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In the single-machine non-clairvoyant scheduling problem, the goal is to minimize the total completion time
of jobs whose processing times are unknown a priori. We revisit this well-studied problem and consider the
question of how to effectively use (possibly erroneous) predictions of the processing times. We study this
question from ground zero by first asking what constitutes a good prediction; we then propose a newmeasure
to gauge prediction quality and design scheduling algorithms with strong guarantees under this measure. Our
approach to derive a prediction error measure based on natural desiderata could find applications for other
online problems.
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1 INTRODUCTION

Non-clairvoyance, where the scheduler is not aware of the exact processing times of a job a priori, is
a highly desired property in the design of scheduling algorithms. Due to its myriad practical appli-
cations, non-clairvoyant scheduling has been extensively studied in various settings in the sched-
uling literature [15, 18, 31]. With no access to the processing times (i.e., job sizes), non-clairvoyant
algorithms inherently suffer fromworse performance guarantees than the corresponding clairvoy-
ant algorithms. For example, in the most basic version of scheduling, we have a set of jobs that
need to be scheduled on a single machine with the goal of minimizing the total completion time
of all jobs. In the non-clairvoyant setting, the job sizes are unknown to the algorithm and only
become known after the job has completed; here, the Round-Robin algorithm that divides the ma-
chine equally among all incomplete jobs is 2-competitive [29] and this is known to be the best
possible. In contrast, in the clairvoyant setting where job sizes are known a priori, the Shortest
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Job First (SJF) algorithm that schedules jobs in non-decreasing order of their sizes is known to be
optimal.
Practitioners often face scheduling problems that lie somewhere in between clairvoyant and

non-clairvoyant settings. While it might be impossible to know the exact job sizes, rather than as-
suming non-clairvoyance, it is possible to estimate job sizes based on their features using a predic-
tor [2, 26, 30]. However, such an estimation can be error-prone. Can one use the possibly erroneous
predicted job sizes to improve the performance of scheduling algorithms?
Augmenting traditional algorithms with machine-learned predictions is a fascinating and newly

emerging line of work. In particular, this paradigm is applicable to online algorithms, which
typically focus on obtaining worst-case guarantees against uncertain future inputs and thus settle
for pessimistic bounds. Recent works have shown that, using predictions (that may be incorrect),
one can provably improve the guarantees of traditional online algorithms for caching [17, 25, 32],
ski-rental [3, 13, 20], scheduling [8, 20, 28], load balancing [21, 23], secretary problem [5], metrical
task systems [4], set cover [9], flow and matching [22], knapsack [16, 34], and many others.

In this article, we continue the study of learning-augmented algorithms for single-machine non-
clairvoyant scheduling. This problem, where an algorithm has access to predictions of each job
size, was first investigated in Reference [20]. Without making any assumptions on the prediction
quality, they design a non-clairvoyant algorithm that satisfies two important properties, namely,
consistency and robustness. Consistency means that the guarantees of the algorithm improve with
good predictions; in particular, the algorithm obtains a competitive ratio better than 2 if the predic-
tions are good. Robustness ensures that the algorithm gracefully handles bad predictions, i.e., even
if the predictions are adversarially bad, the competitive ratio stays bounded. For any λ ∈ (0, 1),
they design an algorithm that guarantees robustness of 2

1−λ and consistency of 1
λ
.1

1.1 The Need for a New Error Measure

Although Reference [20] demonstrates an appealing tradeoff between consistency and robustness
for non-clairvoyant scheduling, a closer look reveals some brittleness of the result. Here, we discuss
the issue at a high level and delve in more detail in the next section when we formally define the
problem and the old and new error notions.
The main issue stems from the total completion time objective. Since this objective measures

the total waiting time of all jobs, a shorter job could delay more jobs. In fact, different jobs can
have different effects on how much they delay other jobs. The objective is thus neither linear nor
quadratic in the job sizes.2

In Reference [20], it is assumed that the algorithm has a prediction p̂j of each job sizepj . The qual-
ity of the prediction is the sum of the prediction errors of individual jobs, i.e., �1 (p, p̂) =

∑
j |p̂j −pj |.

Intuitively, such a linear error measure is incompatible with the completion time objective andmay
not distinguish good predictions vs. poor predictions; in fact, small perturbations in the predictions
can result in large changes to the optimal solution. Consequently, the results in Reference [20] are
forced to be pessimistic and have a high dependence on the error term. In particular, they show
that scheduling the jobs in non-decreasing order of their predicted sizes (SPJF) leads to a cost of
at most opt+ (n − 1) · �1 (p, p̂) and this is tight, where opt is the cost of the optimum solution and
n the number of jobs.

We examine the �1 (·, ·) error measure and show that it violates a natural and desirable Lipschitz-
like property for the total completion time objective. This prompts the search for a different error

1Here, α -robustness and β -consistency mean that the algorithm’s cost is at most α times the optimum for all inputs but
improves to at most β factor when the prediction coincides with the actual input. See Definition 2.
2For a concrete example, consider n jobs that have unit sizes with sufficiently small perturbations. The derivative of the
objective is n with respect to the length of the smallest job; yet it is 1 with respect to that of the largest job.
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measure based on two desiderata (see Section 2.2). Our new error measure better captures the
sensitive nature of the objective and allows us to obtain an algorithm with total cost at most
(1 + ϵ )opt +Oϵ (1) · ν (p, p̂) where ν (·, ·) is the measure we propose.
In practice, job sizes are predicted using black-box machine learned models that utilize various

features of the jobs (e.g., history) and may be expensive to train. While it is impossible to precisely
define the goodness of a prediction, intuitively, an effective error measure should neither tag bad
predictions as good nor ignore predictions that could improve the objective.

1.2 Our Contributions

Under the new notion of error (denoted ν (·, ·)), we give the following results, stated informally
below. For a job j, let pj be its actual size and let p̂j be its predicted size. We assume all jobs are
available for scheduling from time 0. Let opt be the optimum solution.
(1) We obtain a non-clairvoyant algorithm that is O (1)-robust (with no dependency on ϵ) and

(1+ϵ )-consistent for any sufficiently small ϵ > 0 w.h.p., if no subset ofO ( 1
ϵ 3

logn) jobs dominates
the objective. (Theorem 3 and Corollary 1)
(2) We obtain a non-clairvoyant algorithm that is O ( 1

ϵ
)-robust and (1 + ϵ )-consistent in ex-

pectation for any sufficiently small ϵ > 0. More precisely, the cost of the algorithm is at most
(1 + ϵ )opt +O ( 1

ϵ 3
log 1

ϵ
)ν (p, p̂). (Theorem 4)

In contrast, Reference [20] obtains an algorithm that is O ( 1
ϵ
)-robust and whose cost is at most

(1+ϵ )opt+ (1+ϵ ) (n−1) · �1 (p, p̂). Since our error measure satisfies �1 (p, p̂) ≤ ν (p, p̂) ≤ n · �1 (p, p̂),
our algorithm never has an asymptotically worse dependence on the prediction quality for any
fixed ϵ > 0 and is often sharper.
(3) We show that for any sufficiently small ϵ,γ > 0, no algorithm can have a smaller objective

than (1 + ϵ )opt +O (1/ϵ1−γ )ν (p, p̂). (Theorem 6)
We now discuss the high-level ideas. The main challenge is how to determine if a prediction

is reliable or not before completing all jobs. If the predictions are somewhat reliable, then we can
more or less follow them; otherwise, wewill essentially have to rely on non-clairvoyant algorithms
such as Round-Robin. Therefore, we repeatedly take a small sample of jobs over the course of the
algorithm and partially process them. Informally, we estimate the median remaining size of jobs
and estimate the prediction error considering job sizes up to the estimated median. Unfortunately,
this estimation is not free, since we have to partially process the sampled jobs and it can delay
all the existing jobs. Therefore, we are forced to stop sampling once there are very few jobs left.
Depending on how long we sample, we obtain the first and second results.
Due to the dynamic nature of our algorithm, the analysis turns out to be considerably non-

trivial. In a nutshell, we never see the true error until we finish a job. Nevertheless, we still have to
decide whether to follow the predictions. Themismatch between partial errors we perceive and the
actual errors makes it challenging to charge our algorithm’s cost to the optimum and the error;
special care is needed throughout the analysis to avoid overcharging. We note that unlike our
algorithm, Reference [20] uses a static algorithm that linearly combines following the predictions
and Round-Robin.
To summarize, our work demonstrates that it is possible to find quality solutions for a bigger

class of predictions by using a more refined measure and it could lead to discovering new algorith-
mic ideas.

1.3 Other Related Work

Designing learning-augmented algorithms falls into the new beyond-worst-case algorithm design
paradigm [33]. Starting with the work of Kraska et al. [19] on using ML predictions to speed
up indexing, there have been many efforts to leverage ML predictions to better handle common
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instances that are found in practice. In addition to the aforementioned works, there also exist
works on frequency counting [1, 11, 14], membership testing [27, 35], and online learning [10]. A
recent work [12] shows how to speed up bipartite matching algorithms using ML predictions.
For single-machine scheduling in the clairvoyant setting, Shortest Remaining Processing

Time (SRPT) is known to be optimal for minimizing the total completion time; it is in fact also
optimal for minimizing the total flow/response time.3 If all jobs arrive at time 0, then SJF coincides
with SRPT. In the non-clairvoyant setting, when jobs have different arrival times, no algorithm
is O (1)-competitive for minimizing the total flow time, but Round-Robin is known to be O (1)-
competitive when compared to the optimum schedule running on a machine with speed less than
1/2 − ϵ , for any ϵ > 0. For a survey on online scheduling algorithms, see Reference [31]. Very
recently, References [6, 7] obtained algorithms with O (1)-competitive ratio for total flow time if
every job’s size is within a constant factor of its prediction.

1.4 Roadmap

In Section 2, we formally define our non-clairvoyant scheduling problem. In the same section,
we continue to discuss what desiderata constitute a good measure of prediction error and pro-
pose a new measure meeting the desiderata. We also discuss other—both existing and candidate—
measures and show that they fail to satisfy the desiderata. We present our algorithm in Section 3
and its analysis in Section 4. The lower bounds are presented in Section 5.

2 FORMULATION AND BASIC PROPERTIES

2.1 Non-clairvoyant Scheduling

Let J denote a set of n jobs. In the classical single-machine non-clairvoyant scheduling setting, each
job j ∈ J has an unknown size or processing time pj . The processing time is known only after the
job is complete. A job j completes when it has received pj time units of processing, and we denote
j’s completion time asCj . A job may be preempted at any time and resumed at a later time without
any cost. Our goal is to find a schedule that completes all jobs and minimizes the total completion

time of all jobs, i.e.,
∑

j ∈J Cj . In the clairvoyant case, an algorithm knows the pj ’s in advance.

Definition 1 (Competitive Ratio). Let I denote the set of all instances of the non-clairvoyant
scheduling problem. Let costA (I ) be the total completion time of the schedule obtained by a non-
clairvoyant algorithmA and opt(I ) be the cost of the optimum (clairvoyant) algorithm on instance
I ∈ I. Algorithm A is said to be c-competitive if

max
I ∈I

costA (I )

opt(I )
≤ c .

In the clairvoyant case, it is well-known that the Shortest Remaining Processing Time First

(SRPT) algorithm minimizes the total completion time and becomes identical to the Shortest Job
First (SJF) algorithm when all jobs arrive at time 0, which is the setting we consider in this article.
In the non-clairvoyant case, the Round-Robin algorithm achieves a competitive ratio of 2, which is
known to be optimal [29].
For any subset Z ⊆ J of jobs, we let opt({x j }j ∈Z ) denote the minimum objective to complete all

jobs in Z when each job j ∈ Z has size x j and is known to the algorithm, i.e., it is the completion
time of SJF when x j is the size of job j. Here, we can think of opt as a function that takes as input
a multiset of non-negative job sizes and returns the minimum objective to complete all jobs with

3In the setting where job j has a release time r j , the flow time of a job is defined asCj − r j whereCj is the completion time

of job j in the schedule. If all jobs are available at time 0, then the flow time coincides with the completion time.
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the job sizes in the set. Note that this is well-defined, as SJF is oblivious to job identities. If x j is
j’s true size, i.e., pj , for notational convenience, then we use opt(Z ) := opt({pj }j ∈Z ); in particular,
opt := opt(J ).
We consider the learning-augmented scheduling problem where the algorithm has access to pre-

dictions for each job size; let p̂j denote the predicted size of job j. We emphasize that we make
no assumptions regarding the validity of the predictions and they may even be adversarial. As in
the usual non-clairvoyant scheduling setup, the true processing size pj of job j is revealed only
after the job has received pj amount of processing time. In the learning-augmented setting, the
competitive ratio of an algorithm A is a function of the prediction error. Our goal is to design an
algorithm that satisfies the dual notions of robustness and consistency.

Definition 2 (Robustness and Consistency). Let I be the set of all instances of the learning-
augmented non-clairvoyant scheduling problem.4 The robustness of an algorithm A is the worst-
case ratio of the algorithm’s cost to the cost of the optimal solution independent of the quality
of the predictions. The consistency of an algorithm A is the worst-case ratio when restricted to
instances where the predictions are all correct, i.e., p̂j = pj ,∀j ∈ J .

Robustness(A) = max
I ∈I

costA (I )

opt(I )
,

Consistency(A) = max
I ∈I

p̂j=pj ,∀j ∈J

costA (I )

opt(I )
.

2.1.1 Properties of opt. The following fact is well-known and follows from the definition of
opt, i.e., SJF:

Proposition 1 ([29]). opt({x j }j ∈J ) =
∑

j ∈J x j +
∑

i<j ∈J min{xi ,x j } ≤
∑

(i, j )∈J×J min{xi ,x j }.
The following properties are simple consequences of SJF:

Proposition 2. Let J denote an arbitrary set of jobs and {x j }j ∈J and {yj }j ∈J be two sets of non-
negative job sizes. Then,

(i) If x j ≥ yj for all j ∈ J , then opt({x j }j ∈J ) ≥ opt({yj }j ∈J ).
(ii) For any subset Z ⊆ J , opt({x j }j ∈J ) ≥ opt({x j }j ∈Z ).
(iii) opt({x j + yj }j ∈J ) ≥ opt({x j }j ∈J ) + opt({yj }j ∈J ).
(iv) Let X1, . . . ,XL be a partition of J , i.e., J =

⋃
�∈[L]X� and X� ∩X�′ = ∅ for � � �′, then we have∑

�∈[L]
opt({x j }j ∈Xl

) ≤ opt({x j }j ∈J ) ≤ L ·
∑
�∈[L]

opt({x j }j ∈Xl
).

Proof. Properties (i)–(iii) follow directly from Proposition 1. We now show Property (iv). For
brevity, we show the claim only when L = 2; extending the proof to arbitrary values of L is
straightforward. Let X = X1 and Y = X2 denote the two disjoint subsets of J .

To prove the first inequality in the claim, consider the job set J = X ∪ Y and the sets of job
sizes {x ′j }j ∈J and {y ′j }j ∈J given by x ′j = x j and y ′j = 0,∀j ∈ X and x ′j = 0 and y ′j = x j ,∀j ∈ Y . The
inequality now follows directly from Proposition 1.
To prove the second inequality, we consider the optimal schedule of jobs in setX and the optimal

schedule of jobs in setY . For any job j ∈ X ∪Y , letC ′j denote the completion time of job j in the cor-
responding optimal schedule. We can construct a schedule for all jobs in X ∪Y by scheduling jobs
in non-decreasing order of their completion times C ′j . We observe that in the newly constructed

4An instance here is specified by both the predicted job sizes and the true job sizes.
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schedule, the relative ordering of all jobs in X and Y is maintained. Let Cj denote the completion
time of job j in the new schedule. Consider any job j ∈ X ; by definition, we have Cj = C ′j + C

′
k

where k ∈ Y is the last job from setY that is scheduled before j. But by definition of the constructed
schedule, we haveC ′

k
≤ C ′j . By a similar argument for any job in Y , we obtainCj ≤ 2C ′j for any job

j ∈ X ∪ Y . Since the optimal solution for jobs in X ∪ Y can only yield lower total cost, the second
inequality follows. �

2.2 Prediction Error

A key question in the design of algorithms with predictions is how to define the prediction error,
i.e., how to quantify the quality of predictions. While this definition can be problem-dependent,
it must be algorithm-independent. For the non-clairvoyant scheduling problem, before we dive
into a definition, we identify two desirable properties that we want of any such definition. Let
err({pj }j ∈J , {p̂j }j ∈J ) denote the prediction error for an instance with true sizes {pj } and predicted
job sizes {p̂j }; note that an algorithm knows the p̂j ’s but not the pj ’s.
The first property is monotonicity, i.e., if more job sizes predictions are correct, then the error

must decrease. Monotonicity is natural as better predictions are expected to decrease the error.

Property 1 (Monotonicity). For any I ⊆ J , err({pj }j ∈J , {p̂j }j ∈J \I ∪ {pi }i ∈I ) ≤
err({pj }j ∈J , {p̂j }j ∈J ).
The second property is a Lipschitz-like condition that states that a prediction {p̂j }j ∈J is said to be

good (as measured by err(·, ·)) only if the optimal solution of the predicted instance is close to the
true optimal solution. Indeed, if the optimal solution of a predicted instance differs significantly
from true optimal solution, i.e., |opt({p̂j }j ∈J ) − opt({pj }j ∈J ) | is large, then the property requires
that a good error measure assigns a large error to such predictions. Intuitively, this property allows
us to effectively distinguish between good and bad predictions.

Property 2 (Lipschitzness). |opt({p̂j }j ∈J ) − opt({pj }j ∈J ) | ≤ err({pj }j ∈J , {p̂j }j ∈J ).
A natural way to define the prediction error is to define it as the �1-norm between the predicted

and the true job sizes, i.e., �1 (p, p̂) = err({pj }j ∈J , {p̂j }j ∈J ) =
∑

j ∈J |pj − p̂j |, as was done in Reference
[20]. While this error definition satisfies monotonicity, it is not Lipschitz. Indeed, consider the
following simple problem instance. Let ϵ > 0 be a constant. The true job sizes are given by p1 =
1 + ϵ and pj = 1,∀j ∈ J \ {1}. The predicted job sizes are given by p̂1 = 1+3ϵ and p̂j = 1,∀j ∈ J \ {1}.
Let q̂ be another set of predicted job sizes given by q̂1 = 1 − ϵ and q̂j = 1,∀j ∈ J \ {1}. By
construction, �1 (p, p̂) = 2ϵ = �1 (p, q̂). However, by the nature of the total completion time objective,
there is a significant difference in the quality of the predictions in these two instances. Formally,
opt({p̂j }j ∈J ) − opt({pj }j ∈J ) = 2ϵ , whereas opt({pj }j ∈J ) − opt({q̂j }j ∈J ) = (n − 1) · ϵ � �1 (p, q̂).
Intuitively, the lack of Lipschitzness causes the �1 (·, ·) error metric to not be able to distinguish
between {p̂} and {q̂} predictions, although {p̂} is arguably amuch better prediction for this instance.

However, to satisfy the Lipschitz property, one can consider simply defining the prediction error
as err({pj }j ∈J , {p̂j }j ∈J ) = |opt({p̂j }j ∈J ) − opt({pj }j ∈J ) |. Unfortunately, this may not be monotone.
Indeed, consider a simple instance where the predictions are a reassignment of the true job sizes to
the jobs, i.e., the job sizes are predicted correctly but the job identities are permuted. In this case,
we have |opt({p̂j }j ∈J ) − opt({pj }j ∈J ) | = 0. However, an improvement to any of the predictions
will only result in a different optimum, and hence a non-zero error. In other words, this definition
does not satisfy monotonicity.
These examples motivate a different notion of prediction error.

Definition 3 (Prediction Error). For any instance of the non-clairvoyant scheduling problem with
predictions where each job j ∈ J has a true size pj and a predicted size p̂j , the prediction error is
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defined as:

ν (J ; {pj }, {p̂j }) := err({pj }j ∈J , {p̂j }j ∈J )

= opt
(
{p̂j }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {p̂j }j ∈Ju

)
,

where Jo = {j ∈ J | p̂j > pj }, Ju = {j ∈ J | p̂j ≤ pj } denote the set of jobs whose sizes are
overestimated and underestimated, respectively.

Intuitively, the above definition aims to ensure

ν ≥ opt
(
{p̂j }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {pj }j ∈Ju

)
,

which comes from pretending that all underestimated job sizes were predicted correctly. Similarly,
we also want

ν ≥ opt
(
{pj }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {p̂j }j ∈Ju

)
.

Our error measure follows by adding the RHS of these two inequalities.
It is easy to see that this definition, besides being symmetric and non-negative, also satisfies

both monotonicity and the Lipschitz property. While this may not be the unique such definition,
it is simple. Further, we are not aware of any other error measures, including those used in the
previous work [9, 20], that satisfy the two desired properties. For more details, see Section 2.2.2.

Proposition 3. The error measure given in Definition 3 satisfies both monotonicity and

Lipschitzness.

Proof. We first show monotonicity. As before, we use the subscript o to refer to the subset of
overestimated jobs in a given set. Likewise, we use u analogously to refer to the underestimated
jobs. For any I ⊆ J ,

ν (J ; {pj }j ∈J , {p̂j }j ∈J \I ∪ {pi }i ∈I )

= opt
(
{p̂j }j ∈Jo\I ∪ {pj }j ∈Ju \I ∪ {pj }j ∈I

)
− opt

(
{pj }j ∈Jo\I ∪ {p̂j }j ∈Ju \I ∪ {pj }j ∈I

)

= opt
(
{p̂j }j ∈Jo\I ∪ {pj }j ∈Ju∪I

)
− opt

(
{pj }j ∈Jo∪I ∪ {p̂j }j ∈Ju \I

)

≤ opt
(
{p̂j }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {p̂j }j ∈Ju

)
= ν (J ; {pj }, {p̂j }). (Proposition 2(ii))

Next, we show Lipschitzness. Due to Proposition 2(i), we have

opt({p̂j }j ∈J ) ≤ opt({p̂j }j ∈Jo ∪ {pj }j ∈Ju ) and opt({pj }j ∈J ) ≥ opt({pj }j ∈Jo ∪ {p̂j }j ∈Ju ).

Thus, we conclude

|opt({p̂j }j ∈J ) − opt({pj }j ∈J ) | ≤ |opt({p̂j }j ∈Jo ∪ {pj }j ∈Ju ) − opt({pj }j ∈Jo ∪ {p̂j }j ∈Ju ) |
= ν (J ; {pj }, {p̂j }). �

When the scheduling instance is clear from context, we drop the arguments and let ν =
ν (J ; {pj }, {p̂j }). Note that in case all the predicted job sizes are overestimates (or underestimates)
of the true sizes, then we have ν (J ; {pj }, {p̂j }) = |opt({p̂j }j ∈J ) − opt({pj }j ∈J ) |.

ACM Transactions on Parallel Computing, Vol. 10, No. 4, Article 19. Publication date: December 2023.
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2.2.1 Surrogate Error. For the sake of analysis, we define a surrogate (prediction) error where
we measure the error for overestimated and underestimated jobs separately. The surrogate error
is a lower bound on the prediction error in Definition 3. While it does not satisfy Lipschitzness,
nevertheless, it will turn out to be a useful tool for analysis.

Definition 4 (Surrogate Error). For any set Z ⊆ J of jobs, where each job j ∈ Z has a true size pj
and a predicted size p̂j , the surrogate error is defined as:

η(Z ; {pj }, {p̂j }) :=
(
opt({p̂j }j ∈Zo ) − opt({pj }j ∈Zo )

)
+

(
opt({pj }j ∈Zu ) − opt({p̂j }j ∈Zu )

)
,

where Zo = {j ∈ Z | p̂j > pj }, Zu = {j ∈ Z | p̂j ≤ pj } denote the set of jobs whose sizes are
overestimated and underestimated, respectively.

Again, when the scheduling instance is clear from context, we drop the arguments and let η =
η(J ; {pj }, {p̂j }). We first show that the surrogate error can be used to lower bound the prediction
error.

Proposition 4. For any set Z ⊆ J of jobs where each job j ∈ Z has true size pj and predicted size
p̂j , ν (Z ; {pj }, {p̂j }) ≥ η(Z ; {pj }, {p̂j }).

Proof. By Definition 3, we have

ν (Z ; {pj }, {p̂j }) = opt
(
{p̂j }j ∈Zo ∪ {pj }j ∈Zu

)
− opt

(
{pj }j ∈Zo ∪ {p̂j }j ∈Zu

)

=

(
opt
(
{p̂j }j ∈Zo ∪ {pj }j ∈Zu

)
− opt

(
{pj }j ∈Z

))

+

(
opt
(
{pj }j ∈Z

)
− opt

(
{pj }j ∈Zo ∪ {p̂j }j ∈Zu

))
.

We compare the first term above to the first term in the definition ofη. By definition of the optimum
solution (Proposition 1), we have the following:

opt
(
{p̂j }j ∈Zo ∪ {pj }j ∈Zu

)
− opt

(
{pj }j ∈Z

)
=
∑
j ∈Zo

(p̂j − pj ) +
∑

i<j ∈Zo
(min{p̂i , p̂j } −min{pi ,pj })

+
∑

i ∈Zo, j ∈Zu
(min{p̂i ,pj } −min{pi ,pj }),

since p̂i > pi for all i ∈ Zo , we have

≥
∑
j ∈Zo

(p̂j − pj ) +
∑

i<j ∈Zo
(min{p̂i , p̂j } −min{pi ,pj })

= opt({p̂j }j ∈Zo ) − opt({pj }j ∈Zo ).
Similarly, using analogous arguments, we have

opt
(
{pj }j ∈Z

)
− opt

(
{pj }j ∈Zo ∪ {p̂j }j ∈Zu

)
≥ opt({pj }j ∈Zu ) − opt({p̂j }j ∈Zu ).

The proposition now follows from Definition 4. �

A key advantage of the surrogate error η is that it is easier to decompose as opposed to ν . As
our analysis carefully charges our algorithm’s cost in each round to the error and the optimum,
decomposability will be very useful to avoid overcharging.

Proposition 5 (Superadditivity of Surrogate Error). For any set Z ⊆ J of jobs, any set of

true and predicted job sizes {(pj , p̂j )}j ∈Z and any partition of Z into two disjoint subsets Z1 and Z2,

we have η(Z ; {pj }, {p̂j }) ≥ η(Z1; {pj }, {p̂j }) + η(Z2; {pj }, {p̂j }).
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Proof. Let Zu be the underestimated jobs in Z . Similarly, let Z1u and Z2u be the underestimated
jobs in Z1 and Z2, respectively. Likewise, we define Zo , Z1o , and Z2o for overestimated jobs. By
definition of η, it suffices to show

η(Zo ; {pj }, {p̂j }) ≥ η(Z1o ; {pj }, {p̂j }) + η(Z2o ; {pj }, {p̂j }),
η(Zu ; {pj }, {p̂j }) ≥ η(Z1u ; {pj }, {p̂j }) + η(Z2u ; {pj }, {p̂j }).

We show the first inequality above; the second one follows similarly. By definition of η and
Proposition 1, we have

η(Zo ; {pj }, {p̂j }) = opt({p̂j }j ∈Zo ) − opt({pj }j ∈Zo )

=
∑
j ∈Zo

(p̂j − pj ) +
∑

i<j ∈Zo

(
min{p̂i , p̂j } −min{pi ,pj }

)

≥
∑
j ∈Zo

(p̂j − pj ) +
∑

i<j ∈Z1o

(
min{p̂i , p̂j } −min{pi ,pj }

)

+
∑

i<j ∈Z2o

(
min{p̂i , p̂j } −min{pi ,pj }

)

= η(Z1o ; {pj }, {p̂j }) + η(Z2o ; {pj }, {p̂j }),

where the inequality follows, since we have p̂j ≥ pj for any j ∈ Zo . �

2.2.2 Comparisons with Other Error Measures. We compare our new error measure with others,
including those in References [9, 20]. First, we observe that our error measure is always lower
bounded by the �1 (p, p̂) error utilized by Reference [20] but is at most a factor of n larger.

Proposition 6. For any set {pj }j ∈J and {p̂j }j ∈J of true and predicted job sizes, we have
�1 (p, p̂) ≤ ν (J ; {pj }, {p̂j }) ≤ n · �1 (p, p̂).

Proof. From Definition 3, we have

ν (J ; {pj }, {p̂j }) = opt
(
{p̂j }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {p̂j }j ∈Ju

)

=
∑
j ∈J
|pj − p̂j | +

∑
i<j ∈J

min{max{pi , p̂i },max{pj , p̂j }}

−min{min{pi , p̂i },min{pj , p̂j }}.
Since every term in the second summation is non-negative, the first inequality in the proposition
follows. To see why the second inequality holds, we observe that

min
{
max{pi , p̂i },max{pj , p̂j }

}
−min

{
min{pi , p̂i },min{pj , p̂j }

}
≤ max{|pi − p̂i |, |pj − p̂j |}.

Substituting in the above expression, we get

ν (J ; {pj }, {p̂j }) ≤ �1 (p, p̂) +
∑
i<j ∈J

max{|pi − p̂i |, |pj − p̂j |} ≤ �1 (p, p̂)

+
∑
i<j ∈J

|pi − p̂i | + |pj − p̂j | = �1 (p, p̂) + (n − 1)
∑
j ∈J
|pj − p̂j | = n�1 (p, p̂). �

Thus, our error measure lends itself to asymptotically stronger algorithmic guarantees than
the �1 (p, p̂) measure. In Reference [20], the cost of their algorithm is shown to be bounded by
(1 + ϵ )opt + (1 + ϵ ) · (n − 1)�1 (p, p̂). In the following sections, we obtain an algorithm whose cost
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is bounded by (1 + ϵ )opt +Oϵ (1) · ν . By Proposition 6, our bound is asymptotically never worse
than that in Reference [20] and can often be sharper.
Next, we discuss the error measure used by Bamas et al. [9] in their primal-dual framework.

Their measure, which we call ηBMS , can be defined as the cost of SPJF5 minus the optimum. It is
easy to see that ηBMS is neither monotone nor Lipschitz. This is because SPJF yields an optimal
schedule as long as jobs have the same order both in their true sizes and estimated sizes, i.e.,
pj ≤ pi if and only if p̂j ≤ p̂i . Further, it is hard to compare our error measure to ηBMS , as
the latter does not directly factor in estimated job sizes but measures the cost for running an
algorithm (that is based on the prediction) on the actual input. However, the following example
shows that ηBMS can be excessively large even if a single job size is mispredicted: The true job
sizes are given by pj = 1 ∀j ∈ J \ {n} and pn = n2. All job sizes are predicted correctly, except job
n, where p̂n = 0. Then, ν = 1 + · · · + n − 1 + (n + n2) − (1 + · · · + n − 1) = n + n2, while ηBMS ≥
n2 ·n−(1+· · ·+n−1+n+n2) = Ω(n3). Here,n2 ·n comes from the fact that jobn completes first under
SPJF.
Finally, we note that the error measure cannot be oblivious to job identities. For example, con-

sider the Earth Mover’s distance between the true job sizes and the estimated job sizes, i.e., find a
mincost matching between two multi-sets {pj }j ∈J and {p̂i }i ∈J where matching pi to p̂j incurs cost
|pi − p̂j |. It is easy see that such measures have zero error when the two multi-sets are identical
yet the predictions are incorrect for individual jobs.
Subsequent to the publication of the conference version of this article, recent work [24] proposes

a novel model that considers predictions of the relative order of job sizes instead of predictions of
the actual job sizes.

3 ALGORITHM

In this section, we present our algorithm for scheduling with predictions. Our algorithm runs in
rounds. To formalize, we need to set up some notation. We let Jk be the set of unfinished (alive)
jobs at the beginning of round k , where k ≥ 1. Let nk := |Jk |. Let qk, j be the amount of processing
done on job j in round k . We define

• pk, j = pj −
∑k−1
w=1 qw, j : the true remaining size of j at the beginning of round k .

• p̂k, j = max{0, p̂j −
∑k−1
w=1 qw, j }: the predicted remaining size of j at the beginning of round k .

Note that if a job j has been processed by more than its predicted size p̂j before the kth round,
then we have p̂k, j = 0.
Our algorithm employs two subprocedures in each round to estimate the median mk of the

true remaining size of jobs in Jk and the magnitude of the error in the round. We first present
the subprocedures and then present our main algorithm. We assume n ≥ 2 throughout, since
otherwise all of our results follow immediately.

3.1 Median Estimation

To streamline the analysis, we will assume without loss of generality that all remaining sizes are
distinct.6 Let m̃k denote our estimate of the true medianmk . Recall that Round-Robin processes
all alive jobs equally at each time.

5Shortest Predicted Job First (SPJF) is the algorithm that blindly follows the predictions.
6For instance, this can be achieved almost surely by adding small random perturbations to the initial job sizes. So, if a tiny
random number ι j > 0 is added to pj , then we pretend that j has a remaining size of ι j as soon as it actually completes.
This perturbation has negligible effects on the objective.
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ALGORITHM 1:Median-Estimator(Jk ,δ ,n)

1: Let S be a uniform random sample, with replacement, of size 
 ln 2n
δ 2 � from Jk .

2: Run Round-Robin on S until half of the jobs in S complete; let jk be the job that completed the
last.

3: Return m̃k = pk, jk .

Algorithm 1 takes a sample S of the remaining jobs and returns as m̃k the median of the jobs in
S in terms of their remaining size. Note that this can be done by completing half of the jobs in S
using Round-Robin. The sampling with replacement is done as follows: When we take job j as a
sample, we pretend to create a new job in S with size equal to pk, j . Thus, S could contain multiple
“copies” originating from the same job in Jk ; however, we will pretend that they are distinct jobs
and they get exactly the same processor share in Round-Robin.
When the condition in the following lemma holds, we will say that m̃k is a (1 + δ ) order-

approximation ofmk , or (1 + δ )-approximation for brevity.

Lemma 1. The order of m̃k among {pk, j | j ∈ Jk } is in (( 12 − δ )nk , (
1
2 + δ )nk ], with probability at

least 1 − 1
n2 .

Proof. Let ri be the order of xi in the set {pk, j | j ∈ Jk }. Let Yi be an indicator random variable
that has value 1 if and only if ri ≤ (1/2 − δ )nk . To show the order of m̃k is smaller than or equal
(1/2 − δ ) with probability at most 1

2n2 , it suffices to show:

Pr

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[ |S |]

Yi
|S | ≥

1

2

⎤⎥⎥⎥⎥⎥⎦ ≤
1

2n2
.

This is equivalent to showing

Pr

⎡⎢⎢⎢⎢⎢⎣
∑
i ∈[S]

Yi
|S | − E

⎡⎢⎢⎢⎢⎢⎣
∑

i ∈[ |S |]

Yi
|S |

⎤⎥⎥⎥⎥⎥⎦ ≥ δ

⎤⎥⎥⎥⎥⎥⎦ ≤
1

2n2
,

as E
∑

i ∈[ |S |] Yi/|S | = 1/2−δ . The above inequality is a direct consequence of the Hoeffding bound
(Theorem 7) with � := |S | ≥ ln(4n2 )

2δ 2 . The other inequality can be shown symmetrically, and the
proof follows from a union bound. �

3.2 Error Estimation

Next, we would like to see if the prediction for the remaining jobs in round k is accurate enough to
follow closely. However, measuring the error of the predictions even by running all jobs in a small
sample to completion could take too much time. Thus, we estimate the error of the remaining jobs
by capping all remaining sizes and predicted sizes at (1 + 2ϵ )m̃k . The error we seek to estimate is
below.

Definition 5 (Error in Round k). ηk := opt({dk, j }j ∈Jk ), where dk, j := |min{(1 + 2ϵ )m̃k ,pk, j } −
min{(1 + 2ϵ )m̃k , p̂k, j }|.

Recall that by Proposition 1, the error ηk can be rewritten as ηk =
∑

i≤j ∈Jk min{dk,i ,dk, j }. Hence,
to estimate ηk , we sample pairs of jobs from Jk and for each sampled job j calculate dk, j . Since we
only need to run job j for at most (1 + 2ϵ )m̃k to compute dk, j , this step does not incur too much
additional cost. Algorithm 2 describes it formally.
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ALGORITHM 2: Error-Estimator(Jk , ϵ,n,m̃k )

1: Let P be a uniform random sample, with replacement, of size 
 322

δ 4ϵ 2
logn� from a family Q :=

{(j, j ) | j ∈ Jk } ∪ {(i, j ) | i < j and i, j ∈ Jk } of unordered pairs.
2: For every sampled job j, calculate dk, j by running j up to (1 + 2ϵ )m̃k units.

3: Return the estimate η̃k := |Q| 1|P |
∑

(i, j )∈P
min{dk,i ,dk, j }.

For any k ∈ [K], we say for brevity that η̃k is a (1 + ϵ )-approximation of ηk if it satisfies

ηk − ϵm̃kn
2
k ≤ η̃k ≤ ηk + ϵm̃kn

2
k .

Lemma 2. If nk ≥ 9 and ϵ ≤ 1/10, then η̃k is a (1 + δ 2

32 ϵ )-approximation of ηk with probability at

least 1 − 1
n2 .

Proof. Note that by Proposition 1, we have

ηk = |Q| 
��
1

|Q|
∑

(i, j )∈Q
min{dk,i ,dk, j }
�� .

For each unordered pair (i, j ) ∈ Q, let Δ(i, j ) := min{dk,i ,dk, j }/((1 + 2ϵ )m̃k ). Note that Δ(i, j ) ∈
[0, 1] and |Q| = nk (nk + 1)/2 and that E[η̃k ] = ηk . We now have the following:

|η̃k − ηk | = |Q|(1 + 2ϵ )m̃k ·
�������
1

|P |
∑

(i, j )∈P
Δ(i, j ) − E

⎡⎢⎢⎢⎢⎢⎣
1

|P |
∑

(i, j )∈P
Δ(i, j )

⎤⎥⎥⎥⎥⎥⎦
�������

Pr

[
|η̃k − ηk | ≥

(
δ 2

32

)
ϵm̃kn

2
k

]
= Pr

⎡⎢⎢⎢⎢⎢⎣
�������
1

|P |
∑

(i, j )∈P
Δ(i, j ) − E

⎡⎢⎢⎢⎢⎢⎣
1

|P |
∑

(i, j )∈P
Δ(i, j )

⎤⎥⎥⎥⎥⎥⎦
������� ≥

(δ 2/32)ϵn2
k

|Q|(1 + 2ϵ )

⎤⎥⎥⎥⎥⎥⎦ .
For ϵ ≤ 1/10 and nk ≥ 9 (Algorithm 2 will be used later only when nk ≥ 322

δ 4 (logn)/ϵ
3 ≥ 9), we

have
(δ 2/32)ϵn2

k

|Q |(1+2ϵ ) ≥ 1.5(δ 2/32)ϵ := ξ and hence applying the Hoeffding bound (Theorem 7) with
� := |P |, we have:

Pr

[
|η̃k − ηk | ≥

δ 2

32
ϵm̃kn

2
k

]
≤ Pr[|η̃k − ηk | ≥ ξ ] ≤ 2 exp(−2�ξ 2).

The lemma now follows by observing that 2 exp(−2�ξ 2) ≤ 1/n2 for all n ≥ 2. �

3.3 Main Algorithm

Given the methods to estimate the median size of all jobs in Jk and the remaining jobs’ error in
round k , we now describe our algorithm running in rounds k ≥ 1.We note that for a fixed ϵ < 1/10,
the following algorithm yields (1 + O (ϵ ))-consistency. To obtain the desired (1 + ϵ )-consistency,
we can later scale ϵ by the necessary constant factor to obtain Theorem 3.

If there are enough jobs alive for accurate sampling, then we use our estimators to estimate the
median and the error. If the estimated error is big, then we say that the current round is an RR

round and run Round-Robin to process all jobs equally up to 2m̃k units7; this is intuitive, as our
estimator indicates that the prediction is unreliable. If not, then we closely follow the prediction.

7In fact, the jobs can be processed in an arbitrary order as long as they are processed up to 2m̃k units.
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ALGORITHM 3: Scheduling with Predictions

1: k ← 1 and δ ← 1/50.
2: while nk ≥ 322

δ 4ϵ 3
logn do

3: m̃k ←Median-Estimator(Jk ,δ ,n).
4: η̃k ← Error-Estimator(Jk , ϵ,n,m̃k ).
5: if η̃k ≥ ϵδ 2m̃kn

2
k
/16 � RR (big error) round

6: Process each job in Jk up to 2m̃k units with Round-Robin.
7: else � Non-RR (small error) round
8: Process jobs j with p̂k, j ≤ (1 + ϵ )m̃k up to p̂k, j + 3ϵm̃k units in increasing order of p̂k, j .
9: k ← k + 1.
10: Complete the remaining jobs with Round-Robin. � Round K + 1

We only consider jobs that are predicted to be small and process them in increasing order of their
(remaining) predicted size. To allow for a small prediction error, we allow a job to get processed
3ϵm̃k more units than its remaining predicted size. In this case, we say that the current round is a
non-RR round. Finally, when there are few jobs left, we run Round-Robin to complete all remaining
jobs; this is the final round, indexed by K + 1.
The following easy observations will be useful for our analysis later:

Observation 1. (1) Every overestimated job remains overestimated in every round, i.e., if p̂j ≥
pj , then p̂k, j ≥ pk, j for all k . A similar statement holds for every underestimated job.

(2) If a job j is processed in a non-RR round k , then its remaining predicted size is 0 for all the

subsequent rounds, i.e., p̂k ′, j = 0 for all k ′ > k .
(3) For each job, there is at most one round where the job’s remaining predicted size becomes 0.

4 ANALYSIS

To streamline the presentation of our analysis, we will first make the following simplifying as-
sumptions; we will remove these assumptions later in Section 4.4.

Assumption 1. (i) m̃k is a (1 + δ )-approximation of mk for δ = 1/50, (ii) η̃k is a (1 + δ 2

32 ϵ )-
approximation of ηk , (iii) the estimation procedures are instantaneous and do not incur any additional

delay, and (iv) the sampled jobs themselves have not been processed in the estimation processes.

Note that Assumption 1(iv) can only hurt the algorithm. For the analysis, we extend the defini-
tion of ηk .

Definition 6 (Error in Round k on a Subset). ηk (X ) := opt({dk, j }j ∈X ) for all X ⊆ Jk ,
where dk, j := |min{(1 + 2ϵ )m̃k ,pk, j } −min{(1 + 2ϵ )m̃k , p̂k, j }|.

Note that ηk = ηk (Jk ).

4.1 Robustness

In this section, we show that our algorithm always yields a constant approximation assuming that
our median and error estimation subroutines succeed. This guarantee holds in all cases even if the
predicted job sizes are arbitrarily bad or even adversarially chosen.

Theorem 1. Algorithm 3 is an O (1)-approximation, under Assumption 1.

Key to the analysis is to show that a constant fraction of jobs complete in each round.

Lemma 3. For all k ∈ [K], we have nk+1 ≤ (1/2 + 2δ )nk .
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Proof. Suppose round k is an RR round. By Assumption 1(i), there are at least (1/2− δ )nk jobs
with pk, j ≤ m̃k . Since all jobs are processed up to 2m̃k units in an RR round, clearly, we complete
at least (1/2 − δ )nk jobs in the round, and hence nk+1 ≤ (1/2 + δ )nk .

Now suppose round k is a non-RR round. We first show that there are many jobs considered by
the algorithm. Let X := {j ∈ Jk | p̂k, j ≤ (1 + ϵ )m̃k } and Y := {j ∈ Jk | pk, j ≤ m̃k }. We claim,

|X | ≥ (1/2 − 1.5δ )nk .

Suppose not. Then, since by Assumption 1, |Y | ≥ (1/2−δ )nk , we have |Y \X | ≥ 0.5δnk . Note that
for all j ∈ Y \X , dk, j ≥ ϵm̃k . We have a contradiction, as we have ηk ≥ ηk (Y \X ) ≥ 1

2ϵm̃k (0.5δnk )2.
Note that all jobs inX are processed by the algorithm. Now, we showmost of jobs inX complete

in the round. Indeed, let Z = {j ∈ X | pk, j > p̂k, j + 3ϵm̃k } denote those jobs in X that do not
complete in the round k . For every job j ∈ Z , we have dk, j ≥ ϵm̃k . Thus, if we have |Z | ≥ 0.5δnk ,
as before, then we will have ηk ≥ ηk (Z ) ≥ 1

2 (ϵm̃k ) (0.5δnk )2, another contradiction.
Thus, we have |X \ Z | ≥ (1/2 − 2δ )nk , meaning the algorithm completes at least (1/2 − 2δ )nk

jobs in round k . �

Intuitively, from Lemma 3, we know that a large number of jobs must complete in each round
and further, since we assume that m̃k approximates the true median well, many of those jobs have
remaining sizes at least m̃k . We next show that Ω(nk ) jobs must have remaining size at least m̃k

and hence the optimal solution must incur a total cost of at least Ω(
∑

k m̃kn
2
k
).

Lemma 4.
∑K

k=1 m̃kn
2
k
≤ 266 · opt(J \ JK+1).

Proof. By Proposition 2(iv), we know opt(J \ JK+1) is lower bounded by
∑

odd k ∈[K−1] opt(Jk \
Jk+2), and also by

∑
even k ∈[K−1] opt(Jk \ Jk+2). Thus, we have

2opt(J \ JK+1) ≥
K−1∑
k=1

opt(Jk \ Jk+2).

By Lemma 3, we know that at least (1 − (1/2 + 2δ )2)nk jobs in Jk complete in round k or k + 1.
Further, as m̃k is a (1 + δ )-approximation, less than (1/2 + δ )nk jobs in Jk have pk, j ≤ m̃k . Thus,
we conclude that there are at least (1 − ((1/2 + 2δ )2) − (1/2 + δ ))nk ≥ (1/8)nk jobs in Jk with
pk, j ≥ m̃k that complete in round k or k + 1; here, δ ≤ 1/50. Let Fk denote the set of those jobs.
Note that opt(Jk \ Jk+2) ≥ opt(Fk ) ≥ (1/2)m̃k ((1/8)nk )2 = m̃kn

2
k
/128.

Therefore, we have

2opt(J \ JK+1) ≥
K−1∑
k=1

1

128
m̃kn

2
k .

Further, we have

opt(J \ JK+1) ≥ opt(JK ) ≥ (1/2)m̃K (0.45nK )
2 ≥ 0.1m̃Kn

2
K ,

as there are at least (1/2 − δ )nK ≥ 0.45nK jobs of sizes ≥ m̃K . �

Next, we upper bound our algorithm’s cost. Let Ak be the total delay incurred by our algorithm
in round k . When our algorithm processes a job j in round k , all the other alive jobs are forced to
wait; Ak counts this total waiting time. Formally, we define Ak :=

∑
i�j ∈Jk Dk (i, j ) where Dk (i, j )

is the total amount of processing received by job i in round k while job j is still alive. We observe
the following simple upper bound:
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Observation 2. For any k , we have Ak ≤
∑

j ∈Jk qk, j · nk, j , where nk, j is the maximum number

of other jobs that are still alive when job j is processed in round k .8

Lemma 5. For any k ∈ [K], Ak ≤ 2m̃kn
2
k
.

Proof. We note that in any round k ∈ [K], any job j gets processed by at most 2m̃k units. Since a
job j can delay at most (nk −1) jobs in round k , we haveAk ≤

∑
j ∈Jk qk, j (nk −1) ≤

∑
j ∈Jk 2m̃knk ≤

2m̃kn
2
k
. �

Observe that we use Round-Robin in the final round K + 1, which is known to be 2-competitive.
Hence, to complete all the remaining jobs, by considering each job’s contribution to the objective,
our algorithm’s cost can be upper bounded as follows:

Lemma 6. The algorithm’s cost is at most
∑K

k=1 2m̃kn
2
k
+ 2opt(JK+1) +

∑
j ∈J pj .

By Lemmas 4 and 6, the algorithm’s cost is at most 2 · 266 opt(J \ JK+1)+2opt(JK+1)+opt(J ) ≤
535 opt(J ),9 where the last inequality follows from Proposition 2(iv). This completes the proof of
Theorem 1.

4.2 Consistency

In this section, we show that Algorithm 3 also utilizes good predictions to obtain improved guaran-
tees. We analyze the delay incurred by our algorithm in RR rounds and non-RR rounds separately.

4.2.1 RR Round. Intuitively, using the fact that the error is huge in each RR round, we can
upper bound our algorithm’s total delay in all RR rounds by the error. RecallAk ≤

∑
j ∈Jk qk, j ·nk, j .

As δ is set to an absolute constant (δ = 1/50), we will hide it in asymptotic notation. (Recall the
surrogate error η from Definition 4.) This section is devoted to showing the following lemma:

Lemma 7.
∑

k ∈RR Ak ≤ O
(
1
ϵ

)
η ≤ O

(
1
ϵ

)
ν , under Assumption 1.

From Lemma 5, the total delay Ak incurred in round k ∈ [K] in our algorithm is at most 2m̃kn
2
k
.

Thus, our goal is to carefully identify a part of the surrogate error of magnitude Ω(ϵm̃kn
2
k
) to

charge Ak to, in each RR round k .
In the following lemma, we consider three types of jobs and show that the error is big enough

for at least one job type. The job types are: (i) those completing in round k , (ii) whose remaining
predicted sizes become 0 in the round, and (iii) whose remaining predicted sizes are 0 and that do
not complete in this round. We need to be careful when extracting some error for type (iii) jobs as
they may reappear as type (iii) jobs in subsequent RR rounds. This is why we measure the error by
pretending their remaining sizes are 2m̃k , exactly the amount by which the jobs each are processed
in the round.

Lemma 8. In any RR round k , at least one of the following is Ω(ϵ )m̃k (nk )
2:

(i) η(Jk \ Jk+1).
(ii) η(F̂k ) where F̂k = {j ∈ Jk | p̂k, j > 0 and p̂k+1, j = 0}.
(iii) η(Ẑk ; {2m̃k }, {0}) = opt({2m̃k }j ∈Ẑk ), where Ẑk := {j ∈ Jk | p̂k, j = 0 and pk, j > 2m̃k }.

Proof. Let Sk := {j ∈ Jk | p̂k, j ≤ (1 + 2ϵ )m̃k or pk, j ≤ (1 + 2ϵ )m̃k }. Since dk, j = 0 for all
jobs j ∈ Jk \ Sk , by the definition of ηk , we have ηk = ηk (Sk ). For notational convenience, let

8Since all alive jobs are equally processed at each time in a RR round, the number of alive jobs can change while a job is
being processed, which is not the case in non-RR rounds.
9 Note that

∑
j∈J pj is already factored in the upper bound ofAk stated in Lemma 5. Thus, we can show that the algorithm’s

cost is at most 534opt(J ).
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X := Sk ∩ (Jk \ Jk+1), Y := Sk ∩ F̂k , and Z := Sk ∩ Ẑk . As each job in Sk is of at least one of the
above three types, we have Sk = X ∪ Y ∪ Z .
Because of k being an RR round, we have η̃k ≥ ϵδ 2m̃kn

2
k
/16 and, therefore, we have ηk ≥

η̃k − δ 2

32 ϵm̃kn
2
k
≥ δ 2

32 ϵm̃kn
2
k
= Ω(ϵm̃kn

2
k
) due to Assumption 1. Because of the monotonicity of ηk =

ηk (Sk ) (it can only become larger when more jobs are considered) and the fact that Sk = X ∪Y ∪Z ,
by Proposition 2, we know at least one of ηk (X ), ηk (Y ), ηk (Z ) must be no smaller than (1/9)ηk .
We consider each case in the following:

Case (i). ηk (X ) ≥ (1/9)ηk . Let Xo , Xu denote the jobs in X that are overestimated and under-
estimated, respectively. By definition of ηk and Proposition 2(iv), we have ηk (Xo ) + ηk (Xu ) ≥
(1/2)ηk (X ), and

ηk (Xu ) = opt({min{(1 + 2ϵ )m̃k ,pk, j } −min{(1 + 2ϵ )m̃k , p̂k, j }}j ∈Xu ) ≤ opt({pk, j − p̂k, j }j ∈Xu )
≤ opt({pk, j }j ∈Xu ) − opt({p̂k, j }j ∈Xu ) = η(Xu ),

where the last inequality follows from Proposition 2(iii).
Similarly, we can show ηk (Xo ) ≤ η(Xo ). Thus, we have

η(Jk \ Jk+1) ≥ η(X ) ≥ η(Xu ) + η(Xo ) ≥ ηk (Xu ) + ηk (Xo ) ≥ (1/2)ηk (X ) ≥ (1/18)ηk ,

where the first two inequalities follow from Proposition 5.

Case (ii). ηk (Y ) ≥ (1/9)ηk . This case can be similarly handled as the first case to obtain η(F̂k ) ≥
η(Y ) ≥ (1/18)ηk .

Case (iii). ηk (Z ) ≥ (1/9)ηk . Note that all jobs j in Z are underestimated because of pk, j > 2m̃k ,
p̂k, j = 0, and Observation 1. Also, by definition of Sk , Z , Ẑk , we have Z = Ẑk . Therefore,

ηk (Z ) = opt({min{(1 + 2ϵ )mk ,pk, j } −min{(1 + 2ϵ )mk , p̂k, j }}j ∈Z )
= opt({(1 + 2ϵ )m̃k }j ∈Z ) ≤ opt({2m̃k }j ∈Ẑk ) = η(Ẑk ; {2m̃k }, {0}).

Thus, we have η(Ẑk ; {2m̃k }, {0}) ≥ (1/9)ηk . �

We next show that the above errors add up to O (η).

Lemma 9.
∑

k ∈RR
(
η(Jk \ Jk+1) + η(F̂k ) + η(Ẑk ; {2m̃k }, {0})

)
≤ 3η.

Proof. We start by considering the first quantity. Since the sets in {Jk \ Jk+1}k≥1 are disjoint,
from Proposition 5, we know that

∑
k ∈RR η(Jk \ Jk+1) ≤ η. Similarly, we can show

∑
k ∈RR η(F̂k ) ≤ η.

It now remains to show ∑
k ∈RR

η(Ẑk ; {2mk }, {0}) ≤ η. (1)

By definition of Ẑk and Observation 1, we know that if j ∈ Ẑk , then j must be underestimated,
i.e., p̂j ≤ pj . Let Ju denote the set of all underestimated jobs. By definition of η, we know that
η ≥ opt({pj }j ∈Ju ) − opt({p̂j }j ∈Ju ). Further, by Proposition 2(iii),

η ≥ opt({pj − p̂j }j ∈Ju ).
The key idea is to show the decrease of opt({pk, j − p̂k, j }j ∈Ju ) in each RR round k is as big as
η(Ẑk ; {2m̃k }, {0}). By the definition of p̂1, j and p1, j , we have

opt({p1, j − p̂1, j }j ∈Ju ) = opt({pj − p̂j }j ∈Ju ).

Further, by Observation 1, we know Ẑk ⊆ Ju . Note that for every job j ∈ Ẑk , ((pk, j −p̂k, j )− (pk+1, j −
p̂k+1, j )) = pk, j − pk+1, j = 2m̃k . Thus, we have

opt({pk, j − p̂k, j }j ∈Ju ) − opt({pk+1, j − p̂k+1, j }j ∈Ju )
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≥ opt({(pk, j − p̂k, j ) − (pk+1, j − p̂k+1, j )}j ∈Ju ) (Proposition 2 and (pk, j − p̂k, j )
is decreasing in k , ∀j ∈ Ju )

≥ opt({(pk, j − p̂k, j ) − (pk+1, j − p̂k+1, j )}j ∈Ẑk ) (Monotonicity of opt)

= opt({2m̃k }j ∈Ẑk ) = η(Ẑk ; {2m̃k }, {0}).

Thus, we have shown that η restricted to underestimated jobs decreases by as much as
η(Ẑk ; {2mk }, {0}), which implies Equation (1), as desired. �

We are now ready to prove Lemma 7∑
k ∈RR

Ak ≤
∑
k ∈RR

2m̃kn
2
k (Lemma 5)

≤
∑
k ∈RR

O
( 1
ϵ

) (
η(Jk \ Jk+1) + η(F̂k ) + η(Ẑk ; {2m̃k }, {0})

)
(Lemma 8)

= O
( 1
ϵ

)
η (Lemma 9)

≤ O
( 1
ϵ

)
ν . (Proposition 4)

4.2.2 Non-RR Round. This section is devoted to proving the following lemma that bounds our
algorithm’s total delay in non-RR rounds (NRR). As we do not have sufficiently large errors in
non-RR rounds, we will have to bound it by both opt and ν . Note that opt − (

∑
i ∈J pi ) is the total

delay cost of the optimal schedule.

Lemma 10. Under Assumption 1, we have
∑

k ∈NRRAk ≤ (1 +O (ϵ ))opt − (
∑

i ∈J pi ) +O (1/ϵ2)ν .

We begin our analysis of consistency for non-RR rounds by proving the following lemma, which
shows how much error we can use for each pair of jobs.

Lemma 11. ν (J , {pj }, {p̂j }) ≥
∑

i�j ∈J ν (i, j ), where ν (i, j ) = |min{pi ,pj } −min{p̂i , p̂j }|.

Proof. By Proposition 1, we can decompose ν as follows:

ν (J , {pj }, {p̂j })

= opt
(
{p̂j }j ∈Jo ∪ {pj }j ∈Ju

)
− opt

(
{pj }j ∈Jo ∪ {p̂j }j ∈Ju

)

≥
∑
i, j ∈Jo

(min{p̂i , p̂j } −min{pi ,pj }) +
∑
i, j ∈Ju

(min{pi ,pj } −min{p̂i , p̂j })

+
∑

i ∈Jo, j ∈Ju
(min{p̂i ,pj } −min{pi , p̂j }).

Since every term in the summation is non-negative, to prove the lemma it suffices to show

min{p̂i ,pj } −min{pi , p̂j } ≥ |min{pi ,pj } −min{p̂i , p̂j }|, ∀i ∈ Jo and j ∈ Ju .

By definition, we have p̂i ≥ pi for i ∈ Jo , and hence min{p̂i ,pj } ≥ min{pi ,pj } and min{pi , p̂j } ≤
min{p̂i , p̂j }. Hence,

min{p̂i ,pj } −min{pi , p̂j } ≥ min{pi ,pj } −min{p̂i , p̂j }.
Similarly, since p̂j ≤ pj for j ∈ Ju , we have min{p̂i ,pj } ≥ min{p̂i , p̂j } and min{pi , p̂j } ≤

min{pi ,pj }. Hence,
min{p̂i ,pj } −min{pi , p̂j } ≥ min{p̂i , p̂j } −min{pi ,pj }. �
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Knowing howmuch error we can use for each pair of jobs, we are now ready to give an overview
of the analysis. Recall that we let Dk (i, j ) denote the delay i causes to j in round k . Note that in a
non-RR round, Dk (i, j ) = qk,i if j is still alive while i gets processed; otherwise, Dk (i, j ) = 0.

1. Total delay involving jobs with zero remaining predicted sizes. We show that the delay involving
the following jobs across all non-RR rounds is at most O (ϵ ) · opt:

Ẑk := {i ∈ Jk | p̂k,i = 0},

which overrides the definition of the same notation given in Lemma 8. Fix a job i ∈ Ẑk . Such a
job i gets processed by at most 3ϵm̃k , since it is processed up to p̂k,i + 3ϵm̃k . Further, if job j gets
processed before i , then it implies p̂k, j = 0, where j can delay i by at most 3ϵm̃k in the round.
Similarly, job i can delay another job by at most 3ϵm̃k in the round. It is an easy exercise to see
that total delay involving a job i with p̂k,i = 0 is at most 3ϵm̃knk . As there are at most nk jobs
remaining in this round,∑

k ∈NRR

∑
i ∈Ẑk

∑
j ∈Jk :j�i

(Dk (i, j ) + Dk (j, i )) ≤
∑

k ∈NRR
3ϵm̃kn

2
k ≤ O (ϵ )opt(J \ JK+1) ≤ O (ϵ )opt, (2)

where the second inequality follows from Lemma 4.

2. Total delay involving jobs that execute but do not complete. We show the total delay across all
non-RR rounds is at most O (ϵ )opt +O (1/ϵ2)ν . To precisely articulate what we aim to prove, let

Uk := {i ∈ Jk | 0 < p̂k,i ≤ (1 + ϵ )m̃k and pk,i > p̂k,i + 3ϵm̃k },

which, roughly speaking, are the jobs with relatively small non-zero remaining predicted sizes that
execute but do not complete in round k . If i ∈ Uk , then p̂k,i > 0 and p̂k+1,i = 0 and therefore the
family {Uk }k ∈[K ] is disjoint.
The following bounds the total delay incurred due to jobs inUk .

Lemma 12. For each i ∈ Uk , let Dk,i :=
∑

j ∈Jk :j�i (Dk (i, j ) + Dk (j, i )) = (
∑

j ∈Jk :j�i qk, j +∑
j ∈Jk :j�i,Cj>Lk,i (3ϵm̃k + p̂k,i )) be the total delay involving job i in a non-RR round k , where Lk,i

denotes the last time when i gets processed in round k and Cj is j’s completion time. Then, we have

∑
i ∈Uk

Dk,i ≤ O (ϵ )m̃kn
2
k +O

( 1
ϵ2

) ∑
i ∈Uk

∑
j ∈Jk :j�i

ν (i, j ).

Note that in Dk,i , the first term is how much other jobs delay i and the second is how much job
i delays other jobs: job i delays job j in the round by exactly p̂k,i + 3ϵm̃k if j is still alive when the
algorithm stops processing i in the round. The proof is a bit subtle and is deferred to Section 4.3
but the intuition is the following: Suppose we made a bad mistake by working on job i ∈ Uk in
round k—we thought the job was small based on its prediction but it turned out to be big. This
means that job i’s processing delays many jobs in Jk , which we could have avoided had we known
that i was in fact big. Thus, to charge the delay, we show that the considerable underprediction of
job i creates a huge error as it makes a large difference in how much i delays other big jobs.
Assuming Lemma 12, we have
∑

k ∈NRR

∑
i ∈Uk

Dk,i ≤
∑

k ∈NRR
O (ϵ )m̃kn

2
k +O

( 1
ϵ2

) ∑
i ∈Uk

∑
j ∈Jk :j�i

ν (i, j )

≤ O (ϵ )opt +O
( 1
ϵ2

) ∑
k ∈NRR

∑
i ∈Uk , j ∈J :j�i

ν (i, j ) (Lemma 4 and Jk ⊆ J )
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≤ O (ϵ )opt +O
( 1
ϵ2

) ∑
i�j ∈J

ν (i, j ) (U1, . . . ,UK are disjoint)

≤ O (ϵ )opt +O
( 1
ϵ2

)
· ν . (Lemma 11) (3)

3. Total delay due to the other jobs. Finally, we consider delay not considered by the two cases.
Let us see for which pairs of jobs we did not consider their pairwise delay. For job i to delay job
j in a non-RR round k , i must be processed, meaning that p̂k,i ≤ (1 + ϵ )m̃k . Since Case 1 already
considered p̂k,i = 0, i ∈ Ẑk , we assume p̂k,i > 0. Further, if i does not complete in round k , then
we already covered the delay in Case 2 as i ∈ Uk . Thus, we only need to consider the case when
i ∈ Vk , where Vk is defined as follows:

Vk := {i ∈ Jk | 0 < p̂k,i ≤ (1 + ϵ )m̃k ,pk,i ≤ p̂k,i + 3ϵm̃k }.
Note that every i ∈ Vk completes in round k . The following upper bounds the total delay we did
not consider in the previous cases:

Lemma 13. For any i ∈ Vk , j ∈ Jk \ (Ẑk ∪Uk ), the delay i causes to j in non-RR round k , Dk (i, j ),
is at most min{pi ,pj } + ν (i, j ) + 3ϵm̃k .

Note that {Vk }k is a family of disjoint job sets because every job i ∈ Vk completes in round k .
Therefore, we have∑

k ∈NRR

∑
i ∈Vk , j ∈Jk \(Ẑk∪Uk ):p̂k, j>p̂k,i

Dk (i, j ) (4)

=
∑

k ∈NRR

∑
i ∈Vk , j ∈Jk \(Ẑk∪Uk ):p̂k, j>p̂k,i

(min{pi ,pj } + ν (i, j ) + 3ϵm̃k ) (Lemma 13)

≤
∑

{i, j }⊆ J :i�j

(
min{pi ,pj } + ν (i, j )

)
+
∑
k ∈[K ]

3ϵm̃kn
2
k (V1, . . . ,VK are disjoint)

≤ opt − 
��
∑
i ∈J

pi

�� + ν +O (ϵ )opt. (Proposition 1, Lemma 4, and Lemma 11)

Putting the pieces together. Note that the delay incurred between every pair of jobs i and j in every
non-RR round k falls into at least one of the above three categories. Thus, from Equations (2), (3),
and (4), the total pairwise delay in non-RR rounds is at most

O (ϵ )opt +O
( 1
ϵ2

)
ν + opt − 
��

∑
i ∈J

pi

�� + ν +O (ϵ )opt. (5)

We are now ready to give the final upper bound on the objective of our algorithm, which is
obtained by combining the upper bound in Lemma 7 and Equation (5) and by factoring in the total
job size,

∑
i ∈J pj . Note that 2opt(JK+1) comes from the last round K + 1 where the remaining jobs

JK+1 are processed by Round-Robin, which is known to be 2-competitive.

Theorem 2. Under Assumption 1, Algorithm 3’s objective is at most (1+O (ϵ ))opt+2opt(JK+1)+
O ( 1

ϵ 2
)ν .

4.3 Proof of Lemma 12 and Lemma 13

For the sake of analysis, similar to ν (i, j ), let

νk (i, j ) := |min{pk,i ,pk, j } −min{p̂k,i , p̂k, j }|.
Recall that ν (i, j ) := |min{pi ,pj } −min{p̂i , p̂j }|. The following relates ν (i, j ) to νk (i, j ):
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Lemma 14. Any two jobs i, j ∈ Jk with p̂k,i , p̂k, j > 0 have been processed by an equal amount in

each previous round and hence, ν (i, j ) = νk (i, j ).

Proof. Note that both jobs have non-zero remaining predicted sizes. This implies that neither
job was processed in a previous non-RR round if such a round exists (Observation 1). Thus, the
two jobs have been processed by an equal amount in all the previous rounds. Hence, ν (i, j ) =
|min{pi ,pj } −min{p̂i , p̂j }| = |min{pk,i ,pk, j } −min{p̂k,i , p̂k, j }| = νk (i, j ). �

We are now ready to prove Lemma 12 and Lemma 13.

Proof of Lemma 12. LetU ′
k
:= {i ∈ Uk | p̂k,i ≤ (1 − ϵ )m̃k }. To prove the lemma, we will bound

the inequality for jobs inU ′
k
and Uk \U ′k separately:

∑
i ∈U ′

k

Dk,i ≤ O
( 1
ϵ

) ∑
i ∈U ′

k

∑
j ∈J :j�i

ν (i, j ), (6)

and ∑
i ∈Uk \U ′k

Dk,i ≤ 3ϵm̃kn
2
k +O

( 1
ϵ2

) ∑
i ∈Uk \U ′k

∑
j ∈J :j�i

ν (i, j ). (7)

We begin by showing Equation (6). Let B := {j ∈ Jk | pk, j ≥ m̃k }. We will show

ν (i, j ) ≥ ϵm̃k for any i ∈ U ′
k
and j ∈ B.

As p̂k,i > 0 for any i ∈ U ′
k
⊆ Uk , we know that i has not been processed in any previous non-RR

round (Observation 1). Thus, j ∈ B must have been processed as much as i in the previous rounds,
i.e., pj − pk, j ≥ pi − pk,i . Let Δ := pi − pk,i . As p̂k,i > 0, i’s predicted size must have decreased by
Δ prior to round k and thus p̂i − p̂k,i = Δ. Then, we obtain

ν (i, j ) ≥ min{pi ,pj } −min{p̂i , p̂j } ≥ min{pi ,pj } − p̂i ≥ min{pk,i + Δ,pk, j + Δ} − (p̂k,i + Δ)

= min{pk,i − p̂k,i ,pk, j − p̂k,i } ≥ min{3ϵm̃k , ϵm̃k } = ϵm̃k ,

as desired. Note that

Dk,i ≤ 2(1 + 4ϵ )m̃knk ,

as each job gets processed up to (1 + 4ϵ )m̃k units, and i can delay at most nk − 1 jobs and can get
delayed by at mostnk−1 jobs. Further, under the assumption thatm̃k is (1+δ )-order approximation
ofmk , we know that |B | ≥ (1/2 − δ )nk . Therefore, we have Equation (6) as follows:

∑
i ∈U ′

k

Dk,i ≤ |U ′k | · 2(1 + 4ϵ )m̃knk ≤ O
( 1
ϵ

) ∑
i ∈U ′

k

∑
j ∈B:j�i

ν (i, j ) ≤ O
( 1
ϵ

) ∑
i ∈U ′

k

∑
j ∈J :j�i

ν (i, j ).

Wenow shift to showing Equation (7).We consider two cases. The first case is when |Uk \U ′k | ≤ ϵnk .
We clearly have ∑

i ∈Uk \U ′k

Dk,i ≤ 2(1 + 4ϵ )m̃knk · ϵñk ≤ 3ϵm̃kn
2
k . (8)

In this other case, we will show∑
i ∈Uk \U ′k

Dk,i ≤ O
( 1
ϵ2

) ∑
i ∈Uk \U ′k

∑
j ∈J :j�i

ν (i, j ). (9)

Then, Equations (8) and (9) together will imply Equation (7).

ACM Transactions on Parallel Computing, Vol. 10, No. 4, Article 19. Publication date: December 2023.



Non-clairvoyant Scheduling with Predictions 19:21

It now remains to show Equation (9). Observe ν (i, j ) ≥ 3ϵm̃k for any i � j ∈ Uk \U ′k . To see this,
say pi ≤ pj , as the other case is symmetric. Then, we have ν (i, j ) ≥ min{pi ,pj } − min{p̂i , p̂j } ≥
pi − p̂i ≥ 3ϵm̃k . Therefore, we have

∑
i<j ∈Uk \U ′k

ν (i, j ) ≥ 3ϵm̃k

(
|Uk \U ′k |

2

)
≥ ϵm̃k · |Uk \U ′k |

2 ≥ ϵ2m̃knk · |Uk \U ′k |,

as |Uk \U ′k | ≥ ϵnk and nk ≥ 1
ϵ 3

logn ≥ 10 for any k ∈ [K]. Thus, we obtain the desired bound

∑
i ∈Uk \U ′k

Dk,i ≤ |Uk \U ′k | · 2(1+ 4ϵ )m̃knk ≤ O
( 1
ϵ2

) ∑
i<j ∈Uk \U ′k

ν (i, j ) ≤ O
( 1
ϵ2

) ∑
i ∈Uk \U ′k

∑
j ∈J

ν (i, j ). �

Proof of Lemma 13. Consider any i ∈ Vk and j ∈ Jk \ (Ẑk ∪ Uk ). Since i gets processed
and completes in round k , job i can delay job j only when p̂k,i ≤ p̂k, j . Also, it is worth not-
ing that if i delays j in round k , then j does not delay i . As job i completes in the round k , it
gets processed by pk,i ≤ p̂k,i + 3ϵm̃k . Assume pj < pi , since otherwise the lemma follows im-
mediately. As p̂k,i , p̂k, j > 0, by Lemma 14, we have pk, j < pk,i . Again, by Lemma 14, we have
ν (i, j ) = νk (i, j ) = |min{pk,i ,pk, j } − min{p̂k,i , p̂k, j }| = |pk, j − p̂k,i |. Then, the delay can be upper
bounded by p̂k,i + 3ϵm̃k ≤ pk, j + ν (i, j ) + 3ϵm̃k ≤ pj + ν (i, j ) + 3ϵm̃k . �

4.4 Removing Simplifying Assumptions

Our goal here is to extend Theorem 2 by removing Assumption 1. First, we can remove assumption
(iv) by pretending that jobs have not been processed during the estimation processes. Thus, we
might have to waste processing a job after completing it for the purpose of simulation.
Removing other assumptions need more care. We say that a bad event Bk occurs in round k

if m̃k fails to be (1 + δ )-approximate or η̃k fails to be (1 + δ 2ϵ
32 )-approximate. By Lemma 1 and

Lemma 2, Bk occurs with probability at most 2/n2. If Bk does not occur, then we know that a
constant fraction of jobs complete in round k , thanks to Lemma 3. Thus, if no bad events occur,
then we have K = O (logn). Hence, by a union bound, the probability that at least one bad event
occurs is at most O ((logn)/n2).

To remove Assumption 1(i) and (ii), we note that any non-idle algorithm, including ours, is
n-approximate. Thus, in expectation, the above bad events can only increase the objective by

(logn/n2) · n · opt�, which is negligible.
We now remove Assumption 1(iii) by factoring in the extra delays due to estimatingmk and ηk ,

assuming no bad events occur. In the median estimation, we took a sample S of size 
 log 2n
δ 2 � and

processed every job in S by exactly m̃k . So, the maximum delay due to the processing is at most
(m̃k ) · |S | · |Jk | = O ((logn)m̃knk ). Similarly, in estimating ηk , we took a sample P of sizeO ( 1

ϵ 2
logn)

and processed both jobs in each pair in P up to (1+ 2ϵ )m̃k units. Thus, this processing causes total
extra delay at most 2(1 + 2ϵ )m̃k · |P | · |Jk | = O ( 1

ϵ 2
(logn)m̃knk ).

Hence, the extra delay cost due to the estimation is bounded by

O
( 1
ϵ2

)
(logn)

∑
k ∈[K ]

m̃knk ≤ O (ϵ )
∑
k ∈[K ]

m̃kn
2
k (nk = |Jk | ≥ 1

ϵ 3
logn for all k ∈ [K])

≤ O (ϵ )opt(J \ JK+1), (Lemma 4)

with probability 1 − O ((logn)/n2). Thus, the extra delay is negligible with high probability. The
above discussion, Theorem 1, and Theorem 2, with ϵ scaled appropriately by a constant factor,
yield:
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Theorem 3. There exists an algorithm such that for any sufficiently small constant ϵ > 0, it yields a
schedule with objective at mostmin{O (1)opt, (1+ϵ )opt+2opt(JK+1)+O ( 1

ϵ 2
)ν } with high probability,

where |JK+1 | ≤ 1
ϵ 3

logn. Furthermore, the same bound holds in expectation.

Corollary 1. Suppose for any Z ⊆ J with |Z | ≤ 1
ϵ 3

logn, opt(Z ) ≤ ϵ · opt. Then, there exists
an algorithm whose objective is at most min{O (1)opt, (1 + ϵ )opt + O ( 1

ϵ 2
)ν } with high probability.

Furthermore, the same bound holds in expectation.

4.5 Guarantees in Expectation

Previously, we showed high probability guarantees on our algorithm’s objective. However, high
probability guarantees inherently require Ω(logn) samples and, therefore, we are forced to stop
sampling once the number of jobs alive becomes o(logn). Here, we show that we can further
continue to sample, if we only need guarantees in expectation, until we have O ( 1

ϵ 3
log 1

ϵ
) jobs

unfinished.
Towards this end, we slightly change the algorithm.
(1) Reduce the sample sizes: For estimatingmk take a sample of size 
 1

δ 2 log 2nk � in Algorithm 1

and for estimating ηk take a sample of size 
 322

δ 4ϵ 2
lognk � in Algorithm 2. Note that the sample size

depends on nk .
(2) Run Round-Robin concurrently: We divide each instantaneous time to run Round-Robin for

ϵ fraction and to run our algorithm for (1 − ϵ ) fraction. More precisely, we pretend that we only
run each of the algorithms without changing the jobs’ processing times. LetAj (t ) and Bj (t ) denote
howmuch Round-Robin and our algorithm have processed job j at time t . Then, job j will complete
at the first time when Aj (t ) + Bj (t ) = pj . But, we pretend that j is unfinished in our algorithm’s
execution until it has processed job j by its actual processing time—we do the same for Round-
Robin. This way, we can analyze each of the two algorithms as if only one of them is being run.
Since this simulation of the hybrid algorithm can only slow down the execution of our algorithm
by a factor of (1 − ϵ ), intuitively, the bound in Theorem 3 only increases by a factor of 1/(1 − ϵ ),
which has no effect on our asymptotic bounds. But by running the 2-competitive Round-Robin
concurrently, our final schedule will always be 2/ϵ-competitive.
(3) Stop sampling whennk = O ( 1

ϵ 3
log 1

ϵ
) (Line 2, Algorithm 3): This is doable, as we can tolerate

higher probabilities of bad events, thanks to the concurrent execution of Round-Robin.
(4) In the final round K + 1, process all jobs in increasing order of their predicted size: As we

only have |JK+1 | = O
(
1
ϵ 3

log 1
ϵ

)
jobs left, following the prediction blindly will not hurt much!

Theorem 4. Let ϵ > 0 be a sufficiently small fixed constant. Then there exists an algorithm whose

expected objective value is at most

min
{
O
( 1
ϵ

)
opt, (1 + ϵ )opt +O

( 1
ϵ3

log
1

ϵ

)
ν
}
.

To show this, we first need the claim below. As before, we use Bk to denote the bad event in
round k . Our first goal is to upper bound the probability that any bad event occurs.

Claim 1. Pr[∨k ∈[K ]Bk ] ≤ O (ϵ6/ log2 (1/ϵ )).

Proof. As we changed the sample size in estimating the median and error by replacing n with
nk , it is straightforward to see Pr[Bk ] ≤ 1/n2

k
from Lemma 1 and Lemma 2—previously the bound

was 1/n2. We also have Pr[Bk | ∧k ′ ∈[K−1]¬Bk ′] ≤ 1/n2
k
, as we use fresh random bits for sampling

in each round. Further, we have nk+1 ≤ (3/4)nk by Lemma 3 with δ ≤ 1/50 if ¬Bk . Then, we have

Pr[∧k ∈[K ]¬Bk ] ≥
∏
k ∈[K ]


�1 − 1

n2
k


� ≥ 1 −
∑
k ∈[K ]

1

n2
k

,
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where nk+1 ≤ (3/4)nk for all k ∈ [K − 1], and nK = Ω( 1
ϵ 3

log 1
ϵ
). Thus, we have

Pr[∨k ∈[K ]Bk ] ≤ O
(
1/
( 1
ϵ3

log
1

ϵ

)2 ) (
1 + (3/4)2 + (3/4)4 + · · ·

)
= O

(
ϵ6

log2 (1/ϵ )

)
. �

We are now ready to prove Theorem 4.

Proof. As discussed, our algorithm augmented with Round-Robin is (2/ϵ )-competitive. Thus,
the expected cost of our algorithm when any bad event occurs is O (ϵ6/ log2 (1/ϵ )) · (2/ϵ )opt =
O (ϵ )opt, which does not affect the asymptotic bound.

Next, we bound the extra delay due to the median and error estimation assuming no bad events
occur. Since nk ≥ Ω( 1

ϵ 3
log 1

ϵ
), we have nk

lognk
= Ω(1/ϵ3). From the observation we made in

Section 4.4, the extra delay we should upper bound in round k ∈ [K] is O ( 1
ϵ 2
) (lognk )m̃knk ≤

O (ϵ )m̃kn
2
k
. As shown before, this extra delay can be charged to O (ϵ )opt.

Thus, we still have the bounds in Theorem 1 and Theorem 2 and hence, our algorithm’s cost
until round K is at most,

(1 + ϵ )opt(J \ JK+1) +O
( 1
ϵ2

)
ν .

Finally, we need to bound how much the jobs alive in the final round K + 1 contribute to the
objective. As we already bounded how much they were delayed in the previous rounds, we can
pretend w.l.o.g. that we only have jobs in JK+1, process them from time 0 in increasing order of
their predicted size, and upper bound the resulting objective. Then, by Reference [20, Lemma 3.2],
the objective is at most

opt(JK+1) + (nK+1 − 1)
∑

j ∈JK+1
|pj − p̂j | ≤ opt(JK+1) + nK+1ν = opt(JK+1) +O

( 1
ϵ3

log
1

ϵ

)
ν ,

where the first step is by Proposition 6. The final objective, using Proposition 2(iv), is thus at most

(1 + ϵ )opt(J \ JK+1) +O
( 1
ϵ2

)
ν + opt(JK+1) +O

( 1
ϵ3

log
1

ϵ

)
ν ≤ (1 + ϵ )opt +O

( 1
ϵ3

log
1

ϵ

)
ν .

As we simulate our main algorithm at a rate of (1 − ϵ ) at each time, the consistency bound will
increase by 1

1−ϵ factor. The (2/ϵ )-competitiveness follows from the concurrent execution of Round-
Robin. By scaling ϵ appropriately, we obtain Theorem 4. �

5 LOWER BOUNDS

We first show our analysis of Algorithm 3 is tight. Recall Theorem 2, which states that the al-
gorithm’s objective is at most (1 + ϵ )opt + 1

ϵ 2
ν if for any subset Z ⊆ J of jobs whose size is

polylogarithmic in n, opt(Z ) = o(opt).

Theorem 5. For any γ > 0, there exists a sufficiently small ϵ > 0, such that there is an instance

that shows our algorithm’s objective is greater than (1 + ϵ )opt + Ω(1/ϵ2−γ )ν .

Proof. Let β := ϵ1−γ . There are two groups of jobs, X and Y . Group X consists of βn jobs that
each have true size pj = 1+β and predicted size p̂j = 1. Group Y consists of the remaining (1−β )n
jobs with unit true and predicted sizes, i.e., pj = p̂j = 1 for all j ∈ Y .
Let A denote the total completion time of the schedule found by our algorithm, and let opt

denote that of the optimal solution for the true job sizes. In this case, it is easy to verify that
opt = Θ(n2) and the total error ν = Θ(β3n2). For brevity, assume that the algorithm’s median and
error estimation is exact. Then, m̃1 = 1 and η̃1 = Θ(ϵβ2n2). Thus, the algorithm’s first round is
non-RR. All jobs have the same predicted size and therefore are indistinguishable by our algorithm.
Say it first considers jobs inX . Unfortunately, it finishes no jobs inX in the first round as β = ω (ϵ ).
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Thus, the algorithm has at least |X | · |Y | more units of delay than the optimum solution that first
completes all jobs inY and then those inX . Thus, we haveA−opt ≥ |X | |Y | ≥ β (1−β )n2 = Θ(βn2).
But, since ϵ = o(β ) and opt = Θ(n2), we have A − (1 + ϵ )opt ≥ Ω(βn2) = Ω(1/β2)ν . �

The following theorem concerns the tradeoff between opt and ν in the consistency bound:

Theorem 6. For any sufficiently small ϵ > 0 and γ > 0, no algorithm’s objective is at most

(1 + ϵ )opt +O (1/ϵ1−γ )ν .

Proof. Consider the following lower bound instance: There aren := 1/ϵ1−γ /4 jobs. All jobs have
predicted sizes 1. Suppose all jobs have true sizes exactly 1, except one job having size 2, which
we call big. Note that opt = n(n + 1)/2 + 1 and ν = 1. Thus, we have

ϵopt +O (1/ϵ1−γ )ν = O (1/ϵ1−γ /2 + 1/ϵ1−γ ) = O (1/ϵ1−γ /2). (10)

We use Yao’s Min-Max theorem. Assume the adversary permutes the job identities uniformly
at random to hide the big job. Let us consider the time when a fixed deterministic algorithm has
processed the big job by one unit. Then, the expected number of small jobs that are still alive is
(n − 1)/2. Once the algorithm knows the big job, we can assume that it uses SRPT. Since all small
jobs that are still alive are delayed by one unit of time due to processing the big job, we have

E[A] − opt ≥ (n − 1)/2 = Θ(1/ϵ1−γ /4),

where A denotes the algorithm’s objective. This, together with Equation (10), completes the
proof. �

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we defined a new prediction error measure based on natural desiderata. We believe
that the new measure could be useful for other optimization problems with ML predictions where
the �1-norm measure is not suitable. We remark that our contributions are primarily theoretical
and focus on asymptotic analysis; obtaining practical algorithms that achieve similar guarantees
while incurring a small overhead (say, over Round-Robin) is an interesting question. Other future
research directions include finding a deterministic algorithm with similar guarantees, obtaining a
better dependence on ν , and extending the error notion to the setting where jobs have different
arrival times.
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A APPENDIX

A.1 Concentration Bounds

Let X1, . . . ,X� be independent random variables such that 0 ≤ Xi ≤ 1 for all i ∈ [�]. We define the
empirical mean of these variables by X̄ = 1

� (X1 + · · · + X� ). Then,

Theorem 7 (Hoeffding’s Ineqality). P ( |X̄ − E[X̄ ]| ≥ ξ ) ≤ 2e−2�ξ
2
, where ξ ≥ 0.
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