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ABSTRACT
Online load balancing for heterogeneous machines aims to mini-

mize the makespan (maximum machine workload) by scheduling

arriving jobs with varying sizes on different machines. In the adver-

sarial setting, where an adversary chooses not only the collection of

job sizes but also their arrival order, the problem is well-understood

and the optimal competitive ratio is known to be Θ(log𝑚), where
𝑚 is the number of machines. In the more realistic random arrival

order model, the understanding is limited. Previously, the best lower

bound on the competitive ratio was only Ω(log log𝑚).
We significantly improve this bound by showing an Ω(

√︁
log𝑚)

lower bound, even for the restricted case where each job has a unit

size on two machines and infinite size on the others. On the posi-

tive side, we propose an𝑂 (log𝑚/log log𝑚)-competitive algorithm,

demonstrating that better performance is possible in the random

arrival order model.

CCS CONCEPTS
• Theory of computation → Scheduling algorithms.

KEYWORDS
Scheduling, Load Balancing, Random Order

ACM Reference Format:
Sungjin Im, Ravi Kumar, Shi Li, Aditya Petety, and Manish Purohit. 2024.

Online Load and Graph Balancing for Random Order Inputs . In Proceedings
of the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New York, NY, USA,

7 pages. https://doi.org/10.1145/3626183.3659983

1 INTRODUCTION
Online load balancing is a fundamental problem encountered in

parallel/distributed computing and network communication, ap-

pearing in various forms. It focuses on effectively distributing lim-

ited resources to handle tasks that arrive over time (online). Due to
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its importance, this problem has been extensively studied in both

practice and theory [5, 15, 22].

The model of unrelated machines has received significant atten-

tion due to its effective representation of heterogeneous processing

capabilities. In this setting, the processing time of a job can differ

based on the assigned machine. Minimizing the makespan, the max-

imum workload across all machines, is one of the most common

objectives in this realm.

In many practical scenarios, the sequence of job arrivals is un-

predictable, necessitating online load balancing strategies. For min-

imizing makespan in this online setting, an 𝑂 (log𝑚)-competitive

algorithm is known [3, 7], where𝑚 represents the number of ma-

chines. This algorithm guarantees a solution within a logarithmic

factor of the optimal offline solution, which has full knowledge of

the entire job sequence in advance. Notably, this competitive ratio

is known to be tight under adversarial job arrival orders [7], where

the algorithm has no information about future jobs.

One way to circumvent the strong lower bounds is to consider

the random arrival order model. In this model, the adversary first

defines the machines and jobs, then the jobs arrive in a random

permutation. The appeal of this model is its simplicity: no assump-

tions are made about the overall input, and only the order of arrival

is randomized. Crucially, the optimal offline solution remains un-

changed. The random arrival model has been exceptionally effective

in breaking many lower bound barriers, as seen in the secretary

problem, packing integer problem, online facility location problem,

and many others. For a comprehensive overview of the results in

the random arrival model, see [20].

Despite the success of the random arrival model in other contexts,

research on online load balancing within this framework remains

surprisingly thin. To the best of our knowledge, the only non-trivial

result for this problem is a lower bound of Ω(log log𝑚) [9].

1.1 Our Results
In this paper, wemake significant strides in online load balancing for

unrelated machines with the random arrival model by establishing

the following new bounds.

Lower Bounds. We show lower bounds for the special case of

graph balancing [14]. Here, edges representing jobs arrive online,

and we must immediately orient each arriving edge towards one

of its endpoints. The objective is to minimize the maximum in-

degree of any vertex, i.e., the highest number of incoming edges

for a single vertex. This problem is equivalent to the online load
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balancing scenario where each job has a unit size on exactly two

machines and an infinite size on the rest.

Even in this restricted setting, we establish a new lower bound

of Ω(
√︁
log𝑚) for any randomized algorithm, where 𝑚 denotes

the number of machines (or the number of vertices in the graph

balancing problem). This is an exponential improvement over the

previously known lower bound of Ω(log log𝑚). Interestingly, our
bound holds even when the instance is a tree and the algorithm

knows the structure a priori. This result is presented in Section 4.1.

We further demonstrate that the intuitive greedy algorithm,

which assigns each job to the less loaded machine (breaking ties ran-

domly), has a competitive ratio of Ω(log𝑚/log log𝑚). Expressed
in graph balancing terminology, this algorithm orients each edge

towards the endpoint with the lower in-degree. This highlights the

necessity of deviating from the straightforward greedy approach to

achieve a competitive ratio substantially better than the Θ(log𝑚)
bound, which is the best possible in the adversarial order setting.

This result can be found in Section 4.2.

Upper Bounds. On the positive side, we present an algorithm

for online load balancing in the random arrival order model that

achieves a competitive ratio of 𝑂 (log𝑚/log log𝑚). Notably, this
result applies to the general setting of unrelated machines. While

the improvement over the𝑂 (log𝑚) bound in the adversarial model

is modest, it nevertheless establishes a meaningful separation be-

tween the two models for this problem. This result is in Section 3.

Remark. In the online makespan minimization for unrelated

machines problem, we use𝑚 to denote the number of machines

and 𝑛 the number of jobs. This is the standard notation used in the

scheduling literature. However, in the graph balancing problem,

𝑚 is the number of edges and 𝑛 is the number of nodes. Since

nodes correspond to machines, a lower bound 𝑓 (𝑛) for the graph
balancing implies a lower bound 𝑓 (𝑚) for makespan minimization.

In fact, this differentiation is not critical as all lower bound instances

we use for the graph balancing are trees; thus, we have 𝑛 =𝑚 + 1.

1.2 Our Techniques
As a warm-up, we review an instance that demonstrates a lower

bound of Ω(log𝑚) on the competitive ratio of any deterministic

algorithm for adversarial arrivals. Consider a setting with machines

indexed from 1 to𝑚, where𝑚 is assumed to be a power of 2 for

simplicity. Jobs arrive in rounds, with each job having a size of 1 and

being assignable to only two specific machines. We can represent

this constraint by representing jobs as pairs of machine indices. For

example, a pair (1, 2) indicates that the job can be assigned to either

machine 1 or machine 2.

The instance unfolds as follows. In the first round, jobs with

pairs (1, 2), (3, 4), . . . , (𝑚 − 1,𝑚) arrive. Without loss of general-

ity, assume the algorithm assigns these jobs to the even-indexed

machines. The subsequently arriving jobs can only be assigned

to the even-indexed machines, which all already have one job. By

focusing on the even-indexed machines and halving their indices,

we effectively reduce the problem to𝑚/2machines. Each recursion

of this process increases the load on the machines considered in

Figure 1: Illustration of a lower bound instance giving
Ω(log𝑚) lower bound in the adversarial arrival model. Edges
arrive in the order of solid, dashed, and dotted, and they are
wlog assumed to be oriented towards the root.

the current round by 1. Therefore in the (log𝑚)th round, the algo-

rithm’s makespan reaches log𝑚, while an optimal solution has a

makespan of 1, establishing the Ω(log𝑚) lower bound.
This instance also can be viewed as a tree. See Figure 1.

Lower Bounds. In the random arrival order model, orchestrated

job sequences that intentionally concentrate load on specific ma-

chines are no longer viable, as we cannot dictate the order in

which jobs appear. While the aforementioned instance cannot es-

tablish a lower bound for arbitrary algorithms within this model,

a minor tweak of it enables us to demonstrate a lower bound of

Ω(log𝑚/log log𝑚) for the intuitive greedy algorithm, which as-

signs each job to the machine with the lesser current load.

To ‘reproduce’ the adversarial order even in the random ar-

rival order model, we use a ‘fat’ tree where every node has a

polylogarithmic degree except the leaf nodes; here the tree has

an Ω(log𝑚/log log𝑚) height. The key idea is that in the fat tree,

a majority of leaf edges (jobs) arrive before the other edges and

we can show that this bad event can occur recursively with a high

probability, resulting a high load on the root node.

Unfortunately, we cannot use the same fat tree to show a strong

lower bound for arbitrary algorithms. This is because of the follow-

ing reason. To obtain a good load balancing, it is important to orient

edges towards the leaf nodes. However, it is easy for an algorithm

to distinguish the leaf nodes from the others early in the random

order model because the non-leaf nodes have high degrees.

To overcome this issue, our recursive construction is done more

carefully. The main property the tree has is that when an edge

arrives online, no algorithm should be able to distinguish between

the two end points as to which is the parent node for a large number

of edges. However, this lower bound instant construction comes

at a cost. The tree become significantly fatter and has a height

Θ(
√︁
log𝑚), which translates to our lower bound.

Upper Bound. For the upper bound on makespan minimization

for unrelated machines, we draw inspiration for the algorithm from

[29]. The idea is to keep track of a potential function over all ma-

chines and reset these potentials after half of the inputs have arrived

[19]. The potential function is essentially the softmax function of

the machine loads. The algorithm then assigns an arriving job to

the machine that incurs the least increase in the potential. The
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algorithm is identical in both phases so it suffices to analyze only

one half. This restarting helps as it ensures sufficient randomness

for jobs that arrive later, which is crucial for the analysis.

1.3 Other Related Work
As mentioned before, online load balancing finds numerous appli-

cations in parallel/distributed computing and network communi-

cation. Thus, a vast literature exists on this topic [5, 11, 15, 22, 24]

and we only cover the most related work.

The online load balancing problem was introduced by Graham

in his seminal work [16, 17]. The work showed the list scheduling

algorithm that assign an arriving job to the least loaded machine is

(2− 1/𝑚)-competitive when all machines are identical. The current

best known competitive ratio for this problem is 1.916 [1]. When

the machines are uniformly related, meaning that machines have

different speeds, 𝑂 (1)-competitive algorithms are known [8]. For

unrelated machines, 𝑂 (𝑞)-competitive algorithms are known for

minimizing the 𝑞-norm of machine loads [4, 12]. For extension to

multidimensional load balancing, see [6, 21, 28].

There has been a load of work on beyond-worst-case analysis

in the recent years. The random arrival order model is a prime

example of this framework. Here, we present a selection of recent

advances within this model. For the online load balancing problem

on identical machines, when jobs arrive in random order, there is a

1.8478-competitive algorithm [2] (which is better than known lower

bounds in the adversarial setting). When the elements are revealed

in a random order, the online set cover admits a competitive ratio

of 𝑂 (log𝑚𝑛) [18], which matches the offline bound of 𝑂 (log𝑛)
when 𝑚 is polynomial in 𝑛; here 𝑚 is the number of sets and 𝑛

is the number of elements. The online facility location problem

admits a competitive ratio of 3 in the random order model [23]. As

mentioned, the reader is referred to the survey [20] for work in the

random arrival order.

Molinaro [29] provides algorithms that are simultaneously good

both in the adversarial arrival model and in the random arrival

model. In particular, for the makespan objective, the work gives

an algorithm that is Θ(log𝑚/𝜖)-competitive in the adversarial

order, while simultaneously giving a makespan of (1 + 𝜖)opt +
𝑂 (𝑚 log𝑚/𝜖2) in random order. Unfortunately, the analysis re-

quires 𝜖 ∈ (0, 1] and therefore does not give a competitive ratio

better than 𝑂 (log𝑚).
Online load balancing has been recently studied in the presence

of ML predictions. The algorithms are given certain compact predic-

tions on the input and can achieve competitive ratios significantly

better than 𝑂 (log𝑚) when the predictions are almost accurate

while asymptotically retaining the worst case guarantees [25, 27].

We now discuss related work on the offline load balancing prob-

lems. Offline, the load balancing problem for unrelated machines

does not admit a better than 1.5-approximation unless P = NP and

a 2-approximation is known for the problem due to the seminal

work by Lenstra et al. [26]. For the graph balancing problem, when

𝐺 is known offline, [13] gives a 1.75-approximation.

2 PRELIMINARIES AND NOTATION
We consider the online makespan minimization problem on unre-

lated machines. Let J be a set of 𝑛 jobs and let M be a set of𝑚

machines. Let 𝑝𝑖, 𝑗 ∈ R+ ∪ {∞} denote the processing load of job

𝑗 on machine 𝑖; in the online setting the values of {𝑝𝑖, 𝑗 } for a job
𝑗 become known to the algorithm when job 𝑗 arrives. For an as-

signment 𝜎 : J → M of jobs to machines, we define its makespan
as makespan(𝜎) = max𝑖∈M

∑
𝑗∈𝜎−1 (𝑖 ) 𝑝𝑖, 𝑗 . The goal of an online

algorithm is to find an assignment 𝜎 that minimizes makespan(𝜎).
In this paper we consider the online setting with uniformly

random job arrivals. Let A be an online algorithm. Let 𝜋 be a

uniformly random permutation of jobs in J . At each time step 𝑡 ∈
[𝑛], a job 𝜋 (𝑡) ∈ J arrives and A needs to assign it to exactly one

machine in M; let makespan(A; {𝑝𝑖, 𝑗 }, 𝜋) be the random variable

denoting its makespan. The number of jobs, 𝑛, is known to the

algorithm before any of the jobs arrive.

Let 𝜎∗ be the assignment of an optimal, offline algorithm. For

any algorithm A, we define its competitive ratio as the worst-case

ratio of the expected makespan incurred by the algorithm to the

optimal makespan, i.e.,

competitive-ratio(A) = max

{𝑝𝑖,𝑗 }

E𝜋 [makespan(A; {𝑝𝑖, 𝑗 }, 𝜋)]
makespan(𝜎∗) .

Here, we will parameterize the competitive ratio by the number of

machines,𝑚. So, the competitive ratio is defined over the instances

that have at most𝑚 machines.

We also consider a very special case of the makespan minimiza-

tion problem called graph balancing. Let 𝐺 = (𝑉 , 𝐸) be an undi-

rected graph. The goal is to orient the edges of the graph 𝐺 so as

to minimize max𝑣∈𝑉 indegree(v). It can be readily seen that this is

a special case of makespan minimization on unrelated machines by

considering each vertex as a machine and an edge as a job where

each job has a unit load on exactly two machines and an infinite

load otherwise. Again, in this paper, we study the graph balancing

problem with edges arriving uniformly at random.

3 UNRELATED MACHINES: UPPER BOUND
In this section we give an improved upper bound on the competitive

ratio for the online makespan minimization on unrelated machines,

under uniformly random job arrivals. We assume that opt ≥ 1. We

further assume wlog that 𝑝𝑖, 𝑗 ∈ [0, 1] ∪ {∞}. This is because we
can guess the optimum objective within a constant factor by the

standard doubling trick: if the guess turns out to be wrong (we can

solve the offline problem within a factor of 2 [26]), then we double

our guess and pretend that all machines have zero load. When the

current guess is 𝑔 ≥ 2opt, 𝑗 cannot be assigned to machine 𝑖 if

𝑝𝑖, 𝑗 ≥ 𝑔; therefore, we can replace the value of 𝑝𝑖, 𝑗 with ∞. For all

other 𝑝𝑖, 𝑗 ≤ 𝑔, by scaling them down by 𝑔, we have the assumption.

3.1 An 𝑂 ( log𝑚

log log𝑚
) Upper Bound

3.1.1 Algorithm. The algorithm has two phases that are identi-

cal [19, 29]. In the second phase, which starts when the (⌊𝑛/2⌋+1)st
job arrives, it pretends that no jobs have arrived so far. The algo-

rithm uses a softmax of machine loads as the potential, and assigns

a new job to the machine that increases the potential the least.

To describe the algorithm, it will be convenient to define load

vector 𝑥 ∈ R𝑚≥0, which describes the current load of each machine,

i.e., if 𝐽𝑖 is the set of jobs currently assigned to machine 𝑖 , 𝑥𝑖 =∑
𝑗∈ 𝐽𝑖 𝑝𝑖, 𝑗 . For easy indexing, say job 𝑗𝑡 arrives at time 𝑡 . If we
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assign 𝑗𝑡 to machine 𝑖 , it adds to the current load vector a vector𝑤𝑡
,

whose 𝑖th entry is 𝑝𝑖, 𝑗 ∈ [0, 1] and all other entries are 0. Notice

that𝑤𝑡
has only one non-zero coordinate. Let 𝑠𝑡 be the load vector

right after the algorithm assigned 𝑗𝑡 , i.e., 𝑠𝑡 = 𝑤1 + · · · +𝑤𝑡
.

We are now ready to define our potential function:

𝜓 (𝑥) = 1

𝑎
ln

∑︁
𝑖∈M

𝑒𝑎𝑥𝑖 ,

where 𝑥 ∈ R𝑚≥0 is the load vector and 𝑎 > 0 is a parameter to be

decided later. As mentioned above, a new job is assigned to the

machine that increases the potential the least.

As observed in [19, 29], it suffices to only consider the first half

of the jobs. This is because the first half and the second half have

the same distribution, and the algorithm “resets" after seeing the

first half of the jobs. This will increase the makespan only by a

factor of two. Henceforth, we will only consider the first 𝑛/2 jobs.
Define 𝑣𝑡 = ∇𝜓 (𝑠𝑡−1). Notice that 𝑣𝑡

𝑖
= 1

𝑎
𝑎·𝑒𝑎𝑥𝑖∑
𝑖′ 𝑒

𝑎𝑥𝑖′ = 𝑒𝑎𝑥𝑖∑
𝑖′ 𝑒

𝑎𝑥𝑖′ .

The following is immediate by straightforward calculations.

Claim 1. For all 𝑡 ≥ 1, we have | |𝑣𝑡 | |1 = 1 and 𝑣𝑡 ≤ 𝑒𝑎𝑣𝑡−1, where
the inequality holds for each coordinate.

Using the convexity of the𝜓 function, we have

𝜓 (𝑠𝑡 ) −𝜓 (𝑠𝑡−1) ≤ ⟨𝑤𝑡 ,∇𝜓 (𝑠𝑡 )⟩ = ⟨𝑤𝑡 , 𝑣𝑡+1⟩ ≤ 𝑒𝑎 ⟨𝑤𝑡 , 𝑣𝑡 ⟩.
Then, adding the inequalities over all 𝑡 ’s in {1, 2, . . . , 𝑛/2}, we have

𝜓 (𝑠𝑛/2) −𝜓 (0) ≤ 𝑒𝑎
𝑛/2∑︁
𝑡=1

⟨𝑤𝑡 , 𝑣𝑡 ⟩.

Noticing that𝜓 (𝑠𝑛/2) ≥ ||𝑠𝑛/2 | |∞ and𝜓 (0) = ln𝑚
𝑎 , we have

| |𝑠𝑛/2 | |∞ ≤ 𝑒𝑎
𝑛/2∑︁
𝑡=1

⟨𝑤𝑡 , 𝑣𝑡 ⟩ + ln𝑚

𝑎
.

Let 𝑜𝑡 ∈ [0, 1]𝑚 be the load vector induced by the job 𝑗𝑡 in the

optimum solution. Then 𝑜𝑡
𝑖′ = 𝑝𝑖 𝑗𝑡 if 𝑖

′ = 𝑖 and 0 otherwise. Here,

we are considering the fixed optimum solution that assigns all the

𝑛 jobs in 𝐽 to machines. Although each job is assigned to a fixed

machine in the optimum solution, 𝑜𝑡 is stochastic as 𝑗𝑡 is the 𝑡th

job in the random order.

Claim 2. For all 𝑡 ≥ 1, we have ⟨𝑣𝑡 ,𝑤𝑡 ⟩ ≤ 𝑒𝑎 ⟨𝑣𝑡 , 𝑜𝑡 ⟩.

Proof.

⟨𝑤𝑡 , 𝑣𝑡 ⟩ = ⟨𝑤𝑡 ,∇𝜓 (𝑠𝑡−1)⟩
≤ 𝜓 (𝑠𝑡 ) −𝜓 (𝑠𝑡−1) ⊲ 𝑠𝑡 = 𝑠𝑡−1 +𝑤𝑡

and𝜓 is convex

≤ 𝜓 (𝑠𝑡−1 + 𝑜𝑡 ) −𝜓 (𝑠𝑡−1) ⊲ Algorithm is greedy

≤ ⟨𝑜𝑡 ,∇𝜓 (𝑠𝑡−1 + 𝑜𝑡 )⟩ ⊲𝜓 is convex

≤ ⟨𝑜𝑡 , 𝑒𝑎∇𝜓 (𝑠𝑡−1)⟩ ⊲ Since | |𝑜𝑡 | |∞ ≤ 1

= 𝑒𝑎 ⟨𝑜𝑡 , 𝑣𝑡 ⟩. □

Thanks to this claim, we have

| |𝑠𝑛/2 | |∞ ≤ 𝑒2𝑎
𝑛/2∑︁
𝑡=1

⟨𝑣𝑡 , 𝑜𝑡 ⟩ + ln𝑚

𝑎
. (1)

Consider an arbitrary time step 𝑡 . So far, only jobs 𝑗1, . . . , 𝑗𝑡−1

have been revealed and they completely determine 𝑣𝑡 . Then, 𝑗𝑡

is sampled from the other jobs in 𝐽 uniformly at random. Note

that 𝑜𝑡 + 𝑜𝑡+1 + · · · + 𝑜𝑛 ≤ opt · 1. Therefore, we have E[𝑜𝑡 |
𝑣𝑡 ] ≤ opt

𝑛−(𝑡−1) · 1. Moreover, | |𝑣𝑡 | |1 ≤ 1; see Claim 1. So, we have

E[⟨𝑣𝑡 , 𝑜𝑡 ⟩ | 𝑣𝑡 ] ≤ opt

𝑛−(𝑡−1) . Taking expectation over Eq. (1), we get

E[| |𝑠𝑛/2 | |∞] ≤ 𝑒2𝑎opt

(
1

𝑛
+ 1

𝑛 − 1

+ · · · + 1

𝑛/2

)
+ ln𝑚

𝑎

≤ 2𝑒2𝑎opt + ln𝑚

𝑎
.

The last inequality above is why we run the algorithm in two phases

(otherwise, the summation leads to a Θ(log𝑛) term).

By setting 𝑎 = ln ln𝑚
6

, we have

2𝑒2𝑎opt + ln𝑚

𝑎
= 2(ln𝑚)

1

3 opt + 6 ln𝑚

ln ln𝑚

= 𝑂

(
ln𝑚

ln ln𝑚

)
opt,

where the last equation follows since opt ≥ 1 and 2(ln𝑚)
1

3 <
6 ln𝑚
ln ln𝑚

for𝑚 ≥ 2. Thus, we have shown that the maximum load is

𝑂 ( log𝑚

log log𝑚
)opt in expectation for the first half of the arriving jobs.

As discussed, our algorithm restarts after assigning the first half

jobs, and the makespan for the second half of jobs can be upper

bounded symmetrically. Thus, we have the following.

Theorem 1. There exists an 𝑂 (log𝑚/log log𝑚)-competitive algo-
rithm for minimizing makespan on unrelated machines, when the
jobs arrive in uniformly random order.

4 GRAPH BALANCING: LOWER BOUNDS
In this section we obtain new lower bounds for the online graph

balancing problem, which is a special case of unrelated machines,

in the random edge arrival model. Interestingly, our lower bounds

hold for tree instances even when the structure of the tree is fully

known to the algorithm a priori. It can be easily observed that

in any tree instance, an optimal offline solution always attains a

maximum load of 1 by simply rooting the tree at an arbitrary node

and orienting every edge away from the root. We first present our

stronger lower bound, which only holds for the greedy algorithm,

and then present a lower bound that holds for any algorithm.

4.1 Lower Bound for a Greedy Algorithm
Consider the following natural greedy algorithm. When an edge

𝑒 = (𝑢, 𝑣) arrives, the algorithm (Greedy) assigns 𝑒 to the endpoint

that has the least load at that time, breaking ties uniformly at

random. Here, a node’s load is the number of already-arrived edges

that have been oriented towards it. Greedy is known to have the

optimal competitive ratio of Θ(log𝑛) for online graph balancing in

the adversarial edge arrival model.

In this section we show a lower bound of Ω(log𝑛/log log𝑛) for
Greedy in the random arrival model even when the input graph is

a tree. The lower bound instance is the following complete tree.

Lower Bound Instance. Let 𝑇 be a rooted tree with root 𝑟 and

depth 𝑘 . Each internal node of 𝑇 has 𝑑 = 𝑘4 children. The total
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number of nodes in 𝑇 is thus 𝑛 = Θ(𝑑𝑘 ) = Θ(𝑘4𝑘 ); so we have

𝑘 = Θ(log𝑛/log log𝑛). We assume that 𝑘 is sufficiently large.

Before we discuss the intuition and the analysis, we first set up

some notation and terminology. For ease of analysis, we pretend

that edges adjacent to 𝑟 also have a parent edge (or equivalently,

the tree is rooted at a degree 1 node 𝑟 ′ that connects to 𝑟 ). An edge’s

depth is defined as the number of edges including itself on the path

from the root to the edge. Thus, the leaf edges have depth 𝑘 and

the edges incident to the root have depth 1. A node 𝑢’s height is
defined as the number of edges between 𝑢 to a closest leaf node.

Thus, a leaf edge has two end points of height 1 and 0 respectively.

Similarly, an edge’s height is defined as the height of the node of

its end point that is closer to the root.

4.1.1 Intuition. Suppose edges of 𝑇 arrive in a specific order, from

bottom to top—so all leaf edges appear first, and the edges of height

two arrive, and so forth. Consider the 𝑑 leaf edges that share a

parent node. With high probability, one of these 𝑑 edges will be

oriented towards the parent (and all the others arriving afterwards

will be directed towards the leaves). So after all the leaf edges arrive,

(almost) all nodes of height 1 will have a load of 1. Then when all

the edges of the upper level—equivalently the edges of height 2—

arrive, a similar argument shows that two of the edges that share

a parent will be directed towards the parent, so nodes of height 2

get a load of 2. Continuing this way, the root node will have a load

of 𝑘 = Ω(log𝑛/log log𝑛). The primary intuition is that by making

the degree of each internal node large enough—even when edges

arrive in random order—there is a subtree of a similar structure

where edges arrive in this specific leaf-to-root order.

4.1.2 Analysis. For the sake of analysis, we let each edge 𝑒 be

associated with a random number 𝑟𝑒 sampled from [0, 1] uniformly

at random. We assume that edge 𝑒 arrives at time 𝑟𝑒 . Note that this

way we can simulate the random arrival order of the edges. As

discussed before, the greedy algorithm suffers the most when edges

arrive in the bottom-to-top order. Thus, we will seek to show that

there is a 𝑘2-ary subtree where edges arrive in the bottom-to-top

order. To make the analysis more convenient, we will only look at

trees where edges arrive in a more structured manner. Let 𝐼1, . . . 𝐼𝑘
be an equal partition of (0, 1) into intervals, i.e., 𝐼1 = (0, 1/𝑘), 𝐼2 =
(1/𝑘, 2/𝑘), . . . and so on.

1

Definition 1 (Bad node). We say that a node 𝑢 of height ℎ is bad if
at least 𝑘2 of its child edges arrive during 𝐼ℎ ; let 𝐵𝑢 denote this bad
event (for the algorithm).

The following lemma is a straightforward consequence of the

Chernoff bound. We bound the probability that the bad event does

not occur, i.e., for a node 𝑢 of height ℎ, at most 𝑘2 of its child edges

arrive during 𝐼ℎ .

Lemma 1. For a non-leaf node 𝑢, Pr[𝐵𝑢 ] ≥ 1 − 1

𝑒𝑘
3/8 .

Proof. Consider a non-leaf node 𝑢 with height ℎ. We want to

calculate the probability that at most 𝑘2 child edges arrive in the

interval 𝐼ℎ . Let {𝑒𝑖 }𝑘
4

𝑖=1
denote the 𝑘4 child edges of node 𝑢. For

any child edge 𝑒𝑖 , let 𝑋𝑖 denote the random variable that is 0 if 𝑒𝑖

1
Here, we do not distinguish between closed intervals and open intervals as almost

surely no edge will arrive at a time that is a multiple of 1/𝑘 .

arrives in 𝐼ℎ and 1 otherwise. Define 𝑋 =
∑𝑘4

𝑖=1 𝑋𝑖 . Since each edge

𝑒𝑖 arrives at 𝑟𝑒𝑖 ∈ [0, 1] independently and uniformly at random,

we have E[𝑋𝑖 ] = 1/𝑘, ∀𝑒𝑖 . Applying the standard Chernoff bound

(Theorem 4 in Appendix A with 𝜇 = 𝑘3 and 𝛿 = 1 − 1

𝑘
), we get

Pr[𝑋 < 𝑘2] = 𝑒−𝑘
3𝛿2/2 ≤ 𝑒−𝑘

3/8
for any 𝑘 ≥ 3. □

Definition 2 (Bad subtree). We say a rooted subtree 𝑇 ′ of 𝑇 is bad
if it is a full 𝑘2-ary tree of height 𝑘 whose internal nodes are all bad.

By definition, the edges of a bad subtree arrive in a leaf-to-root

order, i.e, for any internal node in the tree, all child edges arrive

before the parent edge. We now argue that at least one bad subtree

exists with high probability.

Lemma 2. There exits a bad subtree 𝑇 ′ with probability at least
1 − 2𝑘2𝑘

𝑒𝑘
3/8 .

Proof. The root is good with probability at most 𝜌 := 1/𝑒𝑘3/8
.

Conditioned on the root being bad, consider some arbitrary 𝑘2 child

edges that all arrive during interval 𝐼𝑘 and let 𝑢1, . . . 𝑢𝑘2 be the

corresponding child nodes. By Lemma1, each of those 𝑢𝑖 ’s is good

with probability at most 𝜌 . So by a union bound, the probability

that at least one of those nodes is good is at most 𝑘2𝜌 .

Using this argument recursively and applying a union bound

over all levels, the probability that we have no bad subtree is at

most 𝜌 (1 + 𝑘2 + · · · + 𝑘2𝑘 ) ≤ 2𝑘2𝑘/𝑒𝑘3/8
. □

Lemma 3. Suppose the input graph is a bad tree, with no other edges.
In other words, suppose the input graph is a full 𝑘2-ary tree of height
𝑘 where edges in the bottom-to-top order. Then, the maximum load of
a node is at least 𝑘 with a probability at least 1 − 1/𝑛.

Proof. We say a node𝑢 of height ℎ is fully loaded if its load is at

least ℎ. We denote the event as 𝐹𝑢 . Let 𝑓ℎ := Pr[𝐹𝑢 | 𝐹𝑣 ∀𝑣 ∈ 𝐶𝑢 ]
for a node of height ℎ; here 𝐶𝑢 denotes 𝑢’s children (nodes).

We show that 𝑐ℎ ≥ 1− 1

2
𝑘2−ℎ . Indeed, consider an arbitrary node

𝑢 of height ℎ. Since we assume that edges arrive in the bottom-

to-top order, before any child edges of 𝑢 arrives, we know that

every child node 𝑣 of 𝑢 has load at least ℎ − 1 from the condition

𝐹𝑣,∀𝑣 ∈ 𝐶𝑢 . So, the first ℎ − 1 child edges of 𝑢 will orient towards 𝑢.

For any other edge (𝑢, 𝑣) arriving later, if 𝑣 already has load more

than ℎ − 1, the claim is immediate. So, suppose not. Then, 𝑢 can

have load ℎ − 1 only when all the child edges of 𝑢, except the first

ℎ − 1, are not oriented towards 𝑢, which occurs with probability

1

2
𝑘2−ℎ ≤ 1

2
𝑘2−𝑘 .

The bad tree has at most (𝑘2)𝑘+1 internal nodes, and the root

has load at least ℎ if 𝐹𝑢 occurs for every internal node 𝑢. Thus, by a

simple union bound, the root has load at least𝑘 = Θ(log𝑛/log log𝑛)
with probability at least 1 − (𝑘2)𝑘+1 1

2
𝑘2−𝑘 > 1 − 1/𝑛. □

We now explain why we continue to have the lower bound

of 𝑘 , independent of the other edges different from the bad tree.

This follows from the monotonicity of the greedy algorithm. In

other words, inserting an edge (job) to an input sequence can only

increase the maximum load.

Since 𝑘 = Ω(log𝑛/log log𝑛), we have the following theorem.
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Theorem 2. There exists a tree𝑇 with 𝑛 nodes such that, for uniform
random edge arrivals, the greedy algorithm outputs an orientation
with maximum load Ω(log𝑛/log log𝑛) with high probability.

4.2 Lower Bound for Arbitrary Algorithms
In this section we show a lower bound of Ω(

√︁
log𝑛) for the graph

balancing problem with random edge arrivals. Unlike Section 4.1,

this lower bound is not restricted to the greedy algorithm and holds

for all online algorithms.

Lower Bound Instance. We denote the lower bound instance of

height 𝐷 as 𝑇𝐷 , where 𝐷 ≥ 0 is an integer. For every 0 ≤ 𝑑 ≤ 𝐷 ,

𝑇𝑑 is constructed recursively as follows: 𝑇0 is a singleton node. Let

𝑟 be the root of 𝑇𝑑 . For every 𝑑
′ = 0, 1, . . . , 𝑑 − 1, there are 2

𝐷−𝑑 ′

copies of 𝑇𝑑 ′ , each of which is a subtree of 𝑟 . Here, it is important

to note that 𝑇1, . . . ,𝑇𝐷 have dependency on 𝐷 . See Figure 2 for an

illustration of the instance 𝑇2.

𝑇2

𝑇1

𝑇0 𝑇0 𝑇0 𝑇0

𝑇1

𝑇0 𝑇0 𝑇0 𝑇0

𝑇0 𝑇0 𝑇0 𝑇0

Figure 2: Example of a lower bound instance for 𝐷 = 2. Con-
sider the time when the dashed edge appears. Edges are dot-
ted if they have already arrived, solid otherwise. For the
dashed edge, no algorithm can distinguish which of its end
points is the parent node.

We label each node 𝑣 in 𝑇𝐷 with an integer in [0, 𝐷]: if the sub-
tree rooted at 𝑣 is a copy of 𝑇𝑑 , then we set ℓ (𝑣) = 𝑑 to be the label

of 𝑣 . Therefore, for two integers 0 ≤ 𝑑′ < 𝑑 ≤ 𝐷 , any node 𝑢 with

label 𝑑 has 2
𝐷−𝑑 ′

children with label 𝑑′.

4.2.1 Intuition. The main idea behind this lower bound instance

is that when some edges arrive online, the algorithm cannot distin-

guish between their parent node and the child node. Therefore, we

can assume that the algorithm assigns such an edge 𝑒 = (𝑢, 𝑣) to
𝑢 with probability 1/2 and to 𝑣 with probability 1/2. In particular,

consider any node 𝑣 of with label 𝑑 . Then, for each 𝑑′ ∈ [0, 𝑑 − 1],
there is at least one edge (𝑣,𝑢) with ℓ (𝑢) = 𝑑′, such that with prob-

ability at least 1/2 the algorithm cannot distinguish the subtree

rooted at 𝑢 consisting of the edges that have arrived so far, and the

analogously defined subtree rooted at 𝑣 . Using this observation and

the fact that 𝐷 = Ω(
√︁
log𝑛), we can lower bound the maximum

load on the root of the tree.

4.2.2 Analysis. We begin by defining the event when the algorithm

cannot distinguish between the parent and child node.

Definition 3. Let 𝜋 be a random permutation over all edges in 𝑇𝐷 .
Consider an edge 𝑒 = (𝑢, 𝑣) with 𝑢 being the parent. The permutation
𝜋 is bad for 𝑒 , if the following hold:

• the parent edge of 𝑢 appears after 𝑒 in the order 𝜋 , and
• all other child edges (𝑢, 𝑣 ′) of𝑢 with ℓ (𝑣 ′) ≥ ℓ (𝑣) appear after
(𝑢, 𝑣) in the order 𝜋 .

Consider the arrival time of an edge 𝑒 = (𝑢, 𝑣) where ℓ (𝑢) = 𝑑

and ℓ (𝑣) = 𝑑′ < 𝑑 . We observe that conditioned on the event that

the permutation 𝜋 is bad for edge (𝑢, 𝑣), the subtrees rooted at

𝑢 and 𝑣 comprised only of the edges that have arrived so far are

stochastically identical. Thus, we can assume wlog that any fixed

algorithm orients the edge (𝑢, 𝑣) towards each of its end points with
probability

1

2
, which can be formally shown in the following claim.

Note that it suffices to consider a fixed deterministic algorithm

thanks to Yao’s minmax principle [10].

Claim 3. Conditioned on the event that the permutation 𝜋 is bad for
edge (𝑢, 𝑣), any fixed deterministic algorithm orients the edge towards
each of its end points with probability 1

2
.

Proof. Let 𝜓 be a random permutation of the node identities

that is generated by the adversary, which is unknown to the de-

terministic algorithm. Let 𝜋 be the random permutation of edges

that denotes the arrival order. We condition on the event that the

arrival order 𝜋 is bad for some specific edge (𝑢, 𝑣). Note that the
algorithm makes its decisions based on revealed edges of the form

(𝜓 (𝑥),𝜓 (𝑦)). By our construction, the subtrees 𝑇𝑢 and 𝑇𝑣 rooted

at 𝑢 and 𝑣 respectively consisting of arrived edges are stochasti-

cally identical. Suppose the algorithm orients the revealed edge

(𝜓 (𝑢),𝜓 (𝑣)) towards 𝑢 in a specific instantiation. Since 𝑇𝑢 and

𝑇𝑣 are stochastically identical, they will have their instantiations

swapped equiprobably, meaning that the algorithm must orient

(𝑢, 𝑣) towards 𝑣 with the same probability (over the random choice

of𝜓 and 𝜋 ). □

In the following lemma, we calculate the probability that a per-

mutation is bad for an edge. For our purpose, it is enough to consider

an edge with the root 𝑟 of 𝑇𝐷 as one of its end points.

Lemma 4. A permutation 𝜋 over the edges of 𝑇𝐷 is bad for the first
appearing edge (𝑟,𝑢) with ℓ (𝑢) = 𝑑 with probability at least 1

2
.

Proof. The probability can be easily calculated as

#edges with ℓ (𝑣) = 𝑑

#edges with ℓ (𝑣) ≥ 𝑑
=

2
𝐷−𝑑

2
𝐷−𝑑 + · · · + 2

𝐷−(𝐷−1) + 1

≥ 1

2

. □

Focus on the root 𝑟 with ℓ (𝑟 ) = 𝐷 , and an integer 𝑑 < 𝐷 . Con-

sider the first edge (𝑟,𝑢) with ℓ (𝑢) = 𝑑 . With probability 1/2, the

permutation is bad for this edge. Conditioned on the permutation

being bad, the algorithm assigns the edge to 𝑟 with probability 1/2.

Therefore, the algorithm assigns the edge to 𝑟 with probability at

least 1/4. Consider all values of 𝑑 < 𝐷 , in expectation the root will

get a load of Ω(𝐷). The size of the tree is 2𝑂 (𝐷2 )
, as we will see

below. Therefore we can obtain a lower bound of Ω(
√︁
log𝑛).

Lemma 5. If 𝑛 is the size of the tree 𝑇𝐷 , then 𝐷 = Ω(
√︁
log𝑛).
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Proof. Let 𝑛(𝑑) denote the number of nodes in 𝑇𝑑 . From the

recursive construction of the trees, we have

𝑛(𝑑) =
{
1 𝑑 = 0

2
𝐷−0𝑛(0) + · · · + 2

𝐷−(𝑑−1)𝑛(𝑑 − 1) + 1 𝑑 ∈ [1, 𝐷 − 1]

Since 𝑛(𝑑) is increasing in 𝑑 , when 𝑑 ≥ 1, we have 𝑛(𝑑) ≤ 2
𝐷𝐷 ·

𝑛(𝑑 − 1) ≤ 4
𝐷 · 𝑛(𝑑 − 1). Therefore, 𝑛 = 𝑛(𝐷) ≤ 4

𝐷2

. This gives us

the desired result 𝐷 = Ω(
√︁
log𝑛).

□

Theorem 3. There exists a tree𝑇 with 𝑛 nodes such that for uniform
random edge arrivals, any algorithm outputs an orientation with
maximum load Ω(

√︁
log𝑛), with high probability.

5 CONCLUDING REMARKS
In this paper, we revisit the classic online load balancing problem for

unrelated machines in the random arrival order model. While we

achieve an exponential improvement over the previous lower bound,

a substantial gap remains between the lower bound of Ω(
√︁
log𝑚)

and the upper bound of 𝑂 (log𝑚/log log𝑚). Importantly, the ques-

tion of whether an algorithm with a better competitive ratio exists

even for tree inputs in the online graph balancing problem remains

open. This holds true even when the entire tree structure is known

a priori (with the identities of nodes and edges hidden).
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A CHERNOFF BOUND
Theorem 4. Let𝑋1, . . . , 𝑋𝑛 be𝑛 independent, Bernoulli random vari-
ables, where P[𝑋𝑖 = 1] = 𝑝𝑖 , for all 𝑖 . For 𝑋 =

∑
𝑋𝑖 , its expectation is

𝜇 = E[𝑋 ] = ∑
𝑖 𝑝𝑖 . Then for any 0 < 𝛿 < 1, we have

𝑃 [𝑋 < (1 − 𝛿)𝜇] <
(

𝑒−𝛿

(1 − 𝛿)1−𝛿

)𝜇
. (2)

Further, the upper bound is at most 𝑒−𝜇𝛿
2/2 when 𝛿 ∈ [0, 1).
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