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ABSTRACT

Online load balancing for heterogeneous machines aims to mini-
mize the makespan (maximum machine workload) by scheduling
arriving jobs with varying sizes on different machines. In the adver-
sarial setting, where an adversary chooses not only the collection of
job sizes but also their arrival order, the problem is well-understood
and the optimal competitive ratio is known to be ©(log m), where
m is the number of machines. In the more realistic random arrival
order model, the understanding is limited. Previously, the best lower
bound on the competitive ratio was only Q(loglogm).

We significantly improve this bound by showing an Q(+/log m)
lower bound, even for the restricted case where each job has a unit
size on two machines and infinite size on the others. On the posi-
tive side, we propose an O(log m/loglog m)-competitive algorithm,
demonstrating that better performance is possible in the random
arrival order model.
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1 INTRODUCTION

Online load balancing is a fundamental problem encountered in
parallel/distributed computing and network communication, ap-
pearing in various forms. It focuses on effectively distributing lim-
ited resources to handle tasks that arrive over time (online). Due to
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its importance, this problem has been extensively studied in both
practice and theory [5, 15, 22].

The model of unrelated machines has received significant atten-
tion due to its effective representation of heterogeneous processing
capabilities. In this setting, the processing time of a job can differ
based on the assigned machine. Minimizing the makespan, the max-
imum workload across all machines, is one of the most common
objectives in this realm.

In many practical scenarios, the sequence of job arrivals is un-
predictable, necessitating online load balancing strategies. For min-
imizing makespan in this online setting, an O(log m)-competitive
algorithm is known [3, 7], where m represents the number of ma-
chines. This algorithm guarantees a solution within a logarithmic
factor of the optimal offline solution, which has full knowledge of
the entire job sequence in advance. Notably, this competitive ratio
is known to be tight under adversarial job arrival orders [7], where
the algorithm has no information about future jobs.

One way to circumvent the strong lower bounds is to consider
the random arrival order model. In this model, the adversary first
defines the machines and jobs, then the jobs arrive in a random
permutation. The appeal of this model is its simplicity: no assump-
tions are made about the overall input, and only the order of arrival
is randomized. Crucially, the optimal offline solution remains un-
changed. The random arrival model has been exceptionally effective
in breaking many lower bound barriers, as seen in the secretary
problem, packing integer problem, online facility location problem,
and many others. For a comprehensive overview of the results in
the random arrival model, see [20].

Despite the success of the random arrival model in other contexts,
research on online load balancing within this framework remains
surprisingly thin. To the best of our knowledge, the only non-trivial
result for this problem is a lower bound of Q(loglogm) [9].

1.1 Our Results

In this paper, we make significant strides in online load balancing for
unrelated machines with the random arrival model by establishing
the following new bounds.

Lower Bounds. We show lower bounds for the special case of
graph balancing [14]. Here, edges representing jobs arrive online,
and we must immediately orient each arriving edge towards one
of its endpoints. The objective is to minimize the maximum in-
degree of any vertex, i.e., the highest number of incoming edges
for a single vertex. This problem is equivalent to the online load
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balancing scenario where each job has a unit size on exactly two
machines and an infinite size on the rest.

Even in this restricted setting, we establish a new lower bound
of Q(4/logm) for any randomized algorithm, where m denotes
the number of machines (or the number of vertices in the graph
balancing problem). This is an exponential improvement over the
previously known lower bound of Q(loglog m). Interestingly, our
bound holds even when the instance is a tree and the algorithm
knows the structure a priori. This result is presented in Section 4.1.

We further demonstrate that the intuitive greedy algorithm,
which assigns each job to the less loaded machine (breaking ties ran-
domly), has a competitive ratio of Q(log m/loglog m). Expressed
in graph balancing terminology, this algorithm orients each edge
towards the endpoint with the lower in-degree. This highlights the
necessity of deviating from the straightforward greedy approach to
achieve a competitive ratio substantially better than the ®(log m)
bound, which is the best possible in the adversarial order setting.
This result can be found in Section 4.2.

Upper Bounds. On the positive side, we present an algorithm
for online load balancing in the random arrival order model that
achieves a competitive ratio of O(logm/loglog m). Notably, this
result applies to the general setting of unrelated machines. While
the improvement over the O(log m) bound in the adversarial model
is modest, it nevertheless establishes a meaningful separation be-
tween the two models for this problem. This result is in Section 3.

Remark. In the online makespan minimization for unrelated
machines problem, we use m to denote the number of machines
and n the number of jobs. This is the standard notation used in the
scheduling literature. However, in the graph balancing problem,
m is the number of edges and n is the number of nodes. Since
nodes correspond to machines, a lower bound f(n) for the graph
balancing implies a lower bound f(m) for makespan minimization.
In fact, this differentiation is not critical as all lower bound instances
we use for the graph balancing are trees; thus, we have n = m + 1.

1.2 Our Techniques

As a warm-up, we review an instance that demonstrates a lower
bound of Q(logm) on the competitive ratio of any deterministic
algorithm for adversarial arrivals. Consider a setting with machines
indexed from 1 to m, where m is assumed to be a power of 2 for
simplicity. Jobs arrive in rounds, with each job having a size of 1 and
being assignable to only two specific machines. We can represent
this constraint by representing jobs as pairs of machine indices. For
example, a pair (1, 2) indicates that the job can be assigned to either
machine 1 or machine 2.

The instance unfolds as follows. In the first round, jobs with
pairs (1,2),(3,4),...,(m — 1,m) arrive. Without loss of general-
ity, assume the algorithm assigns these jobs to the even-indexed
machines. The subsequently arriving jobs can only be assigned
to the even-indexed machines, which all already have one job. By
focusing on the even-indexed machines and halving their indices,
we effectively reduce the problem to m/2 machines. Each recursion
of this process increases the load on the machines considered in
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Figure 1: Illustration of a lower bound instance giving
Q(log m) lower bound in the adversarial arrival model. Edges
arrive in the order of solid, dashed, and dotted, and they are
wlog assumed to be oriented towards the root.

the current round by 1. Therefore in the (log m)th round, the algo-
rithm’s makespan reaches log m, while an optimal solution has a
makespan of 1, establishing the Q(logm) lower bound.

This instance also can be viewed as a tree. See Figure 1.

Lower Bounds. In the random arrival order model, orchestrated
job sequences that intentionally concentrate load on specific ma-
chines are no longer viable, as we cannot dictate the order in
which jobs appear. While the aforementioned instance cannot es-
tablish a lower bound for arbitrary algorithms within this model,
a minor tweak of it enables us to demonstrate a lower bound of
Q(log m/loglog m) for the intuitive greedy algorithm, which as-
signs each job to the machine with the lesser current load.

To ‘reproduce’ the adversarial order even in the random ar-
rival order model, we use a ‘fat’ tree where every node has a
polylogarithmic degree except the leaf nodes; here the tree has
an Q(log m/loglog m) height. The key idea is that in the fat tree,
a majority of leaf edges (jobs) arrive before the other edges and
we can show that this bad event can occur recursively with a high
probability, resulting a high load on the root node.

Unfortunately, we cannot use the same fat tree to show a strong
lower bound for arbitrary algorithms. This is because of the follow-
ing reason. To obtain a good load balancing, it is important to orient
edges towards the leaf nodes. However, it is easy for an algorithm
to distinguish the leaf nodes from the others early in the random
order model because the non-leaf nodes have high degrees.

To overcome this issue, our recursive construction is done more
carefully. The main property the tree has is that when an edge
arrives online, no algorithm should be able to distinguish between
the two end points as to which is the parent node for a large number
of edges. However, this lower bound instant construction comes
at a cost. The tree become significantly fatter and has a height
©(+/log m), which translates to our lower bound.

Upper Bound. For the upper bound on makespan minimization
for unrelated machines, we draw inspiration for the algorithm from
[29]. The idea is to keep track of a potential function over all ma-
chines and reset these potentials after half of the inputs have arrived
[19]. The potential function is essentially the softmax function of
the machine loads. The algorithm then assigns an arriving job to
the machine that incurs the least increase in the potential. The
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algorithm is identical in both phases so it suffices to analyze only
one half. This restarting helps as it ensures sufficient randomness
for jobs that arrive later, which is crucial for the analysis.

1.3 Other Related Work

As mentioned before, online load balancing finds numerous appli-
cations in parallel/distributed computing and network communi-
cation. Thus, a vast literature exists on this topic [5, 11, 15, 22, 24]
and we only cover the most related work.

The online load balancing problem was introduced by Graham
in his seminal work [16, 17]. The work showed the list scheduling
algorithm that assign an arriving job to the least loaded machine is
(2 —1/m)-competitive when all machines are identical. The current
best known competitive ratio for this problem is 1.916 [1]. When
the machines are uniformly related, meaning that machines have
different speeds, O(1)-competitive algorithms are known [8]. For
unrelated machines, O(q)-competitive algorithms are known for
minimizing the g-norm of machine loads [4, 12]. For extension to
multidimensional load balancing, see [6, 21, 28].

There has been a load of work on beyond-worst-case analysis
in the recent years. The random arrival order model is a prime
example of this framework. Here, we present a selection of recent
advances within this model. For the online load balancing problem
on identical machines, when jobs arrive in random order, there is a
1.8478-competitive algorithm [2] (which is better than known lower
bounds in the adversarial setting). When the elements are revealed
in a random order, the online set cover admits a competitive ratio
of O(log mn) [18], which matches the offline bound of O(logn)
when m is polynomial in n; here m is the number of sets and n
is the number of elements. The online facility location problem
admits a competitive ratio of 3 in the random order model [23]. As
mentioned, the reader is referred to the survey [20] for work in the
random arrival order.

Molinaro [29] provides algorithms that are simultaneously good
both in the adversarial arrival model and in the random arrival
model. In particular, for the makespan objective, the work gives
an algorithm that is ©(log m/e)-competitive in the adversarial
order, while simultaneously giving a makespan of (1 + €)opT +
O(mlogm/€?) in random order. Unfortunately, the analysis re-
quires € € (0, 1] and therefore does not give a competitive ratio
better than O(log m).

Online load balancing has been recently studied in the presence
of ML predictions. The algorithms are given certain compact predic-
tions on the input and can achieve competitive ratios significantly
better than O(logm) when the predictions are almost accurate
while asymptotically retaining the worst case guarantees [25, 27].

We now discuss related work on the offline load balancing prob-
lems. Offline, the load balancing problem for unrelated machines
does not admit a better than 1.5-approximation unless P = NP and
a 2-approximation is known for the problem due to the seminal
work by Lenstra et al. [26]. For the graph balancing problem, when
G is known offline, [13] gives a 1.75-approximation.

2 PRELIMINARIES AND NOTATION

We consider the online makespan minimization problem on unre-
lated machines. Let J be a set of n jobs and let M be a set of m
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machines. Let p; ; € R* U {co} denote the processing load of job
j on machine i; in the online setting the values of {p; j} for a job
J become known to the algorithm when job j arrives. For an as-
signment o : J — M of jobs to machines, we define its makespan
as makespan(o) = max;e M X jeo-1(;) Pi,j- The goal of an online
algorithm is to find an assignment ¢ that minimizes makespan(o).

In this paper we consider the online setting with uniformly
random job arrivals. Let A be an online algorithm. Let 7 be a
uniformly random permutation of jobs in 7. At each time step t €
[n], ajob z(t) € J arrives and A needs to assign it to exactly one
machine in M; let makespan(A; {p; j}, ) be the random variable
denoting its makespan. The number of jobs, n, is known to the
algorithm before any of the jobs arrive.

Let o™ be the assignment of an optimal, offline algorithm. For
any algorithm A, we define its competitive ratio as the worst-case
ratio of the expected makespan incurred by the algorithm to the
optimal makespan, i.e.,

E [makespan(A; {p; ;}, 7)]

competitive-ratio(A) = max
P (A makespan(o*)

{pij}
Here, we will parameterize the competitive ratio by the number of
machines, m. So, the competitive ratio is defined over the instances
that have at most m machines.

We also consider a very special case of the makespan minimiza-
tion problem called graph balancing. Let G = (V,E) be an undi-
rected graph. The goal is to orient the edges of the graph G so as
to minimize max,cy indegree(v). It can be readily seen that this is
a special case of makespan minimization on unrelated machines by
considering each vertex as a machine and an edge as a job where
each job has a unit load on exactly two machines and an infinite
load otherwise. Again, in this paper, we study the graph balancing
problem with edges arriving uniformly at random.

3 UNRELATED MACHINES: UPPER BOUND

In this section we give an improved upper bound on the competitive
ratio for the online makespan minimization on unrelated machines,
under uniformly random job arrivals. We assume that opT > 1. We
further assume wlog that p; ; € [0,1] U {co}. This is because we
can guess the optimum objective within a constant factor by the
standard doubling trick: if the guess turns out to be wrong (we can
solve the offline problem within a factor of 2 [26]), then we double
our guess and pretend that all machines have zero load. When the
current guess is g > 20PT, j cannot be assigned to machine i if
pi,j = g; therefore, we can replace the value of p; j with co. For all
other p; ; < g, by scaling them down by g, we have the assumption.

1
3.1 An O(%) Upper Bound

3.1.1  Algorithm. The algorithm has two phases that are identi-
cal [19, 29]. In the second phase, which starts when the (| n/2]+1)st
job arrives, it pretends that no jobs have arrived so far. The algo-
rithm uses a softmax of machine loads as the potential, and assigns
anew job to the machine that increases the potential the least.

To describe the algorithm, it will be convenient to define load
vector x € ernO’ which describes the current load of each machine,
ie., if J; is the set of jobs currently assigned to machine i, x; =
2 jeJ, Pi,j- For easy indexing, say job j! arrives at time t. If we
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assign j’ to machine i, it adds to the current load vector a vector w?,
whose ith entry is p; j € [0, 1] and all other entries are 0. Notice
that w! has only one non-zero coordinate. Let s’ be the load vector
right after the algorithm assigned j*, i.e., s* = w! +--- + w’.

We are now ready to define our potential function:

Z e

ieM
where x € RY; is the load vector and a > 0 is a parameter to be
decided later. As mentioned above, a new job is assigned to the
machine that increases the potential the least.

As observed in [19, 29], it suffices to only consider the first half
of the jobs. This is because the first half and the second half have
the same distribution, and the algorithm “resets" after seeing the
first half of the jobs. This will increase the makespan only by a
factor of two Henceforth, we will only consider the first n/2 jobs.

Define o’ S -

= Vy(s*~1). Notice that v =1 _ae 3
The following is immediate by stralghtforward calculations.

Y0 ==1n

a Z P Zi’ P

Claim 1. Forallt > 1, we have ||of||1 = 1 and v* < e®!~1, where
the inequality holds for each coordinate.

Using the convexity of the { function, we have
Ps) = g(s'7h) < (W VP(sh)) = (whof ) < e(wh of).
Then, adding the inequalities over all #’s in {1, 2,...,n/2}, we have
n/2

wu”%—¢m>sw§3wiw»

Noticing that 1/(s"/2) > ||s"/2|| and ¥/(0) =

n/2

l1s"21leo <e§}w

Let of € [0, 1]™ be the load vector induced by the job j’ in the
optimum solution. Then of, = pij, if i’ = i and 0 otherwise. Here,
we are considering the fixed optimum solution that assigns all the
n jobs in J to machines. Although each job is assigned to a fixed
machine in the optimum solution, o’ is stochastic as j? is the tth
job in the random order.

t>+ln_m

Claim 2. Forallt > 1, we have (0!, w!) < e?(v?,0").
PrOOF.
(whof) = (wh, vy (st ™)
<Y =y > st
<P T +0) =y
< (o, Vy(s' 1 + o))
< (o', e?Vy(s' 1)

= e%(o!, 0. m]

> Algorithm is greedy
> 1/ is convex

> Since ||of||eo < 1

Thanks to this claim, we have

n/2
s 2le0 < €% ) (0" 0") +
t=1

Inm

1

=st=1 4+ w! and  is convex
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Consider an arbitrary time step t. So far, only jobs j1,..., j/~1

have been revealed and they completely determine v. Then, j*
is sampled from the other jobs in J uniformly at random. Note
that of + of™1 + ... + 0™ < opT - 1. Therefore, we have E[o? |
o] < =9I __ . 1. Moreover, ||[o?||; < 1; see Claim 1. So, we have

= n—(t-1)
E[(v!,0) | v'] < nfg‘;il) . Taking expectation over Eq. (1), we get
1 1 1 1
E[l|s"?||c0] < €*%0pT | = e R I nm
-1 n/2 a

lnm
< 2¢%%0pT + ——.
a

The last inequality above is why we run the algorithm in two phases
(otherwise, the summation leads to a ©(log n) term).

By setting a = lnl%, we have
Inm 1 6lnm
2¢2%0pT + —— = 2(Inm)3 oPT +
a Inlnm
Inm
=0|——|orr,
Inlnm

1
where the last equation follows since opT > 1 and 2(Inm)3 <

1?111?1 ’;’l for m > 2. Thus, we have shown that the maximum load is

logm
o( loglogm
As discussed, our algorithm restarts after assigning the first half
jobs, and the makespan for the second half of jobs can be upper

bounded symmetrically. Thus, we have the following.

)oPT in expectation for the first half of the arriving jobs.

Theorem 1. There exists an O(log m/loglog m)-competitive algo-
rithm for minimizing makespan on unrelated machines, when the
Jjobs arrive in uniformly random order.

4 GRAPH BALANCING: LOWER BOUNDS

In this section we obtain new lower bounds for the online graph
balancing problem, which is a special case of unrelated machines,
in the random edge arrival model. Interestingly, our lower bounds
hold for tree instances even when the structure of the tree is fully
known to the algorithm a priori. It can be easily observed that
in any tree instance, an optimal offline solution always attains a
maximum load of 1 by simply rooting the tree at an arbitrary node
and orienting every edge away from the root. We first present our
stronger lower bound, which only holds for the greedy algorithm,
and then present a lower bound that holds for any algorithm.

4.1 Lower Bound for a Greedy Algorithm

Consider the following natural greedy algorithm. When an edge
e = (u,v) arrives, the algorithm (GREEDY) assigns e to the endpoint
that has the least load at that time, breaking ties uniformly at
random. Here, a node’s load is the number of already-arrived edges
that have been oriented towards it. GREEDY is known to have the
optimal competitive ratio of ®(log n) for online graph balancing in
the adversarial edge arrival model.

In this section we show a lower bound of Q(log n/loglogn) for
GREEDY in the random arrival model even when the input graph is
a tree. The lower bound instance is the following complete tree.

Lower Bound Instance. Let T be a rooted tree with root r and
depth k. Each internal node of T has d = k* children. The total
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number of nodes in T is thus n = ©(d¥) = G)(k4k); so we have
k = ©(log n/loglog n). We assume that k is sufficiently large.

Before we discuss the intuition and the analysis, we first set up
some notation and terminology. For ease of analysis, we pretend
that edges adjacent to r also have a parent edge (or equivalently,
the tree is rooted at a degree 1 node r’ that connects to r). An edge’s
depth is defined as the number of edges including itself on the path
from the root to the edge. Thus, the leaf edges have depth k and
the edges incident to the root have depth 1. A node u’s height is
defined as the number of edges between u to a closest leaf node.
Thus, a leaf edge has two end points of height 1 and 0 respectively.
Similarly, an edge’s height is defined as the height of the node of
its end point that is closer to the root.

4.1.1 Intuition. Suppose edges of T arrive in a specific order, from
bottom to top—so all leaf edges appear first, and the edges of height
two arrive, and so forth. Consider the d leaf edges that share a
parent node. With high probability, one of these d edges will be
oriented towards the parent (and all the others arriving afterwards
will be directed towards the leaves). So after all the leaf edges arrive,
(almost) all nodes of height 1 will have a load of 1. Then when all
the edges of the upper level—equivalently the edges of height 2—
arrive, a similar argument shows that two of the edges that share
a parent will be directed towards the parent, so nodes of height 2
get a load of 2. Continuing this way, the root node will have a load
of k = Q(log n/loglog n). The primary intuition is that by making
the degree of each internal node large enough—even when edges
arrive in random order—there is a subtree of a similar structure
where edges arrive in this specific leaf-to-root order.

4.1.2  Analysis. For the sake of analysis, we let each edge e be
associated with a random number r, sampled from [0, 1] uniformly
at random. We assume that edge e arrives at time r.. Note that this
way we can simulate the random arrival order of the edges. As
discussed before, the greedy algorithm suffers the most when edges
arrive in the bottom-to-top order. Thus, we will seek to show that
there is a k?-ary subtree where edges arrive in the bottom-to-top
order. To make the analysis more convenient, we will only look at
trees where edges arrive in a more structured manner. Let Iy, ... I
be an equal partition of (0, 1) into intervals, i.e., I; = (0,1/k), I, =
(1/k,2/k), ... and so on.!

Definition 1 (Bad node). We say that a node u of height h is bad if
at least k? of its child edges arrive during I),; let By, denote this bad
event (for the algorithm).

The following lemma is a straightforward consequence of the
Chernoff bound. We bound the probability that the bad event does
not occur, i.e., for a node u of height h, at most k2 of its child edges
arrive during I,.

1

Lemma 1. For a non-leaf node u, Pr[By] > 1 — 7
e

Proor. Consider a non-leaf node u with height h. We want to
calculate the probability that at most k% child edges arrive in the
interval Ij,. Let {ei}f:l denote the k* child edges of node u. For
any child edge e;, let X; denote the random variable that is 0 if e;

Here, we do not distinguish between closed intervals and open intervals as almost
surely no edge will arrive at a time that is a multiple of 1/k.
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arrives in I, and 1 otherwise. Define X = Zi.‘:l X;. Since each edge
e; arrives at ro, € [0, 1] independently and uniformly at random,
we have E[X;] = 1/k, Ve;. Applying the standard Chernoff bound
(Theorem 4 in Appendix A with y = k> and 6 = 1 — %), we get

Pr[X < k?] = e k02 < o=K/8 for any k > 3. o

Definition 2 (Bad subtree). We say a rooted subtree T’ of T is bad
if it is a full k*-ary tree of height k whose internal nodes are all bad.

By definition, the edges of a bad subtree arrive in a leaf-to-root
order, i.e, for any internal node in the tree, all child edges arrive
before the parent edge. We now argue that at least one bad subtree
exists with high probability.

Lemma 2. There exits a bad subtree T" with probability at least
2k?k
AT

Proor. The root is good with probability at most p := 1/ek3/8.
Conditioned on the root being bad, consider some arbitrary k2 child
edges that all arrive during interval Iy and let uy,...u2 be the
corresponding child nodes. By Lemmal, each of those u;’s is good
with probability at most p. So by a union bound, the probability
that at least one of those nodes is good is at most k?p.

Using this argument recursively and applying a union bound
over all levels, the probability that we have no bad subtree is at

most p(1+k2 +-- -+ k2k) < 2k2k/ek3/8. !

Lemma 3. Suppose the input graph is a bad tree, with no other edges.
In other words, suppose the input graph is a full k?-ary tree of height
k where edges in the bottom-to-top order. Then, the maximum load of
a node is at least k with a probability at least 1 — 1/n.

Proor. We say a node u of height h is fully loaded if its load is at
least h. We denote the event as F,. Let f;, := Pr[F, | F, You € Cy]
for a node of height h; here C,, denotes u’s children (nodes).

We show that ¢y, > 1— 2kz+h Indeed, consider an arbitrary node

u of height h. Since we assume that edges arrive in the bottom-
to-top order, before any child edges of u arrives, we know that
every child node v of u has load at least h — 1 from the condition
Fy, Vo € Cy. So, the first h — 1 child edges of u will orient towards u.
For any other edge (u, v) arriving later, if v already has load more
than h — 1, the claim is immediate. So, suppose not. Then, u can
have load h — 1 only when all the child edges of u, except the first

h — 1, are not oriented towards u, which occurs with probability
1 1
ok2-h s ok2-k*

The bad tree has at most (k2)¥*! internal nodes, and the root
has load at least h if F;, occurs for every internal node u. Thus, by a
simple union bound, the root has load at least k = ®(log n/loglog n)

with probability at least 1 — (k2)k*1 2k2+k >1-1/n. m]

We now explain why we continue to have the lower bound
of k, independent of the other edges different from the bad tree.
This follows from the monotonicity of the greedy algorithm. In
other words, inserting an edge (job) to an input sequence can only
increase the maximum load.

Since k = Q(log n/loglog n), we have the following theorem.
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Theorem 2. There exists a tree T with n nodes such that, for uniform
random edge arrivals, the greedy algorithm outputs an orientation
with maximum load Q(log n/loglog n) with high probability.

4.2 Lower Bound for Arbitrary Algorithms

In this section we show a lower bound of Q(+/log n) for the graph
balancing problem with random edge arrivals. Unlike Section 4.1,
this lower bound is not restricted to the greedy algorithm and holds
for all online algorithms.

Lower Bound Instance. We denote the lower bound instance of
height D as Tp, where D > 0 is an integer. For every 0 < d < D,
Ty is constructed recursively as follows: Tj is a singleton node. Let
r be the root of Ty. For every d’ = 0,1,...,d — 1, there are oD-d’
copies of Ty, each of which is a subtree of r. Here, it is important
to note that Ty, . . ., Tp have dependency on D. See Figure 2 for an
illustration of the instance T5.

To o To To To o To To

Figure 2: Example of a lower bound instance for D = 2. Con-
sider the time when the dashed edge appears. Edges are dot-
ted if they have already arrived, solid otherwise. For the
dashed edge, no algorithm can distinguish which of its end
points is the parent node.

We label each node v in Tp with an integer in [0, D]: if the sub-
tree rooted at v is a copy of Ty, then we set £(v) = d to be the label
of v. Therefore, for two integers 0 < d’ < d < D, any node u with
label d has 2P~%" children with label d’.

4.2.1 Intuition. The main idea behind this lower bound instance
is that when some edges arrive online, the algorithm cannot distin-
guish between their parent node and the child node. Therefore, we
can assume that the algorithm assigns such an edge e = (u,v) to
u with probability 1/2 and to v with probability 1/2. In particular,
consider any node v of with label d. Then, for each d’ € [0,d — 1],
there is at least one edge (v, u) with £(u) = d’, such that with prob-
ability at least 1/2 the algorithm cannot distinguish the subtree
rooted at u consisting of the edges that have arrived so far, and the
analogously defined subtree rooted at v. Using this observation and
the fact that D = Q(4/logn), we can lower bound the maximum
load on the root of the tree.

4.2.2  Analysis. We begin by defining the event when the algorithm
cannot distinguish between the parent and child node.
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Definition 3. Let 7 be a random permutation over all edges in Tp.
Consider an edge e = (u,v) with u being the parent. The permutation
7 is bad for e, if the following hold:

o the parent edge of u appears after e in the order , and
e all other child edges (u,v") of u with £(v’) > £(v) appear after
(u, ) in the order .

Consider the arrival time of an edge e = (u,v) where ¢(u) = d
and ¢(v) = d’ < d. We observe that conditioned on the event that
the permutation 7 is bad for edge (u,v), the subtrees rooted at
u and v comprised only of the edges that have arrived so far are
stochastically identical. Thus, we can assume wlog that any fixed
algorithm orients the edge (u, v) towards each of its end points with
probability % which can be formally shown in the following claim.
Note that it suffices to consider a fixed deterministic algorithm
thanks to Yao’s minmax principle [10].

Claim 3. Conditioned on the event that the permutation r is bad for
edge (u,v), any fixed deterministic algorithm orients the edge towards
each of its end points with probability %

PRrooOF. Let ¢ be a random permutation of the node identities
that is generated by the adversary, which is unknown to the de-
terministic algorithm. Let 7 be the random permutation of edges
that denotes the arrival order. We condition on the event that the
arrival order r is bad for some specific edge (u,v). Note that the
algorithm makes its decisions based on revealed edges of the form
(¥(x),¥(y)). By our construction, the subtrees T, and T, rooted
at u and v respectively consisting of arrived edges are stochasti-
cally identical. Suppose the algorithm orients the revealed edge
(¥ (u), ¥(v)) towards u in a specific instantiation. Since T, and
T, are stochastically identical, they will have their instantiations
swapped equiprobably, meaning that the algorithm must orient
(u,v) towards v with the same probability (over the random choice
of ¢ and ). O

In the following lemma, we calculate the probability that a per-
mutation is bad for an edge. For our purpose, it is enough to consider
an edge with the root r of Tp as one of its end points.

Lemma 4. A permutation i over the edges of Tp is bad for the first
appearing edge (r,u) with £(u) = d with probability at least %

ProoF. The probability can be easily calculated as

#edges with £(v) =d 2D-d

#edges with £(v) > d - 9D-d 4 ...49D-(D-1) ;1

1
>-. O
2

Focus on the root r with £(r) = D, and an integer d < D. Con-
sider the first edge (r,u) with £(u) = d. With probability 1/2, the
permutation is bad for this edge. Conditioned on the permutation
being bad, the algorithm assigns the edge to r with probability 1/2.
Therefore, the algorithm assigns the edge to r with probability at
least 1/4. Consider all values of d < D, in expectation the root will
get a load of Q(D). The size of the tree is ZO(DZ), as we will see
below. Therefore we can obtain a lower bound of Q(+/log n).

Lemma 5. Ifn is the size of the tree Tp, then D = Q(+4/logn).
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Proor. Let n(d) denote the number of nodes in T;. From the
recursive construction of the trees, we have

1 d=0

d =
n(d) 2D0000) +---+2P-@-Dp@—1)+1 de[1,D-1]

Since n(d) is increasing in d, when d > 1, we have n(d) < 2PD -
n(d - 1) < 4P - n(d - 1). Therefore, n = n(D) < 40" This gives us
the desired result D = Q(+4/logn).

m}

Theorem 3. There exists a tree T with n nodes such that for uniform
random edge arrivals, any algorithm outputs an orientation with

maximum load Q(+/log n), with high probability.

5 CONCLUDING REMARKS

In this paper, we revisit the classic online load balancing problem for
unrelated machines in the random arrival order model. While we
achieve an exponential improvement over the previous lower bound,
a substantial gap remains between the lower bound of Q(+/log m)
and the upper bound of O(log m/loglog m). Importantly, the ques-
tion of whether an algorithm with a better competitive ratio exists
even for tree inputs in the online graph balancing problem remains
open. This holds true even when the entire tree structure is known
a priori (with the identities of nodes and edges hidden).
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A CHERNOFF BOUND

Theorem 4. Let Xy, ..., X, ben independent, Bernoulli random vari-
ables, where P[X; = 1] = p;, for alli. For X = Y, X;, its expectation is
u=E[X] = pi. Then for any 0 < § < 1, we have
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Further, the upper bound is at most e‘”‘sz/2 when § € [0, 1).
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