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ABSTRACT

The pipeline is a fundamental pattern to parallelize a series of
stage tasks over a sequence of data in loops. Mainstream pipeline
programming frameworks count on data abstractions to perform
pipeline scheduling. Although this design is convenient for data-
centric parallel applications, it is not efficient for algorithms that
only exploit task parallelism in the pipeline. To address the lim-
itation, we introduce a new task-parallel pipeline programming
framework called Pipeflow. Pipeflow separates data abstractions
and task scheduling, enabling a more efficient implementation of
task-parallel pipeline algorithms than existing frameworks. We
have evaluated Pipeflow on both micro-benchmarks and real-world
applications. For example, in a timing analysis workload that ex-
plores pipeline parallelism to speed up the runtime performance,
the Pipeflow’s implementation outperforms the oneTBB’s imple-
mentation up to 110.33% faster.
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1 INTRODUCTION

The pipeline is a fundamental parallel pattern to model parallel
executions through a linear chain of stages. Each stage processes
a data token after the previous stage, applies an abstract function
to that token, and then resolves the dependency for the next stage.
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Multiple data tokens can be processed simultaneously across differ-
ent stages whenever dependencies are met. For example, in circuit
simulation [26, 35-37], some operations on a gate (e.g., NAND,
OR, AND) do not depend on other gates and thus can be done at
multiple logic levels simultaneously, while operations at the same
levels require processing prior levels first. As pipeline parallelism
widely exists in modern computing applications [5], there is always
a need for new pipeline programming frameworks to streamline
the implementation complexity of pipeline algorithms.

Recently, several pipeline programming frameworks have
emerged to assist developers in implementing pipeline algorithms
without worrying about scheduling details, such as oneTBB [1], Fast-
Flow [4], GrPPI [13], Cilk-P [50], SPar [15], and HPX-pipeline [46].
While each of these frameworks has its pros and cons, a common
design philosophy is to perform data synchronizations using buffers
between stages (i.e., data abstraction) in their pipeline scheduling
designs, as illustrated in Figure 1. This design is convenient for data-
centric pipeline applications but also has two limitations. Firstly,
users have to design their pipeline algorithms in the data-parallel
manner. However, data management is often application-dependent.
Many applications exhibit pipeline parallelism among tasks rather
than data. For example, the VLSI timing analysis application [9, 10]
formulates a sequence of linearly dependent propagation tasks in a
graph node and runs independent nodes in parallel to efficiently
update the timing data from a custom global shared graph data
structure. The real need is a pipeline scheduling framework to sched-
ule and run tasks while leaving data management completely to
applications.

Data-centric pipeline framework

Application _l N Output

Figure 1: An illustration of data abstraction in a pipeline
framework. Gray bars are buffers used for data synchroniza-
tions.

Secondly, scheduling algorithms involve complex synchroniza-
tions between data and buffer structures. These frameworks typ-
ically leverage object allocators and buffer structures to manage
temporary data between stages (e.g., oneTBB [1]). However, the syn-
chronizations can be redundant in some applications. For instance,
ferret [5], a pipeline benchmark of PARSEC, defines six stages (load-
ing, segmentation, extraction, indexing, ranking, and output) in its
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oneTBB implementation to perform image similarity search. Ev-
ery stage is defined as a derived class of oneTBB’s tbb::filter
and has an overridden operator that takes an input voidx pointer
returned from the previous stage. The pointer points to a global
data structure all_data, bypassing all the data abstractions in the
oneTBB pipeline.

To overcome these limitations, we introduce in this paper
Pipeflow, a new task-parallel pipeline programming framework.
We summarize our contributions as follows:

o Task-Parallel Pipeline. We have introduced a new task-
parallel pipeline programming concept that separates task
scheduling and data abstraction. This separation allows us
to concentrate on the pipeline tasking itself, enabling a more
efficient implementation of task-parallel pipeline algorithms
than existing frameworks.

e Programming Model. We have introduced a new C++ pro-
gramming model to support our concept. Unlike existing
models, we do not provide yet another data abstraction but a
flexible framework for users to fully control their application
data atop a task-parallel pipeline scheduling framework.

e Scheduling Algorithm. We have introduced a new sched-
uling algorithm to schedule stage tasks across parallel lines.
Since we do not touch data abstraction, we can avoid com-
plex data buffer designs and synchronization mechanisms
to enable more lightweight and efficient scheduling.

We have evaluated Pipeflow on both micro-benchmarks and real-
world applications. For example, in a real-world VLSI static timing
analysis workload, the Pipeflow implementation outperforms the
oneTBB implementation up to 110.3% faster. Right now, Pipeflow is
merged into the open-source Taskflow project [33].

2 BACKGROUND

We first review the pipeline basics and then detail the motivation of
Pipeflow. We then argue a new task-parallel pipeline programming
model is needed for many important industrial and research areas,
e.g., circuit design.

2.1 Pipeline Basics

Pipeline parallelism is commonly used to parallelize various appli-
cations, such as stream processing, video processing, and dataflow
systems. These applications exhibit parallelism in the form of a
linear pipeline, where a linear sequence of abstraction functions,
namely stages, F = (fi, f2,- - - , fj), is applied to an input sequence of
data tokens, D = (dj,dy, - - -, d;). A linear pipeline can be thought
of as a loop over the data tokens of D. Each iteration i processes
an input token d; by applying the stage functions F to d; in order.
Depending on the number of parallel lines, L = (ly,12,- -, ), to
process data tokens, parallelism arises when iterations overlap in
time. For instance, the execution of token d; at stage f; of parallel
line I, denoted as fjk(di), can overlap with fjk_*'l1 (di+1)- A stage can
be a parallel type or a serial type to specify whether fjk(di) can

overlap with f] k+1(d;,1) or not. Figure 2 shows the dependency
diagram of a 3-stage (serial-serial-parallel) pipeline.
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Parallel Lines for Data Tokens(/)

Stages(f)

Figure 2: Dependency diagram of a 3-stage (serial-serial-
parallel) pipeline. Each node represents a task that applies a
stage function to a data token. Each edge represents a depen-
dency between two tasks. The dashed rectangle denotes one
parallel line.

2.2 Task-parallel Pipeline Parallelism

Pipeflow is motivated by our research projects on developing paral-
lel timing analysis algorithms for very large scale integration (VLSI)
computer-aided design (CAD) [17, 18, 20, 21, 25, 26, 75]. Timing anal-
ysis is a critical step in the overall CAD flow because it validates the
timing performance of a digital circuit. As design complexity contin-
ues to grow exponentially, the need to efficiently analyze the timing
has become the major bottleneck to the design closure flow. For
instance, generating a comprehensive timing report (e.g., pessimism
removal, hundreds of corners, etc.) for a multi-million-gate design
can take several hours [45]. To reduce the analysis runtime, there
is an increasing trend of adopting manycore parallelism by new
timing analysis algorithms recently [8, 19, 22, 27, 38-41, 44, 54, 59].

Levelize

Pipeline scheduling

Stage 1 | RCP, RCP,., k* RCP,,, *{ RCP,., k> RCP,,, k> RCP,
Stage 2 § SLP, SLP,., SLP,., SLP,,; SLP,.,
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Figure 3: Parallel timing propagations [34]. Linearly depen-
dent timing data (e.g., slew) is updated across graph nodes in
a task-parallel pipeline fashion.

The most widely used strategy, including commercial timers,
to parallelize timing analysis is pipeline. Figure 3 illustrates this
strategy using forward timing propagation as an example [34]. The
circuit graph is first levelized into a level list using topological sort.
Nodes at the same level are independent of each other and can
run in parallel. Each node runs a sequence of linearly dependent
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propagation tasks, including parasitics (RCP), slew (SLP), delay
(DLP), arrival time (ATP), jump points (JMP), and common path
pessimism reduction (CRP) to update its timing data from a custom
global and application-dependent circuit graph data structure. Dif-
ferent propagation tasks can overlap across different levels using
pipeline parallelism.

This type of task-parallel pipeline strategy is ubiquitous in many
parallel CAD algorithms, such as logic simulation [49, 58] and phys-
ical design [29, 30, 32, 48], because computations frequently flow
through circuit networks. We have observed three important prop-
erties that make mainstream pipeline programming frameworks
fall short of our needs: 1) Unlike the typical data-parallel pipeline,
the pipeline parallelism in many CAD algorithms is driven by tasks
rather than data. 2) Data is not directly involved in the pipeline but
in the graph data structure defined by a custom algorithm. 3) From
a user’s standpoint, the real need is a pipeline scheduling frame-
work to help schedule and run tasks on input tokens across parallel
lines while leaving data management completely to applications;
in our experience, users disfavor another library data abstraction
to perform pipeline scheduling, as it often incurs development
inconvenience and unnecessary data conversion overheads.

3 PIPEFLOW

Inspired by the need for parallel CAD algorithms, Pipeflow intro-
duces a new task-parallel pipeline programming model for users to
create a pipeline scheduling framework without data abstraction.
In this section, we will dive into the technical details of Pipeflow.

3.1 Programming Model

Pipeflow leverages modern C++ and template techniques to strike a
balance between expressiveness and generality. Listing 1 shows the
Pipeflow code that implements the pipeline in Figure 2. Pipeflow
has one API Pipeline that allows users to define the pipeline
structure and explore the pipeline parallelism in their applica-
tions. There are two steps to create a Pipeflow application, 1) de-
fine the pipeline structure using template instantiation using the
Pipeline API and 2) define the application data storage, if needed.
In Pipeflow, the terms “pipe” and “stage” are interchangeable. For
the first step, users define the number of parallel lines and the ab-
stract function of each pipe in a Pipeline object. For each pipe,
users define the pipe type and a pipe callable using Pipe. A pipe
can be either a serial type (PipeType: : SERIAL) or a parallel type
(PipeType: :PARALLEL). The pipe callable takes an argument of
Pipeflow type, which is created by the scheduler at runtime. A
Pipeflow object pf represents a scheduling token and contains sev-
eral methods for users to query the runtime statistics of that token,
including the parallel line, pipe, and token numbers.

const size_t num_lines = 4;
std :: variant <float , std::string> data_type;
std :: array <data_type , num_lines> buffer;
Pipeline pl(num_lines,
// First pipe
Pipe {PipeType :: SERIAL,
[&](Pipeflow& pf) {
if ( !data.ready() ) {
pf.stop ();
} oelse {
// Generate a float and save it

buffer [pf.line ()] = data.get();

in buffer
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}

}
}
// Second pipe
Pipe {PipeType :: SERIAL,
[&](Pipeflow& pf) {
// Generate a string
buffer [pf.line ()] =
make_string (std :: get<0O>(buffer [pf.line ()]));
}

}s
/ Third pipe
Pipe {PipeType :: PARALLEL,
[&](Pipeflow& pf) {
std :: cout << std::get<l>(buffer[pf.line ()]);
}

and save it in buffer

}
)s
pl.run();

Listing 1: Pipeflow code of Figure 2, assuming the first pipe
generates float and the second pipe generates string out-
puts.

Pipeflow does not have any data abstraction but gives applica-
tions full control over data management. In our example, since the
first and the second pipes generate float and std: :string out-
puts, respectively, we create a one-dimensional (1D) array, buffer,
as the application data storage to store data in uniform storage
using std::variant<float, std::string>. The dimension of
the array is equal to the number of parallel lines, as Pipeflow sched-
ules only one token per parallel line. Each entry buffer[i] stores
the data that is being processed at parallel line i, which can be
retrieved by Pipeflow: : 1ine. This organization is space-efficient
because we use only a 1D array to represent data processing in a
two-dimensional (2D) scheduling map. Additionally, by delegating
data management to applications, we can avoid dynamic data con-
version between the library and the application, which typically
counts on virtual function calls to convert a generic type (e.g., void™,
std::any) to an arbitrary user type [1, 4].

Based on the pipeline structure and data layout defined above,
we instantiate a Pipeline object, pl. This template-based design
enables the compiler to optimize each pipe type, such as using
a fixed-layout functor to store the callable and its captured data.
Finally, we call run to submit the object p1 to a runtime and execute
it.

using P = Pipe<std::function <void(Pipeflow &)>>;
std :: vector <P> p(6, create_pipe ()); / 6 pipes
/ Pipeline of 4 parallel lines and 6 pipes
ScalablePipeline pl(4, p.begin(), p.end());
pl.run(); // First run

p.resize (3); // Resize p to 3 pipes

/ Pipeline of 4 parallel lines and 3 pipes
pl.reset(p.begin(), p.end());

pl.run(); //Second run

Listing 2: Scalable pipeline model in Pipeflow to accept vari-
able assignments of pipes.

Pipeline requires instantiation of all pipes at the construction
time. While this design gives compilers more freedom to optimize
the layout of each pipe type, it prevents applications from varying
the pipeline structure at runtime; for instance, the number of pipes
might depend on the problem size, which can be runtime variables.
To overcome this limitation, Pipeflow provides a scalable alternative,
ScalablePipeline, to allow variable assignments of pipes using
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range iterators. In Listing 2, we create a scalable pipeline, p1, from a
vector of six pipes p. After the first run, we reset p1 to another range
of three pipes for the second run. A scalable pipeline is thus more
flexible for applications to create a pipeline scheduling framework
with dynamic structures.

Compared to the programming model of existing frameworks,
such as oneTBB [1], Pipeflow’s programming model has the follow-
ing advantages: 1) Pipeflow is expressive and easy to write. Users
only need pipe type, pipe callable, and the number of parallel lines
to create a pipeline scheduling framework and explore the pipeline
parallelism in their applications. Moreover, as Pipeflow does not
provide data abstraction, users do not need to explicitly specify
the input data and output data type at every pipe definition as
oneTBB’s users do. 2) Pipeflow is flexible. Users are able to modify
the pipeline structure at runtime based on their specific needs.

3.2 Scheduling Algorithm

3

N token (4t+0) on

pipe 0, line 0

token (4t+0) on
pipe 1, line 0

token (4t+0) on |

pipe 2, line 0

A

A

N token (4t+1) on

pipe 0, line 1

token (4t1) on
pipe 1, line 1

token (4t+1)on |

pipe 2, line 1

A

A

N token (4t+2) on

pipe 0, line 2

token (4t+2) on
pipe 1, line 2

token (4t+2) on
pipe 2, line 2

$

N token (4t+3) on
pipe 0, line 3

N

I

Figure 4: The scheduling diagram of the task-parallel
pipeline in Listing 1. Each parallel line runs one schedul-
ing token. Multiple parallel lines overlap tokens in a circular
fashion. The text “token (4t+1) on pipe 1, line 1” means the
token with ID 4t+1 runs on the pipe 1 and the parallel line 1.

X

token (4t+3) on
pipe 1, line 3

token (4t+3)on |
pipe 2, line 3

As Pipeflow does not touch data abstraction, we can simplify the
pipeline scheduling problem to decide which scheduling token to
run at which pipe and parallel line. Our scheduling algorithm places
only one scheduling token per parallel line. We then process all
tokens in a circular fashion across the given number of parallel lines.
Figure 4 illustrates our pipeline scheduling idea using the pipeline
in Listing 1. Since the pipeline schedules tokens in a circular fashion,
there are four edges (dependencies) from the last pipes (pipe 2) to
the first pipes (pipe @), and one edge from the first pipe of the last
parallel line to the first pipe of the first parallel line. The last pipe
(pipe 2)is a parallel type. There is no vertical edge between the last
pipes of two consecutive parallel lines. Each parallel line runs only
one scheduling token. Multiple parallel lines can overlap tokens
whenever their dependencies are met. Even though the pipeline

98

C. H. Chiu et al.

execution can involve many scheduling tokens, only four parallel
lines are used in total.

3.3 Pseudocode

Algorithm 1: define_task(/)

global: pipeflows: a vector of Pipeflow objects
global: join_counters: a 2D array of join counters
global: num_tokens: the number of tokens
global: num_lines: the number of parallel lines
global: num_pipes: the number of pipes
Input: [: a parallel line id
1 pf « pipeflows[l];
2 AtomicStore(join_counters[pf.line][pf.pipel, pf.join_counter);

3 if pf.pipe == 0 then

4 pf.token <« num_tokens;
5 invoke_pipe_callable(pf);
6 if pf.stop == True then

7 ‘ return;

8 end

9 num_tokens = num_tokens + 1;
10 end

1

oy

if pf.pipe != 0 then

12 ‘ invoke_pipe_callable(pf);

13 end

14 curr_pipe «— pf.pipe;

15 next_pipe «— (pf.pipe + 1)%num_pipes;

16 next_line «— (pf.line + 1)%num_lines;

17 pf.pipe «— next_pipe;

18 next_tasks = {};

19 if curr_pipe is SERIAL and
AtomicDecrement(joun_counters|next_line] [curr_pipe]) ==
0 then

20 ‘ next_tasks.insert(1);

21 end

22 if

AtomicDecrement(join_counters[pf.line] [next_pipe]) ==

0 then

23 next_tasks.insert(0);

24 end

25 if next tasks.size == 2 then

26 call_scheduler(task_of_next_line);
27 goto Line 2;

28 end

29 if next tasks.size == 1 then

30 if next_tasks[0] == 1 then

31 ‘ pf < pipeflows[next_line];
32 end

33 goto Line 2;

32 end

Based on the idea discussed in Section 3.2, we formulate each
parallel line as a task, which defines a function object to run by a
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thread in the thread pool. Each task 1) deals with one scheduling
token per parallel line and 2) decides which adjacent task to run on
its next parallel line and pipe. Algorithm 1 implements such a task
using efficient atomic operations. When a task is scheduled, we
need to know which pipe at which parallel line for the scheduling
token to work. We keep the parallel line and pipe information in a
Pipeflow object. Each task owns a Pipeflow object pf of a specific
parallel line (line 1). Once a scheduling token is done, there are two
cases for its corresponding task to proceed: 1) for a parallel type, the
task moves to the next pipe at the same parallel line; 2) for a serial
type, the task additionally checks if it can move to the next parallel
line. To carry out such a dependency constraint, each pipe keeps a
join counter of an atomic integer to represent its dependency value.
The values of a serial pipe and a parallel pipe can be up to 2 and 1,
respectively. We create a 2D array join_counters to store the join
counter of each pipe at each parallel line. Line 2 initializes these join
counters to either 2 or 1 based on the corresponding pipe types that
are enumerated on integer constants, 2 (serial) and 1 (parallel). At
the first pipe (line 3), the Pipeflow object updates its token number
(line 4) and checks if the pipe callable requests to stop the pipeline
(lines 5:8). If continued, we increment the number of scheduled
tokens by one (line 9). For other pipes, we simply invoke the pipe
callables (lines 11:13).

After the pipe callable returns, we update the join counters based
on the pipe type and determine the next possible tasks to run (lines
14:24). When the join counter of a pipe becomes 0, we bookmark
this pipe as a task to run next (line 20 and line 23). If two tasks exist
(line 25), the current task informs the scheduler to call a worker
thread to run the task at the next parallel line (line 26) and reiterates
itself on the next pipe (line 27). The idea here is to facilitate data
locality as applications tend to deal with the next pipe at the same
parallel line as soon as possible. If there is only one task available,
the current task directly runs the next task with the updated pf
object (lines 29:34).

Compared to existing algorithms, such as oneTBB [1], that count
on non-trivial synchronization between tasks and internal data
buffers, our algorithm focuses on the task parallelism of a pipeline
itself. This design largely reduces the scheduling complexity of
pipeline by using lightweight atomic operations without complex
data buffer management.

3.4 Proof

We draw the following lemmas and sketch their proofs to highlight
the correctness of our scheduling algorithm:

LEmMMA 1. Only one task runs a pipe callable (line 5 and line 12 in
Algorithm 1) on a scheduling token.

PRrROOF. Assume two tasks are running the same pipe callable,
which means one task reiterates its execution from the previous
pipe, and the other task comes from the previous parallel line. This
is not possible in a parallel pipe as there is no dependency from the
previous parallel line; only one runtime task decrements the join
counter to 0 (line 22 in Algorithm 1). Take Figure 4 for example.
There is no vertical edge pointing to token 4t+1 from token 4t+0
for pipe 2. Only the task that runs token 4t+1 on pipe 1 gets to
decrement the join counter for task 4t+1 on pipe 2. In a serial pipe,

99

HPCAsia 2024, January 25-27, 2024, Nagoya, Japan

this is also not possible because the dependency is resolved using
atomic operations; only one task will acquire the zero value of the
join counter (line 19 in Algorithm 1). For example, in Figure 4, either
the task running token 4t+@ on pipe 1 or the task running token
4t+1 on pipe @ decrements token 4t+1 on pipe 1 to zero and then
runs the pipe. O

LEmMmA 2. The scheduler does not miss any pipe.

Proor. We consider the situation where one task moves to the
next parallel line (line 31 in Algorithm 1) instead of the next pipe
at the same parallel line. Under this circumstance, we need to make
sure one task will run that next pipe. Take Figure 4 for example.
Suppose a task finishes token 4t+1 at pipe @ and precedes to token
4t+2 at pipe 0, meaning that the join counter of token 4t+1 at
pipe 1 is not 0 yet. Another task that works on token 4t+0 at pipe
1 will eventually decrement the join counter to run it (line 27 in
Algorithm 1) or invoke another worker thread to run it (line 26 in
Algorithm 1). O

4 EXPERIMENTAL RESULTS

We implemented Pipeflow using C++17 and evaluated the perfor-
mance of Pipeflow on a micro-benchmark and a real-world indus-
trial CAD application. We studied the performance across mem-
ory (RSS), runtime, and throughput. We did not use conventional
pipeline benchmarks (e.g., PARSEC’s ferret[5] has only six pipes,
loading, segmentation, extraction, indexing, ranking, and output)
as their problem sizes are relatively small compared to CAD, and
the runtime difference between Pipeflow and the baseline is not
obvious on small pipelines. We compiled all programs using g++12
with -std=c++17 and -03 enabled. We ran all the experiments on
a Ubuntu Linux 19.10 (Eoan Ermine) machine with 40 Intel Xeon
Gold 6138 CPU cores at 2.00 GHz and 256 GB RAM. All data is an
average of ten runs.

4.1 Baseline

Given a large number of pipeline programming frameworks, it
is infeasible to compare Pipeflow with all of them. We consid-
ered oneTBB [1] as our baseline for two reasons. First, oneTBB
is the only library that provides a single pipeline API for users
to explore pipeline parallelism. Others require combining several
library-specific constructs to achieve this goal. For example, in Cilk-
P users need pipe_while, pipe_stage, and pipe_stage_wait to
add pipeline parallelism in applications. Second, Pipeflow is in-
spired by our CAD applications, and oneTBB is widely used in the
CAD community due to its absolute speed and robustness. For a
fair comparison, we implemented the same work-stealing strategy
as oneTBB in our thread pool, in particular, call_scheduler in
line 26 in Algorithm 1.

4.2 Micro-benchmark

The purpose of micro-benchmarks is to measure the pure sched-
uling performance without much computation bias from applica-
tions. We compared the memory, runtime, and throughput between
Pipeflow and oneTBB for completing pipelines of different numbers
of serial pipes, scheduling tokens, and threads. We did not use par-
allel pipes as their callable can be absorbed into the previous serial
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pipe. Each pipe performs a nominal work of constant space and
time complexity (e.g., small matrix multiplications) and forwards a
scheduling token to the next pipe.

Figure 5 illustrates the maximum RSS between Pipeflow and
oneTBB with different scheduling tokens and threads. The number
of parallel lines and pipes of a pipeline is equal to the number of
threads. We can see that oneTBB starts to consume more memory
than Pipeflow as we increase the pipeline size. For example, with 210
scheduling tokens Pipeflow needs 1.97% and 11.68% less memory
than oneTBB when running with 16 and 64 threads, respectively.
The same trend is also observed in the plot of processing 2! sched-
uling tokens. In terms of memory usage, oneTBB is consistently
higher than Pipeflow (e.g., 97.72% higher with 64 threads and 213
scheduling tokens) because we do not manage any data buffers but
focus on the task scheduling itself. That is, oneTBB needs to allo-
cate space for its internal data buffer structures to perform pipeline
scheduling. We can see the overhead of using data abstractions in
pipeline scheduling next.

21 scheduling tokens

= | |-+ Pipeflow i
E o, onelBB
72 o |
£
s -
=
é 7
61 1 1 1 1 o
8 16 32 64
Number of threads
25 scheduling tokens
= —+Pipeflow
& 201+ oneTBB |
192
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e 151 B
% 10+ B
=
Sy =] I e

1
32

8 16
Number of threads

64

Figure 5: Maximum RSS comparison between Pipeflow and
oneTBB with different threads and two scheduling tokens (2!°
and 21°) for the micro-benchmark. The number of threads is
the same as the number of pipes in the pipeline.

Figure 6 draws the runtime comparisons between Pipeflow and
oneTBB under different scheduling tokens and thread counts. The
number of parallel lines and pipes of a pipeline is equal to the num-
ber of threads. We can see that the runtime gap between Pipeflow
and oneTBB starts to increase as we increase the pipeline size. For
example, at 2!° scheduling tokens Pipeflow runs 10.13%, 10.98%,
124.18%, and 201.38% faster than oneTBB with 8, 16, 64, and 80
threads, respectively. Furthermore, Pipeflow has better runtime
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performance than oneTBB in all situations. We attribute the per-
formance improvements of Pipeflow over oneTBB to the reason
that oneTBB relies on its internal data buffer to perform pipeline
scheduling while Pipeflow only uses lightweight atomic operations.
Moreover, as the number of threads is equal to the number of par-
allel lines and pipes in the experiment, the pipeline running with
80 threads has a bigger structure than the pipeline running with 8
threads. As a result, the former pipeline exhibits higher task sched-
uling overhead than the latter and thus spends more time to finish.
Although the micro-benchmark only demonstrates the pure sched-
uling performance and forwards the scheduling token between
pipes, the overhead of data abstraction design of oneTBB results in
a significant runtime difference, especially in a large pipeline.

Figure 7 compares the throughput by corunning the same pro-
gram up to 8 times. Corunning a program at different configurations
is very common in some applications, such as [45]. The experiment
emulates a server-like environment where different pipeline ap-
plications compete for the same resources. We use the weighted
speedup to measure the system throughput, which is the sum of
the individual speedup of each process over a baseline execution
time[14]. A throughput of one implies that the corun throughput is
the same as if those processes run consecutively. On the left plot, the
pipeline has 16 pipes and 16 parallel lines and runs with 16 threads.
On the right plot, the pipeline has 80 pipes and 80 parallel lines and
runs with 80 threads. Both of them run 2'% scheduling tokens. We
can see that Pipeflow outperforms oneTBB in all coruns. For exam-
ple, at 8 coruns Pipeflow is 1.2x and 3.31x better than oneTBB with
16 and 80 pipes, respectively. Besides, Pipeflow remains around one
up to 5 coruns while oneTBB decreases after 2 coruns. We attribute
the finding to the reason that we use lightweight atomic opera-
tions rather than complex data buffer synchronizations to do the
task scheduling. As Pipeflow is more lightweight than oneTBB in
pipeline scheduling, corunning Pipeflow thus has better throughput
than corunning oneTBB.

The above experiments were running with the configuration in
which the number of pipes is the same as the number of threads.
However, this configuration does not always guarantee the best
runtime performance because of different applications and hard-
ware environments. Next, we see how the number of threads could
impact the performance. Figure 8 shows the impact of Pipeflow and
oneTBB running with different numbers of threads in a small (16
pipes) and a big (80 pipes) pipeline in which 21 and 21° tokens
were scheduled. For 16 pipes, we can see that the runtime trends
of running 21° and 215 are similar. oneTBB has the best runtime
performance with 32 threads; Pipeflow has the best performance
at 16 threads. For 80 pipes, the runtime trends are the same. We
find out that Pipeflow has the best performance with 80 threads
while oneTBB with 32 threads. In this micro-benchmark, we know
the selection of identical pipes and threads is the best option for
Pipeflow but not for oneTBB. Selecting the best thread number is
an important factor and the best thread number for one application
may not be the best choice for another application.

4.3 VLSI Static Timing Analysis Algorithm

We applied Pipeflow to solve a large-scale VLSI static timing analy-
sis (STA) problem. The goal is to analyze the timing landscape of a
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Figure 6: Runtime comparison between Pipeflow and oneTBB
with different scheduling tokens and threads for the micro-
benchmark. The number of threads is the same as the number
of pipes in the pipeline.

circuit design and report critical paths that do not meet the given
constraints (e.g., setup and hold). As presented in Figure 3, modern
STA engines leverage pipeline parallelism to speed up the timing
propagations. However, nearly all of them count on OpenMP-based
loop parallelism with layer-by-layer synchronization [34]. With
Pipeflow, we can directly formulate the problem as a task-parallel
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Figure 7: Throughput of corunning micro-benchmark pro-
grams with 16 and 80 pipes and 2!° scheduling tokens.

pipeline to improve task asynchrony. As the analysis complexity
continues to increase, more analysis tasks (e.g., RC, delay calcula-
tors, pessimism reduction) are incorporated into each node in the
STA graph. These tasks can be encapsulated in a sequence of pipe
functions to overlap in the graph across parallel lines. We modified
alarge circuit design of 1.5M nodes and 3.5M edges from [3, 34] and
studied the performance under different pipe counts. Each node
has a pipe task to calculate delay values at a specific configuration
using linear interpolation. We levelized the STA graph and ran
the nodes at the same level in parallel, such that different analysis
tasks overlaps across different levels using pipeline parallelism, as
illustrated in Figure 3.

Figure 9 evaluates the memory usage between Pipeflow and
oneTBB at different graph sizes (||V|| + ||E||) and thread counts.
The number of pipes and lines in the pipeline is identical to the
number of threads. As the pipeline size grows, the gap of memory
usage starts to increase in both 1.5M and 5M graph sizes. For in-
stance, with 1.5M graph size Pipeflow needs 0.07% and 5.6% less
than oneTBB at 32 and 80 threads, respectively. We can observe a
similar trend when we process 5M graph size. Since Pipeflow dele-
gates data management directly to applications without touching
data abstractions, Pipeflow does not allocate as much memory as
oneTBB to perform pipeline scheduling.

Figure 10 compares the runtime performance between Pipeflow
and oneTBB at different graph sizes (||V|| + ||E||) and thread counts.
The number of pipes and parallel lines of the pipeline is the same as
the number of threads in this experiment. We can see that Pipeflow
outperforms oneTBB when we increase the graph size. Taking
16 threads for example, Pipeflow runs 62.02%, 57.44%, and 46.08%
faster than oneTBB with 1, 3, and 5M graph size, respectively. The
performance improvements reduce because the overhead of setting
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and 2'° scheduling tokens.

up internal data buffers in oneTBB is gradually amortized when
we increase the graph size in this workload. We also notice the
runtime gap decreases when we use more threads. For example,
at 5M graph size Pipeflow is 110.33%, 46.08%, and 20.08% faster
with 8, 16, and 64 threads, respectively. The improvements also
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oneTBB at different graph sizes (||V|| + || E||) and thread counts
for the timing analysis workload. The number of threads is
identical to the number of pipes in the pipeline.

reduce because the cost of data buffers is amortized gradually as the
pipeline size grows. Despite the runtime improvements gradually
decrease when the pipeline size grows or the graph size increases,
Pipeflow still outperforms oneTBB in all cases in the workload.
Since our scheduling algorithm does not deal with data passing
between pipes, we can process scheduling tokens more efficiently
than oneTBB. In Pipeflow all pipe tasks perform computations
directly on a global graph data structure captured in the pipe callable
instead of passing data between successive pipes using buffers. The
data passing interface between successive pipes in oneTBB thus
becomes an unnecessary overhead.

Next, we compare the throughput by corunning the same pro-
gram up to 8 times. Corunning the STA program is very common
for reporting the timing data of a design at different input library
files[45]. The effect of pipeline scheduling propagates to all simul-
taneous processes. Hence, throughput is a good measurement for
the inter-operability of a pipeline-based STA algorithm. We corun
the same analysis program up to 8 processes that compete for 40
cores. Again, we use the weighted speedup to measure the through-
put. Figure 11 plots the throughput across 8 coruns at 16 and 80
pipes. The number of pipes is identical to the number of threads.
We can see that Pipeflow outperforms oneTBB at all coruns. For
instance, at 8 coruns Pipeflow is 1.04x and 1.14x better than oneTBB
with 16 and 80 pipes, respectively. This is because Pipeflow lever-
ages lightweight atomic operations and oneTBB relies on complex
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Figure 10: Runtime comparison between Pipeflow and
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for the timing analysis workload. The number of threads is
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data buffer management in pipeline scheduling. Corunning a light-
weight program has a higher throughput than corunning a heavy
program. Besides, with more coruns both Pipeflow and oneTBB
have a decreasing throughput.
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Figure 11: Throughput of corunning STA programs with 16
and 80 pipes and 1.5M graph size(||V|| + || E||).

So far, we ran the experiments of this workload using the number
of threads same as the number of pipes. This configuration may
not always give us the best runtime performance because of differ-
ent hardware environment and workloads. Next, we demonstrate
the importance of selecting the number of threads in this work-
load. Figure 12 shows the runtime performance of Pipeflow and
oneTBB processing 1.5M and 5M graph size with different numbers
of threads in 16-pipe and 80-pipe pipelines. For 16 pipes, we ob-
serve that both Pipeflow and oneTBB have a similar runtime trend,
and both achieve the best performance with 64 threads for 1.5M
graph size. With 5M graph size Pipeflow has the best performance
with 80 threads while oneTBB with 64 threads. For 80 pipes, both
Pipeflow and oneTBB have the best performance with 32 threads.
From Figure 12 we learn that the alignment of threads and pipes
does not achieve the best runtime performance in the workload.
Hence, selecting the thread counts is an important factor while
exploring pipeline parallelism in applications.

4.4 Importance of Task-Parallel Pipeline

As experienced parallel CAD researchers, Pipeflow has assisted
us in overcoming many programming challenges. For example, in
the previous experiments, the data is explicitly managed by the
application algorithms and there is no need to go through any data
abstraction. The real need is a task-parallel pipeline programming
framework that 1) gives applications full control over data and
2) allows applications to probe each scheduled task. For instance,
when implementing the STA algorithm, we captured the data from
a global STA graph structure in each pipe callable and used the
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pipeflow variable to get the parallel line number of a scheduled
task to index the corresponding entry in a result vector. However,
oneTBB abstracts these components out, and we have to implement
another mapping strategy to get these data from each filter, both of
which incur significant yet unnecessary runtime overheads. Similar
situations exist in other libraries too.
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4.5 Selection of the Number of Parallel Lines

Selecting the number of parallel lines (or threads) for the best per-
formance is application-dependent. For example, Figure 8 illustrates
that Pipeflow obtains the best performance while aligning the pipe
sizes and thread counts and oneTBB should run with 32 threads in
the micro-benchmark. From Figure 12 when running the STA work-
load, both Pipeflow and oneTBB obtain the best runtime results
with 32 threads in an 80-pipe pipeline. From the micro-benchmark
and STA algorithm, we learn that the selection of the number of
parallel lines (or threads) is a critical factor regarding the runtime
performance. Moreover, as the performance of an application tends
to saturate or peak at a certain limit, increasing the number of
parallel lines exceeds the limit could negatively affect the runtime.
As a result, Pipeflow makes the number of parallel lines a tunable
parameter (similarly in oneTBB). Based on our experience, most
applications can obtain decent performance when the number of
parallel lines is equal to the number or twice the number of the
cores.

5 RELATED WORK

Pipeline programming models. have received intensive research
interest. Most of them are data-centric, using static template instan-
tiation or dynamic runtime polymorphism to model data processing
in a pipeline. To name a few popular examples: oneTBB [1] and
TPL [51] require explicit definitions of input and output types for
each stage; GrPPI [13] provides a composable abstraction for data-
and stream-parallel patterns with a pluggable back-end to support
task scheduling; FastFlow [4] models parallel dataflow using pre-
defined sequential and parallel building blocks; TTG [7] focuses on
dataflow programming using various template optimization tech-
niques; SPar [15, 16, 24, 60] analyzes annotated attributes extracted
from the data and stream parallelism domain, and automatically
generates parallel patterns defined in FastFlow; Proteas [61] in-
troduces a programming model for directive-based parallelization
of linear pipeline; [73, 74] propose a self-adaptive mechanism to
decide the degree of parallelism and generate the pattern compo-
sitions in FastFlow; OpenMP [2] uses task construct and depend
clause to explore pipeline parallelism. Although these program-
ming models are used in many applications, such as oneTBB in
PARSEC [5], they constrain users to design pipeline algorithms
using their data models, making it difficult to use, especially for
applications that only need pipeline scheduling atop custom data
structures. Pipeflow simply requires users to specify the pipeline
structures (e.g., the number of parallel lines) and pipe callables,
and provides a scalable pipeline API for users to flexibly define the
pipeline scheduling frameworks with dynamic structures based on
their specific needs.

Existing pipeline scheduling algorithms. typically co-design task
scheduling and buffer structures to strive for the best performance.
For instance, oneTBB [1] defines a per-stage buffer counter to syn-
chronize data tokens among stages and parallel lines, coupled with
a small object allocator to minimize the data allocation overhead;
GRAMPS [70] designs a buffer manager with per-thread fix-sized
memory pools to dynamically allocate new data and release used
ones; FastFlow [4] designs a lock-free queue with a mechanism
to transfer data ownership between senders and receivers, but
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this method can incur imbalanced load and requires non-trivial
back-pressure management; HPX [46] counts on a channel data
structure and standard future objects to pass data around tasks, but
the creation of share states becomes expensive when the pipeline
is large; Cilk-P [50] employs per-stage queues coupled with two
counter types to track static and dynamic dependencies of each
node, but it targets on-the-fly pipeline parallelism, which is orthog-
onal to our focus; FDP [72] proposes a learning-based mechanism
to adapt scheduling to an environment, but it requires expensive
runtime profiling that may not work well for highly irregular ap-
plications like CAD. Pipeflow leverages C++ simple atomic op-
erations and assigns every pipe an atomic variable denoting the
dependency. Since there is no data synchronization involved, the
scheduling algorithm of Pipeflow is lightweight and efficient. In
terms of load balancing, most pipeline schedulers leverage work
stealing, which has been reported with better performance than
static policies [6, 23, 50, 52, 66, 70, 71]. However, for some special
cases, such as fine-grained load-imbalanced pipelines, static policies
perform comparably. For example, Pipelight [64, 65] implements a
load-balancing technique based on two static scheduling algorithms,
DSWP [67-69] and LBPP [47]; Pipelite [63, 65] and URTS [62, 65]
introduce dynamic schedulers using ticket-based synchronization
and directive-based model language for linear pipelines, respec-
tively. Although, in some special cases, work stealing [53] may not
give the best runtime performance, Pipeflow and the most frame-
works still adopt this algorithm as it has the best performance in
most applications. While co-designing task scheduling and buffer
structures has certain advantages for data-centric pipeline (e.g., data
locality), the cost of managing data can be significant yet unneces-
sary, especially for applications that only exploit task parallelism
in pipeline.

6 CONCLUSION

In this paper, we have introduced Pipeflow, an efficient task-parallel
pipeline programming framework to explore pipeline parallelism
in applications. We have introduced a simple yet efficient schedul-
ing algorithm based on our work-stealing runtime with dynamic
load balancing. We have evaluated the performance of Pipeflow
on a micro-benchmark and an industrial application. For exam-
ple, in a VLSI static timing analysis workload that adopts pipeline
parallelism to speed up the runtime performance, the Pipeflow’s
implementation is up to 110.33% faster than the oneTBB’s imple-
mentation. Our future plans are to 1) apply Pipeflow to other ap-
plications than CAD applications to bring interdisciplinary ideas
to the parallel computing community and 2) extend Pipeflow to
task-parallel GPU computing platforms [11, 12, 43, 55-57] and dis-
tributed environment [28, 31, 42]
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