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Abstract

Humans have recorded the arrival dates of migratory birds for millennia, searching

for trends and patterns. As the first arrival among individuals in a species is the

realized tail of the probability distribution of arrivals, the appropriate statistical

framework with which to analyze such events is extreme value theory. Here, for

the first time, we apply formal extreme value techniques to the dynamics of bird

migrations. We study the annual first arrivals of Magnolia Warblers using modern

tools from the statistical field of extreme value analysis. Using observations from

the eBird database, we model the spatial distribution of observed Magnolia Warbler

arrivals as a max-infinitely divisible process, which allows us to spatially interpolate
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observed annual arrivals in a probabilistically-coherent way, and to project arrival

dynamics into the future by conditioning on climatic variables.

Keywords: Extreme value theory; Max-stable process; Spatial extremes
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1 Introduction

Patterns in spring bird migrations are key indicators of ecosystem responses to climate

pressures. For millenia, observers have used the annual first arrival of a given species to

demarcate the migration (Lincoln, 1935). The date of first arrival is a statistical extreme

value; that is, the first individual from among a large population to reach a given location

is exactly the realized tail of the probability distribution of all arrivals. The statistical

theory of extreme values (Beirlant et al., 2004; Davison et al., 2019) is thus ideally suited

for modelling spring first arrivals, but this theory has never been used for modeling first

arrivals. Ours is the first such study to deploy modern techniques from the statistics of

extremes to model this phenomenon. In this analysis, we use state-of-the-art tools for

spatial extremes to model and predict the first arrival of migratory birds. We show that

using these methods allows for principled inference on the relationship between landscape

or climatic variables and first arrival times, predictions at unobserved locations during past

years, and predictions of future first arrivals under climate model projections.

We frame the problem of modeling the first arrival of migratory birds as a problem of

modeling spatial extremes. We apply this method to study and predict the Spring arrival of

Magnolia Warblers (Setophaga magnolia) in the Northeast portion of the United States from

2004–2019 using data from the eBird database (eBird, 2019), a citizen science website. By

using hierarchical spatial extreme value models, we are able to obtain conditional predictions

of first arrival dates at locations without eBird observations.

We chose to study the Magnolia Warbler based on recommendations from our ornitholo-

gist collaborators, who pointed out several advantageous characteristics of this species. First,

it is a long-distance migrant whose summer (breeding) range is well-separated geographically

from their winter (nonbreeding) range. The non-overlapping characteristic of their summer
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and winter ranges eliminates ambiguity with respect to whether any observed individual has

already migrated north or has yet to begin migration. Second, the eBird database contains

a large number of observations of Magnolia Warblers, which helps in fitting a complicated

statistical model. Finally, the Marginalia Warbler is relatively easy to identify, which helps

to mitigate the problem of mis-identification which is inherent in citizen science data. The

species is uncommon west of the Mississippi river despite regular vagrancy on the West

Coast (Dunn and Hall, 2020). We focused our study on the northeast United States due to

the prevalence of Magnolia Warbler sightings in this region.

Previous studies have investigated the mismatch between the arrival of migratory birds

and other aspects of the onset of Spring (Kolec̆ek et al., 2020; Kullberg et al., 2015; Tøttrup

et al., 2010; Jonzén et al., 2006). Most used linear regression or similar methods that regress

a measure of first arrival time on covariates related to the onset of Spring (Møller et al., 2008;

Mayor et al., 2017; Gunnarsson and Tómasson, 2011). Some methods incorporated multiple

species using a random effect (Kolec̆ek et al., 2020; Kullberg et al., 2015). Ambrosini et al.

(2014) used a binomial conditional auto-regressive mixed model, and is the only instance of

which we are aware that employed a formal spatial model for first arrivals. There is little

uniformity in the definition of first arrival times in existing literature. Palm et al. (2009),

Gunnarsson and Tómasson (2011), and Kolec̆ek et al. (2020) calculated first arrival date for

a given year to be the mean of first arrival dates recorded by observers averaging over all

geographical locations. Another approach is to fit logistic or cumulative log log functions to

estimate the first arrival time as the inflection point or specific percentiles (Mayor et al.,

2017; Ambrosini et al., 2014). Zaifman et al. (2017) used a set of heuristics to filter out noisy

data points from the eBird database to identify first arrival times. All of these approaches

modeled first arrival times using standard, mean-focused statistical models, rather than

modeling first arrival times as the extreme values that they are.
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We construct our extreme value models by conceptualizing the geographical map of first

arrivals as a spatial field of block minima. That is, at each point in space, a subset of the

population of Magnolia Warblers visits, with each member of that population arriving at a

particular time. In the parlance of extreme value statistics, this collection of arrival times is

referred to as a “block”, and the earliest arrival time is the block minimum. By singling out

the first arrival time at each of many spatial locations, we arrive at a spatial field of block

minima. This is exactly the structure of data that is the subject of the statistical study

of spatial extremes. The enterprise of modeling spatial extremes has most often focused

on extreme weather events like extreme precipitation, temperature, and wind (Reich and

Shaby, 2012; Shaby and Reich, 2012; Huser and Wadsworth, 2019; Reich and Shaby, 2019).

Extreme value methods have only been rarely used in ecological studies (Wijeyakulasuriya

et al., 2019).

Widely-used models for spatial statistics based on Gaussian processes are appropriate

for modeling spatial events in the bulk of a distribution, but they do not do well for

spatial extremes because they have rapidly vanishing tail dependence which is usually not

realistic for extremes (Bopp et al., 2021). Furthermore, they do not posses the max-infinite

divisibility (max-id) property, which we will argue is necessary for any coherent model of

block minima. Instead of using Gaussian processes, we model the timing of the Magnolia

Warbler Spring migration using the hierarchical model of Bopp et al. (2021), which is

max-id (and therefore appropriate for block minima like first arrival times), has flexible tail

dependence properties that can be learned from data, and decomposes in such a way as to

make computing tractable on large datasets.

The hierarchical modeling approach also makes it easy to incorporate covariates. We fit

sixteen years of first arrival data from eBird, regressing model parameters on topographic,

landcover, demographic, and climatological predictors. We then create predictive maps
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of first observed spring arrival for the Magnolia Warbler in the northeast United States

(Section 3). For an example of eBird data and the model’s predicted map, see Figures

1(a) and 1(b). We then use climate model data from the fifth phase of the Coupled Model

Intercomparison Project (CMIP5) for years 2151–2200 to demonstrate how these models

can be used to make future predictive maps of first observed arrival (See Figures 10(1) and

10(b)).

1.1 Data Processing

We downloaded bird sightings data for the Magnolia Warbler from the citizen data website

eBird (eBird, 2019). We focused our study on the northeast US and only considered years

from 2004–2019 due to the relative lack of data before that period. The Magnolia Warbler

winters in the neotropics. First spring migrants arrive in southern United States in early

April. Since we were looking at Spring arrivals, we included sightings from March 20 to July

20 of each year. Any single observation of a Magnolia Warbler could be either an individual

that is in transit to its summer breeding location or has already reached its final breeding

location. We do not differentiate between these two cases.

First arrival data can be affected by observation effort and be very noisy (Lindén, 2011).

Our approach to calculating first arrival time is similar to that of Zaifman et al. (2017),

who used the same data source. In order to minimize the influence of potentially aberrant

observations, we calculated first arrival time only in counties that had at least 12 sightings

during the time period March 20 (roughly Spring equinox) through July 20 in a given year.

We calculate the first arrival to be the number of days from March 20. There is a large

proportion of missing data (80%) in the overall dataset. See Figure 1 (a) for the observed

first arrival times for 2019. Counties colored in grey do not have first arrival observations in

2019.
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Figure 1: (a) First arrival data for 2019. Missing values are shown in grey. (b) Predicted
First arrival for 2019.

Important biases are present in the eBird dataset, which should be considered when

interpreting the results that we present. For example, observation effort (i.e. number

of active bird watchers contributing to eBird) has increased dramatically over the years

(see Figure S-2 in the Supplement). We attempt to minimize this effect to some degree

by treating as missing any observations for counties in years where sightings are sparse.

Another issue is preferential sampling, which arises because observers tend to go where they

think they will find bird activity. This is a complicated problem that is beyond the scope of

our study, but presents an interesting challenge for follow-up work. For these reasons, we

take care to interpret our results as analysis of the process of observed first arrivals, rather

than the process of first arrivals themselves, which is in some sense un-observable.

We included spatial and climate covariates to model variation in first arrival times. The

spatial covariates are longitude, latitude, elevation (Hollister and Tarak Shah, 2017), forest

cover (Blackard et al., 2008), proportion of water, and population density (U.S. Census

Bureau, 2010). Longitude and latitude covariates were taken to be the centroid of each

county. All other covariates are the spatial average over the county. The climate covariates
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are temperature anomaly (Zhang et al., 2010) and North Atlantic Oscillation (NAO) (Hurrel,

2003) for the month of March of each year. For more details about the first arrival data

and spatial and climate covariates, see Appendix S-1 in the Supplementary Material.

2 Hierarchical Max-Infinitely Divisible Spatial Pro-

cess Model

Models for extreme values are defined for the right tail by convention, as the most common

extremes of practical interest are maxima, not minima. Analysis of the earliest arrival

concerns the left tail, however, so we will simply multiply the data (in units of days since

March 20) by −1 and add a constant large enough to make all of the negated values

positive, and proceed with the conventional extreme value terminology of referring to

annual maxima, rather than minima. If we imagine choosing a single spatial location and

consider the (negative) arrival date Z of each individual bird that passes through, then

that variable Z has some cumulative distribution function (cdf ) G(z) = P (Z ≤ z). Then,

making the (unrealistic) working assumption that each individual’s arrival is an independent

and identically distributed copy of Z, the cdf of the maximum (negative) arrival from a

population of size n is H(z) = P (maxZ1,...,Zn
≤ z) = Gn(z).

But rather than a single location, we are interested in the random vector Z, the maximum

(negative) arrival at all locations of interest, whose joint cdf is H(z) = P (maxZ1,...,Zn
≤

z) = Gn(z). Our goal is to model this distribution of spatial maxima, H(z). The population

size n is always going to be unknown, but more fundamentally, our model should remain

valid even if the n changes from year to year. A coherent model for H(z), then, would

require that H1/n(z) be a valid joint distribution for any n. This is exactly the max-infinite

divisibility property. Thus, we require any spatial model for (negative) first arrivals to
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be max-id. Similar reasoning applies to random vectors that are not independent across

individuals, like arrival dates of migratory birds.

To define the spatial process Zt(s) of (negative) first arrivals at year t, now written

explicitly as a function of spatial location s, we first define the process Yt(s) as a combination

of basis functions,

Yt(s) =

{

L
∑

l=1

AtlKl(s)
1/α

}α

. (1)

Here, α is a parameter that controls the smoothness of the process, and At1, . . . , AtL are

independent and identically distributed (iid) scaling coefficients, for t = 1, . . . , T . The

scaling coefficients have an exponentially-tilted positive stable distribution, with parameters

α and θ that together control the strength of the spatial tail dependence of the resultant

process (Bopp et al., 2021).

The functions K1(s), . . . KL(s) in (1) form a collection of L spatial basis functions, which

in combination form the surface of the spatial process of first arrivals (see Figure 2). We do

not know a priori what shape of basis functions will result in the best-fitting combination,

so we estimate the shape of these functions by assigning them prior distributions based on

Gaussian processes. The construction requires that basis functions be positive and satisfy

a sum-to-one constraint, so we specify the priors by transforming independent mean-zero

stationary Gaussian processes K̃1(s), . . . , K̃L−1(s) as Kl(s) = exp{K̃l(s)}/
∑L

i=1 exp{K̃i(s)},

l = 1, . . . , L, with K̃L(s) ≡ 0 to complete the specification. In this way, the shape of the

basis functions can be learned from the data.

The form of the basis combination (1) resembles a spatial factor model, where tradi-

tionally α is taken to be 1 and At1, . . . , AtL are iid Gaussian. However, the particular Lp

norm (with p = 1/α) construction of (1) and the particular tilted stable distribution of

At1, . . . , AtL are the keys to obtaining the desired max-id property (Bopp et al., 2021).
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To complete the model, we introduce an everywhere multiplicative “nugget” effect ε(s)

with iid Fréchet(1/α) marginal distributions. The final spatial max-id model for first arrivals

is thus

Zt(s) = εt(s)Yt(s). (2)

The nugget effect εt(s) represents small-scale variation. In our case, small-scall variation

is particularly relevant because it can capture local habitat or resource variation that is

not present in the covariates. For example, patches of intact forest land or preferred food

sources, or even a neighborhood cat, are too small-scale to be captured in county-level data,

but can be captured in the model by εt(s).

Univariate extreme value theory says that the only possible limit of appropriately rescaled

block maxima is the Generalized Extreme Value (GEV) distribution. This classical result

suggests that marginally (i.e. at any location), the distribution of the first arrival will

be well-approximated by the GEV distribution as the population grows. The classical

convergence result may not apply precisely to the present case, as issues have been identified

with data that are discrete and bounded (Hitz et al., 2017), like the (negated) first arrival

dates that we analyze here. A simple approach to reconcile the discrete data with the

continuous limiting distribution is to consider it as interval censored. This works well, but

in our experience has negligible impact on the resultant analysis (Bopp and Shaby, 2017).

We therefore regard the GEV as an appropriate model for the first arrivals. The Bopp et al.

(2021) model includes a marginal transformation to GEV, from the distribution implicitly

defined by (2), inside the model hierarchy. This allows flexible modeling of the marginal

surfaces, including dependence on covariates, as well as uncertainty propagation between

the marginal and joint components of the model.

The GEV(µ, σ, ξ) is a three-parameter distribution with location parameter µ ∈ R, scale

parameter σ > 0, and shape parameter ξ ∈ R.
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We define Z̃t(s) = GEV−1[Gs {Zt(s)} ;µt(s), σt(s), ξt(s)] as the (negative) first arrival

date on the original observation scale, where GEV −1 {·;µt(s), σt(s), ξt(s)} is the quantile

function of a GEV distribution with parameters µt(s), σt(s) and ξt(s). Gs(z) is the marginal

distribution function of Zt(s), which is implicitly defined by the construction (1) and (2).

Critically, the max-id property of the model is preserved when using this transformation.

Therefore, Z̃t(s) is the observed (negative) first arrival date, with GEV(µt(s), σt(s), ξt(s))

marginal distribution, whereas Zt(s) is the same quantity, under the transformation to the

marginal distribution induced by (1) and (2).

We assume the first arrival process Z̃t(s) is independent across years, given a collection

of covariates that may vary in time. Let Z̃t(s) to be the process observed at location s at

year t. Marginal GEV parameters vary with time via the climate covariates as

µt(s) = Xtµ(s)βµ +Wµ(s)

log σt(s) = Xtσ(s)βσ +Wσ(s)

ξt(s) = ξ, (3)

where Xtµ(s) and Xtσ(s) are matrices of climatological and demographic covariates, some of

which vary in space or time, βµ and βσ are vectors of regression coefficients, and Wµ(s) and

Wσ(s) are zeromean Gaussian processes. The spatially varying basis functions are common

across time, whereas the scaling coefficients of the basis functions, Atl, l = 1, . . . , L and

t = 1, . . . , T , vary with time. The data did not exhibit evidence of temporal non-stationarity

in the spatial dependence parameters α or θ.
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3 Results

3.1 Model Comparison

We used out of sample predictive log scores to select the number of basis functions L and

to decide between modeling log σt(s) as a Gaussian process or as a fixed linear model. For

this model selection, we used a subset of 114 counties where at least 10 years of data were

present. We then randomly sampled 12 counties as the out of sample set. We fit the model

on the rest of the data and evaluated the log likelihood, given the MCMC samples of the

model parameters, of the out of sample data set, yielding a log score for each set of posterior

samples. We used a 95% trimmed mean to calculate the average log score for each candidate

model. The results are given in Table S-1 in Appendix S-4 in the Supplementary Material.

The best model under this approach is the model with 8 basis functions and log σ(s) as a

fixed linear model.

3.2 Final Fitted Model

We then fit this model to (negative) first arrival dates from all 869 counties and all years.

We used draws from posterior predictive distributions to predict first arrival times at the

counties without first arrival observations.

Posterior means and 95% credible intervals for α, θ and ξ are 0.3340 (0.3057, 0.3604),

0.00018 (0.000028, 0.00057) and -0.4095 (-0.4435, -0.3784). Posterior means and 95%

credible intervals for the location parameter and scale parameter coefficients are given in

Figures 3 and 4, respectively. These results correspond to negated first arrival data (i.e.

maxima), so that larger values for the location parameter correspond to earlier first arrivals.

Latitude has the most negative coefficient from the location parameter covariates, indicating
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Figure 3: Coefficient estimates and 95% credible intervals for covariates in the mean function
of the location parameter. Transformed (i.e. negated) first arrival data is used here. Larger
values for the location parameter correspond to earlier first arrival.

that counties at lower latitudes have earlier arrivals, as expected. Elevation also has a

negative coefficient, indicating that regions at higher elevation have later arrivals on average.

Forest cover has a negative coefficient. Population density has a slightly positive coefficient.

This effect could be a proxy for observation effort, wherein more densely populated regions

have more people available to observe the earliest warbler arrivals. Temperature anomaly

and NAO both have positive point estimates. Higher values for NAO and temperature

anomaly corresponds to warmer weather, which in turns leads to earlier arrival. This too is

consistent with what we expect.

Interpreting the coefficients for the scale parameter covariates is not as straightforward.

We can only say that covariates with higher coefficients lead to more variability in first

arrivals. For example, regions at higher elevation or more forest cover have higher variability

in the first arrival dates.

Posterior means of the eight random basis functions are plotted in Figure 5. They are
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Figure 4: Coefficient estimates and 95% credible intervals for covariates in the mean function
for the scale parameter

ordered by the variance of their corresponding coefficients, in a manner analogous to the

ordering of principle components (also known as empirical orthogonal functions). The first

six basis functions account for over 85% of the variability. These spatial patterns can be

interpreted as locations where early or late arrivals tend occur together in the same year,

perhaps because they represent migration corridors.

We also calculated the median first arrival date using posterior sample values for µt(s),

σt(s) and ξ, using the formula z0.5(s) = µ̂t(s)+
σ̂t(s)

ξ̂

(

(− log(0.5))−ξ̂ − 1
)

. Here, we averaged

over temperature anomaly and NAO and then averaged over the posterior samples and

have plotted median first arrival in Figure 6. Dark red corresponds to earlier arrival, while

light yellow corresponds to later arrival. As evident in Figure 6, the earliest median first

arrival of Magnolia Warblers occurred in Illinois and Virginia. Higher elevation regions of

West Virginia and Pennsylvania had later arrivals. The states in the extreme northeast like

Maine, New Hampshire, and Vermont, as well as the northern regions of Wisconsin and

Michigan, had latest median first arrival.

15



Figure 5: Posterior estimates of the spatial basis functions, ordered by variance of the
corresponding random basis coefficients, from largest to smallest.
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Figure 6: Estimated median first arrival of Magnolia Warblers for 2016–2019, averaging
over temperature anomalies and NAO, i.e. predicting using 0 as covariate values for both
temperature anomaly and NAO.

3.2.1 Model Checks

We examined several diagnostic plots to assess the adequacy of both the marginal and

spatial components of the fit. Figure 7 shows a qq-plot of the observed data against a

standard Gumbel. The observations at each location and time were transformed to standard

Gumbel using the posterior samples of the marginal parameters from the marginal model

(3), and then averaged across MCMC iterations. Figure 7 shows good agreement between

the model and observations for most of the first arrivals. There is noticeable departure

from 1 : 1 line in the upper tail, but there is also a huge amount of variation in this region.

Overall, the marginal fit of the model seems adequate.

Figure 8 shows empirical and model-based estimates of the coefficient χh(u) for points

separated by h = 50km and h = 500km. The coefficient χh(u) = P [F1{Y (s1)} >

u |F2{Y (s2)} > u], for points s1 and s2 separated by a distance h, where F1 and F2

are the marginal cdf s of Y (s1) and Y (s2), respectively, is a common measure of the strength
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Figure 7: Quantiles of the observed data plotted against quantiles of the standard Gumbel
distribution. The observations were transformed to standard Gumbel using posterior samples
of the marginal parameters. The region enclosed by the blue dotted curves is the pointwise
95% confidence interval.

of tail dependence. Empirical estimates of this conditional probability are subject to a

great deal of uncertainty at high quantiles u, especially in this case because so much of

the data is missing. However, despite the very wide confidence intervals, Figure 8 shows

good agreement between function χh(u) estimated empirically and χh(u) calculated from

the fitted model, at both short and long separation distances. We conclude that the model

fits the tail dependence in the data well.

3.3 Predictive Maps

Figure 9 gives the mean posterior predictive first arrival for 2019, as well as the difference

between 2019 and 2016, 2017, and 2018. In the difference plots, the blue color denotes
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Figure 8: The coefficient χh(u) calculated at separation distances h = 50km (left) and
h = 500km (right). The blue solid curves show χh(u) calculated from the fitted model, while
the black dotted curves show empirical esimates of χh(u), with the grey regions denoting
pointwise 95% confidence intervals for the empirical estimates.

later arrival while the red color denotes earlier arrival. In 2018 a majority of the counties

had earlier arrival compared to 2019 where as in 2017 most counties had later arrival

compared to 2019. In 2016 there is a mix of red and blue, with counties in the western

region having earlier arrivals while Virginia and parts of the Eastern seaboard having

later arrivals. Compared to the median maps, these posterior predictive maps show more

small-scale spatial variability, as we are predicting the actual date of first arrival at a given

year, rather than an average date. However we see the expected trend of first arrival times

being later at higher latitudes compared to lower latitudes. See Appendix S-6 Figure S-7 in

the Supplementary Material for standard deviations of the posterior predictive first arrival

times for 2019.
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Figure 9: Posterior mean predictive plot for first arrival in years 2016–2019.
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We obtained monthly climate model output from the CMIP5 data portal (https:

//esgf-node.llnl.gov/search/cmip5/). The spatial resolution of the dataset is 0.5× 0.5

degrees. We use the climate model GISS-E2-H from NASA’s Goddard Institute for Space

Studies and picked Representative Concentration Pathway (RCP) scenario ‘high’ (RCP

8.5). RCP8.5 corresponds to high greenhouse gas emissions and is the upper bound of the

available RCPs. It is commonly used as a baseline scenario that does not account for any

specific climate mitigation strategies (Riahi et al., 2011). We used ensemble member r1i1p1

in this study and extracted data for the time period 2151–2200.

Figure 10 (a) gives the difference between the average projected first arrival dates for

2151–2200 and the first arrival date for 2019 (the last year in our study with actual data).

A blue hue denotes later arrival compared to 2019 while, a red hue denotes earlier arrival

compared to 2019. As evident in Figure 10 (a), over 80% of counties in our region of interest

are projected to have earlier arrivals compared to 2019. Some counties in the Appalachian

region as well as some with higher forest cover are projected to have slightly later arrivals, as

indicated by the light blue hue. Figure 10 (b) gives the standard deviations of the posterior

predictive samples. Higher elevation and higher forest cover regions West Virginia showed

high standard deviation values. For difference in first arrival for individual years and their

standard deviations, see Figure S-10 and Figure S-11 respectively in Appendix S-6 in the

Supplementary Material. These predictive maps show a general trend of earlier Magnolia

Warbler arrivals under the projected future climate, relative to 2019.

4 Discussion

In this study we frame the problem of modeling first arrival of migratory birds as a spatial

extremes problem, recognising that first arrival is the realization of the tail of the probability
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Figure 10: (a) Difference in predicted first arrival using base year 2019 for CMIP data
averaged over years 2151–2200. (b) Standard deviations of the predicted differences

distribution of arrivals. We adapt the hierarchical max-infinitely divisible process model of

Bopp et al. (2021) to model first arrival of the long distance migrant the Magnolia Warbler,

obtaining maps of first spring arrival for the period 2004–2019. We use the posterior

predictive distribution from the model to interpolate first arrival dates to counties with

missing data in a probabilistically coherent way.

Furthermore, we demonstrated how this method can be used in conjunction with climate

model output to produce predictive maps of spring first arrival for future years under

projected future climate. Based on the CMIP5 RCP8.5 climate model output we used, we

found that first arrival of Magnolia Warblers will be earlier in over 80% of the counties in the

region of interest. We also provided uncertainty estimates for these predictions. Running

the model on output from a suite of climate models forced with different emissions scenarios

would give a richer picture of the possible trajectories of first arrivals. However, our goal

here is not so much to produce a reliable forecast—rather, we demonstrated that we can

combine a spatial extremes model with a climate projection to get a plausible picture of the

future, conditional on the quality of the climate projection.
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We found that latitude, elevation, and forest cover had negative coefficients when

modeling the location parameter of the marginal GEV, indicating later arrival for counties

with higher values for these covariates. This is an expected result for latitude but unexpected

for forest cover. The forest cover covariate did not distinguish between different types of

forests, which could be useful to determine the relationship between forest cover and first

arrival more precisely. Both forest cover and elevation had positive coefficients for the scale

parameter of the GEV, indicating greater variability for larger values of these variables.

As expected, temperature anomaly had a positive coefficient for the location parameter,

indicating that warmer than average March temperatures result in earlier arrivals of the

spring migrants in April. Although the credible interval for NAO for the location parameter

overlaps zero, it can be interpreted as having largely positive values, which signals that

higher NAO values correspond to earlier arrivals.

We fitted the model at the county level, aggregating over observations made within

each county. It was necessary to do aggregation at some level since observations are not

made at the same locations every year and we need fixed spatial locations to fit the model

proposed by Bopp et al. (2021). We used counties as our observation unit since it is easier to

obtain values of covariates aggregated at this level. However, not all counties are similarly

sized, which could lead to our heuristics being very stringent on smaller counties. Another

approach to do this could be to use an evenly spaced grid over the region of interest.

This study provides a rigorous basis for studying the first arrival of migratory birds

across space and time. It enables prediction of first arrival at unobserved locations while

also providing powerful tools to understand the ecosystem response to different climate

scenarios.

SUPPLEMENTARY MATERIAL
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Supplementary Material: Additional plots, model diagnostics, etc. (.pdf file)

R-package stablemixEco for fitting the model: A modified version of the package

stablemix. To improve mixing, we have changed the way the spatially-varying fields

are updated (see the Supplementary Materials for details). (GNU zipped tar file)

First arrival data: Data set used for fitting the model. (.RData file)

Climate projection covariates: Data set used for to project first arrival dates under a

climate model projection. (.RData file)
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