-10 1 along this arc
) 1
10 5 0 5 10 4 05 0 05
T x1
k<0 BA k>0
C
A
Z2 > ¢ T2 k<0 K< 0
D
B
k>0 YO Kk<0 k>0

x1 x

F1G. 8. Top left: interface k(x) = z1x2; top right: an interface consisting of two rings; k(z) =
(lx + e1] — 1)(Jz — e1] — 1), both with ¢ = 2-10~2. In both cases, edge states propagate in the
direction obtained by rotating Vk (orange arrow) by w/2 (teal arrow). Starting in direction A,
the wavepacket reaches the crossroad. Directions B and C are then allowed, while direction D is
forbidden. Theorem 2 does not address this scenario, because Vk(0) =0.
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LEMMA 4.1. In the setup of Theorem 4, the subleading amplitude a1 = by + Ky f1

satisfies
1—a22 .2 [ei0:/2] . 201 — a3 %
5 Lase™ " [ewt/z O, fi(t,x1) = #6 >0,

(44) bl(t,ZL‘> =

Proof of Lemma 4.1. The proof relies on the hierarchy of transport equations
studied in section 3.4. We use the notations introduced there, keeping in mind that
r¢ = 1 here.

We first compute by. From the initial condition (1.3),

_s2 [e7i00/2
ap(0,z) =e™ 2 {_€i90/2:|'

Hence fo(z1) = e~*1/2_ Moreover by is the unique solution in ker(7p)* to Toby +T1ag =
0. With ¢:(z) = (2, V?k(ys)x), this equation reads

7& T —iet/Q 1 7& . —’iet/Q
(4.5)  Toby = —e" % (DtJr a( )03> [iewzﬂ] =ge (ot—qt(m)> [667191,/2 ]’

2

where we used the identities (3.27). To find by, we use the operators Uy, and Ry,
introduced in (2.2), and we look for by of the form

b1 =Ro,Us, [Zﬂ .

We take advantage of the relation Ty = Lg, 1 = Ra,Us, Lo1 Ue_tho_tl (see (3.13) and
the beginning of the proof of Lemma 3.2) and apply the operator Ue_the_tl to (4.5).
We deduce that ¢; and ¢y must solve

c 1 .2 /. _q [e0/2 1 22/ 1
Lo Lj =ge ° (9t —q (ReTtCC)) Uetl |:ei0t/2} =3¢’ (9t —q (Rix)) [J .

We now use the operator l~/0’1 of (3.18) and get

* Ci —C2| _z2 N T 0
[0 a*a 2D,] [CIHJ —=7 (6i—a (Rjw)) H
From a*(c; + ¢2) =0, we obtain ¢; = —cy because a* has trivial kernel. Thus,

1 e—i@,«,/Q
bi(t,z) =c1(t, Ry, x)Up, 1 =c1(t, Rp,x) itz

1 2 .
acy (t,x) = 56_7 (Ot —q (Rgtm)) .

We now use (4.2): qt(Rth) = 6,23, Hence ¢, satisfies the equation

1—2? .2
9 16_79,5.

acy (t,x) =

From the condition b; € ker(Tp)* we deduce that ¢y (¢,21,-) L e=*3/2 for every (t,x1).
Therefore, ¢y is explicitly given by

1—2? z2 -
1 2

(4.6) ci(t,x) =

This yields the identity (4.4) for b;.
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We now focus on f;. It solves the transport equation (3.42)

Dy fi(t,z1) = ﬁ/ﬂ{@_

where by (3.41) 81 = —T1by — Teag. In view of (3.8), T3 is carried by o3, and we
deduce from (3.27) that

2 04 /2
B {eewt/z} B (t, Ry,x) das,

ewt/Q .
- |:_ei9t/2:| : Bl(t7m) =2D, (Cl(t7R9tx)) =2 (Dt + Retx : D93> cl(t7R9tx)'
Using (3.30), we obtain

ezGt/Q T . T
| itz Bi(t, Ry, x) =2 (Dt + Ro, Ry, - Dx) c(t,x)
=2 (Dt +9t |: 2 :| . Dx) Cl(t,ﬁ),
_—

(Dtcl (t,x) + ét(ngxl —x1D,,)c1 (t,z)) dxsy.

hence the transport equation for fi:

1,4
— | e
VT Jr

Thanks to the explicit formula (4.6) for ¢;, we have

(47) thl(t7171) = —

_z3 1—a? _Ll _=3 ‘
e~ 2 Dicy(t,x)deg = 2 Toe” 2 dry - D0, =
R 2 R

We deduce from integrating (4.7) and using the condition f;(0,21) =0 that

fi(t,zq) / / _72 (2905, — 2104,)c1(s,x) das ds

(4.8) - / 6, / s~ F (B, — a1)e(s,) das ds,
0 R

where we have performed an integration by parts in zo. We now compute the integrals
that appear in (4.8) using (4.6). The integral on the left-hand side corresponds to
integrating an odd function and hence produces 0. Regarding the one on the RHS,
we observe

z2 -
(aﬂh - xl)cl (t7-'17) = .’L‘Q(m‘;’ — 21‘1)6_7 0.
Therefore, the RHS of (4.8) becomes

(4.9) \/>/ /:EQe 172 Oz, — x1)c1(8,2)dxads
= (23 —221)e / 0%ds - —/3326 T dzy
:72%7%6*%/ éfds.
2 O -

Plugging (4.9) in (4.8), we conclude that

— 2!1,‘1 _L

t
2 ©Q;, where O :/ 9§ds.
2 0

This completes the proof of Lemma 4.1. ]

fl(taxl)
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Proof of Theorem 4. We set a® = ag +e'/2a; + by, with ag, a1, by solutions of

Toao = O, T0a1 + T1a0 = 0, T0b2 + T1a1 + TQCLO = 0,
see sections 3.4-3.7 for their construction. Thanks to Lemma 3.1, we have

H(aDt +H)W[a(2)]

Yt || 2

< 02 (|| Dubel] o+ [ o) | o + || (@) ]| o + [ 0" b)) -
From the explicit expression (3.33) for ay, ||(z)%ag]|p2 is uniformly bounded. From

the explicit expression (4.4) for ay, ||(z)*a1||z2 is bounded by 1+ ©;. It remains to
bound ||(x)*bs| 12 and ||D¢bs| 2. By construction, recalling that r; = 1,

bg(t, ) = _Leijl (T1a1 + Tgao).

The explicit expressions for ag and a; allow us to bound Schwartz-class seminorms of
Tiay + Teag by 1+ O, (the term 9,0, = (9;0;)? is uniformly bounded). Arguing as in
(3.38), we deduce that Schwartz-class seminorms of b (%, -) and D,bs(¢,-) are bounded
by 1+ ©;. In particular,

D]+ )b < O+ 00)
We deduce that

H(aDt + H)W[OL@)]yt HL2 <C2(140,).

We note that at t =0, ¥; and Wa?],, coincide up to Or:(c'/?). Thus, applying
Lemma 3.5, we conclude that

|we-wle®], |  <ce2+ceta+en.

This completes the proof of Theorem 4. 0

4.2. Geometric setup. We prove here the geometric facts stated above. First,
if T' is a nodal set, then we can find a function & satisfying (4.1) with x~1(0) =T.

LEMMA 4.2. If T'=&"1(0) for a function i € C*(R?) satisfying Vi € Cg°(R?)
and the transversality condition (3.1), then we can find K € C®(R?) satisfying Vi €
Ce°(R?) and (4.1), such that moreover I' = k~1(0).

Proof of Lemma 4.2. Without loss of generalities, we may replace kK by

L
IVE[(1+R/2)

This means that we can assume that & € C{°(R?) and |V&(y)| =1 along I'. We now
aim to construct p € C£°(R?) with |#p|s < 1 such that if

- g2 Rp
(4.10) n-ﬁ—pZ—n<1—2>,

then k satisfies (4.1). Under the condition |kp|s < 1, £71(0) = #~1(0) =T. Moreover,

~2

Vi = Vi (1 — pi) — %Vp;
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hence if y €T, then Vk(y) = V&(y). Also
=2
V2k=V2%k(1 — pk) — pViVE" —&VpVK" —kVEVp' — %v“'p.
So, if y €T, then V2k(y) = V2&(y) — p(y)VE(y)VE(y) T. We deduce that, for y € T,

(VE(y), V2a(y)VE(y)) = (VE(y), V&) VEW)) — p(y) (VE(), VEY) VE) T VEY))
= (Vi(y), VE(y)VE®Y)) — p(y)-

We now pick p € C°°(R?) such that p(y) = (V&(y), VZk(y)VE(y)) for y € T. Then,
with

_ Ay)
P =17 p(y)?R(y)*’

we still have p(y) = (Vi(y), V2&(y)VE(y)) for y €T p € Cp°(R?), and finally,

PR

<
1+ p2&2 —

|0 :
K| — —.
P 2

The function k given by (4.10) now satisfies the requirements of the lemma. Indeed,
by construction we have for y € T’

(4.11) ’Vﬁ(y)‘ = ‘VR(y)| =1, <V/£(y), sz@'(y)Vn(y» =0.

We can then write |Vx|? = 1+ ak for some smooth function . Taking the gradient
on both sides produces the identity

2V%k -V =aVk+ kVa.
In particular, pairing with Vs gives
2 <V/£J‘, Vi - V/{> =K <V/£J‘, Va> .
Specializing at y € I' produces
(V(y)*, V2h(y) - V() =0,

which together with the second identity of (4.11) yields VZk(y)Vk(y) = 0 when
yel. ]

We now prove the useful relation (4.2).

Proof of (4.2). We recall that Rj e; = —tjp = —Vk(y)" and Ry ey = —jt =
Vk(yt). Therefore, proving (4.2) boils down to showing

(4-12) <ytav2ﬂ(yt)yt>:éta <y.tav2“(yt)ytL>:O7 <ytL7V2H(yt)y.tL> =0.

The last two identities are direct consequences of V?k(y)Vk(y) = 0 for y € k~1(0).
For the first identity in (4.12), we note that

{ cos(0y) = — (Y, e1) = (VE(yt), €2)
sin(&t) = — <yt, 62> = - <V“(yt)7el> .
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Taking time derivatives, and the identity sin(6;)es + cos(6;)e; = —y, we deduce that

{9t sin(6:) = — (V2K (ye )y, €2)

. 9 — V2 .’ Ay
0y cos(6y) = — (V2k(ys)yje, 1) = 0= (Vr(ye)¥e:Ye)

This completes the proof of (4.2). |
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