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Abstract

The classical ski-rental problem admits a textbook 2-competitive deterministic algorithm, and a simple
randomized algorithm that is ¢/e—1-competitive in expectation. The randomized algorithm, while optimal in
expectation, has a large variance in its performance: it has more than a 37% chance of competitive ratio
exceeding 2, and the change of the competitive ratio exceeding n is ©(1/n)!

We ask what happens to the optimal solution if we insist that the tail risk, i.e., the chance of the competitive
ratio exceeding a specific value, is bounded by some constant §. We find that this additional modification
significantly changes the structure of the optimal solution. The probability of purchasing skis on a given day
becomes non-monotone, discontinuous, and arbitrarily large (for sufficiently small tail risk § and large purchase
cost n).

1 Introduction

Decision-making under uncertainty about the future is a central topic in algorithm design; online algorithms,
studied through the metric of competitive analysis, have been successful in guaranteeing worst-case performance
against adversarial inputs. Arguably, the most basic online problem is the Ski Rental problem, which captures a
commonly faced sub-problem, usually known as “rent or buy”: we need to decide whether to stay in the current
state, paying some cost per time unit, or switch to another state, which is expensive but requires no further
payment. In the specific ski rental problem, every morning Alice must decide whether to rent skis for $1 or buy
them for $n, in which case she never needs to rent them again. Her choice is non-obvious because she does not
know the number of days, denoted as x, she is going to ski—the weather may become too warm, she may get
injured, or may just get tired of the sport.

Folklore analysis says that committing to buying skis on the morning of day n is (deterministically) optimal,
as Alice never over-spends by more than a factor of 2 (i.e., this approach has a competitive ratio bounded by 2),
no matter how many days she ends up skiing. If Alice is willing to randomize, she can do even better—she can
commit to buying the skis on day ¢ € [n] with probability proportional to exp(i/n). This method gives the best
possible ¢/e—1 ~ 1.58 competitive ratio in expectation [6].

The competitive ratio is for the worst-case action by the adversary (who decides on the number of skiing
days), it only holds in expectation for Alice. An easy calculation shows that an adversary that ends the ski season
on day n/2 ensures that Alice exceeds the competitive ratio of 2 with probability (v/e —1)/(e — 1) ~ 37%.

Thus more than a third of the time, Alice is better off following the deterministic strategy. Furthermore,
the competitive ratio is Q(n) with probability (1/n)!, illustrating that the “best” randomized algorithm has a
considerable chance of returning a solution significantly worse than the deterministic alternative. Importantly, in
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Figure 1: Figure of the competitive ratio as a function of § for both the optimal strategy and the interpolation
strategy. For fixed values of § = {0.18,0.19} we show the probability of purchasing skis on day ¢ € [1000] for
the two algorithms. Observe that the interpolation algorithm (red dashed line) puts a weight of 1 — §/0* ~ 1/2
on the last day in both cases. The optimal algorithm distributes the weight across the days, but does so in a
non-continuous manner. For instance, observe that the figure for 6 = 0.18 has six non-zero intervals, whereas
& = 0.19 has five non-zero intervals.

the online setting decisions are irrevocable, so results in expectation do not immediately lead to high-probability
bounds. This is in contrast to an offline algorithm where bounding the approximation ratio in expectation often
leads to giving the same bound with high probability by running the algorithm a logarithmic number of times
independently and taking the best solution.

What if one desires upper-case bounds on the chance the randomized algorithm is worse than the deterministic
algorithm? A natural direction is to find the optimal algorithm and study its competitive ratio as a function of
the probability of the competitive ratio exceeding 2. We have the two endpoints—the deterministic algorithm
with a ratio of 2, and the randomized algorithm with an ezpected ratio of ¢/e—1 and a probability of (ve—1)/(e—1)
of exceeding 2. The question we study in this work is what happens in between? What is possible if we put
nontrivial constraints on the tail performance, and what is the structure of these optimal solutions?

To formalize the question we study, let a (v, d)-tail constraint denote the restriction that the probability
(over the choices made by the algorithm) that the worst-case competitive ratio exceeds «y is at most J. Let
0* = (Ve=1)/(e-1). For the ski rental problem, the deterministic algorithm is optimal and satisfies a (2,0)-
tail constraint, whereas the randomized algorithm optimizes the competitive ratio among all of the algorithms
satisfying a (2, *)-tail constraint, or more generally, a (2, d)-tail constraint for any 6 > §*.

Given a collection of arbitrary (v, d) constraints, or even a single nontrivial tail constraint, what is the optimal
algorithm? One may suspect that the solution is well-structured with behavior that is similar to the classical
deterministic and randomized solutions. For example, suppose that we are given a single (2,0)-tail constraint
with § < 6*. It it not hard to see that one way of achieving this is to interpolate between the two classical
solutions: with probability §/6* we run the classical randomized algorithm, and with probability 1 — §/6* we run
the classical deterministic algorithm. This clearly satisfies the tail constraint, is a very simple algorithm, and
inherits a number of nice properties (monotonically increasing probabilities which increase only exponentially, a
single discontinuity at day n, non-zero probability on every day, etc.). Is this interpolation optimal? If not, does
the optimal solution at least have these nice properties, or look “simple”?

1.1 Our Contribution. The answer to these questions is an emphatic no. Not only is the the optimal
solution not an interpolation between the classical algorithms, its structure is wildly different from any previously
considered ski rental algorithm and does not satisfy any of the “nice” properties mentioned earlier. In particular,
we show that the optimum solution has the following surprising properties:
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e Non-monotonicity. The purchase probability does not grow monotonically in time ¢.

e Arbitrarily many discontinuities. Even for a single (v,d) tail constraint, the purchase probability
becomes zero and then positive £2(1/6) times for any sufficiently large n compared to any fixed sufficiently
small 4.

e Arbitrarily fast-growing purchase probability. Again, even for a single (y,d) tail constraint, when
the probability becomes positive, it grows much faster than before—the exponent doubles each time. This
results in continuous sections of the purchase distribution with arbitrarily fast growth.

To illustrate these points, we show the interpolation and the optimal competitive ratios as a function of § in
Figure 1. To add, we show the purchase distributions for two nearby points (namely § = 0.18 and § = 0.19) for
both cases. Note how the solution, while structured enough to reason about, is not in any way “smooth”. For
example, even for these very close §, the number of nonzero regions is distinct—there is a “discontinuity” in how
the optimal solution behaves as ¢ changes from 0.19 to 0.18. This is despite the fact that the achieved competitive
ratio is smoothly changing with ¢, as is apparent from Figure 1.

Proving these properties of the optimal solution is our main technical contribution. The formal statements
are quite complex, but can be found in Section 4, particularly, Lemma 4.6 and Corollary 4.1. As a side effect of
our techniques we can also design an algorithm to actually compute the optimal solution (see Section 3.2).

We would like to emphasize that ski rental is traditionally considered to be an extraordinarily simple setting
for online algorithms. The fact that adding a single tail constraint (which as discussed is something we naturally
want in an online setting where we cannot run multiple times) results in such a complex and nonobvious solution
structure is, in our opinion, extremely surprising. We hope that this opens up a new set of questions on tail
bounds in online algorithms.

1.1.1 Technical Overview. In order to introduce our techniques, we first need to introduce some notation.
Consider the following characterization of any randomized algorithm for ski rental. Prior to skiing on the first
day, Alice flips a coin and commits to buying skis on the morning of day ¢ with probability f;. Note the f;’s form
a distribution, i.e., >, fi = 1. We call f = {fi}ic[n], the purchase distribution.

The purchase distribution, along with the adversary’s choice of the last skiing day x, induces the competitive
ratio, which itself is a random variable. We denote the competitiveness function oy, where ay(z) is the ezpected
competitive ratio when Alice stops skiing at the end of day x and chooses her purchase day from the distribution
f

Let f* be the randomized algorithm minimizing the expected competitive ratio, i.e., minimizing max, o ¢« ().
It is known that this algorithm sets f* o exp(i). The optimal choice of f* balances two competing objectives:
buying early is good if the number of skiing days exceeds n, on the other hand, buying late is good if the adversary’s
choice for the number of skiing days is small. The balance is done in the worst-case over all adversary’s choices,
but in expectation over the random coins flipped by the algorithm. In the optimal solution the balance has the
effect that the competitiveness function ay«(x) = ¢/e—1, that is, it is constant over all « € [n]. Thus, no matter
what day the adversary picks as the last ski day, Alice will have the exact same expected competitive ratio of
e/e—l.

Optimal Solution Characterization. In order to understand the structure of the optimal purchase
distribution in the presence of tail bounds, we first need to give a characterization of this optimal distribution. It
turns out that this characterization will naturally lead to an efficient algorithm to construct the optimal purchase
distribution under any combination of tail constraints, although there are some technical complications which have
to be overcome along the way (see Section 3.2 for details). While our characterization and algorithm holds for
arbitrary combinations of tail constraints, for simplicity we will now assume that there is only a single (v, §)-tail
constraint.

For every day x, if we condition on the adversary choosing x to be the final day of skiing, then there are
essentially two constraints which the optimal purchase distribution f must obey: i) competitiveness constraint:
the expected competitive ratio using f must be at most the optimal competitive ratio opt, i.e., ay(x) < opt; and
ii) tail constraint: the probability when we choose a purchase day from f that we achieve competitive ratio worse
than v must be at most ¢ (for a formal version of this in terms of “bad intervals”, see Section 3).

These constraints are both inequalities, but our main characterization theorem (see Theorem 3.1 in
Section 3.1) is that for every z, at least one of these is tight. That is, for every day z, when we condition
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on the adversary picking day z as the final day, either the competitive ratio of f is equal to opt or the probability
of f achieving competitive ratio worse than ~ is equal to 4.

To gain some intuition for this, recall that if we do not have tail constraints, then in the optimal purchase
distribution the competitive ratio is exactly the same, (¢/e—1), for every time = which the adversary might choose.
This is no longer true in the presence of tail constraints, but if there is some day when the competitive ratio is
strictly less than the optimal competitive ratio, then it can only be because the tail bound is tight on that day.

This structure theorem leads to solutions with surprisingly complex structure. But it also means that this
complex structure is purely a function of which constraint is tight at which days. This is also (at a very high level)
how our algorithm works: we guess opt (which is non-obvious, see the full version of the paper for more discussion),
and then can iteratively set the probability for each day to be whatever makes one of the two constraints tight.
Examples of this theorem “in action” can be found in the full version of the paper. The days in which the expected
competitive ratio dips below opt are precisely the days where the tail constraint is tight, and these transitions
also obviously correspond to transitions in the purchase distribution.

Notably, while this characterization allows us to find the optimal purchase distribution algorithmically, the
exact value of the purchase distribution may not have a closed form with elementary functions. In the full version
of the paper we show that the exact solution involves the Lambert W function.

Single Tail Constraint. With the characterization of the optimal solution in place, we consider the solution
in the presence of a single (v,d) tail constraint. Here the pair of invariants we described above leads to a
solution with a non-trivial shape, which we illustrate in the bottom panes of Figure 1. Observe that the
purchase distribution, f, oscillates between periods of 0 probability of buying, together with periods of ever
higher probability of buying.

Although we do not compute the exact closed form of the competitive ratio due to the difficulty mentioned
above, we characterize the optimum purchase probability distribution quite precisely when ¢ is small—including
exactly the times when the probability distribution drops to 0 and the exact exponentially growing exponents.

As the optimum solution for the discrete version of ski-rental problem is technically complex, to make our
presentation transparent, here we only present our result for the continuous setting. In the continuous setting,
by scaling we can assume without loss of generality that Alice can buy skis for $1 and rent for $dt per dt time;
she will ski for z time where z is a fractional value in (0, 1]. Thus, the randomized algorithm can be described as
a purchase probability distribution f(¢) over (0, 1]; see Section 2 for more details. The following theorem reveals
the optimum solution’s structure.

THEOREM 1.1. (Corollary 4.2) Let v > 2 be an integer. Let {P;};>0 be a partition of (0,1/(y — 1)], defined as
Py = (0, %] and P; = (ﬁ (1 - 7%)7ﬁ (1 - ﬁ)] for all j > 1. Let £; be the start point of Pj. In the
continuous version of the ski rental problem with a single tail constraint (7,0), the optimum solution f(t) has the

following structure in every P such that j < 1/(2vd) — 1:
o f(t)=¢;- et for t in the interval (4,45 +1;], and
o f(t)=0 forallte (£; +1;,0;11],
where ¢; and t; < {11 — {; are some constants depending on § and j.

Let’s assume v = 2 to illustrate the theorem. The theorem shows that with a single tail constraint (2,4),
the optimum solution has certain recurring structures over time intervals, Py, P1,..., which are of exponentially
decreasing lengths by a factor of 2. Here, note that we can only show the structure for early intervals. For
example, if § < 1/12, we can analytically show the recurring structure over Py = (0,1/2], Py = (1/2,3/4] and

P, = (3/4,7/8]. In such an interval P;, f(¢) initially grows in proportion to e?'t and then drops to 0 and remains
0 until the next interval P;,; starts.

We sketch the analysis of this result. We begin with a key observation that the probability mass of f on
each P; must be at most §, which follows from taking a close look at the tail constraint. More precisely, the tail
constraint can be shown to be equivalent to the probability mass on each interval I(z) ending at = being at most
6. It turns out that Py, Py,... are such intervals.

We show that in beginning of Py, the competitiveness constraint must be tight, thus f grows in proportion to
et and then at some point to respect the tail constraint it drops to 0. Afterwards, we show that the tail constraint
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must be tight. Since f must restart collecting probability mass from the beginning of each P;, which is shorter
than the previous interval P;_1, it has to accelerate the collection.

The actual analysis is based on a careful induction argument, but this sketches the high-level proof idea. We
note that in the discrete version we can show that the number of times f drops to 0 is at least (1/9) (for large
enough n). See Section 4 for more details.

Single Pure Tail Constraint. As a side effect of our techniques, we are actually able to give a precise
and explicit description of the optimal solution when there is a single tail constraint of the form (v, 0), i.e., the
competitive ratio is never allowed to exceed . We call these pure tail constraints. A simple calculation shows
that such a constraint implies that f; = 0 for ¢ < n/(y —1): we must always rent for the first n/(y — 1) days.
Since this is the only tail constraint, the remaining question is how to allocate the probability mass such that
maximum of the competitiveness function on the remaining interval is minimized. In this case we can precisely
show the value of the optimal competitive ratio and the shape of the optimal solution as follows (see the theorems
in Section 5 for more precise statements).

THEOREM 1.2. In the ski-rental problem with tail constraint (v,0), the optimum solution is the following
(assuming v — 1 divides n — 1):

-1
0 t< =
A1 _ n-1
fi=q5 ! t—t1—1 = %
= (1+ L) U s nmt
(n=1)(v-1) n—1 y—1
where the optimum competitive ratio \ tends to 1 + ——2—1—— as n — oo.
1+ <e y—1 —1)
Note that when v = 2 we get that lim,,_,,, A = 2, i.e., we recover the classical deterministic bound, and when
v — oo we get that lim, oo A =1+ eil = -5, i.e., we recover the classical randomized bound.

1.2 Related Work

Ski-Rental and its Variants. The classical ski-rental problem captures the fundamental “rent or buy”
dilemma that exists at the heart of many online problems. The deterministic 2-competitive break-even strategy
was first analyzed by Karlin et al. [6] as a special case of Snoopy Caching and later the optimal e/(e — 1)-
competitive randomized strategy was described in [5]. We note that the online primal-dual approach was used to
give an optimal e/(e — 1)-competitive algorithm [3]. In separate work, Karlin et al. [4] gave optimal e/(e — 1)-
competitive algorithms for dynamic TCP acknowledgment and the Bahncard problem by exploiting a connection
to the classic ski-rental problem. Here, we expand the classical ski-rental problem to include the tail of the
competitive ratio as a new metric in addition to the expected competitive ratio. Even with this small change, we
find that the optimal algorithm exhibits interesting behaviour that is not observed in the standard setting.

There are several lines of work concerned with generalizing and analyzing new variants of the classical ski-
rental problem. Motivated by applications in cloud cost optimization, Khanafer et al. [7] considered a variant of
ski-rental where the number of days is randomly chosen from a distribution with known first or second moments
(but otherwise unspecified). Wang et al. [16] consider a variant of ski-rental with multiple commodities that
can be rented, purchased individually, or purchased as a group. Recently there has been significant interest
in incorporating predictions derived from machine learning into online algorithms [8] which has resulted in a
sequence of work applying this to the ski-rental problem [1,2,11,13-15,18].

Online Algorithms Beyond Expectation. It is standard to analyze the expected performance of
algorithms in several contexts, such as minimizing the competitive ratio of an online algorithm or the regret
of a policy in a multi-arm bandit setting. As we point out for the ski-rental problem, there may be cases where
tailoring an algorithm to the mean may not be sufficient and other metrics such as the tail may be important. As
another example, in multi-arm bandits achieving low regret on average necessitates a certain amount of exploration
which can increase the variability in the attained reward. Wu et al. [17] consider the conservative bandits setting
in which the goal is to minimize the cumulative regret of the policy while constraining the total reward earned
at each time to be above some baseline level. Another example is the survival bandit problem [10,12] in which
rewards can be both positive and negative and the objective is to maximize the total reward while keeping the
“risk of ruin”—the probability of the current total reward going below a fixed threshold—small.
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2 Preliminaries

In the (discrete version of) ski rental problem, also a.k.a. rent-or-buy, every morning Alice must decide whether
to rent skis for $1 or buy them for $n, in which case she never needs to rent them again. The number of days
(times), denoted as z, she will ski is unknown a priori, and it is revealed to Alice only at the end of day .

Although Alice is allowed to rent beyond day m, a moment’s thought shows that she wouldn’t benefit it.
Thus, without loss of generality, we can describe any algorithm by its purchase distribution f = {f;}/c[n). For
z,t € [n], let a(t, ) denote the competitive ratio of the algorithm when the adversary chooses for = to be the last
skiing day and Alice buys skis on the morning of day t. We have that,

1 ift>x
at,r) = {n+t—1 ift<uz

Given a distribution f over [n], let as(x) be the expectation of (t,z) where ¢ is drawn from f. So we have
that

(2.1) ar@)= Y attn)fi= 3 e Y = T - Y

te[n] t<z t>x t<z t<z
The following observations are immediate from the definition.

OBSERVATION 2.1. Given a purchase distribution f, ay(t) only depends on fi, fa,..., fr. If we move the
probability mass from a later time to an earlier time, af(n) decreases.

It is well known that the deterministic algorithm that buys on day n, i.e., fi =...= f,_1 =0and f, =1, is
2 —1/n-competitive and it is the best possible competitive ratio achievable for any deterministic algorithms. Also,
when f; = (1/n)(1+1/n)"=1/((1+1/n)™ — 1) we recover the celebrated randomized algorithm whose competitive
ratio is (1 4+ 1/n)"/((1 + 1/n)"™ — 1), which tends to e/(e — 1) as n — co. An easy calculation shows ay(z) is a
constant which is exactly the claimed competitive ratio and in fact keeping ay(x) constant for all z makes the
purchase probability grows exponentially in ¢.

Continuous Case. The ski rental problem is often discussed in the continuous setting as it exhibits a cleaner
representation of the optimum solution; for example, see [4,9]. More precisely, after scaling, we can assume wlog
that Alice can ski for 2 amount of time where x € (0,1] and the rental price for dt amount of time is dt and the
purchase price is 1. Then, the optimum randomized algorithm has pdf f(¢) = e¢’/(e —1) and the competitive ratio
is exactly e/(e — 1). In our problem with tail constraints, we will mostly consider the discrete version as it seems
to resist a simple closed form for the competitive ratio unlike the problem without tail constraints.

A Useful Lemma. The following lemma (proof in the full version) will prove to be useful in a few different
places in our analysis. To interpret it, first note that thanks to Equation (2.1), the competitive ratio at some
time x can be calculated using only the probabilities for times ¢ < x. So the following lemma lets us say that
if we have built “part” of the distribution, then we can extend it so that the competitive ratio stays constant

by increasing each successive probability by a multiplicative (1 + —) factor. In other words, an appropriate
exponential function keeps the competitive ratio constant.

LEMMA 2.1. Let 1 < a < n, let f : [a — 1] — [0,1] such that 2?2—11 fe <1, and let a < o
as(e) = agla—1) for alla < o < o if and only if o) fo = (1+555)" fu foralla <z
fa:m (i (n+t—1)f, and b) Zt i <1

3 Characterizing the Optimal Solution

In this section, we consider the general case where there can be multiple tail constraints, each with an arbitrary
threshold at least 2. Our goal is to prove a characterization of the optimal purchase distribution that, while not
necessarily allowing us to write it explicitly, will enable us to reason about its properties. Moreover, a side effect
of our characterization will be an efficient algorithm to actually construct the optimal purchase distribution.
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Suppose that we are given a collection {(7i,6;)}ier) where 7, > 2 —1/n and 0 < §; < 1 for all i € [k]?
The goal is to find the randomized algorithm with minimum expected competitive ratio (worst case over times
the adversary might choose) subject to the requirements that for all ¢ € [k], the probability that our algorithm
has a competitive ratio larger than ~; is at most §;, where again this is the worst-case over times the adversary
might choose. The optimal solution’s properties we will characterize for general tail constraints will be useful for
discovering some surprising structural properties of the optimal solution later for a single tail constraint.

DEFINITION 3.1. The bad interval for threshold vy and time x, which we denote by I,(z), consists of all t € [z]
such that if we buy at time t and the adversary chooses time x, then our competitive ratio is larger than ~y. By
definition,

n+t—1

L(z)={t€n]:a(t,x) >~} = {te [z] : >7} ={t: max(0,yx —n+1) <t <z}

OBSERVATION 3.1. For all v > 2 —1/n and all x, it is the case that n & L,(z).

We say that a purchase distribution f is feasible if it satisfies all tail constraints. The following lemma shows
the solution is feasible if and only if it satisfies a collection of packing constraints pertaining to the bad intervals.
The proof, as well as all the other missing proofs, are deferred to the full version of the paper.

LEMMA 3.1. A distribution f is feasible if and only if Ztelw.(a:) fr < 6; for all i € [k] and for all x € [n].

3.1 Main Characterization Theorem. Let f* be the optimal solution. By Lemma 3.1, this means that f*
is the distribution f minimizing max,ep, ay(z) subject to Ztelw () ft < i for all 7 € [k] and for all « € [n]. Let
opt = max,e[n] - ().

We now prove some useful properties about f* and opt. First we show that opt < 2 — 1/n whenever the set
of tail bounds is {(v:, d;) }ier) With 75 > 2 — 1/n. Since the 2 — 1/n-competitive deterministic algorithm satisfies
all tails constraints, it must be the case that opt < 2 — 1/n. Intuitively, randomization should yield a better
competitive ratio and the following lemma formally proves it.

LEMMA 3.2. Ify; > 2 —1/n for all i € [k] then opt < 2 —1/n.

By definition of opt, it is immediate that oy« (z) < opt for any adversarial choice of z. The following lemma
shows that the competitiveness function « is maximized on the last day n for the optimum distribution f*. The
proof easily follows from Observations 2.1 and 3.1: If the lemma were false, we can move the probability mass
from an earlier time to time n, which keeps the solution feasible while increasing as«(n).

LEMMA 3.3. Let f* be an optimal solution. Then oy« (n) = opt.

Now we can prove the main structural theorem that shows that for any time z the optimum solution must
have the maximum competitiveness function value or the bad time interval packing constraint at the time must be
tight. We show the theorem by showing that if the theorem were false at time t;, then we can move a probability
mass to t; from a later time, thereby improving the competitive ratio.

THEOREM 3.1. Let f* be an optimal solution. Then for every x € [n], at least one of the following is true:
o (competitiveness constraint) oy« (x) = opt, or

e (tail constraint) Ztelw (o) Jt = i for some i € [K]

2Under this assumption we have that f, does not affect any tail constraints, see Definition 3.1 and Observation 3.1. We focus on
the case that v; > 2 — 1/n since 2 — 1/n is the competitive ratio that is achieved by a deterministic algorithm, but note that smaller

values of v; can be handled so long as ¢; is large enough for there to exist a feasible solution.
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Proof. Suppose for contradiction that this is false. Let t; be the smallest value for which both conditions are
false, and observe that Lemma 3.3 implies that ¢; < n. Let 5 > t; be the smallest value larger than t; such that
at least one of the two conditions holds, and again observe that Lemma 3.3 implies that such a t; must exist. It
it also easy to see that f; > 0, since otherwise at least one of the conditions must hold at ¢ — 1. More formally,
suppose f; = 0 for the sake of contradiction. By definition of t5, we have ay«(t2 — 1) < opt. It is easy to verify
ayp-(ta—1) > ayp«(t2); thus we have ay-(t2) < opt. Again by definition of t5, we know Ztelw (ta—1y J¢ < 0i for any
i € [n]. Using the facts that I,,(t2) C I,,(t2 —1) U{t2} and f; = 0, we have Ztelw () J7 < Ztejw(tz—l) 1< 8.
This implies none of the conditions hold true at time ¢35, which is a contradiction.

Therefore, we can define the distribution that we get by shifting some very small € > 0 mass from ¢, to 1,
ie, fi=f+eift=1t; fr = fff —eif t = to; and f; = f} otherwise. Obviously f is still a probability
distribution on [n]. Moreover, we claim that it is still a feasible solution if we choose a small enough e. To see
this, let B ={1,2,...,t; — 1}, let M = {t1,¢1 +1,...,t2 — 1}, and let A = {ta,t2 +1,...,n}. For all z € B, we
have that Ztelw w ft = Ztelw () Jt < 6 for all i € [k], as required.

For x € M, the mass in I,,(,) could be larger in f than in f* (since ¢; could be in their bad interval), but by
definition of to this was strictly less than § in f*, so by choosing a small enough € we can keep it below §. Slightly
more formally, we have that Ztelw(m) fi < Ztelwi @) fi + e <6 for small enough e.

For x € A, note that it is impossible for {t1,t2} N Ly, (x) = {t1} for any ¢ € [k]; this is straightforward from
the definition of I,,(z). So there are three cases.

LoIf {t1, 2} N Iy, (x) = {t1.t2}, then 30, () ft = 2oier () fi < 0 since f* is feasible.
2. If {tl,tg} ﬁ]m(x) = {tg}, then ZtEI%(m) ft < ZtEI%(w) ft* S .

3. If {t1,t2} N L. (z) = B, then Ztelw(x) fi= Ztelw(x) fi<é.

Hence f is feasible by Lemma 3.1.
Now let’s consider the competitive ratios ay(x). We break into three cases for .

1. If z € B, then we have that a(z) = ay+(x) < opt (the final inequality is due to the optimality of f*).

2. If x € M then the competitive ratio is worse in f than in f*, i.e., af(z) > ay-(x). But by the definition of
M (and ty) we know that ay+(z) < opt, so by choosing a small enough € we still have that ay(z) < opt.

3. If x € A, then it is not hard to see that the competitive ratio decreases, i.e., af(z) < ay-(x) < opt.

Thus, we have a feasible solution f with max,cp,) af(x) < opt, so f is actually optimal. But since n € A, we
know that ay(n) < ay+(n) < opt. This contradicts Lemma 3.3. Hence no such ¢; can exist, which implies the
theorem. |

3.2 Algorithm and Analysis. With Theorem 3.1 in hand, we can now give an algorithm to compute the
optimal solution. Intuitively, since Theorem 3.1 says that for every day 4 either the competitiveness constraint or
the tail constraint is tight, we can just iterate through the days, increasing the probability for day j until some
constraint becomes tight.
We now formalize this. We are given n and {(vi, ;) }ic[x)- As before, we will be concerned with the case where
0; < 1 (since larger values of §; imply the tail constraint is trivially satisfied) and ; > 2 — 1/n for all ¢. In what
follows we will assume that we have a guess A which is equal to opt; we discuss how to remove this assumption
in the full version of the paper. Our algorithm is the following.
A

e Set fi = min(min,ep d;, n—j)

e For j =2 to n: Set

) j—1 ,
fj = min min 0; — Z I ,L(A—l)— <1—J_t>ft

ElRl7€h ) .oy )" =1
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We can now prove that this algorithm is optimal. The proof proceeds by showing that an optimum solution
must coincide with f to make the competitiveness or tail constraint tight, as required by Theorem 3.1. The proof
is deferred to the full version of the paper.

THEOREM 3.2. The function f returned by our algorithm is the unique optimal solution.

4 Single Tail Constraint

In this section we consider a single tail constraint, (,d). To streamline our presentation, we assume v is an
integer, but our analysis should be easily generalizable to any v > 2 — 1/n.

4.1 Analysis Overview. We start the analysis by defining disjoint intervals Py, Py, Ps, ..., where the optimum
purchase distribution f; exhibits a recurring structure (Section 4.2). For 4 = 2 which we assume for the
illustration purpose here, the intervals are defined as Py = [1,4(n — 1)],P, = [(n = 1) + 1,2(n — 1)], P, =
[2(n—1)+1,%(n —1)].... Note that the intervals have exponentially decreasing lengths. The key observation
we make in Section 4.2 is that every P; is a bad interval and therefore the probability mass of f; on P; is at most
0 (Lemma 4.1).

We show how f; accumulates J probability mass in each interval P;. We first consider Py in Section 4.3.
Recall that f; must make the competitive constraint or the tail constraint tight at every time (Theorem 3.1).
Obviously, the tail constraint doesn’t get tight until f; accumulates 0 mass in the beginning. The time, denoted
as £, is shown to be in the first interval Py (Lemma 4.2). Then using the fact that the competitiveness constraint
must be satisfied for all ¢ < {, we can show that f; is roughly proportional to e!/™ for all ¢ < £, then drop to 0
because the total probability mass of f must be at most § in Py.

The subsequent intervals P;, j > 1, are considered in Section 4.4. Here, the key observation we make is that
the tail constraint is satisfied for all ¢+ > # (Lemma 4.4). Thus we have a sequence of equations and by solving
them, we obtain f; = fo;_(n—1)—1 + for—(n—1)- Here, when ¢ € P;, the times appearing in the right-hand-side,
2t —(n—1) — 1 and 2t — (n — 1) are both in P;_;. Intuitively, this implies that f; grows twice faster in P; than
in P;j_,. In fact, by a careful induction we can precisely show that f’s probability mass at time ¢ for ¢ € P; must
be equal to that of some 27 consecutive time steps in Py (Lemma 4.5). Thus, f; grows in P; with 27 factor larger
exponent than it does in Py (Corollary 4.1). It then accumulates ¢ probability mass in P; and drops to 0 because
the probability mass shouldn’t exceed § in P; (Lemma 4.5).

Finally, we take n — oo in Section 4.5 to obtain a more intuitively looking pdf in the continuous setting
(Corollary 4.2). We note that we consider the discrete version for analysis because the recursive argument needs
considerable care and it seems easier in the discrete setting.

4.2 Defining Disjoint Intervals. We will assume that n — 1 is a sufficiently large power of ~y, this will make
the notation simpler since we will be interested in the optimum solution for sufficiently large values of n.

het 1 1 1 1
n — n —
&:71(1_7])“ and Tj:vl(l_vj“)

We define an interval P; = [¢;, ;] for j > 0. Note that £y = 1, and more generally:

1
Poz{tzlgtgn }

v
(n—1) (y¥*'-1) }

(”—1).(7j—_1)+1§t§ .

- forall j > 1
(yv=1) (v=1) At

(4.2) pP; = {t :
We can check that |P;| = ;’J—Qll Hence these intervals are non-empty for all j < log, n. Moreover they are disjoint.
Simple algebra shows the following.
CLAM 4.1. For all j > 1, we have

o lji1 =9t —(n—1)—(y—1); and

o rj_1=7r;—(n—1)
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Proof. By definition of r;, we have,

n—1 1 n—1 1 n—1 1
W'Tj_nJrl:W(W—l <1_W’+1)>_(n_1):7—1 (7_71'_(7_1)) T -1 <1_7j> B

which proves the second claim. The first claim follows a similar algebra. |

We will first show that the probability mass inside each of them is bounded.
LEMMA 4.1. For any feasible solution f, we have that Zter Jt <0 for every j <log,n—1
Proof. From the definition of I,(z), we have that
L(rj)={t:yrj—n+1l<t<rj}={t:rj1 <t<r;} =P,

where the penultimate equality holds due to Claim 4.1, and the final equality is due to the strict inequality of the
lower bound on ¢. So the tail constraint at r; implies that Zter ft = Ztelw(m) ft < 6 due to Theorem 3.1, as
claimed. O

4.3 Understanding the Optimum Solution’s Structure for ¢t € Fy. We are going to claim that for any
fixed ¢ > 0, by setting J small enough (as a function of 4, not n) the structure inside of every P; for j < i is
both simple and surprising: there is a prefix which is a exp(77) function, and then it drops to 0 (at least for n
large enough that P; is nontrivially large). So, in other words, the optimal solution can exhibit an arbitrarily
large number of drops to 0, and can also exhibit arbitrarily large growth! This is in stark contrast to the classical
solution, which is a simple exponential function everywhere.

Fixi > 0, and let § < 1/(2y(i+1)). Assume n is sufficiently large for now; later we will require n > 2y 41.
Let # be the largest integer such that

i t—1
A—1 1
. <.
1 OEELY (PR R

LEMMA 4.2. For all sufficiently large n, it is the case that t < n/y, i.e., te P

e
e—1

that the left-hand-side is increasing in ¢, it suffices to show that

"Z”e/(e—l)—1(1+ ! )H>125.

n—1 n—1
t=1

e
e—1"

Proof. Since the optimum competitive ratio is at least with no tail constraints, we have \ > Knowing

Indeed, for all sufficiently large n, we have,

n/y _ . t—1 1/y _ 1
Ze/(e D) 1<1+ ! ) =—11((1+ L )””—1)26 by o 1

P n—1 n—1 n—1 e—1 T e—1 2y

which is no smaller than ¢ by definition. O

Let {ft}ie[n) be the optimal solution, which we know by Theorem 3.2 is returned by our algorithm. We first
show that P, consists of an exponentially increasing function, followed by the zero function.

t—1 . .
LEMMA 4.3. f; = % (14—#) forallt <t, and fy =0 forallt+2 <t < ”Tfl

Proof. Let’s start with the first part of the lemma, and focus on the ¢t < # case. For sufficiently large n (as
a function of ¢), we know from the definition of our algorithm that f; = %, as claimed, which makes the

competitiveness constraint tight for time 1. By Theorem 3.1, the competitiveness constraint will stay tight until
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there is § mass in the bad interval for some ¢. Lemma 2.1 implies that to keep the competitiveness constraint
t—1
tight, f; = (1 + —) ft—1. Hence f; = 2= (1 + —) as claimed until we have accumulated § mass total,

which by definition occurs at time £ + 1, implying the first part of the lemma.
For the second part of the lemma, note that by definition of ¢ the tail constraint first becomes tight at time

t+1,ie., i:i fi = 6. But for all t € [t +2,n/4], we know that I5(t) = [1,t]. Hence for all t € [f + 2,n/7], we
know that Zt/EIQ(t)\{t} fo =4, and hence f; = 0 as claimed. |

4.4 Understanding the Optimum Solution’s Structure for ¢t € P;, j > 1. We now prove that the tail
constraint is tight for a large range of values.

LEMMA 4.4. For all t € Uj.0<j<iP; \ [t], the tail constraint is tight.

Proof. For Py, this is implied by the proof of Lemma 4.3.
Now consider 1 < j <4, and let ¢t € P;. We know from Lemma 4.1 that there can be at most ¢ total mass
inside of each P;. This allows us to bound a(t) as follows.

t 1 —
oty =3 ML fy+1—2ft/—1+ZL”fﬂ

=1 t'=1 t'=1
t— t—1—t
(Disjointness of Py, Pi,...,P;) —1+Z Z nr ft/ Z %fﬂ
§'= OtEP/ t'eP;:t' <t
j—1
g —1—t -1
(Lemma 4.1) §1+Zn+rgt (5—|—nt )
§/=0
, n—1 n—1
(rj <t for all j’) §1+JT(5+ p 0
-1
:1+(j+1)nt )
n—1 1
def of § <1+ U+ D ——507p
(def of 4) UG
Y
(.7—7') 2fyt
(t >n/y) <3/2

Since 3/2 < A, the competitive ratio constraint cannot be tight anywhere, so the tail constraint must be tight
everywhere by Theorem 3.1. O

Now we can analyze the solution structure of each P; for j < 4. For each such j, let ¢; = |£/47].
LEMMA 4.5. Lett € P; for 1 < j <i.
o Ifte [gj,fj +£j - ].], then

1497 (=) +(v7 =1)
fe= Z fv

=143 (t—1;)

o Iftc [£j+fj+1,rj] then f; = 0.

Proof. We proceed by induction on j. We begin with the first part of the claim. Consider any 1 < j < 1.
Lemma 4.4 implies that for every ¢t € P;, the tail constraint is tight at both ¢ and ¢ — 1. This implies that

(44) ft = Z ft’ = f'y-tf(nfl)f('yfl) + ...+ ffy-tf(nfl)

el (t—D\I (1)
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First observe that if ¢ € P; the entries on the right hand side of Equation 4.4 are in P;_;. Let w; =t — ¢; then
we have:
Yl +w) = (n=1) = (v = 1) = Lj—1 + ywy.

by Claim 4.1. Since |Pj_1| = ~|P;|, we can conclude that ¢;_; + yw; € P;_;. A similar calculation holds for the
last point in the summation.

We will prove the Lemma by induction on j. Let j = 1 be the base case. Then, £y =1 and {; = (n—1)/y+1,
and by Claim 4.1, the summation in the Lemma statement begins at:

bty —Lj)=vy-t—(n—1)—(y—1),

which is equivalent to the first term in Equation 4.4. Combined with the fact that both sums carry on for v — 1
consecutive steps, this proves the base case.
For the inductive step, let j > 1, let t € P; and let ¢t = ¢; + w;. Then:

fe= > fe
vEL, (- D\, (1)
= fyt--1)-(r-1 + -+ Frt-@-1)
::fQ71+th'F'~'+‘fafl+th+v*1

Ly w4771 -1 Iy (ywit (v=1) 4977 -1
- E ft/ + e —|— E ft’
=1+~ "1yw, t=1+v "1 (ywi+y—1)

I+ydwe++7 —1

= Z fe-

t'=14+~7w;

Here the penultimate equality follows by induction and the last line follows because of the summands represent
disjoint and consecutive intervals. This proves the first claim of the lemma.

We now consider the second claim of the lemma. The base case starts from j = 0, and the claim holds thanks
to Lemma 4.3; recall that ro = (n— 1)/’y. Now suppose that t € [¢; +¢; + 1,7;]. Then w, =¢t—£¢; > t; +1. So
ywe >yt + 1) =t/ ] +v > [t/4771] + 1 =¢;-1 + 1. Thus, we have

=== (=1 = G+l + D) = +w) = (1= 1) = (7= 1) = (G1 + T+ 1)
=qw; — (fj—1+1) >0,
where the last equality follows from Claim 4.1. Further, we already showed above that vt — (n — 1) — (y —

1),...,7t — (n—1) are all in P;_;. Therefore, they are all in [¢;_; +#;_1 + 1,7;_;]. Thus by induction we have
that fi = fiy—(n—1)—-(v—1) T -+ + fty—(n—1) = 0 as claimed. 0

We can now combine this with the explicit formulas from Lemma 4.3 to give expressions for f; for t € P;.

LEMMA 4.6. Lett € P;.
o Ift=1{; then

o Iftc[lj+1,4;+1i; —1] then
¥ (t—£;+1) t'—1
A—1 1
= 1 .
Ji Z n—1 ( * n— 1>

t'=~7 (t—2;)+1

o Ifte[l;j+t;+1,r)] then f, =0.
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Proof. The first and second cases follow directly from Lemmas 4.3 and 4.5, where we use the fact that since
t </{l;+t; —1, we know that 47 (t —¢; +1) < ~7t; =+ ([t/+’]) < t, and hence the first case of Lemma 4.5 applies
to all indices in the sum. The final case is directly from the second case of Lemma 4.5. O

This clearly implies that the beginning of P; is a 7/ exponential:

. v
COROLLARY 4.1. Lett e [(; + 1,0, +t; —1]. Then f; = (1 + i) fi_1.

n—1
Proof. By Lemma 4.6, we know that

¥ (t+1—45)

> A1, 1 -1
n—1 n—1

=9 (t—£;)+1
1’ A-1 1o\
1
<+n—1> , n—1<1+n—1)
/=3 (t—l;)+1

J I(t—£5) t'—1
1\" T&T oa-1 1
=14+ —— 1
<+n1> Z nl( +n1>

b=y (1= —1)+1

fe

i (t1-4)

as claimed. |

We finally quantify how large n should be compared to i. Note that Lemma 4.6 is well defined if and only if
the third case interval [¢; 4+ ¢; 4+ 1,7;] is be non-empty, i.e., {; +t; + 1 < r;. Thus, we need the following:

(n-1) (/-1 o
(4.5) b Ll s Ty

e Ve A

Since ¢ < % (Lemma 4.2) and n — 1 is a power of +, we have < ”Tfl Thus, equation (4.5) is satisfied if

n—1 1 n—1 n—1 1
7—1'<1_7j)+1+7j+1+1S’y—1(1_7j+1>’

fy‘;rll > 1. By simplifying the inequality we obtain, n > 231?

when

+1. Both inequalities hold when n > 2y +1.

4.5 Continuous Case. Recall that in the continuous setting all times are between 0 and 1, and it costs 1 to
buy. This is equal to the limit of the discrete case if we first reparameterize so all times are between 0 and 1
(i.e., time ¢t becomes time ¢/n) and then take the limit as n goes to infinity. That is, we can first just “rename”
each time ¢ to t/n, write the resulting expressions that arise from renaming, and then take the limit as n goes to
infinity.

When we do this renaming for the above results, we first get that the interval P; is equal to

P; = {t :
1. (n=1) (-1 + 1

Similarly, ¢; is defined to be - - =) 7 =

between 0 and 1) and ; essentially as before, to |#n/47 |/n. Then with this new parameterization, Corollary 4.1
turns into the following lemma.

_ J+1 _
(n 1).('7 1)} forall j >0

-1 (-1
' CESV

(v—1) v

1
+-<t<
n

S|
S|

and we define  as before (except now it is a number

LEMMA 4.7. Let t be an integer multiple of 1/n in the interval [¢; + (1/n), ¢y + t; — (1/n)]. Then f, =
"
(1+:5) fire
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A corollary of this lemma is that, if we consider two times ¢’ > ¢ that are both integer multiples of 1/n in

. (t'—tyny?
6+ (1fn), 0+ 15 = ()], then fu/fo = (14 51)
integer multiples of 1/n between ¢’ and ¢.
So in the continuous case, where we now take the limit as n — oo, we get that

. This is just because there are precisely (t' — t)n

fu (t'—t)nry? o
= lim (14 =Vt
+ n—oo n—1 ’
n ~
simply because lim,,_, (1 + ﬁ) = e. Moreover, we now have a simple formula for ¢, since after we

reparameterize and take the limit as n goes to oo in (4.3) we get that ¢ is the value where (A — 1) get dt = 0,
which is precisely equal to In (1 + %) So this is our value of ¢, and fj =1/,
Finally, we note that when we reparameterize and take the limit as n goes to infinity of the final case of

Lemma 4.6, we get that in the continuous setting f(t) =0 for t € (¢; + fj, ;1) Hence in the continuous setting

we get the following corollary.

COROLLARY 4.2. Let v > 2 be an integer. Let {P;};>o be a partition of (0,1/(y—1)], defined as Py = (0, %) and
pP; = (ﬁ -(1- 7%)7 ﬁ (11— Tl“)] for all j > 1. Let £; be the start point of P;. In the continuous version of
the ski rental problem with a single tail constraint (v, ), the optimum solution f(t) has the following structure in
every P; such that j < 1/(65) — 1:

o f(t)=c¢;- et for t in the interval (;,0; + 1], and
o f(t)=0 forallt € (¢; +1;,0;11],

where ¢j and t; < €11 — {; are some constants depending on § and j.

5 Special Case of Single Tail Constraint: § =0

A particularly simple setting is where there is only a single tail constraint, and it is pure: 6 = 0. In other words,
we must have probability 0 of having competitive ratio worse than . In this setting we will not only be able to
explicitly write the optimal solution, but will additionally be able to give opt as an explicit function of «. The
exact expressions are given in the following two theorems. We assume for simplicity that v — 1 divides n — 1, and
to simplify notation we will let A = opt.

THEOREM 5.1. Suppose that there is a single tail constraint (v,0). Then the best competitive ratio achievable
under that tail constraint is exactly

yo1
1+ -2 (n ((;1)("1)(1”11) - 1) + 1)

THEOREM 5.2. Let f be the optimal purchase distribution under a single pure tail constraint (v,0). Then

A=opt=1+

n—1

_ o

fe= v -1 b=
n—1

t—t1—1
=l _1 n=1
(n—1)(y—1) (]‘ + n—l) t> -1

2

It turns out to be easiest to first prove Theorem 5.2 and then prove Theorem 5.1.

Proof. [Proof of Theorem 5.2] Note that in the rest of this proof, A = opt but since we have not yet proved
Theorem 5.1 we will not instantiate this to any particular value; it is simply whatever the optimal expected
competitive ratio is.
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Since § = 0, if t € I,(x) for some x € [n] then we must have ft = 0. It is easy to see that I, (z ) is nonempty
if and only if z € I,(z), Wthh happens if and only if x < . So we know that ft = O for all ¢ < , and that
L,(t) = 0 for all t > v%{' Thus Theorem 3.1 implies that af (t) = Afor all t > 2=
solution.

Let t; = z—_l be the first time where I, (¢1) = (), and so ay+(t1) = A and f; = 0 for all ¢ < t1. So we have

-1

)‘:flf*(tl):z:n—’—?f ft+1—th n+t1 ft1+1 =

t<ty t<ty

L where f* is the optimal

-1
B fu 1= (= Dfy +1

Rearranging, we get that f;, = %

Since we know that f; = A = ay+(¢1) for all ¢ > t1, we can apply Lemma 2.1 with a — 1 = ¢; to obtain all of
the other probabilities. In particular, Lemma 2.1 implies that

B 1 B _ -1 n—1 A—1  y(A-1) o
T R e A G ) e TV CEnREa

Lemma 2.1 further implies that f; = (1 + —) fi—q for all t > t; + 1. So we have that for all ¢ > ¢t; + 1,
A—1 1\t
fe= il ) . 1+ .
(n=1)(v-1) n—1

We can now use Theorem 5.2 to prove Theorem 5.1.

|

Proof. [Proof of Theorem 5.1] We can use that fact that f must be a distribution to give an exact characterization
of A\ in terms of n and . We have that

n n )\ n 1 =t
1:ZNF#A+§:ﬁ:;f* Z: DO+H—J
t=1 1+l
1

t=t1+1

A1 YA —1) a ot
- +(n—1)(v—1)t=;+1<1+n—1)

v—1

-1 yA—1) & ! '
vy=1 (n—=-1(H-1) — n—1
A—1

v—1
A—1

YA -1)

v—1

TooDh-1n

A1 (.
TG -1 ( (

Multiplying both sides by v — 1 gives us

v—1

:A—1+7S:f)(n((nflymﬂo_fd—1>+{>

We can now solve for A, giving us

as claimed. |

A=1+
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Note that if we take the limit as n — oo and use the fact that lim,_, . (1+1/2)* = e, we get that A approaches
v—1

1+ :
14y (e 1)

In particular, when v = 2 we get that lim,,_,,o A = 2, i.e., we recover the classical deterministic bound, and
when v — oo we get that lim, yoo A =1+ ﬁ = :61, i.e., we recover the classical randomized bound.

6 Conclusion

In this work we extended the classic ski rental problem by taking the tail risk into account. While the problem has
been studied for decades, and is perhaps the simplest online problem, there had been no previous investigation
of how to balance expected performance and the risk of the randomized online algorithms performing worse
than the deterministic option. We gave a characterization theorem of the optimal purchasing distribution, and
used this theorem to prove several surprising properties of the optimal distribution even under a single tail
constraint. At a high level, we showed that the optimal distribution has almost none of the nice properties
that occur without tail constraints: it is non-monotone, can alternate between regions of zero probability and
non-zero probability arbitrarily many times, and can grow arbitrarily quickly even when continuous. We also
gave an explicit description of the special case of pure tail constraints, and developed an algorithm to compute
the optimal purchase distribution efficiently.

We hope that our work inspires further investigation of tail bounds in online algorithms. As discussed, in
online settings we cannot simply repeat an algorithm multiple times in order to convert a bound on the expectation
into a bound on the tail, as we usually do in offline computational settings. Yet surprisingly, there seems to be
little work on tail bounds in online settings: even the ski rental problem, the most basic online setting of all,
had not been investigated prior to this work! What about other online settings where there are well-known and
well-understood randomized algorithms, e.g., online matching, TCP aggregation, or the many variants of prophet
inequalities? Can we characterize the optimal randomized algorithms for those problems in the presence of tail
bounds? Do those optimal algorithms differ significantly from the pure expectation setting, as they do for ski
rental?
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