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ABSTRACT
This paper explores the design of a balanced data-sharing market-
place for entities with heterogeneous datasets and machine learn-
ing models that they seek to refine using data from other agents.
The goal of the marketplace is to encourage participation for data
sharing in the presence of such heterogeneity. Our market design
approach for data sharing focuses on interim utility balance, where
participants contribute and receive equitable utility from refine-
ment of their models. We present such a market model for which
we study computational complexity, solution existence, and approx-
imation algorithms for welfare maximization and core stability. We
finally support our theoretical insights with simulations on a mean
estimation task inspired by road traffic delay estimation.

CCS CONCEPTS
•Theory of computation→Algorithmic game theory;Round-
ing techniques.
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Data markets, Utility balancing, Approximation Algorithms, Core
Stability

ACM Reference Format:
Aditya Bhaskara, Sreenivas Gollapudi, Sungjin Im, Kostas Kollias, Kamesh
Munagala, and Govind S. Sankar. 2024. Data Exchange Markets via Utility
Balancing. In Proceedings of the ACM Web Conference 2024 (WWW ’24),
May 13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3589334.3645364

1 INTRODUCTION
The power of big data comes from the improved decision making
it enables via training and refining machine learning models. To
unlock this power to the fullest, it is critical to enable and facilitate
data sharing among different units in an organization and between
different organizations. The market for big data “accounted for
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USD 163.5 Billion in 2021 and is projected to occupy a market size
of USD 473.6 Billion by 2030 growing at a CAGR of 12.7%” [27].
Motivated by the emergence of online marketplaces for data such
as SnowFlake [11], in this paper we consider the timely question:

How can we design a principled marketplace for shar-
ing data between entities (organizations or applica-
tions) with heterogeneous datasets they own and ma-
chine learning models they seek to refine, so that each
entity is encouraged to voluntarily participate?

Towards this end, we assume agents have diverse ML models
for decision making that they seek to refine with data. At the same
time, each agent possesses data that may be relevant to the tasks
of other agents. As an example, a retailer may have sales data for
certain products in certain geographic locations, but may want data
for related products in other markets to make a better prediction of
sales trends. This data could be in the hands of competing retailers.
Similarly, a hospital system seeking to build its in-house model for
a disease condition based on potentially idiosyncratic variables may
want patient data from other hospital systems to refine this model.

In our paper, we assume the participants in the market have no
value for money.We further assume that the agents seeking data are
the same as those seeking to refine models. Therefore we consider
an exchange economy without money as opposed to a two-sided
market with buyers and sellers. This is a reasonable assumption for
non-profits such as hospital systems or universities, where student
or patient data can be “exchanged” but not sold for profit. Though
we seek a market design without money, the agents in the market
still need to be incentivized to voluntarily participate in the market
and exchange data, and this is the main focus of our design.

In the settings we consider, data is often sensitive and private [2,
15]. As in [2], we address this issue by having a trusted central
entity (or clearinghouse) with who all agents share their ML tasks
and datasets. This entity can refine or retrain the model for one
agent using samples of the data from other agents. For instance, if
each agent specifies the gradient of their loss function and their
in-house model parameters, the central entity can run stochastic
gradient descent to update the parameters using the other data.
This way, the central entity can efficiently compute the loss of the
refined model and hence the utility of a collection of datasets to
a model. By using a utility sharing method such as Shapley value
that has been well-studied in machine learning [16, 17], the entity
can use the same process to attribute this utility gain fairly to the
agents that contributed data to the refinement. The entity then
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sends the refined models back to the respective agents, preserving
data privacy in the process.

1.1 Model and Results
Our approach to market design for data exchange without money
is to view it as utility balancing – to encourage voluntary partici-
pation, an agent should contribute as much utility to other agents
as they receive from them. In market design terminology, this cor-
responds to having a common endogenous price per unit utility
bought or sold, so that each agent is revenue-neutral. This can
be viewed as a form of fairness in the exchange. The goal of the
central entity is to find the right amount of data any set of agents
should exchange, so that the overall solution is utility balanced.
The solution is randomized, where for each agent, we compute a
distribution over sets of other agents. When this agent chooses a
set from this distribution to obtain data from, then utility balance
holds in expectation (or interim). We motivate interim balance in
settings where the same agents trade over many epochs so that the
total utility across these epochs approaches its expectation. The
objective of the central entity could be to either social welfare or
fairness in the utilities of agents.

We call this overall problem the Data Exchange Problem. We
study computational complexity and existence results for the Data
Exchange Problem under natural utility functions and how that
utility is shared among contributors. Our main results are the fol-
lowing, most of which are in the full paper [8].

(1) We present a formal model for theData Exchange Problem
in Section 2 based on interim utility balancing, codifying the
objectives of welfare maximization and stability.

(2) We show NP-Hardness and polynomial time approximation
algorithms for welfare maximization (Section 3). We present
a logarithmic approximation in Theorem 4 for submodular
utilities and a general class of sharing rules that includes the
well-known Shapley value. We present a PTAS for concave
utilities with proportional sharing.

(3) We show that the same solution framework also handles the
case where the balance condition can be relaxed by compen-
sating or extracting payment from agents using a convex
function on the extent of imbalance.

(4) We show the existence of core stable and strategyproof so-
lutions and the trade-offs achievable between these notions
and welfare. We also show that a specific type of stable and
strategyproof solution can be efficiently computed via greedy
matchings.

(5) In Section 4 finally perform simulations on a road network
where agents are paths that are interested in minimizing sam-
ple variance. We show that our approximation algorithms
significantly outperform a pairwise trade benchmark, show-
ing the efficacy of our model and algorithms.

We present the statements of these results more formally in
Section 2 after we present the formal mathematical model.

1.2 Related Work
The emerging field of data markets already has unearthed several
novel challenges in data privacy, market design, strategyproofness,
and so on. Please see recent work [2, 15, 22] for a comprehensive

enumeration of research challenges. Our paper proposes a mar-
ket design via a central clearinghouse and utility balancing, with
computational and stability analysis.

Exchange Economies. Our paper falls in the framework ofmarket
design. Though market design for exchange economies – where
agents voluntarily participate in trade given their utility functions
and the market constraints – is a classic problem, much of this work
concerns markets for goods that cannot be freely replicated. The
key challenge in our setting is that data can be freely replicated,
which makes the market design problem very different.

There are two classic exchange economies that relate to our work
– the trading of indivisible goods [30] and market clearing [4]. The
first classic problem is also termed the house allocation problem.
Here, every agent owns a house and has a preference ordering over
other houses. The goal is to allocate a house to each agent in a
fashion that lies in the core: No subset of agents can trade houses
and improve their outcome. Shapley and Scarf [30] showed that
the elegant top trading cycles algorithm finds such a core-stable
allocation. A practical application of this framework is to kidney
exchanges [5, 28], which is widely studied and implemented. Our
problem falls in the same framework as house allocation, albeit
with data instead of houses. Data is a replicable resource, and leads
to complex utilities for agents; these aspects make the algorithm
design problem very different, as we compare in the full paper [8].

In the same vein, the second classic problem of market clearing
for non-replicable goods dates back to Arrow and Debreau [4],
and has elegant solutions via equilibrium pricing of the goods.
However, equilibrium prices are harder to come by for replicable
digital goods such as music or video [20]. We bypass this issue by
having a common price per unit of utility traded, which translates,
via eliminating the price, to our flow formulation on utilities.

Federated Learning. Our work is closely related to recent work by
Donahue and Kleinberg [13, 14] on forming coalitions for data ex-
change in federated learning. However, in their settings, all agents
have the same learning objective (either regression or mean esti-
mation), but have data with different bias, leading to local models
with different bias. The goal is to form coalitions where the error of
the model for individual agents, measured against their own data
distribution, is minimized. The authors present optimal coalitional
structures for maximizing welfare, as well as achieving core stabil-
ity. Similarly, the work of Rasouli and Jordan [26] considers data
sharing where all agents have similar preferences over other agents.
In contrast, we consider agents with heterogeneous tasks and data
requirements, which makes even welfare maximization NP-Hard.

Pricing and Shapley Value. In the settings we study, agents are
both producers and consumers of data, motivating an exchange
economy like the works cited above. When sellers of data are dis-
tinct from buyers, various works [2, 7, 10, 12, 18] have studied
pricing and incentives for selling aspects such as privacy and accu-
racy. See [24] for a survey.

One important aspect of our work is allocating utility shares to
the agents contributing data. For most of our paper, we adopt the
Shapley value [31]. Though this method has its roots in cost sharing
in Economics, it has seen a resurgence in interest as a method to
measure the utility of individual datasets for a machine learning
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task [16, 17]. This method has many nice properties; see [2] for a
discussion of these properties in a data sharing context. We note
that our work presents a general framework and as we show in the
paper, it can be adapted to other utility sharing rules.

2 THE DATA EXCHANGE PROBLEM AND OUR
RESULTS

Without further ado, we formally present the Data Exchange
Problem and a summary of our results. We are given a set of agents
𝑋 . Each agent 𝑖 ∈ 𝑋 has a dataset D𝑖 and a machine learning task
𝑡𝑖 . (Our results easily extend to the setting where each agent has
multiple datasets and tasks.) The accuracy of the task 𝑡𝑖 can be
improved if agent 𝑖 obtains the datasets of other users.

2.1 Utility Functions
Suppose agent 𝑖 obtains the datasets ∪𝑗∈𝑆D𝑗 of a subset 𝑆 of agents,
then the improvement in accuracy is captured by a utility function
𝑢𝑖 (𝑆). We assume this function can be computed efficiently for a
given set 𝑆 of agents. Further, this set function is assumed to satisfy
the following:

Non-negativity and Boundedness: 𝑢𝑖 (𝑆) ∈ [0, 1] for all 𝑆 ⊆
𝑋 \ {𝑖}. Furthermore, 𝑢𝑖 (∅) = 0. By scaling, we can also
assume that max𝑖 𝑢𝑖 (𝑋 ) = 1.

Monotonicity: 𝑢𝑖 (𝑆) ≥ 𝑢𝑖 (𝑇 ) for all 𝑇 ⊂ 𝑆 .
Submodularity: This captures diminishing returns from ob-

taining more data. For all 𝑇 ⊂ 𝑆 and 𝑞 ∉ 𝑆 , we have 𝑢𝑖 (𝑆 ∪
{𝑞}) − 𝑢𝑖 (𝑆) ≤ 𝑢𝑖 (𝑇 ∪ {𝑞}) − 𝑢𝑖 (𝑇 ).

A special case of submodular utilities is the symmetricweighted
setting: Here, there is a concave non-decreasing function 𝑓𝑖 for each
agent 𝑖 . Suppose agent 𝑗 ’s dataset that she contributes to 𝑖 has size
𝑠𝑖 𝑗 , then we have 𝑢𝑖 (𝑆) = 𝑓𝑖

(∑
𝑗∈𝑆 𝑠𝑖 𝑗

)
. In other words, the utility

only depends on the total size of the datasets contributed by the
agents in 𝑆 .

Example 1. Suppose each agent 𝑖 is interested in estimating the
population mean of data in its geographical vicinity, and its util-
ity function is the improvement in variance of this estimate. In this
case, agent 𝑗 can contribute 𝑠𝑖 𝑗 amount of data to agent 𝑖 , and we
let 𝐷𝑖 (𝑆) =

∑
𝑗∈𝑆 𝑠𝑖 𝑗 . Assuming 𝑠𝑖𝑖 = 1 and that these data are

drawn 𝑖 .𝑖 .𝑑 . from a population with variance 𝜎2
𝑖
, we have 𝑢𝑖 (𝑆) =

𝜎2
𝑖

(
1 − 1

1+𝐷𝑖 (𝑆 )

)
and falls in the symmetric weighted setting.

Continuous Utilities. Though the bulk of the paper focuses on
utilities modeled as set functions, in the full paper [8], we also
consider the setting where agents can exchange fractions of data.
Suppose agent 𝑗 transfers 𝑦𝑖 𝑗 fraction of her data to agent 𝑖 , then
agent 𝑖’s utility is modeled as a continuous, monotonically non-
decreasing function 𝑢𝑖 ( ®𝑦𝑖 ) ∈ [0, 1], where ®𝑦𝑖 = ⟨𝑦𝑖1, 𝑦𝑖2, . . .⟩. As
we show later, such utilities lead to more tractable algorithmic
formulations.

2.2 Utility Sharing
The utility 𝑢𝑖 (𝑆) that 𝑖 gains from the set 𝑆 of agents is attrib-
uted to the agents in 𝑆 according to a fixed rule. We let ℎ𝑖 𝑗 (𝑆)
denote the contribution of agent 𝑗 ∈ 𝑆 to the utility 𝑢𝑖 (𝑆), so that

∑
𝑗∈𝑆 ℎ𝑖 𝑗 (𝑆) = 𝑢𝑖 (𝑆). In this paper, we consider two classes of shar-

ing rules that have been studied in cooperative game theory, and
more recently in machine learning:

Shapley Value: This is a classic “gold-standard” rule from co-
operative game theory [16, 17, 31], and works as follows:
Take a random permutation of the agents in 𝑆 . Start with
𝑊 as the empty set and consider adding the agents in 𝑆

one at a time to𝑊 . At the point where 𝑗 is added, let Δ 𝑗 =

𝑢𝑖 (𝑊 ∪ { 𝑗}) − 𝑢𝑖 (𝑊 ) be the increase in utility due to the
datasets in𝑊 . The Shapley value ℎ𝑖 𝑗 (𝑆) is the expectation
of Δ 𝑗 over all random permutations of 𝑆 .

Proportional Value: In this class of rules [9, 21], there is a
fixed set of weights {𝑤𝑖 𝑗 }, and we define ℎ𝑖 𝑗 (𝑆) =

𝑤𝑖 𝑗∑
𝑘∈𝑆 𝑤𝑖𝑘

·
𝑢𝑖 (𝑆). The natural special case is the setting𝑤𝑖 𝑗 = 𝑢𝑖 ({ 𝑗}),
so that the utility is shared proportionally to how much 𝑗 ’s
dataset would have individually contributed to 𝑖 .

For submodular utilities, the Shapley value satisfies a property
called cross-monotonicity [23]: if 𝑇 ⊂ 𝑆 and 𝑗 ∈ 𝑇 , then ℎ𝑖 𝑗 (𝑇 ) ≥
ℎ𝑖 𝑗 (𝑆). Note that there is an entire class of rules that satisfy cross-
monotonicity for submodular utilities; please see [16, 17] for a de-
tailed discussion of the Shapley value and related cross-monotonic
rules in the context of machine learning. In contrast, the propor-
tional value does not satisfy this property. We contrast these rules
in the following example.

Example 2. There are 𝑛 agents each contributing data to agent
0. The first 𝑛 − 1 agents have identical data, so that 𝑢0 (𝑆) = 0.5 for
any non-empty 𝑆 ⊆ [𝑛 − 1]. Agent 𝑛 has a unique dataset so that
𝑢0 ({𝑛}) = 0.5, and 𝑢0 (𝑆 ∪ {𝑛}) = 1 for any non-empty 𝑆 ⊆ [𝑛 − 1].
Then, for 𝑆 ⊆ [𝑛 − 1], the Shapley value is ℎ0𝑛 (𝑆 ∪ {𝑛}) = 0.5 and
ℎ0𝑗 (𝑆 ∪ {𝑛}) = 1

2 |𝑆 | for 𝑗 ∈ 𝑆 . However, the proportional share with

𝑤𝑖 𝑗 = 𝑢𝑖 ({ 𝑗}) is ℎ0𝑗 (𝑆 ∪ {𝑛}) = 1
|𝑆 |+1 for all 𝑗 ∈ 𝑆 ∪ {𝑛}.

In the above example, the Shapley value is more reflective of
the actual contributions of the individual agents compared to pro-
portional value; however, the latter rule sometimes leads to better
algorithmic results. In particular, for continuous concave utilities
and the symmetric weighted setting, the proportional sharing rule
is more tractable, while for general submodular utilities, the Shapley
value is more tractable.

2.3 Constraints for Data Exchange: Utility Flow
We now present the constraints of the Data Exchange Problem.
We assume there is a central entity that computes this exchange.
The key constraint is that each agent receives as much utility from
the exchange as it contributes. In this exchange, each agent 𝑖 is
associated with a distribution {𝑥𝑖𝑆 } over sets 𝑆 ⊆ 𝑋 \ {𝑖} of agents
whose datasets she could receive. In other words, with mutually
exclusive probability 𝑥𝑖𝑆 , agent 𝑖 receives the datasets from 𝑆 and
receives utility 𝑢𝑖𝑆 as a result.

The first constraint encodes that {𝑥𝑖𝑆 } define a probability dis-
tribution over possible sets 𝑆 .

∀ 𝑖,
∑︁
𝑆

𝑥𝑖𝑆 ≤ 1 (1)

where the remaining probability is assigned to 𝑆 = ∅.
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The balance condition captures that the expected utility con-
tributed by an agent to other agents is equal to the expected utility
she receives.

∀ 𝑖,
∑︁
𝑆

∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 =
∑︁
𝑗

∑︁
𝑆 |𝑖∈𝑆

ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 (2)

Note that the balance condition is interim, meaning it holds for
the expected utility. Any solution that satisfies the balance condi-
tion subject to Eq. (1) is said to be a feasible solution to the Data
Exchange Problem.

Remarks. First note that for deterministic exchange where 𝑥𝑖𝑆 ∈
{0, 1}, the balance constraints may cause very low utility or lack of
a feasible solution. This motivates our use of randomization and
interim balance. A randomized solution is justified when agents in-
teract overmany epochswith different datasets andmodels. Though
any specific interaction is ex-post imbalanced, these even out over
time by the law of large numbers. Such interim balance also makes
our algorithmic problem more tractable.

Next, though we don’t discuss it in the paper, it is easy to gener-
alize the model to the setting where each agent 𝑖 has a collection of
datasets and a collection of tasks, and each needs different datasets.
Further, in the full paper [8], we discuss the changes that need to
be made to the constraints to handle continuous, concave utilities.

Eq. (2) is a strict constraint, and therefore trades off with objec-
tives such as social welfare. In the full paper [8], we also consider
the case where the balance can be violated.

Finally, as mentioned before, we assume the clearinghouse has
accurate access to all datasets and tasks, and can hence compute
utilities, their shares, and the feasible Data Exchange solution.
We ignore strategic misreporting on the part of the agents for most
of the paper, but we will discuss this aspect and its trade-off with
other objectives in the full paper [8].

2.4 Social Welfare Objective
Our goal is to find the optimalData Exchange subject to feasibility.
Towards this end, we mainly consider the social welfare objective
where the goal is to find the distributions {𝑥𝑖𝑆 } that maximizes:

Social Welfare =
∑︁
𝑖∈𝑋

∑︁
𝑆⊆𝑋\{𝑖 }

𝑢𝑖 (𝑆)𝑥𝑖𝑆 =
∑︁
𝑖∈𝑋

∑︁
𝑆⊆𝑋\{𝑖 }

∑︁
𝑗∈𝑆

𝑥𝑖𝑆ℎ𝑖 𝑗 (𝑆).

(3)
We will study the computational complexity of this problem.

Remark about running times. Throughout, we assume that there
is an efficient subroutine MLSub that given an agent 𝑖 and set
𝑆 ⊆ 𝑋 \ {𝑖} returns the utility 𝑢𝑖 (𝑆) and the shares ℎ𝑖 𝑗 (𝑆) for all
𝑗 ∈ 𝑆 . We remark that by “polynomial” running time, we mean
polynomially many calls toMLSub, combined with polynomially
many ancillary computations. Such an approach decouples the exact
running time of MLSub from our results. For ML tasks, estimating
𝑢𝑖 (𝑆) will require retraining the model using data from 𝑆 ; this can
typically be done efficiently. Further, estimate ℎ𝑖 𝑗 (𝑆) can be done
to a good approximation via sampling permutations; see [2, 17].

Computational complexity of welfare maximization. The welfare
maximization problem is a linear program with 2𝑛 constraints,
so that the optimum solution has at most 2𝑛 non-zero variables.
Nevertheless, we show NP-Hardness by a reduction from Exact

3-Cover. We note that the hardness result holds even when for any
𝑆 , both 𝑢𝑖 (𝑆) and ℎ𝑖 𝑗 (𝑆) are computable in near-linear time.

Theorem 3 (Proved in the full paper [8]). The welfare maxi-
mization objective in Data Exchange is NP-Hard for submodular
utilities and Shapley value sharing.

In Section 3, we develop polynomial time algorithms that mul-
tiplicatively approximate social welfare.1 Our algorithms achieve
approximate feasibility, where we relax the balance constraint to
𝜖-balance (where 𝜖 ∈ (0, 1)):������∑︁𝑆

∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 −
∑︁
𝑗

∑︁
𝑆 |𝑖∈𝑆

ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆

������ ≤ 𝜖 ∀𝑖 . (4)

The running times we achieve are now polynomial in 1
𝜖 , with

the assumption that there are analogously many calls to MLSub.
We show the following theorem in Section 3; the precise running
time and approximation factors are presented there.

Theorem 4 (Proved in Section 3). We can achieve the following
approximation factors to the social welfare objective for Data Ex-
change via an algorithm that runs in time polynomial in the input
size and 1

𝜖 and finds a feasible solution that satisfies 𝜖-balance:

• A 𝑂 (log𝑛) approximation for arbitrary submodular utilities2

and any cross-monotonic utility sharing rule (including the
Shapley value rule).

• A 1 + 𝜖 approximation for symmetric weighted setting and
proportional value with𝑤𝑖 𝑗 = 𝑠𝑖 𝑗 .

Our results follow by writing the social welfare optimization
problem as a Linear Program (LP) with exponentially many vari-
ables of the form {𝑥𝑖𝑆 }. Since the number of feasibility constraints
is 2𝑛, we use the multiplicative weight method to approximately
solve it. This requires developing a dual oracle for the constraints,
which for each agent 𝑖 , is a constrained maximization problem over
a weighted sum of {ℎ𝑖 𝑗 (𝑆)}, and we need to find the set 𝑆 ⊆ 𝑋 \ {𝑖}
that maximizes this weighted sum. We show approximation algo-
rithms for this problem, leading to the proof of the above theorem.

Further, in the full paper [8], we show the following theorem:

Theorem 5 (Proved in the full paper [8]). For Data Ex-
change with continuous concave utility functions and proportional
sharing, for any 𝜖 ∈ (0, 1), there is an algorithm running in time poly-
nomial in the input size and 1

𝜖 and that finds a (1+ 𝜖) approximation
to social welfare, while violating balance by an additive 𝜖 .

Finally, in the full paper [8], we show that the same solution
ideas extend to the case where the balance condition Eq. (2) can be
violated by compensating/extracting payments from agents using
a convex function of the extent of imbalance in the utilities. Such
an approach can lead to much larger social welfare.

1By 𝛼-approximation for 𝛼 ≥ 1, we mean our algorithm achieves at least 1
𝛼

fraction
of the optimal social welfare.
2The results hold for arbitrary monotone utilities and only require cross-monotonic
sharing; however, cross-monotonicity typically does not hold unless utilities are
submodular.
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2.5 Core Stability and Strategyproofness
Stability is a widely studied notion in cooperative game theory,
and seeks solutions that are robust to coalitional deviations. In our
context, we have the following definition.

Definition 6. A feasible solution F to Data Exchange is core
stable if there is no 𝑈 ⊆ 𝑋 of users and another feasible solution F ′

just on the users in 𝑈 such that for all 𝑖 ∈ 𝑈 , 𝑢𝑖 (F ′) > 𝑢𝑖 (F ). A
solution F is 𝑐-stable if there is no such 𝑈 with |𝑈 | ≤ 𝑐 .

In other words, suppose a coalition 𝑈 ⊆ 𝑋 of agents deviates
and trades just among themselves via a feasible solution F ′ so that
all their utilities improve, then this coalition is blocking. A core
solution has no blocking coalitions.

In the full paper [8], we first show that regardless of the util-
ity function and choice of sharing rule, there is always a feasible
Data Exchange solution that is core-stable to an arbitrarily good
approximation. This is a consequence of Scarf’s lemma [29] from
cooperative game theory. Though it is unclear how to efficiently
compute such a solution in general, we show an algorithm to find
a 2-stable solution via Greedy maximal weight matching.

In the full paper [8], we next study the trade-off between core
and welfare. On the negative side, we show an instance in the
symmetric weighted setting with proportional sharing, where any
core solution has social welfare that is Ω(

√
𝑛) times smaller than

the optimal social welfare, showing the two concepts of core and
welfare maximization can be far from each other. Nevertheless, we
show how to achieve approximate core-stability and social welfare
simultaneously via randomizing between them.

We finally consider strategic behavior by agents, where they hide
either their tasks or data. We define feasible misreports, and again
show that for the symmetric weighted setting, strategyproofness
and approximate welfare maximization are simultaneously incom-
patible. On the positive side, we show that aGreedy cycle canceling
algorithm that generalizes greedy matching is strategyproof.

3 ALGORITHMS FORWELFARE
MAXIMIZATION: PROOF OF THEOREM 4

In this section, we present approximation algorithms for welfare
maximization. We present the overall framework in Section 3.1,
which reduces the problem to solving an oracle problem, one for
each agent (Eq. (10)), so that an approximation algorithm to the or-
acle translates to the same approximation to welfare maximization,
while achieving 𝜖-balance (Eq. (4)). We present the approxima-
tions to the oracle for submodular utilities with Shapley value in
Section 3.3, and for symmetric weighted concave utilities with pro-
portional sharing in the full paper [8]. We also present an extension
to continuous concave utilities with proportional sharing in the full
paper [8].

As mentioned before, the welfare maximization problem can
be written as an exponential-sized LP, where the non-negative
variables are {𝑥𝑖𝑆 }; the objective is to maximize Eq. (3) subject to
the constraints Eqs. (1) and (2).

3.1 Multiplicative Weight Algorithm
We solve this using the multiplicative weights framework of Plotkin,
Shmoys, and Tardos (PST) [25]. Since our final solution loses an

additive 𝜖 in the balance constraints (Eq. (2)), we assume at the
outset that these constraints are violated by an additive 𝜖 , that is,
Eq. (4). The problem with relaxed constraints can only have a larger
objective value (social welfare). The relaxation helps us achieve
polynomial running time.

Lemma 7. Let 𝑂𝑃𝑇 denote the optimal solution value to the in-
stance with relaxed balance constraints. Then 𝑂𝑃𝑇 ≥ 𝜖 .

Proof. To see this, recall that we assumed max𝑖 𝑢𝑖 (𝑋 ) = 1. For
the maximizer 𝑖 , set 𝑥𝑖𝑋 = 𝜖 and set all other variables to zero. This
gives us a guarantee that 𝑂𝑃𝑇 ≥ 𝜖 . □

Now, we try all objective values in powers of (1+𝜖) using binary
search. Consider some guess 𝐵 for this value; we want to check
if this value is feasible. By Lemma 7 we assume that 𝐵 ≥ 𝜖 . We
therefore want to check the feasibility of the following LP, where
the objective Eq. (3) is encoded in Eq. (5); the balance constraints
Eq. (4) is enconded in Eqs. (6) and (7); and the probability constraint
Eq. (1) is encoded in Eq. (8). Call this LP1(𝐵, 𝜖). Our final solution
will correspond to the largest 𝐵 for which LP1(𝐵, 𝜖) is feasible.

(LP1)

∑︁
𝑖, 𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 ≥ 𝐵 (5)

∀ 𝑖,
∑︁
𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 −
∑︁

𝑗,𝑆 |𝑖∈𝑆
ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 ≥ −𝜖 (6)

∀ 𝑖,−
∑︁
𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 +
∑︁

𝑗,𝑆 |𝑖∈𝑆
ℎ 𝑗𝑖 (𝑆)𝑥 𝑗𝑆 ≥ −𝜖 (7)

∀ 𝑖,
∑︁
𝑆

𝑥𝑖𝑆 ≤ 1 (8)

∀ 𝑖, 𝑆,
∑︁
𝑆

𝑥𝑖𝑆 ≥ 0 (9)

We will use the PST framework to solve the feasibility of the
above LP. Let Eqs. (5) to (7) be represented by the coefficient ma-
trices 𝐴,𝑏 and let 𝑃 be the polytope of vectors satisfying Eqs. (8)
and (9). We are testing whether ∃?𝑥 ∈ 𝑃,𝐴𝑥 ≥ 𝑏. The PST frame-
work requires an oracle to solvemax𝑥∈𝑃 𝑝⊤𝐴𝑥 for arbitrary vectors
𝑝 ≥ 0. In our setting, this becomes

Oracle = max
𝑥∈𝑃

∑︁
𝑖, 𝑗,𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆

for possibly negative weights𝑄𝑖 𝑗 . Since the constraints across 𝑖 are
now independent, the maximum solution will select the optimum
solution 𝑆 to Eq. (10) and sets 𝑥𝑖𝑆 = 1, for each 𝑖 .

Oracle for agent 𝑖 = max
𝑆

∑︁
𝑗∈𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) (10)

Using a similar proof as Theorem 3, it can be shown the Oracle
problem is NP-Hard. We will therefore develop approximation
algorithms, and show two such algorithms in the full paper [8].
As we show below, this will translate to an approximation for the
social welfare. The overall algorithm is presented in Algorithm 1.

3.2 Analysis
Suppose the multiplicative approximation ratio of the oracle Eq. (10)
is 𝛼 ≥ 1; this means the oracle subroutine finds a solution whose
value is at least 𝑂𝑃𝑇 /𝛼 when 𝑂𝑃𝑇 is the optimal solution to the
oracle. Define 𝜌 be the maximum value that any of the constraints
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Algorithm 1 Multiplicative Weights Update to solve LP1.

1: Choose parameters 𝜖, 𝛿 ≤ 1 and 𝜂 = 𝜖
4𝑛𝛼 .

2: Try values for 𝐵 via in powers of (1 + 𝛿).
3: Let 𝐴 ∈ R(2𝑛+1)×𝑛, 𝑏 ∈ R2𝑛+1 denote the coefficients of

LP1(𝐵, 𝜖).
4: Let w(1) = 12𝑛+1.
5: for 𝑡 = 1, . . . ,𝑇 =

32𝑛2𝛼2 log𝑛
𝜖2

do

6: Let p(𝑡 ) := w(𝑡 )∑
𝑖 𝑤

(𝑡 )
𝑖

.

7: Let x(𝑡 ) be the output of the 𝛼-approximate oracle with input
p(𝑡 )⊤𝐴x.

8: if p(𝑡 )⊤𝐴x(𝑡 ) < p(𝑡 )
⊤ 𝑏
𝛼 then

9: Return infeasible and decrease the guess for 𝐵.
10: else
11: m(𝑡 ) := 1

𝜌 (𝐴x
(𝑡 ) − b

𝛼 ).
12: ∀ 𝑖,𝑤𝑖

(𝑡+1) := 𝑤
(𝑡 )
𝑖

(1 − 𝜂𝑚
(𝑡 )
𝑡 ).

13: end if
14: end for
15: Return x̄ =

∑
𝑖 x(𝑡 )
𝑇

.

in 𝐴𝑥 ≥ 𝑏, 𝑥 ∈ 𝑃 can be additively violated. Since we assume
𝑢𝑖 (𝑋 ) ≤ 1 for all 𝑖 , it is clear that 𝜌 =

∑
𝑖 𝑢𝑖 (𝑋 ) ≤ 𝑛.

Our main theorem is the following.

Theorem 8. Suppose the oracle problem Eq. (10) can be solved to

a multiplicative approximation factor of 𝛼 . Then, with 𝑂 ( 𝑛
2𝛼2 log𝑛

𝜖2
)

calls to the oracle subproblem and 𝑂 (𝑛) time overhead per call to the
oracle, Algorithm 1 returns a solution x that satisfies Eqs. (6) to (9)
and that satisfies: ∑︁

𝑖, 𝑗,𝑆

ℎ𝑖 𝑗 (𝑆)𝑥𝑖𝑆 ≥ 𝑂𝑃𝑇

2𝛼 (1 + 3𝛿) .

To prove this theorem, we require a result from [3].

Lemma 9 (Theorem 2.1 in [3]). After 𝑇 rounds in Algorithm 1,
for every 𝑖 ,

𝑇∑︁
𝑡=1

m(𝑡 ) · p(𝑡 ) ≤
𝑇∑︁
𝑡=1

𝑚
(𝑡 )
𝑖

+ 𝜂
𝑇∑︁
𝑡=1

���𝑚 (𝑡 )
𝑖

��� + 2 log𝑛
𝜂

. (11)

Proof of Theorem 8. Suppose the algorithm did 𝑇 iterations
without declaring infeasibility. Since the algorithm did not declare
it infeasible, then we have that

p(𝑡 )⊤𝐴x(𝑡 ) ≥ p(𝑡 )
⊤ 𝑏

𝛼

for every time step 𝑡 . Thus, the left hand side of Eq. (11) is non-
negative.

0 ≤
𝑇∑︁
𝑡=1

𝑚
(𝑡 )
𝑖

+ 𝜂
𝑇∑︁
𝑡=1

���𝑚 (𝑡 )
𝑖

��� + 2 log𝑛
𝜂

=
1
𝑛

𝑇∑︁
𝑡=1

(𝐴𝑖x(𝑡 ) −
𝑏𝑖

𝛼
) + 𝜂𝑇 + 2 log𝑛

𝜂

Dividing by 𝑇 , and choosing 𝜂 = 𝜖
4𝑛𝛼 and 𝑇 =

32𝑛2𝛼2 log𝑛
𝜖2

, we get

𝐴𝑖 x̄ ≥ 𝑏𝑖

𝛼
− 𝜂𝑛 − 2𝑛 log𝑛

𝜂𝑇
=⇒ 𝐴𝑖 x̄ ≥ 𝑏𝑖

𝛼
− 𝜖

2𝛼
.

The theorem statement then follows by choosing 𝛿 ≤ 1
3 and with

the observation that for some guess 𝐵 for the optimal value, we
have 𝐵 ≥ 𝑂𝑃𝑇

1+𝛿 ≥ 𝜖
1+𝛿 . □

3.3 Oracle for Cross-monotonic Sharing
We now consider the case whereℎ𝑖 𝑗 (𝑆) is cross-monotonic in 𝑆 , and
𝑢𝑖 (𝑆) is a non-decreasing submodular set function. Note that cross-
monotonicity captures the Shapley value.Wewill present a𝑂 (log𝑛)
approximation to the oracle (Eq. (10)) for this setting, which when
combined with Theorem 8, completes the proof of the first part
of Theorem 4. The key hurdle with devising an approximation
algorithm is that the quantities 𝑄𝑖 𝑗 in Eq. (10) can be negative; we
show this is not an issue for cross-monotonic sharing.

Simplifying the data exchange problem. Before considering
the oracle problem (Eq. (10)), we consider the overall data ex-
change problem (Eqs. (5) to (9)) and show some bounds for it. Let
𝑢𝑖 𝑗 := ℎ𝑖 𝑗 ({ 𝑗}) = 𝑢𝑖 ({ 𝑗}). Note that by cross-monotonicity, we
have ℎ𝑖 𝑗 (𝑆) ≤ 𝑢𝑖 𝑗 for all 𝑗 ∈ 𝑆 .

Lemma 10. By losing a multiplicative factor of (1 − 𝜖) in social
welfare, for every 𝑖 , we can set 𝑥𝑖𝑆 = 0 for any 𝑆 that contain some 𝑗
such that 𝑢𝑖 𝑗 := ℎ𝑖 𝑗 ({ 𝑗}) ≤ 𝜖2

𝑛2 .

Proof. Fix some 𝑖 . Let 𝑆small =
{
𝑗 | ℎ𝑖 𝑗 ({ 𝑗}) ≤ 𝜖2

𝑛2

}
. Consider

any solution x. We claim that modifying x such that we add the
value of 𝑥𝑖𝑆 to 𝑥𝑖𝑆\𝑆small , and set 𝑥𝑖𝑆 = 0 only loses (1 − 𝜖) factor
in the objective. Since the utility sharing rule is cross-monotone,
for any set 𝑆 we have ℎ𝑖 𝑗 (𝑆 \ 𝑆small) ≥ ℎ𝑖 𝑗 (𝑆) for all 𝑗 ∈ 𝑆 \ 𝑆small.
Further, we have ℎ𝑖 𝑗 (𝑆small) ≤ ℎ𝑖 𝑗 ({ 𝑗}) for all 𝑗 ∈ 𝑆small. Therefore,
we have

𝑢𝑖 (𝑆) =
∑︁
𝑗∈𝑆

ℎ𝑖 𝑗 (𝑆) =
∑︁

𝑗∈𝑆small

ℎ𝑖 𝑗 (𝑆) +
∑︁

𝑗∈𝑆\𝑆small

ℎ𝑖 𝑗 (𝑆)

≤
∑︁

𝑗∈𝑆small

ℎ𝑖 𝑗 ({ 𝑗}) +
∑︁

𝑗∈𝑆\𝑆small

ℎ𝑖 𝑗 (𝑆 \ 𝑆small)

≤ 𝜖2

𝑛
+ 𝑢𝑖 (𝑆 \ 𝑆small) .

Adding up the losses, we lose a 𝜖2

𝑛 for each user 𝑖 , leading to a loss
of 𝜖2 overall. By Lemma 7, the initial optimum was at least 𝜖 . We
therefore lose a factor of at most (1 − 𝜖) in social welfare. □

We therefore assume 𝑥𝑖𝑆 = 0 for all 𝑆 s.t. 𝑗 ∈ 𝑆 and 𝑢𝑖 𝑗 < 𝜖2

𝑛2 .

Approximating the Oracle. For agent 𝑖 , let

𝑆∗ = argmax
∑︁
𝑗∈𝑆

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) 𝑂𝑃𝑇 =
∑︁
𝑗∈𝑆∗

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗).

For given 𝜖 > 0, the algorithm works as follows:
(1) Guess 𝑂𝑃𝑇 in powers of (1 + 𝜖) by binary search.
(2) For constant 𝛿 = 𝑒 − 1, divide the agents into buckets based

on the 𝑄𝑖 𝑗 value. The 𝑘𝑡ℎ bucket 𝐵𝑘 is defined as

𝐵𝑘 = { 𝑗 | 𝑄𝑖 𝑗 ∈
(
𝑢0 (1 + 𝛿)𝑘 , 𝑢0 (1 + 𝛿)𝑘+1

]
}
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where 𝑢0 = 𝜖 ·𝑂𝑃𝑇
𝑛 and 𝑘 ∈ {0, 1, . . . , 3⌈log1+𝛿 ( 𝑛𝜖 )⌉ − 1}.

(3) For each bucket 𝐵𝑘 , let 𝑉𝑘 =
∑

𝑗∈𝐵𝑘
𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝐵𝑘 ).

(4) For this guess of 𝑂𝑃𝑇 , the final solution is 𝑆𝑧 where 𝑧 =

argmax𝑘𝑉𝑘 .
(5) The solution is valid for this value of 𝑂𝑃𝑇 if 𝑉𝑧 ≥ 𝑂𝑃𝑇 /𝛼 ,

where 𝛼 = 3𝑒 (1 + 3𝜖) ln𝑛. We use the largest𝑂𝑃𝑇 for which
the solution returned is valid, and return this solution.

In the analysis below, we assume 𝑂𝑃𝑇 can be precisely guessed.

Theorem 11. For 𝜖 > 0, when utilities 𝑢𝑖 (𝑆) are monotone non-
decreasing in 𝑆 and the utility sharing rule is cross-monotone, the
Oracle problem can be approximated to factor 𝛼 ≤ 3𝑒 (1 + 2𝜖) ln𝑛
in 𝑂 ( 𝑛 log𝑛

log(1+𝜖 ) ) time and correspondingly many calls to MLSub.

Proof. Let 𝑆0 = { 𝑗 ∈ 𝑆∗ |𝑄𝑖 𝑗 < 0}. We have:∑︁
𝑗∈𝑆∗

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) =
∑︁
𝑗∈𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) +
∑︁

𝑗∈𝑆∗\𝑆0
𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗)

≤
∑︁

𝑗∈𝑆∗\𝑆0
𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗) ≤

∑︁
𝑗∈𝑆∗\𝑆0

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆∗ \ 𝑆0).

where the final inequality follows by cross-monotonicity. Since 𝑆∗
is optimal, this means 𝑆0 = ∅. Therefore, we assume 𝑄𝑖 𝑗 > 0.

Next note that𝑂𝑃𝑇 ≥ ∑
𝑗∈𝑆 𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) for 𝑆 = { 𝑗}, which means

𝑄𝑖 𝑗𝑢𝑖 𝑗 ≤ 𝑂𝑃𝑇 for all 𝑗 . Given constant 𝜖 ∈ (0, 1], let 𝑆small ={
𝑗 | 𝑄𝑖 𝑗𝑢𝑖 𝑗 < 𝜖 · 𝑂𝑃𝑇

𝑛

}
. By the same argument as in the proof of

Lemma 10, we can restrict to agents in 𝑋 \ 𝑆small by losing a (1− 𝜖)
factor in 𝑂𝑃𝑇 . Let 𝑋 = 𝑋 \ 𝑆small, so that these are now the only
agents of interest. The above implies𝑄𝑖 𝑗𝑢𝑖 𝑗 ∈ 𝑂𝑃𝑇 ·

[
𝜖
𝑛 , 1

]
for 𝑗 ∈ 𝑋 .

Since 𝑢𝑖 𝑗 ∈
[
𝜖2

𝑛2 , 1
]
by Lemma 10, this implies 𝑄𝑖 𝑗 ∈ 𝑂𝑃𝑇 ·

[
𝜖
𝑛 ,

𝑛2

𝜖2

]
.

Therefore, the buckets constructed by the algorithm only use agents
from 𝑋 .

Let 𝑆 = 𝑆∗∩𝑋 . By the Pigeonhole principle, the elements of some
bucket must contribute at least log(1+𝛿 )

3 log 𝑛
𝜖

fraction of the objective,

𝑂𝑃𝑇 . Suppose this is the 𝑘𝑡ℎ bucket 𝐵𝑘 . We therefore have:

log(1 + 𝛿)
log 𝑛

𝜖

·𝑂𝑃𝑇 ≤
∑︁

𝑗∈𝑆∩𝐵𝑘

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝑆) ≤ (1 + 𝛿)𝑘+1
∑︁

𝑗∈𝑆∩𝐵𝑘

ℎ𝑖 𝑗 (𝑆).

Suppose we choose 𝐵𝑘 as the solution instead. We have∑︁
𝑗∈𝐵𝑘

𝑄𝑖 𝑗ℎ𝑖 𝑗 (𝐵𝑘 ) ≥ (1 + 𝛿)𝑘
∑︁
𝑗∈𝐵𝑘

ℎ𝑖 𝑗 (𝐵𝑘 ) = (1 + 𝛿)𝑘𝑢𝑖 (𝐵𝑘 )

≥ (1 + 𝛿)𝑘𝑢𝑖 (𝐵𝑘 ∩ 𝑆) = (1 + 𝛿)𝑘
∑︁

𝑗∈𝐵𝑘∩𝑆
ℎ𝑖 𝑗 (𝐵𝑘 ∩ 𝑆)

≥ (1 + 𝛿)𝑘
∑︁

𝑗∈𝐵𝑘∩𝑆
ℎ𝑖 𝑗 (𝑆) ≥

(1 − 𝜖) log(1 + 𝛿)
3(1 + 𝛿) log 𝑛

𝜖

𝑂𝑃𝑇 .

Here, the second inequality holds because 𝑢𝑖 is monotonically
non-decreasing, and the next inequality holds since ℎ𝑖 𝑗 is cross-
monotone, so that ℎ𝑖 𝑗 (𝐵𝑘 ∩ 𝑆) ≥ ℎ𝑖 𝑗 (𝑆). Thus, the largest of the
solutions 𝑉𝑘 is a 3(1+𝛿 ) log 𝑛

𝜖

(1−𝜖 ) log(1+𝛿 ) -approximation to the optimal solu-
tion. This is minimized at 𝛿 = 𝑒 − 1, giving us an approximation
ratio of 3𝑒 log 𝑛

𝜖

(1−𝜖 ) ≤ 3𝑒 (1 + 2𝜖) log𝑛 for 𝜖 < 1
2 and for large enough

𝑛.

We can execute this algorithm in almost linear time in the fol-
lowing way: guess the right value of𝑂𝑃𝑇 by a binary search, which
takes 𝑂 ( log𝑛

log(1+𝜖 ) ) time to find 𝑂𝑃𝑇 up to multiplicative error of

(1 + 𝜖). Throw out all elements that have 𝑄𝑖 𝑗𝑢𝑖 𝑗 < 𝜖 ·𝑂𝑃𝑇
𝑛 and

𝑢𝑖 𝑗 < 𝜖2

𝑛2 , and find the bucket with the largest utility. This takes

time 𝑂 (𝑛), leading to an overall time of 𝑂 ( 𝑛 log𝑛
log(1+𝜖 ) ). □

4 EXPERIMENTS
We will now empirically compare the performance of our approxi-
mation algorithm in Section 3 with a no-sharing baseline, and with
a pair-wise trade benchmark, showing we outperform both. In our
experiments, each agent corresponds to a path in a road network.
The delay of each edge in the road network is a random variable
and each agent has a set of samples for each edge on its path that it
can trade with other agents. The goal of each agent is to trade her
samples in order minimize the sample variance in the estimate of
the delay on her path.

As motivation, consider trucking or cab companies sharing data
to improve each other’s routing and demand forecasting models.
Vehicles of these entities traverse different sets of routes and collect
data on traffic conditions on road segments that they can share to
improve the overall routing of other entities that also use these
segments. We note that the experiments are intended to be a proof
of concept that for a realistic dataset with sufficient complexity, the
method shows improvement over simpler baselines. Nevertheless,
our dataset has sufficient nuance, for instance, overlap between
participants and correlation structure, that the results should carry
over to other datasets with this structure.

Setup. We sample a random neighborhood of radius 8 from the
Manhattan road network in [1]. This will serve as the graph of
interest for the rest of the experiment. We have 𝑛 = 20 agents.
Each agent 𝑖 is assigned a path in the graph in the following way:
Sample a random node 𝑢 in the graph. Sample a length 𝑡 uniformly
at random between 5 and the depth of the BFS tree from𝑢. Sample a
node 𝑣 uniformly at random at layer 𝑡 of the BFS tree. The shortest
path from 𝑢 to 𝑣 in the graph is the path 𝑃𝑖 corresponding to agent
𝑖 , and she is interested in minimizing the variance of the sample
mean of the delay of this path.

The delay of each edge 𝑒 is a random variable whose variance 𝜎2𝑒
is drawn uniformly from [0, 1], independently of other edges. Agent
𝑖 starts with 𝑧 (𝑖 ) data points for the delay of her path 𝑃𝑖 , where
𝑧 (𝑖 ) is chosen uniformly at random between 2 and 9. Therefore, she
starts with 𝑧

(𝑖 )
𝑒 = 𝑧 (𝑖 ) data points for each edge 𝑒 in her path.

The agent’s objective is to minimize the sum of the sample vari-
ances of the delays of the edges in her path 𝑃𝑖 . Her initial sample
variance is 𝜎2

𝑒

𝑧
(𝑖 )
𝑒

and therefore, her initial total sample variance is

Baseline for 𝑖 = 𝑣0 (𝑖) :=
∑︁
𝑒∈𝑃𝑖

𝜎2𝑒

𝑧
(𝑖 )
𝑒

Suppose she receives data from a set of other agents 𝑆 , who collec-
tively give her 𝑧 (𝑆 )𝑒 additional samples for edge 𝑒 . Then, her utility
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(a) (b) (c)

Figure 1: (a) Box plots of the total utility of the algorithm and benchmark (matching) solutions, measured as a fraction of the
baseline. (b,c) Total utility of the algorithm and matching benchmark with varying levels of correlation, again measured as a
fraction of the baseline. Figure (b) is Random correlation, and (c) is Local correlation.

is defined as the reduction in total sample variance. That is,

Utility of 𝑖 = 𝑢𝑖 (𝑆) = 𝑣0 (𝑖) −
∑︁
𝑒∈𝑃𝑖

𝜎2𝑒

𝑧
(𝑖 )
𝑒 + 𝑧

(𝑆 )
𝑒

.

This is a monotonically increasing submodular function. We per-
form the cost-sharing via the Shapley value. We simulate the Shap-
ley value by taking 𝑚 = 10 random permutations, and use use
𝜖 = 0.01 as the violation allowed in the balance constraints.

Results. Since the optimal solution to Data Exchange is NP-
Hard, we compare the total utility of our approximation algorithm
(Section 3.3) to the baseline sample variance

∑
𝑖 𝑢0 (𝑖), where no

agents in the solution share their data. As a benchmark, we also
find the best solution with trades only between pairs of agents,
much like algorithms for kidney exchange. For this, we construct a
graph on the agents where the weight for pair (𝑖, 𝑗) is the maximum
utility of Data Exchangewith 𝜖-Balance on just these two agents.
We then find a maximum weight matching on this weighted graph.
(See the full paper [8] for more details.)

In Fig. 1a, we present the total utility of our algorithm and the
matching benchmark, measured as a fraction of the baseline sample
variance, across several random samples of the road network. Our
algorithm outperforms the benchmark, by a factor of 1.8 on average.
Note that we can easily construct instances with a single long path
with 𝑚 edges and many paths sharing one edge with this path,
where our algorithm outperforms matching by a factor of Ω(𝑚).
The goal of our experiment is to show that our algorithm has a
significant advantage even in more realistic settings.

We now introduce correlation between the random variables of
the edges. In this setting, we assume that correlated edges have their
delays sampled from the same distribution. We introduce this corre-
lation in two ways. In random correlation (Fig. 1b), we sample pairs
of edges uniformly at random and correlate the pair. We measure
the correlation (𝑥-axis) as a ratio of the number of pairs sampled to
the total number of edges in the graph. In local correlation (Fig. 1c),
we sample vertices uniformly at random, and correlate all the edges

incident to this edge. We measure the correlation (𝑥-axis) as a ratio
of the number of vertices sampled to the total number of vertices
in the graph.

We measure how the total utility of our algorithm and the match-
ing benchmark changes as a function of the correlation in Figs. 1b
and 1c, again measured as a fraction of the baseline sample vari-
ance. Our algorithm outperforms the benchmark in both modes of
correlation, and at both high and low levels of correlation.

5 CONCLUSION
There are several open questions that arise from our work. First,
the approximation ratio for Shapley value sharing is 𝑂 (log𝑛) and
we have not ruled out the existence of a constant approximation.
Secondly, our algorithmic results require utilities to be submodular.
Though this is a natural restriction, there are cases where it does
not hold. For instance, if each dataset is a collection of features, the
effect of combining features could be super-additive [16]. Devising
efficient algorithms for special types of non-submodular functions
that arise in learning is an interesting open question.

Next, for Shapley value sharing (as opposed to proportional shar-
ing), our negative result for core-stability only shows the absence
of a (2− 𝜖)-approximation to welfare. Either strengthening this im-
possibility result or showing a constant approximation that lies in
the exact core would be an interesting question. Further, it would be
interesting to study strategyproofness for thick or random markets,
analogous to results for stable matchings [6, 19].

Finally, our model can be viewed as budget balance with a single
global price per unit utility transferred. Though there are hurdles
to defining an Arrow-Debreau type market with endogenous prices
for each data type, it would be interesting to define a richer and
tractable class of markets along this direction.
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