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ABSTRACT. The GEOTRACES program has greatly expanded measurements of dis-
solved trace metal concentrations across ocean basins, but to understand the behavior
and cycling of metals and their impacts on primary productivity, we must understand
the chemical forms in which they are present in the environment. Organic ligands play
a central role in the speciation and cycling of trace metals in the marine environment,
controlling their chemical reactivity and bioavailability. Here, we present an overview
of the contributions the GEOTRACES program has made to understanding ocean
metal speciation through advancing our knowledge of the distribution, sources, and
sinks of metal-binding organic ligands across the global ocean, particularly for iron.
Detailed assessments and intercalibration of the speciation methods most commonly
applied have allowed integration of metal-binding ligand measurements across data-
sets. Work to characterize specific ligand groups within the wider pool of dissolved
organic matter, along with their sources and sinks, is starting to unravel the role of
metal-binding organic ligands in global biogeochemical cycles. Recent advances in
complementary analytical techniques using liquid chromatography and mass spec-
trometry present a molecular picture of metal speciation and bioavailability—and also
pose new questions. Moving forward, we need to address knowledge gaps in our under-
standing of how metal speciation and complexation relates to bioavailability in order to
recognize the impacts of ocean metal distributions and cycling on marine productivity

and the global carbon cycle.

HISTORICAL CONTEXT

Trace metals in natural waters exist in
various physicochemical forms that dif-
fer in size (dissolved, colloidal, particu-
late), redox states, and complexes with
molecules (organic or inorganic ligands).
These forms, or species, of trace met-
als dictate their solubility, reactivity,
and bioavailability to microorganisms.
Many of the trace metals that are dis-
solved in seawater have low inorganic
solubility, and speciation is defined by
the relative contributions of their inor-
ganic and organic forms. Measuring
the chemical speciation of trace metals
that are dominated by organic com-
plexation, such as iron, copper, nickel,
cobalt, and zinc, thus requires the char-
acterization of metal-binding organic
ligands, which comprise a small fraction
of the much larger, heterogeneous, and
largely uncharacterized pool of dissolved
organic matter (DOM) that exists in sea-
water (Gledhill and Buck, 2012; Dittmar
and Stubbins, 2014).

It has been 40 years since the first dis-
solved organic speciation measurements
were made in open ocean waters (van den
Berg, 1984). Early measurements showed
that organic ligands complexed large por-
tions of the dissolved pool of many trace

metals, up to 99.9% in the case of iron
(see Gledhill and Buck, 2012, and refer-
ences therein). The importance of ligands
in controlling dissolved iron concentra-
tions was recognized in the earliest efforts
to model dissolved iron cycling in the
ocean (Johnson et al., 1997). Since these
early studies, it has been widely recog-
nized that ligands play an important role
in the cycling of trace metals (Figure 1).
On short timescales, observed dis-
solved metal concentrations in sea-
water greatly exceed inorganic solubil-
ity limits because organic ligands prevent
the precipitation and abiotic scaveng-
ing of metals. On longer timescales,
ligands facilitate the exchange of met-
als between the dissolved, colloidal, and
particulate phases, stabilize metals for
long-distance transport, and govern the
overall oceanic inventory of metals in
seawater. As a result, the importance of
understanding the composition, bio-
availability, and internal cycling pro-
cesses of organic ligands was high-
lighted in the GEOTRACES Science Plan
(GEOTRACES Planning Group, 2006).
GEOTRACES
cess study expeditions have enhanced

survey and pro-

our understanding of metal speciation
by identifying important regional and

basin-scale features in ligand distribu-
tions, particularly for iron. However,
recent advances have also drawn atten-
tion to the importance of inorganic forms
of metals (M') and the difficulties in relat-
ing organic speciation (ML, where M is a
metal and L represents an organic ligand)
to metal bioavailability. Here, we focus on
the key insights that have been garnered
on metal speciation since the conception
of the GEOTRACES Science Plan, with a
focus on dissolved organic iron-binding
ligands. We highlight how the broad
spatial distribution of measurements is
allowing us to unravel regional patterns
in ligand distributions, how our under-
standing of ligands relates to the wider
DOM pool, and how metal speciation
has been incorporated into regional and
global ocean scale biogeochemical mod-
els. Finally, we consider the challenges of
understanding metal bioavailability and
close with a look toward the future of
understanding metal speciation and metal
bioavailability in the new GEOTRACES
era focused on process studies.

ADVANCEMENTS

ACROSS TEMPORAL

AND SPATIAL SCALES
Implementation of the international
GEOTRACES program has
increased the resolution of metal spe-

greatly

ciation data from the ocean, particu-
larly for iron, due to its recognized role
as a limiting nutrient across over a third
of the ocean surface (J.K. Moore et al.,
2001). The number of measurements of
dissolved iron-binding organic ligands
has increased 20-fold since the launch of
the GEOTRACES field program in 2010
(Figure 2; Supplementary Table S1).
Prior to GEOTRACES, most iron-binding
ligand data were focused in the Atlantic
and within the upper ocean; now, full
depth profiles are available from every
major ocean basin, although there is still
relatively limited data from the Indian
Ocean. There has also been an increase in
the number of speciation studies on other
bioactive trace metals, including copper,
cadmium, zinc, and cobalt.
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Intercalibration of Methods to
Characterize Metal-Binding
Organic Ligands

Competitive ligand exchange-adsorptive
cathodic stripping voltammetry (CLE-
AdCSV) is by far the most commonly
used method to determine the con-
centration and metal binding capac-
ity of organic ligands in seawater (see
Gledhill and Buck, 2012, and Moffett and
Boiteau, 2024, and references therein).
This approach provides the concentra-
tion of the ligands and their average bind-
ing strength for a specific metal within a
detection window, or across multiple
analytical windows (Moffett et al., 1997;
Bruland et al., 2000). These ligand char-
acteristics allow for broad operational
classification of ligands based on their
conditional stability constants for iron
(Gledhill and Buck, 2012) and for cop-
per (Bruland et al., 2000; Ruacho et al.,
2022) into strong (L), intermediate
(L,), and progressively weaker (L,, L,...)
ligand classes. For iron, these logK., val-
ues are operationally defined as L; >12,
L, = 11-12, and L, <11; for copper, they

are defined as logK 2! values of L,>14,
L, = 10-14, and L,<10. Such classifi-
cations enable studies to define ligand
characteristics across methods and pro-
vide insights into components of the
ligand pool and their roles in influenc-
ing metal speciation. A modified ver-
sion of the CLE technique using a sol-
vent extraction-based approach has also
recently been developed (Moriyasu and
Moffett, 2022) and used to determine the
inert copper fraction in the GEOTRACES
GP15 section of the equatorial and North
Pacific (Moriyasu et al., 2023). The bind-
ing strength of some metals can also be
characterized by pseudovoltammetry and
kinetics-based experiments in which con-
ditional stability constants determined by
kinetic experiments with metal additions
provide excellent agreement with those
from CLE-AdCSV titrations, supporting
both approaches (Luther et al., 2021, and
references therein).

GEOTRACES

international

In preparation for
basin-scale surveys, an
intercalibration of commonly applied

CLE-AdCSV approaches for iron- and

copper-binding organic ligand measure-
ments was conducted in samples collected
from three ocean depths in the North
Pacific (Buck et al., 2012), building on
previous work for copper (Bruland et al,,
2000). This effort led to specific recom-
mendations for the collection and storage
of organic ligand samples (https://www.
geotraces.org/methods-cookbook/), and
for the application of these CLE-AdCSV
methods to determine comparable results

for the characteristics of both iron- and
copper-binding organic ligands in open
ocean waters (Buck et al., 2012). The two
CLE-AdCSV methods that have been
intercalibrated most extensively employ
the added ligands salicylaldoxime (SA)
(TAC),
both of which were successfully vet-

or 2-(2-thiazolylazo)-p-cresol

ted in the original method development
against model ligands that included the
siderophore desferrioxamine B (Rue and
Bruland, 1995; Croot and Johansson,
2000). Each method has challenges; the
TAC method may underestimate the con-
tributions of humic-like ligands (Slagter
et al, 2019; Ardiningsih et al, 2021),

FIGURE 1. Key biogeochemical processes impacting metal-binding ligand production, cycling, and degradation in seawater. L, SL,
and R refer to labile (turnover time of hours to weeks), semi-labile (months), and refractory (years) materials, respectively, while arrows

denote sources, sinks, and internal cycling. Question marks highlight prevailing knowledge gaps.
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and thus the total iron-binding ligand
pool (Gerringa et al., 2021), while a loss
of iron-SA complexes during the equili-
bration period can lead to an overestima-
tion of ligand concentrations (Gerringa
et al.,, 2021; Mahieu et al., 2024); how-
ever, this can be avoided by condition-
ing the titration vials with repeated expo-
sure to anticipated iron additions (Rue
and Bruland, 1995; Buck et al, 2007;
Mabhieu et al., 2024).

Independent application of these
methods by analysts from the US and
Dutch GEOTRACES programs to depth
profiles at the Bermuda Atlantic Time-
series Study (BATS) crossover station in
the Atlantic Ocean showed that the two
methods provide excellent agreement on
the concentrations and conditional sta-
bility constants of stronger iron-binding
organic ligands (Buck et al., 2015, 2016;
Gerringa et al, 2015). Characterizing
weaker iron-binding organic ligands is
still a challenge, as not all CLE-AdCSV
methods can detect humic-like iron-
binding organic ligands (Slagter et al.,
2019; Ardiningsih et al.,, 2021). Despite

the various analytical challenges high-
lighted here, GEOTRACES activities are
leading to the standardization of pro-
cedures and improved reproducibil-
ity of ligand datasets, and characterizing
metal-binding ligand concentrations has
proven critical to advancing understand-
ing of iron cycling in the global ocean
(Tagliabue et al., 2023).

Altogether, initial intercalibration and
method assessment efforts, combined
with parallel advancements in voltam-
metric data manipulation and inter-
pretation (Wells et al., 2013; Omanovic
et al., 2015; Pizeta et al., 2015), achieved
through parallel efforts of SCOR working
group 139 associates (https://scor-int.org/

group/139/), helped pave the way for
the high throughput analyses of metal-
binding organic ligands needed to char-
acterize metal speciation in the ensu-
ing GEOTRACES basin-scale surveys
and process studies. To date, metal-
binding organic ligands have been char-
acterized across GEOTRACES section
cruises in the Atlantic, Pacific, Arctic, and
Southern Oceans, and the Mediterranean

and Black Seas (see Table S1 for iron ref-
erences and the section below on the
Spatial Distribution of Metal-Binding
Ligands for other metals). Continued
method
bration efforts, however, are highly
encouraged. The GEOTRACES web-
site  (https://www.geotraces.org/about-

assessments and intercali-

intercalibration/) provides guidelines
for interested analysts to initiate inter-
calibration exercises as well as contact
information for elemental coordinators,
and the GEOTRACES cookbook pro-
vides useful information on sample han-
dling protocols for metal-binding ligands
that emerged from early intercalibration

efforts (Cutter et al., 2017).

Spatial Distribution of
Metal-Binding Ligands
The
ligand measurements

compilation of metal-binding
produced by
international analysts participating in
GEOTRACES sections has revealed con-
sistent features in global distributions
of ligands and fueled new insights into

the cycling of metals, particularly iron,

d

FIGURE 2. Dissolved iron-binding ligand data in the pre- and post-GEOTRACES eras. Red dots mark locations for iron-binding ligand data published
before 2005 (a), and after 2005 (b). (c) Dots indicate locations where iron-binding ligand data were collected below 1,000 m before 2005, and (d) after
2005. References for each study are found online in Table S1.
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in the ocean. One of the earliest find-
ings during GEOTRACES was that the
strongest iron-binding ligands are pres-
ent throughout the entire water column,
especially in the Atlantic (Buck et al,
2015, 2018; Gerringa et al.,, 2015). These
ligands have relatively constant concen-
trations with depth, and excess ligand
concentrations are often highest in sur-
face waters, reflecting ligand production
associated with primary productivity (see
Gledhill and Buck, 2012, and references
therein). However, at the global-ocean
scale, there is a progressive loss of stron-
ger iron-binding ligands and of ligands
not already bound to iron (so-called
“excess ligands”) at depth with water mass
age and between the deep waters of the
Atlantic and Pacific (Thurdczy etal., 2011;
Gerringa et al.,, 2015; Buck et al., 2018).
Patterns of ligand distributions in differ-
ent water masses have also been revealed
by basin-scale studies. For example,
Buck et al. (2018) noted that excess iron-
binding ligand concentrations and bind-
ing strength were higher in water masses
originating in the Southern Ocean, such
as in Circumpolar Deep Water and
These
observations suggest that some portion

Antarctic Intermediate Water.

of the ligand pool might be set in regions
of intermediate and deep water formation
with important implications for dissolved
iron cycling (Buck et al., 2018).

Ligand pool composition varies spa-
tially and with depth due to local sources,
sinks, and cycling processes. Ligands
are produced and released by micro-
organisms to compete for limited trace
metal resources, reduce trace metal tox-
icity, solubilize particulate phases of trace
metals originating from sources such as
atmospheric deposition and hydrother-
mal vents, and recycle metals from decay-
ing biomass. Speciation studies (Table S1)
have identified margin sediments as an
important source of ligands in both oxic
and low oxygen regions, while some
regions, such as the Arctic Ocean, are
heavily influenced by ligands originating
from terrestrial material. Active bacte-
rial remineralization of marine particles
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at depth also releases an array of metal-
binding ligands of various strengths
(Boyd and Ellwood, 2010; Velasquez
et al., 2016; Bundy et al., 2018; Whitby
et al, 2020a). Atmospheric deposition
may have a large influence on the com-
position of metal-binding ligand pools in
areas of the ocean that receive large sea-
sonal or episodic inputs of dust, such as
the equatorial Atlantic, North Pacific, and
Indian Oceans (Mahowald et al., 2005),
as dust input can lead to higher iron
binding ligand concentrations (Wagener
et al., 2010; Wuttig et al., 2013) and stim-
ulate siderophore production (Basu et al.,
2019; Park et al,, 2023). Speciation mea-
surements around hydrothermal vents
have revealed the importance of ligands
in stabilizing hydrothermal supplies of
dissolved metals for long distance trans-
port (Sander and Koschinsky, 2011; Buck
et al., 2015; Resing et al., 2015; Wang
et al,, 2019, 2021). This may reflect active
production of ligands by hydrothermal
plume communities to manage or access
metals, in particular iron (Hansen et al.,
2022). Sea ice melt may also contribute
organic ligands to seawater (Lannuzel
etal., 2015; Genovese et al., 2018; Arnone
etal., 2023, 2024).

Although important insights into the
sources and sinks of ligands have been
gained through GEOTRACES spatial
studies, fewer data are available on the
temporal cycling of various components
of the ligand pool. A study in the oligotro-
phic Pacific at the Hawai‘i Ocean Time-
series site found that iron-binding ligand
concentrations in the euphotic zone can
change on the order of days (Fitzsimmons
et al, 2015b), while lab-based stud-
ies have demonstrated that some strong
iron-binding ligands have very slow dis-
sociation kinetics (Boiteau et al., 2018).
However, these experiments are more
representative of the residence time of the
iron complex than of the ligands them-
selves. Ligands may have much longer
residence times; another study estimated
a residence time of around 750 years for
organic ligands in North Atlantic Deep
Water, 2.5 to 4 times larger than the

estimated residence time of dissolved iron
within the same water mass (Gerringa
et al., 2015). The Arctic Ocean may be
a potential source for these refractory
ligands, as it has a strong terrestrial sig-
nature in the upper water column, partic-
ularly within the Transpolar Drift, which
transports material of riverine origin
across the basin with signature high con-
centrations of iron- and copper-binding
organic ligands relative to surrounding
waters (Slagter et al., 2019; Arnone et al.,
2023). This poses questions about the
importance of regional differences in the
sources and sinks of ligands and how such
differences may impact metal speciation
and bioavailability. Overall, the temporal
scale dynamics of ligands likely depends
heavily on the types of ligand and local
biogeochemical processes (Figure 1).

There are a limited but growing num-
ber of studies regarding the organic com-
plexation of other metals. A recent review
summarizes advances in our understand-
ing of the copper-binding ligand pool in
detail, including open ocean speciation
measurements from the Atlantic, Pacific,
and Southern Oceans, as well as advances
in modeling copper ligands (Ruacho
et al., 2022, and references therein).
More recently, copper speciation has also
been measured in the Arctic (Arnone
et al, 2023, 2024). Methods comple-
mentary to CLE-AdCSV have provided
further information on copper lability
(Moriyasu and Moffett, 2022; Moriyasu
et al., 2023), and have allowed us to inter-
rogate ligand sources (Karavoltsos et al.,
2013; Nixon et al., 2019, 2021) as well
as to study the uptake of ligand-bound
copper (Semeniuk et al., 2015). Copper-
binding ligands (along with those for
nickel) have also been characterized at
the molecular level (Boiteau et al., 2016b;
Babcock-Adams, 2022).

GEOTRACES
allowed us to better understand the

studies have also
marine cobalt cycle across different ocean
basins, including the Atlantic, Pacific,
Arctic, and Mediterranean (Noble, 2012;
Hawco et al, 2016; Dulaquais et al,

2017; Noble et al, 2017; Bundy et al,



2020; Chmiel et al., 2022). Applications
of CLE-AdCSV methods have found
that dissolved cobalt exists in both labile
(free Co(II) and weakly bound Co) and
strong ligand-bound forms, and that
most of these organic ligands strongly
bind to Co(III), as Co(II) is outcompeted
by other divalent trace metals like nickel
and copper (Baars and Croot, 2015).
Cyanobacteria or phytoplankton may
be a source of cobalt ligands in the sur-
face ocean (Saito et al., 2005; Baars and
Croot, 2015), while cyanocobalamin and
other cobalamin analogues have been
suggested as potential cobalt ligands
because of their extremely high condi-
tional stability constants (Ellwood and
van den Berg, 2001).

Zinc-binding ligands have been found
to be oversaturated in high latitude waters
in the Southern Atlantic and in the west-
ern subarctic North Pacific due to high
dissolved zinc concentrations (Baars
and Croot, 2011; T. Kim et al., 2015). In
contrast, zinc ligands were generally in
excess of dissolved zinc in the Tasman
Sea (Sinoir et al., 2016). Some zinc-
binding ligands are likely derived from
phytoplankton production, as suggested
by high correlation between total zinc
ligands and biomarker pigments (T. Kim
et al., 2015; Sinoir et al., 2016). One study
suggested that degradation products of
bacteria and phytoplankton, such as zinc-
chlorophylls, porphyrins, and proteins,
may act as zinc-binding ligands based
on the formation rates of these com-
plexes (Baars and Croot, 2011), but these
ligands have not been directly chemically
characterized to date.

For cadmium, over 70% of the dis-
solved form is bound to strong organic
ligands in surface waters of the North
Pacific, subantarctic Pacific, and Atlantic
(Bruland, 1992; Ellwood, 2004; Baars
et al., 2014). One study found the high-
est concentrations of cadmium-binding
ligands were in areas with high chlo-
rophyll, suggesting a biological source,
while weak cadmium-binding ligands
may be derived from marine humic mate-
rial (Baars et al., 2014).

LINKING METAL SPECIATION
WITH DISSOLVED ORGANIC
MATTER

Marine DOM is a heterogeneous mixture
of organic molecules, from well-defined
biomolecules synthesized for specific
purposes to myriad degradation products
that have been biotically and abiotically
transformed. A variety of metal-binding
functional groups exist within DOM,
including amines, thiols, phenols, and
carboxylates. However, dissolved organic
carbon (DOC) concentrations register at
34-70 uM throughout most of the ocean
(Dittmar and Stubbins, 2014), over four
orders of magnitude higher than typical
trace metal and metal-binding organic
ligand concentrations. This suggests that
while many DOM components inter-
act with metals to some degree, only a
minor fraction of the DOM pool has a
great impact on metal speciation, distri-
bution, and cycling.

While operationally characterizing
ligands based on their conditional sta-
bility constants has proven insightful in
understanding processes that influence
metal speciation and cycling at the global
scale (Gledhill and Buck, 2012; Buck et al.,
2018), significant progress has also been
made in identifying specific ligands that
contribute to the metal-binding ligand
pool in seawater, in particular for iron.
These insights are helping trace metal
chemists connect our understanding of
metal speciation to the wider DOM pool.
For example, short-lived or semi-labile
ligands in productive upper waters may
be different from the refractory ligands
that transport metals long distances and
maintain the deep ocean metal inventory
(Figure 1), but all are part of the DOM
pool. Concurrently, ligands that are con-
sidered refractory when at depth may be
photosensitive and labile when upwelled
(Hassler et al., 2020).

A widely recognized, strong iron-
binding ligand group for iron are sid-
erophores, small molecules produced by
marine microbes to mediate iron uptake
(Vraspir and Butler, 2009). Rue and
Bruland (1995) made some of the first

measurements of iron-binding ligands
in seawater using voltammetry. They
noted that the binding strengths of the
strongest ligand class were remarkably
similar to siderophores and hypothesized
these compounds to be important iron
ligands. Advances in mass spectrome-
try have since allowed direct quantifica-
tion and identification of siderophores
from the open ocean at depths rang-
ing from the surface to at least 1,500 m
(see Moffett and Boiteau, 2024, and ref-
erences therein). However, it is unclear
if siderophores are actively released at
these depths and only in response to
iron limitation, or if they can be long-
lived molecules.

GEOTRACES transects have revealed
that siderophores are widespread across
the ocean and that their composition is
diverse and varies across ocean biomes
(Boiteau et al, 2016a). Amphiphilic
siderophores with fatty acid tails that
enable them to be tethered to cell mem-
branes are particularly high in chron-
ically iron-limited surface waters as well
as mesopelagic waters with high nitrate
and low dissolved iron, reflecting their
role in facilitating iron dissolution and
uptake (Boiteau et al., 2016a; Bundy
et al., 2018; Park et al.,, 2023). Some sid-
erophores have also been observed in
environments with high iron concentra-
tions, either during particle remineraliza-
tion experiments (Velasquez et al., 2016;
Bundy et al., 2018) or within waters asso-
ciated with benthic resuspension layers
(Boiteau et al., 2019), or nearshore oxy-
gen minimum zones (L.E. Moore et al.,
2021), suggesting that although iron con-
centrations are high in some areas, it
may not be in a sufficiently bioavailable
form to sustain microbial metabolism.
Siderophores thus far appear to be minor
contributors to the total iron-binding
ligand pool in seawater, as they are pres-
ent in picomolar concentrations com-
pared to the nanomolar concentrations
of the total ligand pool (Bundy et al,
2018). However, siderophore character-
ization relies on the efficiency of meth-
ods for extracting these compounds from
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seawater, and methodological advance-
ments are still needed to capture the most
polar siderophores.

Despite their low concentration, sid-
erophores are likely important conduits
by which microbial communities reg-
ulate iron cycling. Based on measured
uptake rates from incubation experi-
ments, siderophores are expected to fall
within the labile fraction of the DOM
pool (Figure 1). Siderophores produced
in response to iron deficiency can accel-
erate the dissolution of iron from parti-
cles, minerals, and colloids (Borer et al.,
2005; Kraemer et al., 2005). Furthermore,
siderophores represent a reservoir of iron
only available to a subset of the microbial
community that is equipped with sidero-
phore-specific uptake systems (Lis et al.,
2015a; Kramer et al., 2020) and thus can
mediate synergistic or antagonistic inter-
actions between different members of the
microbial community. Iron complexation
by siderophores was shown to decrease
iron bioavailability 1,000-fold compared
to Fe' (unchelated iron) in many phy-
toplankton taxa lacking siderophore
transporters (Lis et al., 2015a, 2015b).
However, growing evidence suggests that
marine photoautotrophs adapted to iron-
starved conditions may benefit from sid-
erophores produced by other microbes
(Basuetal., 2019; Coale etal., 2019; Hogle
et al,, 2022). Additionally, photoreactions
of siderophores can lead to iron reduction
and release and the production of weaker
ligands (Barbeau et al., 2001), which may
increase the pool of bioavailable iron for
the wider microbial community (Shaked
and Lis, 2012; Lis et al., 2015b; Mellett
et al., 2018; Manck et al., 2022).

Much of the labile and semi-labile
DOM pool is composed of acidic sugars,
exopolysaccharides, and exopolymeric
substances (EPSs), some of which act as
weaker metal-binding ligands for met-
als such as iron and copper (Plavsi¢ and
Strmecki, 2016; Hassler et al., 2017).
Incubation studies have demonstrated
that EPSs increase iron solubility and
uptake by phytoplankton, and some
EPS components may have very high
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affinities for iron (Hassler et al., 2011,
2015; Norman et al., 2015), sometimes
at even higher uptake rates than would
be expected if all iron were inorganic
(Fourquez et al., 2023).

Multiple analytical approaches indi-
cate that a major portion of the marine
to highly
refractory organic matter.

ligand pool
degraded,
Numerous studies have detected organic

corresponds

ligands in the ocean with fluorescent and
electrochemical characteristics that are
similar to reference humic substances
composed of recalcitrant organic decay
products. These “humic-like” ligands are
widespread and often comprise a signif-
icant fraction of the organic ligand pools
of several metals. Humics incorporate a
range of binding sites; while they are pri-
marily considered to be intermediate-
strength ligands for iron and copper,
some humics (e.g., from the Arctic) may
have binding strengths as high as those
for siderophores (Laglera et al., 2019).

In the deep ocean, these humic ligands
may comprise about 5% of DOC (Laglera
and van den Berg, 2009; Dulaquais
et al., 2018). In regions that are heav-
ily influenced by terrestrial inputs, such
as coastal areas and the Arctic Ocean,
iron-humic complexes can be the dom-
inant form of dissolved iron species
(Laglera et al., 2019; Slagter et al., 2019).
In the Atlantic and Southern Oceans
and the Mediterranean Sea, electro-
active humics comprise potentially
around 20%-60% of the iron-binding
ligand pool (Dulaquaisetal.,2018; Whitby
et al., 2020b; Fourquez et al., 2023). The
South Pacific Ocean has the lowest poten-
tial contribution of electroactive humics
to the ligand pool, ranging from 2% to
51% (Cabanes et al., 2020; Dulaquais
et al., 2023). While humic materials have
a distinct fluorescent signature, there is
a disconnect between distributions of
humic-like fluorescent DOM (FDOM)
versus electroactive humic-like mate-
rial (Fourrier et al., 2022), suggesting
these fractions measure different compo-
nents of DOM and that the relationship
of these fractions to iron varies regionally.

In the North Pacific, humic-like FDOM,
dissolved iron, and iron solubility appear
correlated (Tani et al., 2003; Yamashita
et al., 2020), differing from parts of the
Atlantic where this relationship breaks
down (Heller et al., 2013; Whitby et al,,
2020b). How changes in the contribution
of humic material to the total ligand pool
might relate to the progressive changes
observed in overall iron-binding capacity
between the deep waters of the Atlantic
and Pacific is currently unclear, but
thanks to GEOTRACES, increased spatial
resolution is providing new insights into
the sources and sinks of metal-binding
ligands and their identity at a global scale.

Likewise, analysis of marine ligands
by liquid chromatography coupled with
inductively coupled plasma mass spec-
trometry indicates that the majority of
solid phase extractable iron, copper,
nickel, and likely other elements is present
as a complex mixture of molecules that
cannot be chromatographically resolved
(Boiteau et al., 2016b, 2019). This is con-
sistent with the observation that a major
fraction of long-lived DOM is composed
of a structurally complex mixture of
carboxylic-rich aliphatic small molecules
that have been proposed to contain met-
al-complexing groups (Hertkorn et al,
2013). These refractory organic ligands are
likely major buffers of total dissolved metal
concentrations throughout the ocean, and
thus the magnitude of their sources and
sinks are key regulators of global metal
distributions. Current evidence suggests
that their sources are at benthic bound-
aries and along coastlines, and that there
is a surface sink. Electrochemical mea-
surements indicate the remineraliza-
tion of sinking particles can also be both
a source and sink of humic-like ligands
(Whitby et al., 2020a). While their influ-
ence on metal bioavailability, particularly
in dynamic surface waters, is not yet well
understood (Fourquez et al., 2023), the
ubiquitous nature of humic-like ligands
make them important buffers in support-
ing the long term oceanic metal inven-
tory (Laglera and van den Berg, 2009;
Whitby et al., 2020b).



Overall, GEOTRACES has supported
the analysis of a wide range of metal-
binding compounds in open ocean
waters, such as H,S and polyphenols for
iron (Schlosser et al., 2018; Gonzailez
etal., 2019), and thiols (Swarr et al., 2016;
Gao and Guéguen, 2018; Whitby et al,,
2018), which can bind copper and other
metals. There have also been dedicated
efforts to understand the role of ligands
in iron redox speciation (Santana-
Casiano et al., 2010; Gonzélez et al., 2012;
Arreguin et al., 2021; Gonzalez-Santana
et al., 2023). Continued studies are nec-
essary to connect operationally defined
ligand classes with specific compounds
to better constrain the sources, sinks,
and distribution of ligands with distinct
chemical properties (Figure 1). Use of key
model ligands, such as desferrioxamine B
and Suwannee River humic standards, has
proven extremely useful in developing
our understanding of ocean metal dis-
tributions and speciation, but they do
not fully represent the entire spectrum
of marine ligands. Identifying alterna-
tive model ligands, ideally of marine ori-
gin, and characterizing the metal binding
behavior of marine DOM isolates, will
support further advances in this area.

MODELING METAL SPECIATION
AND CYCLING

Alongside the advances in quantification
and characterization of organic ligands,
GEOTRACES has sparked advancements
in modeling chemical speciation (Turner
et al., 2016) and the representation of
metal speciation within global ocean
biogeochemical models such as PISCES
(Tagliabue et al, 2016; Richon and
Tagliabue, 2019). Increased data qual-
ity and availability, and the development
of models such as Marchemspec (http://
marchemspec.org/) allow us to assess

controls on metal solubility. Progress
in these areas has focused on making
improvements that can capture measured
distributions of trace metals (Tagliabue
et al.,, 2016), with the goal of generat-
ing predictive knowledge of how ocean
trace metal sources, sinks, and biological

impacts will change in the future.
The organic
ligands has major effects on model out-

parametrization  of

puts of metal distributions and remains
a major source of uncertainty. The earli-
est models proposed that organic com-
plexation extends the residence time of
iron in deep waters and that there is a
“threshold” strong ligand concentration
of 0.6 nM that is uniform throughout the
ocean, with no inter-basin differences in
deep ocean dissolved iron concentrations
(Johnson etal., 1997). Although the “fixed
ligand” assumption is still a key feature
of many models of global iron distribu-
tions, measurements of organic ligand
concentrations indicate variations that
can exceed an order of magnitude. Some
models have incorporated a dynamic
ligand pool by tying total ligand concen-
trations to DOC (Tagliabue and Volker,
2011; Volker and Tagliabue, 2015); more
recently, the iron binding capacity of
ligands have been parametrized as a
function of pH and DOC (Ye et al., 2020).
However, expanded measurements com-
paring DOC and organic ligand concen-
trations indicate that they have distinct
distributions (Figure 1). Where the DOM
and ligand pools are largely refractory,
such as in deeper, older waters, ligands
likely comprise a relatively consistent
fraction of DOM. Yet, in productive sun-
lit waters and at remineralization depths,
the production and degradation of more
labile ligands results in greater variability
in the relative concentrations of ligands
and bulk DOC (Hassler et al., 2020). By
studying the distributions of specific
ligands alongside measurements of the
average bulk ligand pool, we are uncov-
ering the sources and sinks of composi-
tionally distinct ligand components that
cycle differently. Understanding the envi-
ronmental factors that control the distri-
butions of these components is crucial for
accurately incorporating organic ligands
into biogeochemical models.

In addition to contemplation of a
dynamic ligand reservoir, there have
been advancements in ways to model
metal speciation. New speciation models

have included NICA-Donnan parame-
terizations of organic-metal binding that
describe complexation of cations to ter-
restrial humic-like organic matter, and
considered a distribution of ligands with
different binding strengths. Such mod-
els provide an estimation of metal spe-
ciation (Hiemstra and van Riemsdijk,
2006; Stockdale et al., 2011) linking
DOM bioavailability with iron solubil-
ity (Zhu et al, 2021a). These models
may be appropriate in the marine set-
ting given recognition that much of the
complexation capacity in the ocean may
be attributed to polydisperse degrada-
tion products and, in accounting for the
complexity of seawater DOM, the NICA-
Donnan model approach may better pre-
dict iron bioavailability in natural waters
(Zhu et al., 2021a; Gledhill et al., 2022a,
2022b). However, there are still open
questions regarding the extent to which
speciation is well described by assump-
tions of thermodynamic equilibrium and
the extent to which different metals may
compete for the same metal binding sites.

Very recent work suggests that pro-
cesses other than organic complexation
may exert important controls over the
distribution, solubility, and bioavailabil-
ity of metals in the ocean. Throughout the
ocean, a large portion of metals such as
dissolved iron exist in “colloidal” phases
that are known to be inert to competitive
ligand exchange, implying strong stability
or slow kinetics of metal binding. Studies
have found that the colloidal phase is
important for iron (Kunde et al., 2019;
Homoky et al., 2021), but less so for some
other metals commonly complexed by
ligands, such as cobalt, copper, and man-
ganese (Jensen et al., 2021). Colloidal iron
makes up a large fraction (up to 85%) of
dissolved iron in surface waters of high-
dust areas like the tropical and subtrop-
ical North Atlantic waters (Fitzsimmons
and Boyle, 2014; Fitzsimmons et al,
2015a; Kunde et al.,, 2019) but comprises
a much lower fraction in low-dust areas
such as the Southern Ocean and the
western Arctic (Boye et al., 2010; Jensen
et al., 2020). Despite its abundance in
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surface waters, colloidal iron sharply
declines in the subsurface/deep chloro-
phyll maximum, which suggests that it
may be rapidly scavenged onto particles
or taken up by microbes. Recent studies
also suggest that colloids of authigenic
iron oxyhydroxide phases can form and
coprecipitate with organic matter (Curti
et al., 2021), which may “shunt” metals
such as iron into particles. Including
these reactions in a global-scale bio-
geochemical model resulted in much
greater agreement between model simu-
lations and observations (Tagliabue et al.,
2023). Work around hydrothermal vents
has revealed the importance of the iron
redox state (Toner et al., 2009a, 2009b),
and shown how humic-like ligands can
only solubilize a very small fraction
(~1%-5.5%) of aged iron oxyhydroxides
(Dulaquais et al., 2023). Complex phases
that diverge from the commonly con-
sidered 1:1 metal-ligand binding behav-
ior have largely been ignored in the past,
illustrating how we may need to con-
sider alternative relationships between
DOM and iron cycling, and to recon-
sider assumptions based on operational
definitions surrounding size class and
metal speciation.

MOVING FORWARD:
UNDERSTANDING

BIOAVAILABILITY

The
strongly influences their bioavailabil-
ity, which is defined and discussed in the
following section based on their phyto-

chemical speciation of metals

plankton uptake kinetics. The free metal
ion, M, including the inorganic com-
plexes of M' with CI, COZ, etc., is com-
patible with transport systems found
in all cells. M' is considered as the pre-
ferred substate for uptake by phytoplank-
ton, making it the most bioavailable and/
or toxic physicochemical form of trace
metals (Sunda, 1975; Hudson and Morel,
1990). Laboratory experiments with syn-
thetic organic ligands, such as ethylene-
diamine-tetraacetic acid (EDTA) or nitri-
lotriacetic acid (NTA) demonstrated that
metal complexation markedly decreased

150 Ocmnuﬂm/;/r)/ | Vol. 37, No. 2

bioavailability and rates of uptake
(Hudson and Morel, 1990; Sunda and
Huntsman, 2000). The complexation-
driven drop in bioavailability results from
adecrease in the free metal ion concentra-
tion in the ambient medium and the fact
that these synthetic ligands are unassim-
ilable (Shaked et al., 2005; Sunda, 2012).
In seawater containing diverse nat-
ural ligands, the influence of complex-
ation on uptake kinetics is less clear than
it is for laboratory experiments. Some
metal complexes such as thiosulfate, low-
molecular-weight organic metabolites,
and low-affinity ligands can be indirectly
utilized or directly taken up by phyto-
plankton to satisfy their nutritional needs
(J.M. Kim et al.,, 2015; Liu and Campbell,
2017), while others may be unavail-
able for biological uptake. Metal acquisi-
tion rates also vary substantially among
organisms due to the diversity of both
biological uptake pathways and metal
species (Guo et al., 2010; Aristilde et al.,
2012; Shaked and Lis, 2012). Interactions
among different ligand types can also
impact dissociation kinetics and ligand
exchange (Sukekava et al, 2024) and
thus metal bioavailability. Although an
all-encompassing simple link between
metal speciation and bioavailability can-
not be drawn (Shaked and Lis, 2012;
Sunda, 2012), the examples given above
indicate how knowledge of metal uptake
pathways and rates for specific organisms
and chemical forms enables useful pre-
dictions of where and how metal stress
impacts marine communities beyond
what is obtainable by metal concentra-
tion measurements alone.
Understanding how environmental
factors alter metal speciation is also criti-
cal for assessing metal bioavailability and
uptake rates. Sunlight and reactive oxy-
gen species can dissociate metals from
organic complexes through redox mecha-
nisms or by degrading the organic ligand.
For example, photodegradation and
release of bioavailable iron from upwelled
refractory DOM can induce phytoplank-
ton blooms (Hassler et al., 2020). In addi-
tion to DOM, organically complexed iron

from different ocean basins was shown to
undergo photochemical alterations that
increased its bioavailability (Mellett et al.,
2018; Shaked et al., 2020). Recent evalua-
tion of in situ iron bioavailability using a
large single-cell dataset further suggested
that sunlight elevates iron bioavailability
in the ocean surface (Shaked et al., 2021).
These processes likely render metals that
are highly complexed by organic ligands
more bioavailable at the surface and
attenuate bioavailability with depth.

Changes in pH also affect metal spe-
ciation and consequently metal bioavail-
ability. Acidification has been shown to
decrease the uptake of iron by marine
phytoplankton in a manner consistent
with predicted changes in iron speciation
(Shi et al., 2010). In other cases, decreas-
ing pH has been shown to either increase
or decrease metal bioavailability, depend-
ing on the composition of complex-
ing ligands, while high pH can lead to
decreased inorganic copper or increased
inorganic iron concentrations (Avendafio
et al., 2016; Liu et al., 2020). DOM or col-
loidal aggregates can also influence metal
speciation by adsorbing and transport-
ing metals (Aiken et al,, 2011; Bressac
and Guieu, 2013). Changes in physico-
chemical conditions, such as tempera-
ture and pH, can also impact the abun-
dance and composition of DOM and its
metal binding functional groups (Piontek
et al., 2009; Zhu et al., 2021b). Such stud-
ies provide an important foundation for
understanding how metal stress will be
exacerbated or alleviated under changing
ocean conditions.

It is also important to note that the
metal speciation we measure in the lab-
oratory at room temperature and with
buffered pH may not best represent in situ
speciation. For example, sea ice and brine
samples come from a wide range of tem-
perature and salinity conditions, and spe-
ciation measurements made under typi-
cal conditions can be different from those
in the natural environment (Hassler et al.,
2013; Genovese et al., 2022). Microscale
processes that are not reflected by bulk
phycosphere (the micrometer scale region



immediately surrounding a phytoplank-
ton cell), such as pH and oxygen concen-
trations, can also be very different from
bulk seawater on which we perform our
analyses, resulting in different organic
and inorganic speciation (Liu et al., 2020).
Cutting-edge research using nanoprobes
to directly look at chemical conditions
and metal speciation within the phyco-
sphere could help us better understand
metal bioavailability in aggregates or colo-
nies that are hotspots of biological activity
(Basu et al., 2019; Eichner et al., 2019; Liu
et al., 2022). Considering that trace metal
bioavailability depends on an interplay of
chemical, physical, and ecological factors
in the ocean, quantifying metal specia-
tion has the important aim of providing
predictive knowledge about which bio-
logical processes are influenced by metal
stress across the ocean and how they will
respond to environmental change.

CONCLUSIONS

The GEOTRACES program has collected
an abundance of data to help us under-
stand and model the cycling of import-
ant trace metals in our ocean, in partic-
ular dissolved iron. Speciation studies
have allowed us to better explain key
processes driving these biogeochemical
cycles and to identify some of the major
contributors to the ligand pool and their
sources and sinks. It is also important to
note that GEOTRACES has supported a
wide range of highly relevant measure-
ments on metals that extend beyond
this article but that have advanced our
understanding of ocean metal chemistry.
Advances gained through GEOTRACES
data will continue to aid us as we inves-
tigate the roles of metals in the carbon
cycle and the climate, and how, in turn,
changes in oceanic conditions due to
climate change affect metal speciation.
This includes understanding how shifts
in pH, temperature, and oxygen levels
impact the solubility and speciation of
metals in seawater. The continued work
to standardize existing procedures along
with the development of novel tech-
niques is broadening our understanding

of metal behavior in ocean waters while
simultaneously presenting many new
questions to answer.

We currently lack knowledge of the
abundance of specific compounds and of
how to directly connect widespread elec-
trochemical speciation measurements
with methods that characterize individ-
ual compounds within the ligand pool,
or with metal bioavailability, includ-
ing the importance of thermodynamic
versus kinetic controls on rates of uptake
by phytoplankton. We also lack infor-
mation on how fast these different com-
pounds cycle and how heterogeneous or
regionally specific they may be. No metal
exists in isolation; the dynamic environ-
ment of sources, sinks, and cycling pro-
cesses means that metals are in con-
stant competition for binding sites, and
they continuously undergo processes
that impact their solubility and bioavail-
ability. Future modeling of metal cycling
may be improved by understanding the
relationship of metal-binding ligands to
DOM and the processes that control their
production and degradation, as well as
expanding our view of metal speciation
to include inorganic forms. However,
as processes relevant for ligands are not
always necessarily directly relatable to
those acting on the overall DOM pool,
particularly in dynamic upper waters,
consideration of the differences in resi-
dence times, reactivity, and bioavailabil-
ity of specific metal-binding ligands will
be essential. Ultimately, we still have a
long way to go to understand metal spe-
ciation and its links to bioavailability,
biogeochemical cycling, and the ocean
metal inventory, but exciting progress
has been—and continues to be—made,
spurred by the GEOTRACES era.

SUPPLEMENTARY MATERIALS
Table S1is available online at https://doi.org/10.5670/
oceanog.2024.419.
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